
On Comparing Financial Option Price Solvers on FPGA

Qiwei Jin and Wayne Luk
Department of Computing
Imperial College London
{qj04,wl}@doc.ic.ac.uk

David B. Thomas
Department of Electrical and Electronic Engineering

Imperial College London
d.thomas1@imperial.ac.uk

Abstract—A number of different numerical methods for
accelerating financial option pricing using FPGAs have re-
cently been investigated, such as Monte-Carlo, finite-difference,
quadrature, and binomial trees. However, these papers only
compare acceleration of each method against the same method
in software, and do not consider a more important practical
question, which is to identify the method that provides the
best FPGA performance for a given option pricing application,
regardless of raw speed-up over software. This paper proposes
a framework for comparing the performance of numerical
option pricing methods using FPGAs, taking into account both
speed (time to solution) and accuracy (quality of solution),
and examines how the speed-accuracy trade-off curve varies
for each method. We apply the framework to European and
American option pricing problems using Virtex-4 parts, and
show that the quadrature solver converges fastest for both
European and American options, and is also the most accurate
in terms of root mean squared error for European options.
However, when very accurate American results are needed the
finite-difference solver is the most efficient method. Our results
also show that the Monte-Carlo solver is at least 100 times
less accurate in log scale than those based on other pricing
methodologies; this drawback outweighs its benefit of having
large raw speed-ups found in previous papers.

Keywords-Finance, Tree, Quadrature, Finite Difference,
Monte Carlo, Black Scholes, FPGA, European Option, Amer-
ican Option, Metrics

I. INTRODUCTION

In recent years the application of FPGAs to financial
computing has been investigated. For example, recent FPGA
option pricing research includes: tree based solvers for
American options with 30 times speed up [1]; a finite differ-
ence solver for European options with 27 times speed up [2];
a quadrature (numerical integration) solver for European
options with 32 times speed up [3]; a stream-oriented Monte-
Carlo accelerator for European options with 41 times speed
up [4] and a Monte-Carlo simulator for American options
using least squared method with 20 times speed up [5]. This
approach is now being deployed commercially: for exam-
ple by using a bespoke FPGA platform and sophisticated
synthesis tool chain, an industrial FPGA provided 30 times
acceleration over an eight-core Intel CPU [6].

Though it is easy to measure the speed-up of a particular
FPGA implementation versus a software implementation of
the same algorithm, the existing research does not allow
us to compare between two FPGA methods for solving the

same problem. Imagine we have two FPGA solvers for a
given problem, based on two different mathematical methods
and implemented on two different FPGAs; one solver is less
accurate but consumes 5% of the total resources on FPGA1
and runs at a 20% higher clock rate than the other solver;
the other core is more accurate but consumes 50% of the
available resources on FPGA2 and runs at a lower clock rate.
Current research into the FPGA acceleration does not give
us enough information to determine which method is better,
as all that is reported is raw performance, and accuracy is
usually not considered in a directly comparable way. If such
comparison can be made easy, it will help end users such
as investment banks to compare the methods examined by
the FPGA research community.

To make a fair comparison, one needs to consider both
speed (hardware area, clock rate and intrinsic algorithmic
complexity), and accuracy (quality of solution plus conver-
gence with time). This paper presents a novel framework to
compare between different iterative FPGA solvers in terms
of speed and accuracy, which can be used to compare exist-
ing implementations, and predict the accuracy and execution
time of methods on other reconfigurable device.

The main contributions of this paper are:
• A methodology for comparing FPGA-based numerical

option-pricing applications by considered both speed
and accuracy of each method (Section III);

• a comparison of existing FPGA option price solvers
using the proposed framework. Tree, finite difference,
quadrature and Monte Carlo methods are compared
for both European options and American options (Sec-
tion IV).

II. FINANCIAL OPTION PRICING METHODS

There are two main types of options (call and put). For
example, a put option is a contract that gives party A the
right to sell some asset S to party B at a fixed price K
(called the strike price). A number of numerical methods can
be used for many types of options, with the most common
being trees, quadrature (QUAD), finite difference and Monte
Carlo (MC). Within each method there are further choices
(for example explicit vs implicit finite difference), but in this
paper we choose the main methods as discussed within the
FPGA literature.

IEEE International Symposium on Field-Programmable Custom Computing Machines

978-0-7695-4301-7/11 $26.00 © 2011 IEEE

DOI 10.1109/FCCM.2011.30

89

All these methods can be applied to a huge variety of
financial models, but for the purposes of this discussion
we will consider models derived from the Black-Scholes
method, where underlying assets follow geometric Brownian
motion [7]. If the option is a European option, the Black
Scholes formula [7] can calculate the result analytically,
however for American options there is no closed-form solu-
tion. In this paper the Black Scholes formula price is used as
reference to other solver prices for European options, which
provides a controlled environment to verify the correctness
of our proposed methodology. We now introduce the option
pricing methods being compared in this paper.

The binomial model works by discretising both time and
the price of underlying asset S, and mapping both onto
a binary tree [8]. The trinomial model is similar to the
binomial model, except prices can now go up, down, or stay
the same at each time step, where depth of the tree means
time [1]. The quadrature method (QUAD) overcomes the
“distribution error” and “non-linearity error” introduced by
tree based and finite difference methods, by using numerical
integration at each time step [9]. The explicit finite dif-
ference method (EFD) solves the Black Scholes PDE by
discretising both time and the price of the underlying asset
S, and mapping both onto a two-dimensional grid [2]. The
Monte Carlo method (MC) is usually only used when the
problem cannot be handled using non-stochastic numerical
methods; it uses a large number of randomly generated
simulations to estimate the expected option price [10].

III. COMPARISON METHODOLOGY

A common feature of all these numerical methods, there
is a tradeoff between speed to solution and accuracy of
solution. The key metrics we can use to evaluate each
FPGA solver are: a) Execution time (e.g. in seconds); b)
Accuracy (e.g. relative error to the reference); c) Resource
consumption (e.g. in LUTs and DSPs). We now discuss the
application of the metrics to finance option pricing models.

A. Measuring Execution time

In order to compare each of the option price solvers
proposed in Section II, we define a parameter n, the Asset
Price Observation (APO) points at option expiry, which is a
function of the number of time steps m in the model. The
definition of n and the problem size in terms of the total
number of iterations for each model are listed in Table I.

Since all the reported FPGA implementations are fully
pipelined, one intermediate result is produced per clock
cycle. This allows us to link clock rate to execution time, as
shown in Equation 1:

ExecutionT ime =
x

C × N
+ o × N (1)

where C is the clock frequency of a solver core implemented
on the FPGA, N is the number of replicates of the central
kernel and o is the total communication overhead.

Table I
THE MEANING OF ASSET PRICE OBSERVATION (APO) POINT n IN EACH

PRICING METHOD AND HOW TO CALCULATE PROBLEM SIZE x

Solver Meaning of n Num Iterations x
Binomial Number of leaves in tree n × (n + 1)/2
Trinomial Number of leaves in tree (n + 1)2/4

EFD Number of discretised asset
n3 × σ2 × Tprice points in the grid

QUAD Number of integration points n2 × m
MC Number of paths n × m

B. Measuring Accuracy

Due to the unpredictable nature of solution convergence,
solver accuracy can not be measured accurately in a sin-
gle run. We propose a Monte Carlo approach to measure
the accuracy by running experiments multiple times using
randomly generated parameters for the target solver. This
minimises the possible biases from individual runs. The
framework is comprised of the following components:

• A set of options O, a set of possible option input
parameters P and a set of solvers S,

• a function t(n,O, S) → t which gives the run-time of
the hardware (Equation 1),

• a function a(n,O, S, P) → v which gives the result
using solver O with n APO points and option inputs
P ,

• a function r(O) → P which takes the type of the
option as an input and outputs an option with randomly
generated parameters,

• a reference (golden) solver g(O,P) → v where
g(O,P) = a(NG, O, SG, P). This is an analytical
solver if one exists, or one of the existing solvers which
is known to be stable with very large n.

The accuracy of a given solver is represented in terms of
root mean squared error over a random sample of size b.

e(n,O, S) =

√√√√1
b

b∑
i=1

{a[n,O, S, r(O)] − g(O,P)}2 (2)

C. Estimating Hardware Resource Utilisation

Hardware resource utilisation for the option solvers can
not be measured accurately until the synthesis phase of the
design flow. Rapid analysis methodology has been proposed
for mapping arbitrary applications to targeted reconfigurable
platforms [11], however this only allows us to explore
design space in terms of low level hardware description
language. To obtain a good approximation from a high level
mathematical description we use the following methodology:

• generate a resource consumption table of all the arith-
metical operators in use for the target reconfigurable
device;

• calculate the arithmetical operators required per step
in each solver based on the model’s mathematical
description;

90

Table II
SINGLE PRECISION OPTION PRICE SOLVERS: CLOCK FREQUENCY,

NUMBER OF REPLICATIONS AND DEVICE MODEL.

Solver European American
Frequency Device Frequency Device
MHz×Size (XC4V) MHz×Size (XC4V)

Binomial 79×7 SX55 76×6 [1] SX55
Trinomial 77×5 SX55 69×4 [1] SX55

EFD 106×8 [2] LX160 89×7 LX160
QUAD 100×3 [3] LX160 90×2 LX160

MC 61×3 [4] LX160 76×4 [5] FX100

• apply optimisation to eliminate unnecessary arithmeti-
cal operators to minimise hardware resource consump-
tion;

• calculate primitive hardware utilisation u in terms of

u =
n∑

i=1

num(i) × util(i) (3)

where num(i) → N is a function to return the number
of the operator used given the index of the operator;
util(i) → N is a function to return the resource
consumption given the index;

• if the method is Monte Carlo based, use Equation 3 to
calculate its resource consumption umc and add that to
the original u;

• Address resources consumed by peripheral and glue
logic for each solver core (f1), and the percentage
of total FPGA slice resource to handle device-host
communication, necessary number format conversion
and reasonable waste of resource (f2), the estimated
core duplications µ on a particular device can then be
calculated:

µ =
(1 − f2)L

f1 × (u + umc)
(4)

where L is the total resource available on the reconfig-
urable device.

IV. RESULT

In this section we use our framework to compare existing
option price solvers using the methodologies proposed in
Section III. The accuracy comparison is done in double
precision, although the actual FPGA implementations are
in either single precision or fixed point numbers. This is to
rule out possible biases introduced by none-IEEE compliant
FPGA floating point library adopted in existing designs. The
model parameters m and n are set for good efficiency and
accuracy, the details of the setup is out of the scope of this
paper and will be included in a future journal paper.

Table II shows the clock frequencies, the number of
core duplications and the types of target devices for single
precision solvers. Based on Table I and Table II , execution
time against n is plotted in Figure 1. It is interesting to see
that as n becomes larger, the execution time of the explicit
finite difference solver surpasses that of the Monte Carlo

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2000 4000 6000 8000 10000

Ti
m
e
(s
e
c)

n

Binomial

Trinomial

Finite Difference

QUAD

Monte Carlo

Figure 1. Execution time against asset price observation points n for
European options, based on Table I and Table II

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

0.001 0.01 0.1

lo
g(
R
M
SE
)

log(Time)
Binomial Trinomial Finite Difference QUAD Monte Carlo

Figure 2. Root mean squared error against time for European option in
log scale.

solver. This means that the problem size of the explicit
finite difference solver increases the fastest amongst all the
solvers.

In our experiment the solver accuracy is measured by 10K
trials of randomly generated option parameters for a range
of APO points from 0.5K to 10K. The option parameters
are generated by the following criteria: S = [50, 100],K =
S ± [0, 10], V = [0.1, 0.3], R = [0.02, 0.2], T = 1.0. Each
pricer price is compared to a reference price considered to be
true: we use the Black Scholes formula price for European
options and binomial tree price with n = 50K for American
options. This is because the error bound for binomial tree
at n = 50K is negligible compared to the solver price.

Figure 2 depicts the root mean squared error (RMSE)
against time (sec) for European option solvers. It can be
seen that the quadrature solver gives the result closest to
the reference and is the fastest; the binomial and trinomial
solvers have a similar RMSE at all times and the explicit
finite difference solver comes last. It can also be seen
that the Monte Carlo solver has relatively large RMSE at
the beginning and converges slowly with time, it will take
more than 0.6 seconds before RMSE drops under 0.05; the
convergence degradation is orders of magnitude higher than
the speed up gain. It can be concluded that the FPGA Monte
Carlo solver should only be used when no other solvers are
available.

Figure 3 depicts RMSE against execution time (sec) for

91

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

0.0008 0.008 0.08
lo
g(
R
M
SE
)

log (Time)
Binomial Trinomial Finite Difference QUAD Monte Carlo

Figure 3. RMSE against time for American options in log scale.

all solvers. The figure shows that the quadrature result
converges to a stable value under 0.01 second and the other
result converge in just over 0.02 seconds. All the solvers can
produce a good enough to use result within 2 micro seconds,
with RMSE smaller than 0.001. The QUAD RMSE is a
horizontal line since it converges to a value different from
the binomial reference. This difference is model-dependent
and hence cannot be improved by increasing the number
of APO points. It can be seen that the RMSE of the result
produced by Monte Carlo solver is still over 0.5 after 0.1
seconds, which is much larger than other solvers.

From the result obtained we are able to conclude that the
quadrature method implemented on an XC4VLX160 device
produces the most accurate result in terms of RMSE the
fastest for European options and produces the most stable re-
sult over time for American options. The trinomial tree tends
to be more accurate than binomial tree on a XC4VLX160
device for both European and American options, but they
tend to converge to the same result when number of APO
points gets larger. They have less convergence over time
comparing to quadrature method, however, for European
options, explicit finite difference solver provides a more
accurate result than the tree based method when number
of APO points reaches 10K. In practice the quadrature
solver should be used if applicable. Otherwise the tree
based solvers should be used if the result is time critical
and the explicit finite difference method should be used
if the result is accuracy critical. On the other hand, the
Monte Carlo solvers for European and American options,
implemented on a XC4VLX160 device and a XC4VFX100
device, demonstrate orders of magnitude less accurate result
even with a much longer execution time. In addition, after a
threshold the convergence of Monte Carlo methods becomes
negligible, therefore for best result the Monte Carlo method
should not be used if other methods are available, even if
they are accelerated by FPGA. In other words, Monte Carlo
methods should only be adopted as a last resort even though
they achieve large speed-ups in hardware.

V. CONCLUSION AND FUTURE WORK

This paper presents a novel framework to compare differ-
ent iterative solvers for FPGA financial applications. Various

mathematical option pricing models implemented on FPGAs
are compared in terms of result accuracy and execution
time, based on reported results. Our results show that the
FPGA based Monte Carlo solver should only be used when
there are no other solvers available; the degradation in
convergence is orders of magnitude higher than the speed
up gain, leading to a longer execution time for a desired
accuracy.

Future work includes applying the framework to other
types of option solvers such as barrier options, Asian options
and those involving two underlying assets instead of one.
We also plan to include power and energy consumption
estimations for designs on different FPGAs.

Acknowledgement: The research leading to these results
has received funding from J.P.Morgan, EPSRC, Alpha
Data, Xilinx and the European Union Seventh Framework
Programme under grant agreement number 248976 and
257906

REFERENCES

[1] Q. Jin, D. B. Thomas, W. Luk, and B. Cope, “Explor-
ing reconfigurable architectures for tree-based option pricing
models,” ACM Trans. Reconfigurable Technol. Syst., vol. 2,
pp. 21:1–21:17, September 2009.

[2] Q. Jin, D. Thomas, and W. Luk, “Exploring reconfigurable
architectures for explicit finite difference option pricing mod-
els,” in Int. Conf. on Field Programmable Logic and Appli-
cations, 2009, pp. 73–78.

[3] A. H. Tse, D. B. Thomas, and W. Luk, “Accelerating quadra-
ture methods for option valuation,” in Proc. IEEE Symp. on
Field-Programmable Custom Computing Machines, 2009.

[4] G. Morris and M. Aubury, “Design space exploration of the
European option benchmark using Hyperstreams,” in Proc.
Int. Conf. on Field Programmable Logic and Applications,
2007, pp. 5–10.

[5] X. Tian and K. Benkrid., “American option pricing on recon-
figurable hardware using least-squares monte carlo method,”
in Proc. Int. Conf. on Field-Programmable Technology, 2009,
pp. 263 –270.

[6] S. Weston, J. T. Marin, J. Spooner, O. Pell, and O. Mencer,
“Accelerating the computation of portfolios of tranched credit
derivatives,” in IEEE Workshop on High Performance Com-
putational Finance, 2010, pp. 1–8.

[7] J. Hull, Options, Futures and Other Derivatives, 6th ed.
Prentice Hall, 2005.

[8] Q. Jin, D. B. Thomas, W. Luk, and B. Cope, “Exploring re-
configurable architectures for binomial-tree pricing models,”
in Proc. Int. workshop on Applied Reconfigurable Computing,
2008, pp. 245–255.

[9] A. D. Andricopoulos, M. Widdicks, P. W. Duck, and D. P.
Newton, “Universal option valuation using quadrature meth-
ods,” Journal of Financial Economics, vol. 67, no. 3, pp. 447–
471, 2003.

[10] P. Glasserman, Monte Carlo Methods in Financial Engineer-
ing. Springer, 2003.

[11] C. Reardon, E. Grobelny, A. D. George, and G. Wang, “A
simulation framework for rapid analysis of reconfigurable
computing systems,” ACM Trans. Reconfigurable Technol.
Syst., vol. 3, pp. 25:1–25:29, November 2010.

92

