
A New Approach to Control and Guide the

Mapping of Computations to FPGAs

João M. P. Cardoso
3*

, Razvan Nane
4
, Pedro C. Diniz

2
, Zlatko Petrov

1
, Kamil Krátký

1
, Koen Bertels

4
,

Michael Hübner
5
, Fernando Gonçalves

8
, José Gabriel de F. Coutinho

6
, George Constantinides

6
, Bryan

Olivier
7
, Wayne Luk

6
, Juergen Becker

5
, Georgi Kuzmanov

4

1
Honeywell International s.r.o., HON, Czech Republic (coordinator)

2
Instituto de Engenharia de Sistemas e Computadores Investigação e

Desenvolvimento em Lisboa, INESC-ID, Portugal
3
Universidade do Porto, Faculdade de Engenharia (FEUP), Portugal

4
Technische Universiteit Delft, TUD, The Netherlands

5
Karlsruhe Institute of Technology, KIT, Germany

6
Imperial College London, Imperial, UK

7
ACE Associated Compiler Experts b.v., ACE, The Netherlands

8
Coreworks – Projectos de Circuitos e Sistemas Electrónicos S.A., CW, Portugal

Abstract - Field-Programmable Gate-Arrays (FPGAs) are

becoming increasingly popular as computing platforms for

high-performance embedded systems. Their flexibility and

customization capabilities allow them to achieve orders of

magnitude better performance than conventional embedded

computing systems. Programming FPGAs is, however,

cumbersome and error-prone and as a result their true

potential is often only achieved at unreasonably high design

efforts. The REFLECT (Rendering FPGAs to Multi-Core

Embedded Computing) project’s design flow consists of a

novel compilation and synthesis system approach for FPGA-

based platforms. Its design flow relies on Aspect-Oriented

Specifications to convey critical domain knowledge to

optimizers and mapping engines. An aspect-oriented

programming language, LARA (LAnguage for Reconfigurable

Architectures), allows the exploration of alternative

architectures and design patterns enabling the generation of

flexible hardware cores that can be incorporated into larger

multi-core designs. We are evaluating the effectiveness of the

proposed approach for applications from the domain of audio

processing and real-time avionics. In this paper we describe

the REFLECT approach and present a number of examples

and results using REFLECT’s compilation and synthesis tools.

Keywords: FPGAs, Compilers, Aspect-Oriented

Specifications, Reconfigurable Computing

1 Introduction

Contemporary Field-Programmable Gate-Arrays

(FPGAs) are powerful and sophisticated devices able to

implement complex high-performance embedded computing

systems [1][2]. Customization allows FPGAs to achieve

orders of magnitude better performance than conventional

processor systems as they can implement directly in hardware

specific high-level operations crystallized as custom

computing units. As a result, FPGAs are becoming

commonplace in embedded systems and even in some cases in

high-performance systems.

However, the benefits of FPGA-based systems over

traditional systems come at a cost. The large numbers of

potential custom functional units, coupled with the many

choices of interconnecting these units, make the mapping of

computations to these hardware/software architectures a

highly non-trivial process. As a result, the mapping of

complex applications to these architectures is accomplished by

a labor intensive and error-prone manual process.

Programmers must assume the role of hardware designers to

synthesize or program the various custom hardware units in

low level detail, and also to understand how these units

interact with the software portions of the application code.

Programmers must partition the computation between the code

that is executed on traditional processor cores and the code

that is to be synthesized in hardware with the consequent

partitioning and mapping of data. The complexity of this

mapping process is exacerbated by the fact that the custom

computing units may internally exhibit different computation

models (e.g., data flow, concurrent synchronous processes)

and architectural characteristics (e.g., parallelism,

customization), or that the various cores might support

functional- or data-parallel concurrent execution paradigms.

* Contact author: João M. P. Cardoso

Universidade do Porto, Faculdade de Engenharia (FEUP)

Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal

Email: jmpc@acm.org

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 231

It is the aim of the REFLECT project [3][4] to develop

an approach to help designers achieve efficient FPGA-based

heterogeneous multi-core computing systems. Our approach

involves combining different areas of research: aspect-

oriented specifications, hardware compilation, design patterns

and hardware templates. The goal of this project is to develop,

implement and evaluate a novel compilation and synthesis

approach for FPGA-based platforms. We rely on Aspect-

Oriented System Development (AOSD), with foundations on

aspect-oriented programming (AOP) [5][6], to convey critical

domain knowledge to mapping engines while preserving the

advantages of a high-level imperative programming paradigm

in early software development as well as programmer and

application portability. We leverage aspect-oriented

specifications using LARA (LAnguage for Reconfigurable

Architectures), a new domain-specific aspect-oriented

programming language, to specify complementary

information, optimizations, and mapping strategies. The

REFLECT design flow has unique characteristics that allow it

to both adapt to and meet different non-functional

requirements (e.g., safety requirements [7]).

We are evaluating the effectiveness of the proposed

approach using real-life applications provided by REFLECT’s

industrial partners. This evaluation includes the development

of two demonstrators: an avionics mission-critical embedded

system and an audio encoder. Both these codes raise realistic

and demanding challenges that highlight the power and impact

of the base techniques and methodologies in the proposed

REFLECT approach over traditional design and mapping

methodologies.

In this paper we describe the REFLECT design flow [4]

and how aspects and strategies are used to map computations

to FPGA based systems. In particular, we show experimental

results obtained by mapping kernels from two avionics

applications, which illustrate strategies suited to meet high-

performance requirements.

This paper is organized as follows. Section 2 presents the

architecture being currently targeted in REFLECT. Section 3

illustrates the REFLECT design flow and the main tools being

developed, used and extended. Sections 4 and 5 describe,

respectively, two application case studies and the use of

aspects and design patterns in REFLECT. Section 6 presents

the results currently achieved when mapping these codes to a

REFLECT target architecture. Section 7 presents related work.

Finally, Section 8 concludes this paper.

2 REFLECT Target Architecture

Although the REFLECT design flow can target a

multitude of reconfigurable architectures, it currently targets

an architecture consisting of a general-purpose processor

(GPP) connected to Custom Computing Units (CCUs) based

on application-specific architectures. Both these components

use a shared memory approach possibly connected via data

communication channels. The application-specific

architectures are implemented with reconfigurable logic (as in

reconfigurable fabrics such as FPGAs) and are generated from

the C code of the application being compiled.

An example of the target architecture is depicted in Fig.

1 and consists of a GPP, such as a Xilinx MicroBlaze or IBM

PowerPC, tightly coupled with a reconfigurable hardware

fabric where Custom Computing Units (CCUs) is defined

according to application needs. Collectively, the CCUs define

a reconfigurable computing system implementing various

execution models in space and in time and can consist of

specialized hardware templates. The coupling and interface

between the processor and the CCUs are inspired on the

Molen machine and programming paradigm [8]. We also

envision high-end computing systems (akin to HPC systems)

that are composed of several of these base reconfigurable

systems interconnected using traditional multiprocessor

organization arrangements (e.g., bus, hypercube or trees) and

logically organized as distributed memory or shared memory

heterogeneous multiprocessor systems. From a software-stack

perspective, the heterogeneous system is viewed as a co-

processor device of a host system. Reconfigurable resources

are not exposed to the operating system of the host system.

Instead, there is a simple resident “monitor” system

responsible for the communication of data and

synchronization with the host and/or I/O channels. The

development of an operating system is beyond the scope of the

REFLECT project.

Main Memory

Instruction

Fetch

Data Load/

Store

ARBITER

DATA

MEMORY

MUX/DEMUX

Reconfigurable Processor

Core

Processor
reconfigurable

microcode

unit

CCU

1

Register File

Exchange

Registers

CCU

N

Fig. 1. Block diagram of the target architecture used by

REFLECT.

The CCUs and Core processors use a shared memory

system and a register file (XREG) to communicate data [8].

For a particular implementation there is a maximum number of

CCUs supported by the Molen machine organization and

specific FPGA area constraints for CCUs. Dynamic

reconfiguration techniques are foreseen for virtualizing the

hardware resources. This will allow applications to use during

execution more CCUs than the physically available ones.

For prototyping, REFLECT’s consortium is using the

ML510 Embedded Development Platform which includes a

Xilinx Virtex-5 XC5VFX130T FPGA (XC5VFX130T-

2FFG1738CES). This FPGA includes two PowerPC 440

processors (PPC440) as hard cores, clocked at the maximum

frequency of 400 MHz. The ML510 board consists of several

232 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

peripheral interfaces, DRAM memory, and it was selected

based on its suitability for prototyping and evaluation of high-

performance embedded computing systems.

3 REFLECT’s Design Flow

A goal of Aspect-oriented programming (AOP) [5][6] is

to improve code modularity by allowing aspects to convey

crosscutting concerns. Examples of these include the

instrumentation of application code to monitor, debug, and

visualize data. When mapping computations to reconfigurable

hardware architectures, we are interested in the specification

and use of different implementations for the same code. Each

of those implementations may take advantage of the specific

characteristics of a particular target system, such as memory

organization or functional unit capabilities. Aspect modules

can thus be used to describe features that a compiler, and other

tools in the mapping flow, can use to derive customized

solutions, i.e., solutions more suitable to the target architecture

and meeting requirements. In this context, we distinguish three

main abstractions in the REFLECT compilation/synthesis

flow, described in detail in the following sub-sections.

Application Aspects

Application Aspects allow developers to specify

application characteristics such as precision representation

(e.g., error less than 1E-03), input data rates (e.g., 30 frames

per second) or other non-functional requirements such as

safety and reliability requirements for the execution of specific

code sections/functions. These features act as “requirements”

for acceptable design solutions and cannot be easily expressed

using common programming languages (such as C). These

aspects might be internally decomposed into a number of low-

level aspects that guide the REFLECT design flow to generate

an implementation which meets the requirements. Some low-

level aspects and the ordering of their application can be

specified by the user using strategies
1
 or can be defined by a

Design Space Exploration (DSE) approach. Strategies can

thus be seen as rules that force the design flow to apply a

specific design pattern.

Design Patterns

Design patterns act as a collection of transformations or

“actions” to be used to transform the application code in

search for a design implementation with specific features or

performance characteristics. For example, an execution time

requirement for a specific code section might require the

concurrent execution of a specific function. This in turn will

require a design pattern or transformation (via the application

of strategies) that performs loop unrolling and data

partitioning so that data are available to all the concurrently

executing units.

1 The term is used herein in a more generic way than in [9].

Hardware/Software Templates

These templates, which can include a mix of hardware

and software implementations, define the “lower” layers of the

mapping hierarchy. These templates are characterized in terms

of resource usage and number of clock cycles in a specific

custom design (e.g., as in FPGAs) as they expose the

characteristics of the target resources to the design flow. As an

example, the hardware versions of a FIFO or streaming buffer

and the software implementation of the same components can

be considered hardware/software templates.

Overall, the developer defines, as a first step, the

application aspects related to the code at hand, relying on a

wealth of existing design patterns and hardware/software

templates together with DSE support to find a suitable set of

transformations or design patterns that can lead to a specific

feasible implementation. The REFLECT compilation flow will

benefit from aspects to produce efficient FPGA

implementations. This approach is also applicable to other

contemporary reconfigurable and non-reconfigurable

computing architectures.

In REFLECT we focus on the use of aspects, strategies,

and design pattern modules for four types of features:

- SPECIALIZING: Specialization of a design for the

particular target system (e.g., specializing data types,

numeric precision, and input/output data rates);

- MAPPING AND GUIDING: Specification of design

patterns, which embody mapping actions to guide the tools

in some decisions (e.g., mapping array variables to

memories, specifying FIFOs to communicate data between

cores, use specific dynamic reconfiguration techniques, use

specific fault-tolerance schemes).

- MONITORING: Specification of which implementation

features, such as current value of a variable or the number

of items written to a specific data structure, provide insight

for the refinement of other aspects.

- RETARGETING: Specification of certain characteristics

of the target system in order to make the tools adaptable

and aware of those characteristics (i.e., retargetable).

An important component of the aspect-oriented

programming model is the notion of a weaver. A weaver is a

compilation framework component that receives as input the

code of the application augmented with the aspect modules,

and produces a new version of the code for the application as

result of applying the descriptions (rules) in the aspect

modules. The aspect modules usually define a pointcut and an

advice [10]. An example of a pointcut and an advice are

respectively “find invocations of functions” and “test if array

arguments have size greater than 0”. In this case, a weaver will

insert additional code at each function invocation site to test if

array arguments have size greater than zero.

We now describe the overall REFLECT compilation and

synthesis design flow. In REFLECT, an input application in C

is implemented as a system consisting of one GPP connected

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 233

to one or more hardware cores (CCUs), as presented in Fig. 1.

Such an application is partitioned for software and hardware

components according to developer-provided requirements.

Fig. 2 depicts the main stages of the REFLECT design

flow for the generation of hardware and software components.

The design flow includes the Harmonic tool [11], which is

used as a source-to-source transformation tool. Harmonic is

responsible for analyzing and giving hints about code

compliance
2
, for partitioning the input applications in

software/hardware components, for including the

communication primitives, and for providing support for code

insertion. Aspects related to these transformations are

identified by the Aspect Front-End tool and input to Harmonic

as Aspect-IR. Harmonic also performs cost estimates for a

given platform to assist in the software/hardware partitioning

of the input application code. When performing

hardware/software partition, the software components are

augmented with primitives to communicate data and to

synchronize their execution with the hardware components.

Application (C code)

Source-to-source

Transformer

(Harmonic)

C source code (split in

hardware and software

components)

Aspects and

Strategies (LARA)

Aspect Front-End

W
e

a
v
e

r

Target-independent

Optimizations

Hardware Specific

Optimizations (e.g.,

word-length analysis)

Software Specific

Optimizations

W
e

a
v
e
r

W
e

a
v
e

r

VHDL-RTL Generator

(Dwarv)
GPP code generator

W
e

a
v
e

r

VHDLAssembly

LARA-IR

(aspect

view):

Aspect-IR

LARA-IR (CDFG view): CDFG-

IR

Hardware

Templates

Design

Patterns

CoSy

Fig. 2. REFLECT’s design flow and its main stages.

The C code output from Harmonic is then input to a

CoSy [12] compiler. This CoSy compiler directly invokes the

subsequent design flow components, including the weavers to

implement some aspects, further target-required optimizations

and transformations, and word-length optimizations. Then, the

CoSy compiler is responsible for the generation of hardware

2
 For instance, the VHDL generator used in the back-end of CoSy may not

support all C programming constructs.

(hardware components) and RISC code (software component).

These components communicate through a common

intermediate representation based on a CDFG (Control/Data

Flow Graph) represented using CoSy CCMIR (Common CoSy

Medium-level Intermediate Representation) and including

data-dependences and annotations. This representation is

common among the design flow components integrated in

CoSy as depicted in Fig. 2.

Strategies, defined as sequences of aspects to be applied,

are described in LARA using constructs based on aspect-

oriented programming and scripting languages. These

strategies enhance DSE via try-and-feedback schemes,

implementation of the design patterns and their strategies, and

alternative flows for host simulation and target compilation.

The LARA-IR carries all information between the

components: the transformed and gradually specialized and

mapped representation of the application, and all kinds of

attributes, not only simple attributes (such as memory spaces

of variables) and structured (such as loop-nest information and

dependences), but also those that support aspects. At some

point in the design flow, the intended partitioning is reflected

in the LARA-IR by creating one partition per target

architecture and having separate further design flows for each

one.

For hardware synthesis, the REFLECT flow uses a tool

based on DWARV [13] and integrated in CoSy. As a result,

our design flow generates VHDL for the hardware kernels

using the same LARA-IR and the same options for arranging

the order of transformations as described above. In particular,

it applies transformations required to translate a computation

from a Von Neumann model of computation to a structural

model more suitable for FPGAs. Also, in this phase, the flow

implements word-length optimization identified in earlier

phases of the mapping. DWARV also implements the weaving

phases of the flow what are related to hardware mapping and

carries out the DSE for generating high-quality VHDL. To

accomplish this, our tool flow is based on a CDFG

representation LARA-IR view. This LARA-IR (CDFG view)

is then input to DWARV to generate the VHDL descriptions

of the hardware modules to be included in the final system as

CCUs.

The software components are mapped to a RISC

processor core and compiled using CoSy. A further design

flow for the software components may include the generation

by CoSy of a low-level C representation of the part of the

application that should run in the processor, which is fed

through a specialized compiler and linker (such as mb-gcc, or

ppc-gcc).

Aspect modules, strategies, and design patterns bring to

REFLECT’s design flow the flexibility and modularity needed

to obtain better results and implementations aware of certain

concerns. The engines responsible for the application of the

concerns described in the aspect modules can take advantage

of code refactoring, code transformations (e.g., loop

transformations), term-rewriting, etc.

Our approach to maintain aspect modules as primary

entities which are not embedded in the application code is

234 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

important to preserve the code’s readability and maintenance.

This also promotes the reusability of aspect modules and

strategies. Multiple aspects and strategies can be applied to

the same input application specialized according to the target

system organization (e.g., including hardware cores, interface

between the GPP and the hardware cores, memories connected

to the FPGA, possible precisions). This approach leads to

better adaptability of the tools to the specific target and/or

non-functional requirements.

In the REFLECT design flow, an aspect includes two

main sections: the select and the apply sections. A select

section indicates the join points to which the user associates

one or more actions specified in the apply sections
3
. Our join

point model extends traditional join point models of AOP

languages such as AspectJ and AspectC++. In our case, join

points include system components, code artifacts (loops,

functions, variables, assignments, etc.), and code sections

(identified by specific pragmas). Each join point artifact has a

number of attributes. Those attributes can be used by the

actions (specified in the apply sections of the aspect). For

instance, a function join point includes as attributes, its name,

the number of lines, the number of statements, the hardware

cost, and the latency. A custom computing unit (CCU) join

point may have as attributes the clock frequency, the

maximum hardware area, etc. Actions can depend on the

attributes for a particular join point, and they can define values

for those attributes. Most attributes are defined by the stages

of the REFLECT design flow.

Fig. 3 depicts an aspect that can be used to map a

function with name “fir” to hardware (in our example to a

CCU [8]). This aspect invokes an aspect named “strategy1”

which includes optimization rules, user’s knowledge, mapping

strategies, target architecture properties, and other information

specific to the function. The aspect also specifies two

constraints related to input data ranges and noise power.

aspectdef maxmizePerformance

 sel1 select: *.function{name=“fir”} // specification of pointcut

 apply to Sel1: map to hardware // map action

 apply to Sel1: call strategy1 // call action

 constraints: // constraints

 define function{“fir”}.arg{output}.noise_power <= 1e-3;

 define function{“fir”}.arg{input}.range = -40..120;

 end

end

Fig. 3. Example of an aspect specifying non-functional

requirements.

Each type of action is associated to a specific stage in the

REFLECT design flow. For instance, the optimize action is

associated to the CoSy compiler instance and includes

compiler optimizations such as loop unrolling, scalar

3
 The select and apply are conceptually equivalent to the pointcut (set of join

points) and advice in AspectJ [10] and have been previously used in the

context of an aspect language for MATLAB [14].

replacement, loop fusion, loop fission, code hoisting, word

length analysis, and data-type conversion.

Aspect actions (apply section) can be of different types.

Table 1 presents the current type of actions being considered.

These actions include mapping and optimization directives as

well as directives to specify the insertion of code in specific

join points (used for monitoring and instrumenting) to define

properties and to instruct tools to report information (e.g.,

values of attributes).

Table 1. Current keywords associated to actions.

Action

(keyword)

Description

insert insertion of code

report instructs the tools in the REFLECT design

flow to report information

optimize instructs the tools for specific optimizations,

including code transformations

map Instructs the tools to map computations and

data structures to specific hardware

components

define defines properties that can be used by the tools

call invoke other aspects

4 Case Studies

We now describe opportunities for the application of

various Aspects described above to the hot-spots of two

applications from the avionics domain: 3D Path Planning and

Stereo Navigation. In this section we briefly describe their

computations, and the following section presents experimental

results of the application of a set of high-level code

transformations guided by the use of Aspects.

4.1 3D Path Planning

The 3D Path Planning core computation defines a 3D

path r(t) between the current vehicle position and required

goal position, using Laplace’s equation (see, e.g., [15][16]). It

solves Laplace’s equation in the interior of a 3D region,

guaranteeing no local minima in the interior of the domain,

leaving a global minimum of v(r) = -1 for r on the goal region,

and global maxima of v(r) = 0 for r on any boundaries or

obstacle. A path from any initial point r(0), to the goal, is

constructed by following the negative gradient of the potential,

v.

Fig. 4 illustrates the computational contribution of the

main 3D Path Planning functions to the global execution time

on a PPC440 core (at 400 MHz) embedded in a Xilinx

Virtex5 FPGA. The iteration steps represent over 90% of the

global execution and are performed by the gridIterate

function.

A possible code implementation for the gridIterate

function is depicted in Fig. 5 where, for simplicity, details

such as global variables definition, initialization and functions,

are omitted. This function uses a 3D matrix representing an

obstacle map (array obstacle) and outputs a 3D matrix

representing the potential matrix (array pot).

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 235

gridsInit

0.23%

iteration_ph -

step 1

3.94%

iteration_ph -

step 2

0.25%

iteration_ph -

step 3

4.12%

interpolation_p

h - step 4

0.66%

iteration_ph -

step 4

45.09%

update_ph -

step 4

0.16%

interpolation_p

h - step 5

0.28%

iteration_ph -

step 5

45.12%

update_ph -

step 5

0.16%

Fig. 4. Contribution of the main 3D Path Planning functions

to the global execution time (obtained by using hardware

timers).

#define ITER_STEPS_NUM ...

void gridIterate(int* obstacles, float* pot) { …

 for (it = 0; it < ITER_STEPS_NUM; it++) {

 for (i = 1; i < (X_DIM - 1); i++) {

 for (j = 1; j < (Y_DIM - 1); j++) {

 for (k = 1; k < (Z_DIM - 1); k++) {

 val = obstacles[i][j][k];

 if (val == 1) pot[i][j][k] = POTENTIAL_ZERO;

 else if (val == -1) pot[i][j][k] = POTENTIAL_ONE;

 else {

 acc = (accType)pot[i-1][j][k]+

 (accType)pot[i+1][j][k] +

 (accType)pot[i][j-1][k]+

 (accType)pot[i][j+1][k] +

 (accType)pot[i][j][k-1]+

 (accType)pot[i][j][k+1];

 pot[i][j][k] = FIX_CORRECT(acc * SCALE);

 }}}}}}

Fig. 5. Function gridIterate C code from the 3D Path

Planning application.

4.2 Stereo Navigation

The Stereo Navigation (StereoNav) application is

intended for airplane localization when the GNSS (Global

Navigation Satellite System) used in airplanes is temporarily

unavailable. The idea of the application is that from two

independent images derived from cameras, looking in

approximately the same direction, features can be extracted

(dominant entities in the image are invariant to rotation and

translation). Using two cameras taking simultaneous images

allows for localization of the features in 3D-space. The main

components of the algorithm include: Debayering (optional),

Rectification, Feature extraction, Feature matching, 3D

reprojection, and Robust pose estimation and refinement.

Fig. 6 illustrates the contribution of the main StereoNav

functions to the global execution time when executing the

application in the PPC440 core (at 400 MHz) in the Xilinx

Virtex5 FPGA. We used hardware timers to measure the

execution time of each function. The core computation of the

StereoNav application is presented in function

harrisTile_model_step (identified in Fig. 6 as “do_tile”) and

consists of a sequence of 8 convolutions using two kinds of

conv function (ConvVBConst and ConvVBRepl). A section of

the C code of the ConvVBConst function is depicted in Fig. 7.

do_rectif

0.170%

do_tile

66.173%

do_sort

0.037%

do_match_lr

5.702%

do_match_t1t

2

1.024%

do_circular_ch

eck

0.003%

do_reproj

0.004%

do_ransac_loo

p

26.886%

do_refin

0.001%

do_finit_state

0.001%

Fig. 6. Contribution of the main StereoNav functions to the

global execution time (obtained by using hardware timers).

void ConvVBConst (..) { ...

for (IDXB_1U=SSTART_1U; IDXB_1U<=SEND_1U; IDXB_1U++){

 …

 for (IDXB_0U=SSTART_0U;IDXB_0U<=SEND_0U;IDXB_0U++) {

 … acc = 0.0F; …

 for (HIDXA_1U=0;HIDXA_1U<=HEND_0_1U;HIDXA_1U++) {

 for (HIDXA_0U=0;HIDXA_0U<=HEND_0_0U;HIDXA_0U++) {

 acc = u[IDXALIN_0U] * h[buf1Idx] + acc; …

 } IDXALIN_0U = (uDims[0U] - hDims[0U]) + IDXALIN_0U;

 } y[IDXBLIN_0U] = acc;

 }

 }

 ... // second part of the convolution

 //(with 5 FORs nested and a function call in the innermost loop

}

Fig. 7. Part of the C code of the ConvVBConst function.

5 REFLECT Approach

This section illustrates the use of aspects, design patterns

and hardware/software templates for the two case studies

described in the previous section.

236 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

5.1 3D Path Planning: gridIterate

For the gridIterate function we consider the

optimizations and strategies presented in Table 2 and Table 3,

respectively. For this case study we focus on data conversions

from floating-point to fixed-point, partial loop unrolling of the

innermost loop, and multi-dimensional arrays transformed to

uni-dimensional arrays. As the data elements defining

obstacles have values in the set {-1, 0, 1} and that the pot data

represent real values in the range [0, 1], scaling analysis can

result in an optimized fixed-point representation.

Table 2. Optimizations considered for gridIterate

Transf. Description

T 1.1 Float to fixed-point representation

T 1.2 Unroll innermost loop by 2

T 1.3 Shift by powers of two promoted to wires

T 1.4 Linearization of multi-dimensional arrays.

T 1.5 Array indexing transformed as wire concatenation

and wiring component

T 1.6 Code motion (loads moved from if-else conditions)

Table 3. Strategies considered for gridIterate

Strategy

Name

Transformations

T1.1 T1.2 T1.3 T1.4 T1.5 T1.6

gridIt-baseline P P

gridIt-fixed1 P P P

gridit-fp1 P P P P P

gridit-fixed2 P P P P P P

To convert from multi-dimensional to uni-dimensional

arrays, an index such as [i][j][k] is translated to (i*Y_DIM +

j)*Z_DIM + k allowing the subsequent application of operator

strength reduction on the calculations for the indexing of the

array variables as well as concatenation of addressing bits

when the various array dimensions are aligned at specific

power-of-two address boundaries.

A transformation to the gridIterate function considers

multi- to uni-dimension transformation, code motion, and the

use of a macro that can be implemented as a concatenation of

wires to calculate the index of the arrays pot and obstacles.

The code motion is applied based on the following

explanation. In order to decrease the number of references to

the pot array variable, the writes to pot[i][j][k] existent in all

branches of the if-else construct in the code can be moved to

after the if. This transformation also allows the parallel loads

of obstacles and pot data when the two arrays are bound to

different memories or to a multi-port memory. The code

motion of the accesses to pot allows earlier scheduling of pot

data loads. If the innermost loop is unrolled twice, we increase

the impact of pipelining memory accesses, and we reuse a load

to pot thus reducing the number of loads per two k-loop

iterations.

The mapping of functions to hardware can be guided by

the user through aspects. Fig. 8 illustrates a generic aspect to

map a given function to a CCU identified by an input id. For

instance, by associating a specific instance of this aspect as

 map2hardware(“gridIterate”, 1)

the gridIterate function will be mapped to a CCU of the

target architecture identified by “1”. Further, the user may use

conditions to make an action dependent on the value of certain

attributes. For instance, the use of

 condition: $function.no_lines < 500

in the aspect in Fig. 8 instructs the weaving process to

map a function to hardware only if the function is less than

500 lines of code long (attributes as hardware cost can also be

used).

aspectdef map2hardware(string $name, int $id=1)

 select A: function{name=$name}

 apply to A: map to hardware(ccu.id=$id)

end

Fig. 8. An aspect with an action to map a function to

hardware.

5.2 Stereo Navigation: Convolutions

For the convolution functions we consider the

optimizations and the strategies presented in Table 4 and

Table 5, respectively. The convolution functions ConvVBConst

and ConvVBRepl include invocations to the functions

PadBConst and PadBRepl, respectively. For this second case

study we consider scalar replacement, function inlining, and

the specialization of the convolution functions according to

the calls. This specialization is mainly dedicated to the

elimination of loop headers for loops with only one iteration,

as well as to the unrolling of innermost loops when their

number of iterations is less than or equal to three.

Table 4. Optimizations considered for the convolution

functions.

Transf. Description

T2.1 Scalar replacement

T2.2 Function inlining

T2.3 Specialization of each call to conv

T2.4 Loop header elimination

T2.5
Loop unrolling of innermost loops with number of

iterations <= 3

Table 5. Strategies considered for the convolution functions.

Function Strategy
Transformation

T2.1 T2.2 T2.3 T2.4 T2.5

ConvVBConst

stg01 P P

stg02 P P P

stg03 P P P P

ConvVBRepl

stg04 P P

stg05 P P P

stg06 P P P P

stg07 P P P P P

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 237

Fig. 9 illustrates the LARA specification of a strategy

that considers function inlining, loop unrolling, and function

specialization. The use of section (e.g., section{“l1”}) in the

select sections of the aspects refers to specific code sections

identified by pragmas included by the user in the code as

#pragma joinpoint section=”l1”. Note, however, that this is

indicative and the final syntax and constructs of LARA may be

slightly different.

import inline1;

import unroll1;

aspectdef Const_Config1

 select A: function{“harrisTile_model_step”}.section{“l1”}.

 call{“ConvVBConst”}.body;

 apply to A:

 define{$ sEnd[1U]=94, $ sEnd[0U] =94, $hEnd_0[1U]=3;

 $hEnd_0[0U] =3, $numBSec =8, $ sEnd_0[1U] =94,

 $ sEnd_0[0U]=94, $hEnd_1[1U] =3,$ hEnd_1[0U] =3}

 optimize specialize();

 end

end

aspectdef Repl_Config1

 select A: function{“harrisTile_model_step”}.section{“l2”}.

 call{“ConvVBConst”}.body;

 apply to A:

 define{...}

 optimize specialize();

 end

end

aspectdef Repl_Config2

 select A: function{“harrisTile_model_step”}.section{“l3”}.

 call{“ConvVBConst”}.body;

 apply to A:

 define{...}

 optimize specialize();

 end

end

call unroll1(“ConvVBConst”);

call unroll1(“ConvVBRepl”);

call inline1(“PadBConst”);

call inline1(“PadBRepl”);

// two imported aspects:

aspectdef inline1(String $name) // inline functions identified bt

$name

 select: function{$name};

 apply: optimize inline();

end

aspectdef unroll1(String $name) // unroll loops if the number of

iterations is <=3

 select A: function{ $name}.loop{*};

 apply to A,B: optimize loop_unrolling($loop);

 condition: $loop.no_iterations <= 3

end

Fig. 9. Examples of aspects and possible strategy for the

harrisTile_model_step function.

6 Experimental Results

We apply the strategies outlined in Section V to the

functions described in Section IV. As our design flow is not

yet fully automated, the results presented here correspond to

the manual application of the described aspects and strategies.

We consider software versions of the functions and compare

the results of running them on the PPC440 at 400 MHz against

hardware versions obtained by the DWARV compilation and

synthesis flow. Unless otherwise stated, the software versions

are generated with the gcc compiler using the -O3 compilation

option. The hardware versions are clocked at 200 MHz.

3D Path Planning: gridIterate

The use of floating-point data types for the gridIterate

(gridIt-baseline and grid-fp1), single precision in this case,

favors the use of dedicated hardware implementations. With

respect to floating-point solutions, the hardware

implementations achieve speedups of 2.15´ and 2.83´ over

the software related versions for gridIt-baseline and gridIt-

fp1, respectively. In the case of the fixed-point solutions

(gridIt-fixed1 and grid-fixed2), the hardware implementations

achieve speedups of 1.05´ and 5.56´ over the software

solutions.

Considering the FPGA resources used for different

hardware implementations of the same function (gridIterate)

the strategies used for gridIt-fixed1 and gridIt-fixed2 imply

more hardware resources due to the presence of a 64×64 bit

multiplication in the fixed-point multiplication vs. the

presence of a 23×23 bit multiplication for the single precision

floating-point version (gridIt-baseline and gridIt-fp1). This is

reflected in the use of 2.2× the number of DSP48 and 1.23×

the number of slices. The last two strategies (correspondent to

gridIt-fp1 and gridIt-fixed2) achieve implementations with

more slices than the one using the strategy considered by

gridIt-baseline and gridIt-fixed1. This is due to the fact that

gridIt-fp1 and gridIt-fixed2 consider loop unrolling of the

innermost loops by a factor of 2.

Stereo Navigation: Convolutions

For the function ConvVBRepl of the Stereo Navigation

application, the use of strategy stg07 allows a speedup of

1.30´ by the FPGA design over the software version with the

same strategy. For ConvVBConst the FPGA design achieves

speedups of 2.31´ and 2.54´ over the best non-specialized

software implementation considered (PPC –O3) and non-

specialized FPGA implementation, respectively.

The use of strategies stg05 and stg06 in the ConvVBRepl

functions leads to a decrease in slices of 32.39% and 44.33%,

respectively. For ConvVBConst the number of slices decreases

by 7.62% when using stg03 vs. stg01 for similar clock

frequencies.

238 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

7 Related Work

Compiling high-level programming languages to FPGAs

is a topic that has been extensively addressed by academia and

industry (see, e.g., [17] for a survey of representative

approaches). However, it is understood that, due to the large

gap between software and hardware, compilers for FPGAs still

have a long way to go before being able to generate efficient

customized architectures for complex applications. In

addition, the hardware to be generated depends on non-

functional requirements, which are not embedded in the code

of the application and result in extensive work by the designer

to explore options and to modify the code of the application.

To the best of our knowledge this is the first time an

aspect-oriented approach is being used to holistically control

and guide the stages of a design flow, in order to compile C

applications to embedded systems implemented using FPGAs.

By extending the possible join points to system artifacts,

beyond possible artifacts in programs, and by applying to both

those types of artifacts actions specified in a programming

language, we are exposing users to powerful mechanisms to

control and guide the design flow and to program strategies

(mostly defining design patterns) that best suit user

requirements.

Recent efforts to map computations to FPGA-based

systems include the hArtes tool chain [17]. hArtes also

includes as a source-to-source transformation stage the

Harmonic [11] tool, and as a hardware compiler a previous

version of DWARV [13]. However, the hArtes approach

supports neither an aspect-oriented approach nor strategies

and design patterns.

8 Conclusions

This paper presented part of the REFLECT project’s

approach to a design flow targeting FPGA systems. At the

core of our approach is a new programming language, named

LARA, allowing users to specify aspects and strategies

(reflecting design patterns) that guide the design flow to meet

desired non-functional requirements.

Specifically, in this paper we focused on the description

of aspects and strategies to two critical functions from two

avionics applications: Stereo Navigation, and 3D Path

Planning. We presented experimental results of the application

of selected aspects and the corresponding strategies. The

results highlight the modularity and reusability of aspects and

design patterns in the proposed approach, thus providing early

evidence that this approach can lead to a substantial cost

decrease of code maintenance while promoting design space

traceability.

9 Acknowledgment

This work is partially supported by the European

Community’s Framework Programme 7 (FP7) under contract

No. 248976. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the

authors and do not necessarily reflect the views of the

European Community. The authors are grateful to all team

members of the REFLECT project for their help and support.

10 References

[1] S. Hauck, and A. DeHon, Reconfigurable Computing:

The Theory and Practice of FPGA-Based Computation

(Systems on Silicon), Morgan Kaufmann, November 16, 2007.

[2] M. Gokhale, and P. Graham, Reconfigurable

Computing: Accelerating Computation with Field-

Programmable Gate Arrays, Springer, 1st Edition, Dec.,

2005.

[3] REFLECT website: http://www.reflect-project.eu.

[4] J. M. P. Cardoso, et al., “REFLECT: Rendering FPGAs

to Multi-Core Embedded Computing,” Book Chapter in

Reconfigurable Computing: From FPGAs to

Hardware/Software Codesign, Springer (to appear).

[5] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.

Lopes, J.-M. Loingtier, and J. Irwin, “Aspect Oriented

Programming,” in Proceedings of the European Conference

on Object-Oriented Programming (ECOOP’97), Finland.

Springer-Verlag LNCS, vol. 1241, June 1997.

[6] G. Kiczales, “Aspect-Oriented Programming,” in ACM

Computing Surveys (CSUR), special issue: position statements

on strategic directions in computing research, 1996. 28(4es).

[7] Z. Petrov, K. Krátký, J. M. P. Cardoso, and P. C. Diniz,

“Programming Safety Requirements in the REFLECT Design

Flow,” in IEEE 9th Int’l Conference on Industrial Informatics

(INDIN’2011), Caparica, Lisbon, Portugal, July 26-29, 2011

(to appear).

[8] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G.

Kuzmanov, and E. Panainte, “The Molen Polymorphic

Processor,” in IEEE Transactions on Computers, Nov. 2004,

Vol. 53, Issue 11, pp. 1363-1375.

[9] R. Lämmel, E. Visser, and J. Visser, “Strategic

programming meets adaptive programming,” In Proc. of the

2nd Int’l Conference on Aspect-Oriented Software

Development (AOSD '03), Boston, Mass., March 17-21, 2003.

ACM, New York, NY, USA, pp. 168-177.

[10] J. Gradecki, and N. Lesiecki, Mastering AspectJ:

Aspect-Oriented Programming in Java, Wiley, 2003.

[11] W. Luk, J. Coutinho, T. Todman, Y. Lam, W. Osborne,

K. Susanto, Q. Liu, and W. Wong, “A High-Level

Compilation Toolchain for Heterogeneous Systems,” in Proc.

IEEE International SOC Conference (SOCC‘09), Sept. 2009,

pp. 9-18.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 239

[12] ACE CoSy compiler development system,

http://www.ace.nl/compiler/cosy.html

[13] Y. D. Yankova, G. Kuzmanov, K. Bertels, G. N.

Gaydadjiev, Y. Lu, and S. Vassiliadis, “DWARV:

DelftWorkbench Automated Reconfigurable VHDL

Generator,” in Proc. of the 17th Int’l Conference on Field

Programmable Logic and Applications (FPL’07), Aug. 2007,

pp. 697–701.

[14] J. M. P. Cardoso, P. Diniz, M. Monteiro, J. Fernandes,

and J. Saraiva, “A Domain-Specific Aspect Language for

Transforming MATLAB Programs,” in Domain-Specific

Aspect Language Workshop (DSAL’2010), part of the 9th

Int’l Conference on Aspect-Oriented Software Development

(AOSD’2010), March 15-19, 2010.

[15] C. I. Connolly, J. B. Burns, R. Weiss, “Path planning

using Laplace’s equation,” in Proc of IEEE Int’l Conference

on Robotics and Automation, Cincinnati, OH, USA, May

1990, vol. 3, pp. 2102-2106.

[16] K. P. Valavinis, T. Herbert, R. Kollura, and N.

Tsourveloudis, “Mobile Robot Navigation in 2-D Dynamic

Environments Using an Electrostatic Potential Field,” in IEEE

Transactions on Systems, Man, and Cybernetics, vol. 30,

issue 2, March. 2000, pp. 187-196.

[17] J. M. P. Cardoso, P. Diniz, and M. Weinhardt,

“Compiling for reconfigurable computing: A Survey,” in

ACM Computing Surveys (CSUR), Vol. 42, Issue 4, Article 13

(June 2010), 65 pages.

[18] K. Bertels, V. Sima, Y. Yankova, G. Kuzmanov, W.

Luk, J. Coutinho, F. Ferrandi, C. Pilato, M. Lattuada, D.

Sciuto, and A. Michelotti, “HArtes: Hardware-Software

Codesign for Heterogeneous Multicore Platforms,” in IEEE

Micro, 30(5): 2010, pp. 88-97.

240 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

