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Abstract - Field-Programmable Gate-Arrays (FPGAs) are 

becoming increasingly popular as computing platforms for 

high-performance embedded systems. Their flexibility and 

customization capabilities allow them to achieve orders of 

magnitude better performance than conventional embedded 

computing systems. Programming FPGAs is, however, 

cumbersome and error-prone and as a result their true 

potential is often only achieved at unreasonably high design 

efforts. The REFLECT (Rendering FPGAs to Multi-Core 

Embedded Computing) project’s design flow consists of a 

novel compilation and synthesis system approach for FPGA-

based platforms. Its design flow relies on Aspect-Oriented 

Specifications to convey critical domain knowledge to 

optimizers and mapping engines. An aspect-oriented 

programming language, LARA (LAnguage for Reconfigurable 

Architectures), allows the exploration of alternative 

architectures and design patterns enabling the generation of 

flexible hardware cores that can be incorporated into larger 

multi-core designs. We are evaluating the effectiveness of the 

proposed approach for applications from the domain of audio 

processing and real-time avionics. In this paper we describe 

the REFLECT approach and present a number of examples 

and results using REFLECT’s compilation and synthesis tools. 

Keywords: FPGAs, Compilers, Aspect-Oriented 

Specifications, Reconfigurable Computing  

 

1 Introduction 

Contemporary Field-Programmable Gate-Arrays 

(FPGAs) are powerful and sophisticated devices able to 

implement complex high-performance embedded computing 

systems [1][2]. Customization allows FPGAs to achieve 

orders of magnitude better performance than conventional 

processor systems as they can implement directly in hardware 

specific high-level operations crystallized as custom 

computing units. As a result, FPGAs are becoming 

commonplace in embedded systems and even in some cases in 

high-performance systems. 

However, the benefits of FPGA-based systems over 

traditional systems come at a cost. The large numbers of 

potential custom functional units, coupled with the many 

choices of interconnecting these units, make the mapping of 

computations to these hardware/software architectures a 

highly non-trivial process. As a result, the mapping of 

complex applications to these architectures is accomplished by 

a labor intensive and error-prone manual process. 

Programmers must assume the role of hardware designers to 

synthesize or program the various custom hardware units in 

low level detail, and also to understand how these units 

interact with the software portions of the application code. 

Programmers must partition the computation between the code 

that is executed on traditional processor cores and the code 

that is to be synthesized in hardware with the consequent 

partitioning and mapping of data. The complexity of this 

mapping process is exacerbated by the fact that the custom 

computing units may internally exhibit different computation 

models (e.g., data flow, concurrent synchronous processes) 

and architectural characteristics (e.g., parallelism, 

customization), or that the various cores might support 

functional- or data-parallel concurrent execution paradigms. 
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It is the aim of the REFLECT project [3][4] to develop 

an approach to help designers achieve efficient FPGA-based 

heterogeneous multi-core computing systems. Our approach 

involves combining different areas of research: aspect-

oriented specifications, hardware compilation, design patterns 

and hardware templates. The goal of this project is to develop, 

implement and evaluate a novel compilation and synthesis 

approach for FPGA-based platforms. We rely on Aspect-

Oriented System Development (AOSD), with foundations on 

aspect-oriented programming (AOP) [5][6], to convey critical 

domain knowledge to mapping engines while preserving the 

advantages of a high-level imperative programming paradigm 

in early software development as well as programmer and 

application portability. We leverage aspect-oriented 

specifications using LARA (LAnguage for Reconfigurable 

Architectures), a new domain-specific aspect-oriented 

programming language, to specify complementary 

information, optimizations, and mapping strategies. The 

REFLECT design flow has unique characteristics that allow it 

to both adapt to and meet different non-functional 

requirements (e.g., safety requirements [7]).  

We are evaluating the effectiveness of the proposed 

approach using real-life applications provided by REFLECT’s 

industrial partners. This evaluation includes the development 

of two demonstrators: an avionics mission-critical embedded 

system and an audio encoder. Both these codes raise realistic 

and demanding challenges that highlight the power and impact 

of the base techniques and methodologies in the proposed 

REFLECT approach over traditional design and mapping 

methodologies. 

In this paper we describe the REFLECT design flow [4] 

and how aspects and strategies are used to map computations 

to FPGA based systems. In particular, we show experimental 

results obtained by mapping kernels from two avionics 

applications, which illustrate strategies suited to meet high-

performance requirements. 

This paper is organized as follows. Section 2 presents the 

architecture being currently targeted in REFLECT. Section 3 

illustrates the REFLECT design flow and the main tools being 

developed, used and extended. Sections 4 and 5 describe, 

respectively, two application case studies and the use of 

aspects and design patterns in REFLECT. Section 6 presents 

the results currently achieved when mapping these codes to a 

REFLECT target architecture. Section 7 presents related work. 

Finally, Section 8 concludes this paper. 

2 REFLECT Target Architecture  

Although the REFLECT design flow can target a 

multitude of reconfigurable architectures, it currently targets 

an architecture consisting of a general-purpose processor 

(GPP) connected to Custom Computing Units (CCUs) based 

on application-specific architectures. Both these components 

use a shared memory approach possibly connected via data 

communication channels. The application-specific 

architectures are implemented with reconfigurable logic (as in 

reconfigurable fabrics such as FPGAs) and are generated from 

the C code of the application being compiled. 

An example of the target architecture is depicted in Fig. 

1 and consists of a GPP, such as a Xilinx MicroBlaze or IBM 

PowerPC, tightly coupled with a reconfigurable hardware 

fabric where Custom Computing Units (CCUs) is defined 

according to application needs. Collectively, the CCUs define 

a reconfigurable computing system implementing various 

execution models in space and in time and can consist of 

specialized hardware templates. The coupling and interface 

between the processor and the CCUs are inspired on the 

Molen machine and programming paradigm [8]. We also 

envision high-end computing systems (akin to HPC systems) 

that are composed of several of these base reconfigurable 

systems interconnected using traditional multiprocessor 

organization arrangements (e.g., bus, hypercube or trees) and 

logically organized as distributed memory or shared memory 

heterogeneous multiprocessor systems. From a software-stack 

perspective, the heterogeneous system is viewed as a co-

processor device of a host system. Reconfigurable resources 

are not exposed to the operating system of the host system. 

Instead, there is a simple resident “monitor” system 

responsible for the communication of data and 

synchronization with the host and/or I/O channels. The 

development of an operating system is beyond the scope of the 

REFLECT project. 
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Fig. 1. Block diagram of the target architecture used by 

REFLECT. 

The CCUs and Core processors use a shared memory 

system and a register file (XREG) to communicate data [8]. 

For a particular implementation there is a maximum number of 

CCUs supported by the Molen machine organization and 

specific FPGA area constraints for CCUs. Dynamic 

reconfiguration techniques are foreseen for virtualizing the 

hardware resources. This will allow applications to use during 

execution more CCUs than the physically available ones. 

For prototyping, REFLECT’s consortium is using the 

ML510 Embedded Development Platform which includes a 

Xilinx Virtex-5 XC5VFX130T FPGA (XC5VFX130T-

2FFG1738CES). This FPGA includes two PowerPC 440 

processors (PPC440) as hard cores, clocked at the maximum 

frequency of 400 MHz. The ML510 board consists of several 
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peripheral interfaces, DRAM memory, and it was selected 

based on its suitability for prototyping and evaluation of high-

performance embedded computing systems. 

3 REFLECT’s Design Flow 

A goal of Aspect-oriented programming (AOP) [5][6] is 

to improve code modularity by allowing aspects to convey 

crosscutting concerns. Examples of these include the 

instrumentation of application code to monitor, debug, and 

visualize data. When mapping computations to reconfigurable 

hardware architectures, we are interested in the specification 

and use of different implementations for the same code. Each 

of those implementations may take advantage of the specific 

characteristics of a particular target system, such as memory 

organization or functional unit capabilities. Aspect modules 

can thus be used to describe features that a compiler, and other 

tools in the mapping flow, can use to derive customized 

solutions, i.e., solutions more suitable to the target architecture 

and meeting requirements. In this context, we distinguish three 

main abstractions in the REFLECT compilation/synthesis 

flow, described in detail in the following sub-sections. 

Application Aspects 

Application Aspects allow developers to specify 

application characteristics such as precision representation 

(e.g., error less than 1E-03), input data rates (e.g., 30 frames 

per second) or other non-functional requirements such as 

safety and reliability requirements for the execution of specific 

code sections/functions. These features act as “requirements” 

for acceptable design solutions and cannot be easily expressed 

using common programming languages (such as C). These 

aspects might be internally decomposed into a number of low-

level aspects that guide the REFLECT design flow to generate 

an implementation which meets the requirements. Some low-

level aspects and the ordering of their application can be 

specified by the user using strategies
1
 or can be defined by a 

Design Space Exploration (DSE) approach. Strategies can 

thus be seen as rules that force the design flow to apply a 

specific design pattern. 

Design Patterns 

Design patterns act as a collection of transformations or 

“actions” to be used to transform the application code in 

search for a design implementation with specific features or 

performance characteristics. For example, an execution time 

requirement for a specific code section might require the 

concurrent execution of a specific function. This in turn will 

require a design pattern or transformation (via the application 

of strategies) that performs loop unrolling and data 

partitioning so that data are available to all the concurrently 

executing units. 

                                                           
1 The term is used herein in a more generic way than in [9].  

Hardware/Software Templates 

These templates, which can include a mix of hardware 

and software implementations, define the “lower” layers of the 

mapping hierarchy. These templates are characterized in terms 

of resource usage and number of clock cycles in a specific 

custom design (e.g., as in FPGAs) as they expose the 

characteristics of the target resources to the design flow. As an 

example, the hardware versions of a FIFO or streaming buffer 

and the software implementation of the same components can 

be considered hardware/software templates. 

 

 

Overall, the developer defines, as a first step, the 

application aspects related to the code at hand, relying on a 

wealth of existing design patterns and hardware/software 

templates together with DSE support to find a suitable set of 

transformations or design patterns that can lead to a specific 

feasible implementation. The REFLECT compilation flow will 

benefit from aspects to produce efficient FPGA 

implementations. This approach is also applicable to other 

contemporary reconfigurable and non-reconfigurable 

computing architectures.  

In REFLECT we focus on the use of aspects, strategies, 

and design pattern modules for four types of features: 

- SPECIALIZING: Specialization of a design for the 

particular target system (e.g., specializing data types, 

numeric precision, and input/output data rates); 

- MAPPING AND GUIDING: Specification of design 

patterns, which embody mapping actions to guide the tools 

in some decisions (e.g., mapping array variables to 

memories, specifying FIFOs to communicate data between 

cores, use specific dynamic reconfiguration techniques, use 

specific fault-tolerance schemes). 

- MONITORING: Specification of which implementation 

features, such as current value of a variable or the number 

of items written to a specific data structure, provide insight 

for the refinement of other aspects. 

- RETARGETING: Specification of certain characteristics 

of the target system in order to make the tools adaptable 

and aware of those characteristics (i.e., retargetable). 

 

An important component of the aspect-oriented 

programming model is the notion of a weaver. A weaver is a 

compilation framework component that receives as input the 

code of the application augmented with the aspect modules, 

and produces a new version of the code for the application as 

result of applying the descriptions (rules) in the aspect 

modules. The aspect modules usually define a pointcut and an 

advice [10]. An example of a pointcut and an advice are 

respectively “find invocations of functions” and “test if array 

arguments have size greater than 0”. In this case, a weaver will 

insert additional code at each function invocation site to test if 

array arguments have size greater than zero. 

We now describe the overall REFLECT compilation and 

synthesis design flow. In REFLECT, an input application in C 

is implemented as a system consisting of one GPP connected 
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to one or more hardware cores (CCUs), as presented in Fig. 1. 

Such an application is partitioned for software and hardware 

components according to developer-provided requirements.  

Fig. 2 depicts the main stages of the REFLECT design 

flow for the generation of hardware and software components. 

The design flow includes the Harmonic tool [11], which is 

used as a source-to-source transformation tool. Harmonic is 

responsible for analyzing and giving hints about code 

compliance
2
, for partitioning the input applications in 

software/hardware components, for including the 

communication primitives, and for providing support for code 

insertion. Aspects related to these transformations are 

identified by the Aspect Front-End tool and input to Harmonic 

as Aspect-IR. Harmonic also performs cost estimates for a 

given platform to assist in the software/hardware partitioning 

of the input application code. When performing 

hardware/software partition, the software components are 

augmented with primitives to communicate data and to 

synchronize their execution with the hardware components. 
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Fig. 2. REFLECT’s design flow and its main stages. 

The C code output from Harmonic is then input to a 

CoSy [12] compiler. This CoSy compiler directly invokes the 

subsequent design flow components, including the weavers to 

implement some aspects, further target-required optimizations 

and transformations, and word-length optimizations. Then, the 

CoSy compiler is responsible for the generation of hardware 

                                                           
2
 For instance, the VHDL generator used in the back-end of CoSy may not 

support all C programming constructs. 

(hardware components) and RISC code (software component). 

These components communicate through a common 

intermediate representation based on a CDFG (Control/Data 

Flow Graph) represented using CoSy CCMIR (Common CoSy 

Medium-level Intermediate Representation) and including 

data-dependences and annotations. This representation is 

common among the design flow components integrated in 

CoSy as depicted in Fig. 2.  

Strategies, defined as sequences of aspects to be applied, 

are described in LARA using constructs based on aspect-

oriented programming and scripting languages. These 

strategies enhance DSE via try-and-feedback schemes, 

implementation of the design patterns and their strategies, and 

alternative flows for host simulation and target compilation. 

The LARA-IR carries all information between the 

components: the transformed and gradually specialized and 

mapped representation of the application, and all kinds of 

attributes, not only simple attributes (such as memory spaces 

of variables) and structured (such as loop-nest information and 

dependences), but also those that support aspects. At some 

point in the design flow, the intended partitioning is reflected 

in the LARA-IR by creating one partition per target 

architecture and having separate further design flows for each 

one. 

For hardware synthesis, the REFLECT flow uses a tool 

based on DWARV [13] and integrated in CoSy. As a result, 

our design flow generates VHDL for the hardware kernels 

using the same LARA-IR and the same options for arranging 

the order of transformations as described above. In particular, 

it applies transformations required to translate a computation 

from a Von Neumann model of computation to a structural 

model more suitable for FPGAs. Also, in this phase, the flow 

implements word-length optimization identified in earlier 

phases of the mapping. DWARV also implements the weaving 

phases of the flow what are related to hardware mapping and 

carries out the DSE for generating high-quality VHDL. To 

accomplish this, our tool flow is based on a CDFG 

representation LARA-IR view. This LARA-IR (CDFG view) 

is then input to DWARV to generate the VHDL descriptions 

of the hardware modules to be included in the final system as 

CCUs. 

The software components are mapped to a RISC 

processor core and compiled using CoSy. A further design 

flow for the software components may include the generation 

by CoSy of a low-level C representation of the part of the 

application that should run in the processor, which is fed 

through a specialized compiler and linker (such as mb-gcc, or 

ppc-gcc). 

Aspect modules, strategies, and design patterns bring to 

REFLECT’s design flow the flexibility and modularity needed 

to obtain better results and implementations aware of certain 

concerns. The engines responsible for the application of the 

concerns described in the aspect modules can take advantage 

of code refactoring, code transformations (e.g., loop 

transformations), term-rewriting, etc. 

Our approach to maintain aspect modules as primary 

entities which are not embedded in the application code is 
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important to preserve the code’s readability and maintenance. 

This also promotes the reusability of aspect modules and 

strategies.  Multiple aspects and strategies can be applied to 

the same input application specialized according to the target 

system organization (e.g., including hardware cores, interface 

between the GPP and the hardware cores, memories connected 

to the FPGA, possible precisions). This approach leads to 

better adaptability of the tools to the specific target and/or 

non-functional requirements. 

In the REFLECT design flow, an aspect includes two 

main sections: the select and the apply sections. A select 

section indicates the join points to which the user associates 

one or more actions specified in the apply sections
3
. Our join 

point model extends traditional join point models of AOP 

languages such as AspectJ and AspectC++. In our case, join 

points include system components, code artifacts (loops, 

functions, variables, assignments, etc.), and code sections 

(identified by specific pragmas). Each join point artifact has a 

number of attributes. Those attributes can be used by the 

actions (specified in the apply sections of the aspect). For 

instance, a function join point includes as attributes, its name, 

the number of lines, the number of statements, the hardware 

cost, and the latency. A custom computing unit (CCU) join 

point may have as attributes the clock frequency, the 

maximum hardware area, etc. Actions can depend on the 

attributes for a particular join point, and they can define values 

for those attributes. Most attributes are defined by the stages 

of the REFLECT design flow. 

Fig. 3 depicts an aspect that can be used to map a 

function with name “fir” to hardware (in our example to a 

CCU [8]). This aspect invokes an aspect named “strategy1” 

which includes optimization rules, user’s knowledge, mapping 

strategies, target architecture properties, and other information 

specific to the function. The aspect also specifies two 

constraints related to input data ranges and noise power. 

 

aspectdef maxmizePerformance  

   sel1 select: *.function{name=“fir”}  // specification of pointcut 

   apply to Sel1: map to hardware       // map action 

   apply to Sel1: call strategy1              // call action 

   constraints:                                          // constraints 

      define function{“fir”}.arg{output}.noise_power <= 1e-3;  

      define function{“fir”}.arg{input}.range = -40..120; 

   end  

end 

Fig. 3. Example of an aspect specifying non-functional 

requirements. 

Each type of action is associated to a specific stage in the 

REFLECT design flow. For instance, the optimize action is 

associated to the CoSy compiler instance and includes 

compiler optimizations such as loop unrolling, scalar 

                                                           
3
 The select and apply are conceptually equivalent to the pointcut (set of join 

points) and advice in AspectJ [10] and have been previously used in the 

context of an aspect language for MATLAB [14]. 

replacement, loop fusion, loop fission, code hoisting, word 

length analysis, and data-type conversion.  

Aspect actions (apply section) can be of different types. 

Table 1 presents the current type of actions being considered. 

These actions include mapping and optimization directives as 

well as directives to specify the insertion of code in specific 

join points (used for monitoring and instrumenting) to define 

properties and to instruct tools to report information (e.g., 

values of attributes).  

Table 1. Current keywords associated to actions. 

Action 

(keyword) 

Description 

insert insertion of code 

report instructs the tools in the REFLECT design 

flow to report information 

optimize instructs the tools for specific optimizations, 

including code transformations 

map Instructs the tools to map computations and 

data structures to specific hardware 

components 

define defines properties that can be used by the tools 

call invoke other aspects 

 

4 Case Studies 

We now describe opportunities for the application of 

various Aspects described above to the hot-spots of two 

applications from the avionics domain: 3D Path Planning and 

Stereo Navigation. In this section we briefly describe their 

computations, and the following section presents experimental 

results of the application of a set of high-level code 

transformations guided by the use of Aspects. 

4.1 3D Path Planning 

The 3D Path Planning core computation defines a 3D 

path r(t) between the current vehicle position and required 

goal position, using Laplace’s equation (see, e.g., [15][16]). It 

solves Laplace’s equation in the interior of a 3D region, 

guaranteeing no local minima in the interior of the domain, 

leaving a global minimum of v(r) = -1 for r on the goal region, 

and global maxima of v(r) = 0 for r on any boundaries or 

obstacle. A path from any initial point r(0), to the goal, is 

constructed by following the negative gradient of the potential, 

v.  

Fig. 4 illustrates the computational contribution of the 

main 3D Path Planning functions to the global execution time 

on a PPC440 core (at 400 MHz) embedded in a Xilinx 

Virtex5 FPGA. The iteration steps represent over 90% of the 

global execution and are performed by the gridIterate 

function.  

A possible code implementation for the gridIterate 

function is depicted in Fig. 5 where, for simplicity, details 

such as global variables definition, initialization and functions, 

are omitted. This function uses a 3D matrix representing an 

obstacle map (array obstacle) and outputs a 3D matrix 

representing the potential matrix (array pot). 
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Fig. 4.  Contribution of the main 3D Path Planning functions 

to the global execution time (obtained by using hardware 

timers). 

#define ITER_STEPS_NUM ... 

void gridIterate(int* obstacles, float* pot)  { … 

  for (it = 0; it < ITER_STEPS_NUM; it++) { 

    for (i = 1; i < (X_DIM - 1); i++) { 

      for (j = 1; j < (Y_DIM - 1); j++) { 

        for (k = 1; k < (Z_DIM - 1); k++) {  

           val = obstacles[i][j][k]; 

 

          if (val == 1) pot[i][j][k] = POTENTIAL_ZERO; 

          else if (val == -1) pot[i][j][k] = POTENTIAL_ONE; 

          else {  

              acc = (accType)pot[i-1][j][k]+ 

                        (accType)pot[i+1][j][k] +  

                        (accType)pot[i][j-1][k]+ 

                        (accType)pot[i][j+1][k] + 

                        (accType)pot[i][j][k-1]+ 

                        (accType)pot[i][j][k+1]; 

              pot[i][j][k] = FIX_CORRECT(acc * SCALE);   

          }}}}}} 

Fig. 5.  Function gridIterate C code from the 3D Path 

Planning application. 

4.2 Stereo Navigation 

The Stereo Navigation (StereoNav) application is 

intended for airplane localization when the GNSS (Global 

Navigation Satellite System) used in airplanes is temporarily 

unavailable. The idea of the application is that from two 

independent images derived from cameras, looking in 

approximately the same direction, features can be extracted 

(dominant entities in the image are invariant to rotation and 

translation). Using two cameras taking simultaneous images 

allows for localization of the features in 3D-space. The main 

components of the algorithm include: Debayering (optional), 

Rectification, Feature extraction, Feature matching, 3D 

reprojection, and Robust pose estimation and refinement. 

Fig. 6 illustrates the contribution of the main StereoNav 

functions to the global execution time when executing the 

application in the PPC440 core (at 400 MHz) in the Xilinx 

Virtex5 FPGA. We used hardware timers to measure the 

execution time of each function. The core computation of the 

StereoNav application is presented in function 

harrisTile_model_step (identified in Fig. 6 as “do_tile”) and 

consists of a sequence of 8 convolutions using two kinds of 

conv function (ConvVBConst and ConvVBRepl). A section of 

the C code of the ConvVBConst function is depicted in Fig. 7. 
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Fig. 6.  Contribution of the main StereoNav functions to the 

global execution time (obtained by using hardware timers).  

void ConvVBConst (..) { ... 

for (IDXB_1U=SSTART_1U; IDXB_1U<=SEND_1U; IDXB_1U++){ 

    … 

    for (IDXB_0U=SSTART_0U;IDXB_0U<=SEND_0U;IDXB_0U++) { 

      … acc = 0.0F;   … 

      for (HIDXA_1U=0;HIDXA_1U<=HEND_0_1U;HIDXA_1U++) { 

        for (HIDXA_0U=0;HIDXA_0U<=HEND_0_0U;HIDXA_0U++) { 

          acc = u[IDXALIN_0U] * h[buf1Idx] + acc;  … 

        }  IDXALIN_0U = (uDims[0U] - hDims[0U]) + IDXALIN_0U; 

      }  y[IDXBLIN_0U] = acc; 

    } 

  } 

 ... // second part of the convolution  

    //(with 5 FORs nested and a function call in the innermost loop 

} 

Fig. 7.  Part of the C code of the ConvVBConst function. 

5 REFLECT Approach 

This section illustrates the use of aspects, design patterns 

and hardware/software templates for the two case studies 

described in the previous section.  

236 Int'l Conf. Reconfigurable Systems and Algorithms |  ERSA'11  |



5.1 3D Path Planning: gridIterate 

For the gridIterate function we consider the 

optimizations and strategies presented in Table 2 and Table 3, 

respectively. For this case study we focus on data conversions 

from floating-point to fixed-point, partial loop unrolling of the 

innermost loop, and multi-dimensional arrays transformed to 

uni-dimensional arrays. As the data elements defining 

obstacles have values in the set {-1, 0, 1} and that the pot data 

represent real values in the range [0, 1], scaling analysis can 

result in an optimized fixed-point representation. 

Table 2. Optimizations considered for gridIterate 

Transf. Description 

T 1.1 Float to fixed-point representation 

T 1.2 Unroll innermost loop by 2 

T 1.3 Shift by powers of two promoted to wires 

T 1.4 Linearization of multi-dimensional arrays. 

T 1.5 Array indexing transformed as wire  concatenation 

and wiring component 

T 1.6 Code motion (loads moved from if-else conditions) 

Table 3. Strategies considered for gridIterate 

Strategy 

Name 

Transformations 

T1.1 T1.2 T1.3 T1.4 T1.5 T1.6 

gridIt-baseline   P P   

gridIt-fixed1 P  P P   

gridit-fp1  P P P P P 

gridit-fixed2 P P P P P P 

 

To convert from multi-dimensional to uni-dimensional 

arrays, an index such as [i][j][k] is translated to (i*Y_DIM + 

j)*Z_DIM + k allowing the subsequent application of operator 

strength reduction on the calculations for the indexing of the 

array variables as well as concatenation of addressing bits 

when the various array dimensions are aligned at specific 

power-of-two address boundaries. 

A transformation to the gridIterate function considers 

multi- to uni-dimension transformation, code motion, and the 

use of a macro that can be implemented as a concatenation of 

wires to calculate the index of the arrays pot and obstacles. 

The code motion is applied based on the following 

explanation. In order to decrease the number of references to 

the pot array variable, the writes to pot[i][j][k] existent in all 

branches of the if-else construct in the code can be moved to 

after the if. This transformation also allows the parallel loads 

of obstacles and pot data when the two arrays are bound to 

different memories or to a multi-port memory. The code 

motion of the accesses to pot allows earlier scheduling of pot 

data loads. If the innermost loop is unrolled twice, we increase 

the impact of pipelining memory accesses, and we reuse a load 

to pot thus reducing the number of loads per two k-loop 

iterations.   

The mapping of functions to hardware can be guided by 

the user through aspects. Fig. 8 illustrates a generic aspect to 

map a given function to a CCU identified by an input id. For 

instance, by associating a specific instance of this aspect as 

  map2hardware(“gridIterate”, 1)  

the gridIterate function will be mapped to a CCU of the 

target architecture identified by “1”. Further, the user may use 

conditions to make an action dependent on the value of certain 

attributes. For instance, the use of 

 condition: $function.no_lines < 500 

in the aspect in Fig. 8 instructs the weaving process to 

map a function to hardware only if the function is less than 

500 lines of code long (attributes as hardware cost can also be 

used). 

 

aspectdef map2hardware(string $name, int $id=1)  

   select A: function{name=$name} 

   apply to A: map to hardware(ccu.id=$id) 

end 

Fig. 8.  An aspect with an action to map a function to 

hardware. 

5.2 Stereo Navigation: Convolutions 

For the convolution functions we consider the 

optimizations and the strategies presented in Table 4 and 

Table 5, respectively. The convolution functions ConvVBConst 

and ConvVBRepl include invocations to the functions 

PadBConst and PadBRepl, respectively. For this second case 

study we consider scalar replacement, function inlining, and 

the specialization of the convolution functions according to 

the calls. This specialization is mainly dedicated to the 

elimination of loop headers for loops with only one iteration, 

as well as to the unrolling of innermost loops when their 

number of iterations is less than or equal to three.  

Table 4. Optimizations considered for the convolution 

functions. 

Transf. Description 

T2.1 Scalar replacement 

T2.2 Function inlining  

T2.3 Specialization of each call to conv  

T2.4 Loop header elimination 

T2.5 
Loop unrolling of innermost loops with number of 

iterations <= 3 

Table 5. Strategies considered for the convolution functions. 

Function Strategy 
Transformation 

T2.1 T2.2 T2.3 T2.4 T2.5 

ConvVBConst 

stg01 P P    

stg02 P P P   

stg03 P P P  P 

ConvVBRepl 

stg04 P P    

stg05 P P P   

stg06 P P P P  

stg07 P P P P P 
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Fig. 9 illustrates the LARA specification of a strategy 

that considers function inlining, loop unrolling, and function 

specialization. The use of section (e.g., section{“l1”}) in the 

select sections of the aspects refers to specific code sections 

identified by pragmas included by the user in the code as 

#pragma joinpoint section=”l1”. Note, however, that this is 

indicative and the final syntax and constructs of LARA may be 

slightly different. 

 

import inline1; 

import unroll1; 

 

aspectdef Const_Config1 

   select A: function{“harrisTile_model_step”}.section{“l1”}. 

                   call{“ConvVBConst”}.body;  

   apply to A:  

       define{$ sEnd[1U]=94, $ sEnd[0U] =94, $hEnd_0[1U]=3; 

                   $hEnd_0[0U] =3,  $numBSec =8, $ sEnd_0[1U] =94, 

                   $ sEnd_0[0U]=94, $hEnd_1[1U] =3,$ hEnd_1[0U] =3}  

     optimize specialize(); 

   end 

end 

aspectdef Repl_Config1 

    select A: function{“harrisTile_model_step”}.section{“l2”}. 

                   call{“ConvVBConst”}.body;  

    apply to A:  

        define{...}  

        optimize specialize(); 

    end 

end 

aspectdef Repl_Config2 

    select A: function{“harrisTile_model_step”}.section{“l3”}. 

                    call{“ConvVBConst”}.body; 

    apply to A:  

         define{...}   

        optimize specialize(); 

    end 

end 

 

call unroll1(“ConvVBConst”); 

call unroll1(“ConvVBRepl”); 

 

call inline1(“PadBConst”); 

call inline1(“PadBRepl”); 

 

// two imported aspects: 

aspectdef inline1(String $name) // inline functions identified bt 

$name 

   select: function{$name};  

   apply: optimize inline(); 

end 

 

aspectdef unroll1(String $name) // unroll loops if the number of 

iterations is <=3   

    select A: function{ $name}.loop{*};  

    apply to A,B:  optimize loop_unrolling($loop); 

    condition: $loop.no_iterations <= 3 

end 

Fig. 9.  Examples of aspects and possible strategy for the 

harrisTile_model_step function. 

6 Experimental Results 

We apply the strategies outlined in Section V to the 

functions described in Section IV. As our design flow is not 

yet fully automated, the results presented here correspond to 

the manual application of the described aspects and strategies. 

We consider software versions of the functions and compare 

the results of running them on the PPC440 at 400 MHz against 

hardware versions obtained by the DWARV compilation and 

synthesis flow. Unless otherwise stated, the software versions 

are generated with the gcc compiler using the -O3 compilation 

option. The hardware versions are clocked at 200 MHz. 

3D Path Planning: gridIterate 

The use of floating-point data types for the gridIterate 

(gridIt-baseline and grid-fp1), single precision in this case, 

favors the use of dedicated hardware implementations. With 

respect to floating-point solutions, the hardware 

implementations achieve speedups of 2.15´ and 2.83´ over 

the software related versions for gridIt-baseline and gridIt-

fp1, respectively. In the case of the fixed-point solutions 

(gridIt-fixed1 and grid-fixed2), the hardware implementations 

achieve speedups of 1.05´ and 5.56´ over the software 

solutions. 

Considering the FPGA resources used for different 

hardware implementations of the same function (gridIterate) 

the strategies used for gridIt-fixed1 and gridIt-fixed2 imply 

more hardware resources due to the presence of a 64×64 bit 

multiplication in the fixed-point multiplication vs. the 

presence of a 23×23 bit multiplication for the single precision 

floating-point version (gridIt-baseline and gridIt-fp1). This is 

reflected in the use of 2.2× the number of DSP48 and 1.23× 

the number of slices. The last two strategies (correspondent to 

gridIt-fp1 and gridIt-fixed2) achieve implementations with 

more slices than the one using the strategy considered by 

gridIt-baseline and gridIt-fixed1. This is due to the fact that 

gridIt-fp1 and gridIt-fixed2 consider loop unrolling of the 

innermost loops by a factor of 2. 

Stereo Navigation: Convolutions 

For the function ConvVBRepl of the Stereo Navigation 

application, the use of strategy stg07 allows a speedup of 

1.30´ by the FPGA design over the software version with the 

same strategy. For ConvVBConst the FPGA design achieves 

speedups of 2.31´ and 2.54´ over the best non-specialized 

software implementation considered (PPC –O3) and non-

specialized FPGA implementation, respectively. 

The use of strategies stg05 and stg06 in the ConvVBRepl 

functions leads to a decrease in slices of 32.39% and 44.33%, 

respectively. For ConvVBConst the number of slices decreases 

by 7.62% when using stg03 vs. stg01 for similar clock 

frequencies.  
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7 Related Work 

Compiling high-level programming languages to FPGAs 

is a topic that has been extensively addressed by academia and 

industry (see, e.g., [17] for a survey of representative 

approaches). However, it is understood that, due to the large 

gap between software and hardware, compilers for FPGAs still 

have a long way to go before being able to generate efficient 

customized architectures for complex applications. In 

addition, the hardware to be generated depends on non-

functional requirements, which are not embedded in the code 

of the application and result in extensive work by the designer 

to explore options and to modify the code of the application. 

To the best of our knowledge this is the first time an 

aspect-oriented approach is being used to holistically control 

and guide the stages of a design flow, in order to compile C 

applications to embedded systems implemented using FPGAs. 

By extending the possible join points to system artifacts, 

beyond possible artifacts in programs, and by applying to both 

those types of artifacts actions specified in a programming 

language, we are exposing users to powerful mechanisms to 

control and guide the design flow and to program strategies 

(mostly defining design patterns) that best suit user 

requirements. 

Recent efforts to map computations to FPGA-based 

systems include the hArtes tool chain [17]. hArtes also 

includes as a source-to-source transformation stage the 

Harmonic [11] tool, and as a hardware compiler a previous 

version of DWARV [13]. However, the hArtes approach 

supports neither an aspect-oriented approach nor strategies 

and design patterns. 

 

8 Conclusions 

This paper presented part of the REFLECT project’s 

approach to a design flow targeting FPGA systems. At the 

core of our approach is a new programming language, named 

LARA, allowing users to specify aspects and strategies 

(reflecting design patterns) that guide the design flow to meet 

desired non-functional requirements.  

Specifically, in this paper we focused on the description 

of aspects and strategies to two critical functions from two 

avionics applications: Stereo Navigation, and 3D Path 

Planning. We presented experimental results of the application 

of selected aspects and the corresponding strategies.  The 

results highlight the modularity and reusability of aspects and 

design patterns in the proposed approach, thus providing early 

evidence that this approach can lead to a substantial cost 

decrease of code maintenance while promoting design space 

traceability. 
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