
14

Benchmarking and Evaluating
ReconÞgurable Architectures Targeting
the Mobile Domain
PETER JAMIESON
Miami University
TOBIAS BECKER, PETER Y. K. CHEUNG, and WAYNE LUK
Imperial College
TERO RISSA
Nokia Devices R&D
and
TEEMU PITKÄNEN
Tampere University of Technology

We present the GroundHog 2009 benchmarking suite that evaluates the power consumption of
reconfigurable technology for applications targeting the mobile computing domain. This benchmark
suite includes seven designs; one design targets fine-grained FPGA fabrics allowing for quick state-
of-the-art evaluation, and six designs are specified at a high level allowing them to target a range
of existing and future reconfigurable technologies. Each of the six designs can be stimulated with
the help of synthetically generated input stimuli created by an open-source tool included in the
downloadable suite. Another tool is included to help verify the correctness of each implemented
design. To demonstrate the potential of this benchmark suite, we evaluate the power consumption
of two modern industrial FPGAs targeting the mobile domain. Also, we show how an academic
FPGA framework, VPR 5.0, that has been updated for power estimates can be used to estimates
the power consumption of different FPGA architectures and an open-source CAD flow mapping to
these architectures.

Categories and Subject Descriptors: B.7.1 [Intergrated Circuits]: Types and Design Styles—Gate
arrays; B.8.0 [Performance and Reliability]: General

General Terms: Measurement, Experimentation

Additional Key Words and Phrases: Benchmarking, FPGAs, benchmark, mobile, power

Authors’ addresses: P. Jamieson, Department of Electrical and Computer Engineering, Miami
University, Oxford, OH, 45056; email; jamieson@eecg.toronto.edu; T. Becker, P. Y. K. Cheung, W.
Luk, Imperial College, London SW7 2AZ, UK; T. Rissa, Nokia Devices R&D; T. Pitkänen, Tampere
University of Technology, P.O. Box 527, FI-33101 Tampere, Finland.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2010 ACM 1084-4309/2010/02-ART14 $10.00
DOI 10.1145/1698759.1698764 http://doi.acm.org/10.1145/1698759.1698764

ACM Transactions on Design Automation of Electronic Systems, Vol. 15, No. 2, Article 14, Pub. date: February 2010.

14:2 • P. Jamieson et al.

ACM Reference Format:
Jamieson, P., Becker, T., Cheung, P. Y. K., Luk, W., Rissa, T., and Pitkänen, T. 2010. Benchmarking
and evaluating reconfigurable architectures targeting the mobile domain. ACM Trans. Des. Autom.
Electron. Syst. 15, 2, Article 14 (February 2010), 24 pages.
DOI = 10.1145/1698759.1698764 http://doi.acm.org/10.1145/1698759.1698764

1. INTRODUCTION
Reconfigurable architectures would benefit the production of mobile computa-
tion devices by allowing late design changes, simplifying the logistics of creat-
ing these devices around the world, and by reducing the creation of dedicated
ASICs for applications in these devices. At present, there are demonstrated ap-
plications of reconfigurable technology in the mobile domain [Havinga et al.
2001; Plessl et al. 2003] where these designs can meet the speed require-
ments and provide possible power and performance benefits over other ap-
proaches. However, we are not aware of widespread commercial adoption of re-
configurable architectures for mobile applications, perhaps due to the absence
of appropriate benchmarks specifically developed for such architectures and
applications.

GroundHog 2009 is a benchmark suite that has been created to help moti-
vate optimizations in and measure the power consumption of reconfigurable
architectures targeting the mobile domain. This benchmark suite includes
seven designs in which one design provides a worst-case fabric analysis of
fine-grain FPGAs and the other six are more general mobile applications. In
addition to these designs, GroundHog 2009 includes two tools. The first tool
helps create input stimuli for test-benches to evaluate each of the six applica-
tions when mapped to a target architecture. The second tool helps verify the
correct operation of each implemented design. Moreover, these tools can be ex-
tended to cover future benchmarks added to next versions of the benchmark
suite.

The challenges with creating such a benchmark that we address in
Section 3.1 include:

—to provide design descriptions that allow targeting of multiple architectures.
—to include input stimuli that represent execution instances of the design used

in a mobile computation environment. This includes workload scenarios that
are not simply a full throughput mode, but include instances when the input
stimuli are dormant and the architecture can enter low power modes.

—to select designs that represent potential applications in a mobile device
that would benefit from a reconfigurable technology based on the need for
hardware acceleration, pin expansion, or hardware implementation.

—to provide a methodology for measuring and reporting results.

In this article, we describe the GroundHog 2009 benchmark suite based on these
described challenges. Our approach has made an extensive study of previous
benchmark suites [Becker et al. 2008] for computational devices. We use ideas
from these previous efforts and create GroundHog 2009 using a combination of
these techniques and some of our own ideas.

ACM Transactions on Design Automation of Electronic Systems, Vol. 15, No. 2, Article 14, Pub. date: February 2010.

Benchmarking and Evaluating ReconÞgurable Architectures • 14:3

GroundHog 2009 does not include all parts of what traditionally constitutes
a benchmark suite, and instead allows these aspects to be defined externally
by what we call relevant relationships. This paradigm shift allows GroundHog
2009 to have the flexibility to target both existing and future architectures and
systems, which satisfies our ultimate goal of motivating and facilitating power
improvements in reconfigurable architectures so that they will be adopted in
the mobile market.

To demonstrate the benefits of this benchmark suite, we experimentally show
how two benchmarks from the GroundHog 2009 can be mapped to existing
commercial FPGAs and measured for power consumption for our defined input
stimuli. From these results, we illuminate where simple optimizations may be
made in the future, and we show how two different architectures can be prelimi-
narily compared. We also map two of the benchmarks to an academic evaluation
framework, VPR 5.0 [Luu et al. 2009]. Using an updated version of VPR 5.0
that includes power estimation, we can analyze a design mapped to different
FPGA architectures to determine the best power consuming architecture.

One goal of this benchmark suite is that it will motivate the design of new
reconfigurable architectures targeting the mobile domain, and we claim that
the designs within this suite can target a range of reconfigurable technologies.
However, in this work, we only demonstrate the application of some of the
benchmarks on fine-grain FPGAs. The reason for this is that we believe these
fine-grain FPGAs are the most likely technologies to move into this market
at present based on conversations with mobile device manufactures and the
availability of industrial products, including Actel’s Igloo FPGAs [Actel 2008]
and SiliconBlue’s iCE FPGAs [SiliconBlue 2008].

This work was originally presented at FCCM’09 [Jamieson et al. 2009]. In
this version, we have focused on updating our measurements on commercial
FPGAs based on discussions with the vendors. Also, we have focused on illus-
trating how these benchmarks can be used in an academic setting to evalu-
ate ideas as they apply to FPGAs in the mobile domain. To achieve this we
have made some effort in updating the VPR 5.0 framework to support power
estimation.

The remainder of this article is organized as follows: Section 2 reviews re-
lated work. Section 3 describes our benchmark suite in detail; this description
includes the contents of the benchmark suite, how designs are specified, how
input stimuli are created, and how the environment for a system is described.
Section 4 describes the concept of relationships in benchmarking, and how the
GroundHog 2009 benchmarking suite leverages this concept to make the suite
flexible for a wide variety of possibilities. Section 5 describes the measure-
ments we have made for two existing low-power FPGAs. Section 6 illustrates
how GroundHog 2009 benchmarks can be mapped into VPR 5.0 and evaluated
in terms of energy and power consumption, and finally, Section 7 concludes.

2. RELATED WORK
Evaluating and benchmarking reconfigurable architectures for power has been
achieved by using existing benchmarks, such as MCNC [Yang 1991], or by

ACM Transactions on Design Automation of Electronic Systems, Vol. 15, No. 2, Article 14, Pub. date: February 2010.

14:4 • P. Jamieson et al.

modeling power consumption using circuit models and in-house designs. We
briefly discuss this previous work.

One area of research involves reconfiguration as a power reduction tech-
nique. For example, Liang et al. [2004], Noguera and Kennedy [2007], and
Burleson et al. [2001] build specific instances of an application on a reconfig-
urable architecture and optimize these implementations for power consump-
tion. In related work, Shang et al. [2002] show the dynamic power consumption
of a Xilinx Virtex-II FPGA [Xilinx 2003] using an internal benchmark. This in-
ternal benchmark includes input stimuli, which they use to calculate the switch-
ing activity of a real design. Tuan et al. [2006] present a low-power FPGA core
with several optimizations such as voltage scaling, leakage reduction of config-
uration memory cells, and power gating of tiles with preservation of state and
configuration.

The MCNC benchmark suite provides a range of simple test circuits and
is often used in power-aware research on reconfigurable architectures. Poon
et al. [2002] use the MCNC benchmark and add power models of a common
FPGA architecture exploration tool, VPR [Betz and Rose 1996]. They use the
MCNC benchmark suite to find a transition density signal model to estimate
the activity within each logic cell of an FPGA. Anderson and Najm [2004] also
use the MCNC benchmarks in their work to estimate power consumption in
FPGAs. Gayasen et al. [2004] propose a scheme with two programmable supply
voltages where the higher voltage is used for critical path logic and the lower
voltage for noncritical parts. Using MCNC circuits, they achieve an average
power saving of 61%. More recently, Tinmaung et al. [2007] optimize for power
on FPGAs during logic synthesis and use the MCNC benchmarks to perform
measurements of their optimizations.

Reducing FPGA power consumption is a goal for all the FPGA vendors in-
cluding some recent power optimizations in both Altera’s StratixIII FPGA [Al-
tera 2006] and Xilinx’s Virtex 5 [Xilinx 2006]. Only a few vendors are targeting
their devices to the low-power mobile domain. Actel’s Igloo FPGAs [Actel 2008]
and SiliconBlue’s iCE FPGAs [SiliconBlue 2008] are low-cost FPGAs (approxi-
mately 1 to 2 USD) that are the leading edge in low-power consuming FPGAs
targeting a handheld market.

Finally, a number of low-power CAD algorithms and FPGA architectural op-
timizations have been proposed from a broad range of researchers (too many to
list here). Lamoureux’s thesis work Lamoureux [2007] presents a range of tools
and optimization techniques focused on reducing power consumption. These
include algorithms in technology mapping, clustering, placement, and routing
that use parts of the Poon power estimation framework to analyze how to best
map a design to an FPGA to minimize power consumption. Lamoureux [2007]
also investigates architecture features to minimize power in the clock tree and
reduce power consumption due to glitching.

Much of the previous work allows for power measurements on reconfigurable
architectures and power optimizations, but they do not realistically model mod-
ern applications on these devices. This is especially true for the mobile computa-
tion domain where there are increasing computation demands and limited ad-
vances in battery capacity. Energy or average power are relevant in the context

ACM Transactions on Design Automation of Electronic Systems, Vol. 15, No. 2, Article 14, Pub. date: February 2010.

Benchmarking and Evaluating ReconÞgurable Architectures • 14:5

of battery capacity, while peak power has to be considered for thermal aspects.
In addition, there are no benchmark suites in existence that contain a set of
designs that would likely be implemented on reconfigurable architectures in
the mobile domain both in the near and far future. As for benchmarks such
as MCNC, there are no input stimuli and they are implemented in low-level
design descriptions. For this reason, we have created GroundHog 2009 to fill
this gap.

3. GROUNDHOG BENCHMARKS AND TOOLS
At present, most researchers agree that it will be challenging for reconfigurable
architectures to be included in mass-market mobile devices even with the ben-
efits of flexibility of design. The limiting factors for this adoption are power
consumption, cost, and lack of power mode support (where power modes allow
a device to go into low-power states when not used).

GroundHog 2009 is a benchmarking suite that is meant to target reconfig-
urable architectures in the mobile computation domain with the goal of pro-
viding the means to measure innovation in this field so that someday reconfig-
urable architectures are adopted. There are a number of challenges in creating
this benchmark to meet the following goals:

—collecting realistic (open access) designs that would be used in mobile devices
and future mobile devices (discussed in Section 3.2).

—allow the benchmarks to be mapped to the wide range of reconfigurable ar-
chitectures, which include FPGAs, CPLDs, coarse-grain architectures, multi-
core systems, and even microprocessors (discussed in Section 3.2).

—stimulate the designs with actions a system will likely perform in present
mobile devices and future mobile devices (discussed in Sections 3.3).

—create a methodology in which the wide variety of technologies in mobile
devices can be described so that architectures can be designed to target these
specific instances (discussed in Sections 3.4 and 4).

—prevent system or tool optimizations for a specific benchmark, while still
encouraging innovation (discussed in Section 4).

We have created GroundHog 2009 as a first attempt to satisfy these challenges.
There are four main elements of the benchmark suite that, we believe, make-up
this innovative framework and satisfy many of the earlier challenges described.
They are:

(1) providing high-level design descriptions;
(2) providing synthetically generated, parametrizable input stimuli;
(3) allowing the environment to be uniquely specified; and
(4) allowing early baseline fabric analysis of fine-grained FPGAs.

In this work, we do not focus on item four, and we direct the reader to previous
work [Becker et al. 2009]. However, note that fabric analysis is included in
the benchmark suite to allow our community to quickly evaluate the power
consumption of FPGAs, as they represent the most mature technology that

ACM Transactions on Design Automation of Electronic Systems, Vol. 15, No. 2, Article 14, Pub. date: February 2010.

14:6 • P. Jamieson et al.

potentially would be included in mobile systems. The remaining three items
are described in Sections 3.2 to 3.4. First, we provide a description of what is
contained in the GroundHog 2009 benchmark suite.

3.1 GroundHog 2009 Benchmark Suite
GroundHog 2009 consists of seven designs and accompanying infrastructure
that allows a benchmark user to create input stimuli for these designs and to
verify their implementations against a golden model.

The seven designs are:

—GH09.B.0 - Fabric analysis
—GH09.B.1 - Port expander and keypad controller
—GH09.B.2 - Glue logic
—GH09.B.3 - AES encryption cypher
—GH09.B.4 - Data compression using Lempel-Ziv
—GH09.B.5 - Bridge chip
—GH09.B.6 - 2D convolution

Excluding GH09.B.0, these are designs that could be implemented on recon-
figurable architectures as part of a mobile system. These designs were selected
because they are simple, but represent design qualities of a range of possible
designs. For example, the 2D convolution design exercises how a technology can
efficiently implement arithmetic operations. On the other hand, the data com-
pression design exercises how a technology can efficiently implement memories
that are accessed pseudorandomly. In Section 3.2, we describe more details on
how these designs are specified.

These benchmarks were chosen by looking at existing mobile phones and
questioning what might a reconfigurable device be useful for and what are
common functions within a communicating mobile device. Both the port ex-
pander and bridge chip are included as these designs address a common prob-
lem within mobile devices by expanding the number of pins. This is the case
since the baseband processor is pin limited. Similarly, glue logic implements
pin expansion as well as other types of custom fixes potentially needed for
a mobile device. The 2D convolution design was included as a common algo-
rithm used in the both digital radio transmission and reception, and it is also
used in many DSP applications including graphics processing. Both AES and
data compression are algorithms that might be used as hardware accelera-
tion for applications loaded onto the phone. They might also be included as
parts of the radio transmission depending on the mobile device. For example,
many military applications require encryption hardware on the transmission
path.

In addition to the designs, we have also included open-source software tools
to aid the benchmark users in building a measurement framework for their
implementations. The tools allow benchmark users to create input stimuli to
evaluate their solutions. These stimuli can be created to model classic through-
put like inputs as well as intermittent stimuli that more closely model the on/off

ACM Transactions on Design Automation of Electronic Systems, Vol. 15, No. 2, Article 14, Pub. date: February 2010.

Benchmarking and Evaluating ReconÞgurable Architectures • 14:7

activity within a mobile device, and this is discussed in Section 3.3. We have
made these tools open-source so that they can be modified to output the input
stimuli in a format that can be leveraged to fit into the benchmark user’s mea-
surement framework. For example, in our setup (described in Section 5.1), the
input stimuli are converted to a set of vectors and timestamps that are then
read by an external FPGA board. This FPGA board is hooked up to the imple-
mentation of a design and feeds the input stimuli to the design so that power
measurements can be made.

An included tool also provides a golden model simulator to help benchmark
users verify correctness of their implementations. In this way, benchmark users
can look at the software emulation of each of the six designs and analyze the
behavior of their implementation for a given input stimulus. This helps in
both understanding the expected behavior of a benchmark design and verifying
whether the implemented version on a reconfigurable architecture is perform-
ing correctly.

Finally, GroundHog 2009 includes sample environment descriptions. These
environment descriptions allow solutions to target a range of mobile devices
and this is discussed in more detail in Section 3.4.

3.2 Design Descriptions
The designs in GroundHog 2009 are meant to target a wide variety of recon-
figurable architectures. These architectures include devices such as FPGAs,
CPLDs, coarse-grain architectures, multicore systems, and microprocessors.
This broad range of targets makes it difficult to describe designs in a form that
is mappable to all these devices. For example, a design written in a Hardware
Description Language (HDL) does not map well to processors, and similarly,
a design written in a sequential language, such as C, does not map well to
hardware devices.

In addition to the challenge of mapping designs to a range of devices, the
choice of a specific design language can result in design decisions. For exam-
ple, if we chose to use an HDL to describe our designs, then design decisions
are prematurely made that may map well to an FPGA but not necessarily
to a coarse-grain architecture. If a design uses a multiply-accumulator (MAC)
then should it be described in terms of a high-level multiply-accumulate (which
doesn’t exist as a primitive in Verilog or VHDL), or is the MAC better described
as a combination of adder and multiplier? It is not clear what is the most ap-
propriate design for such a structure for a range of architectures, and there-
fore, choosing a design language conflicts with our overall goal of motivating
innovation.

For the first mentioned; reasons, designs within the GroundHog 2009 bench-
mark suite are described in a high-level format, which is a similar approach
taken by the SLALOM [Gustafson et al. 1991] benchmark suites. Our high-
level format design description includes a description of the design, a block
diagram of the logical view of the application, and a detailed description of the
application in the form of algorithmic descriptions, protocol descriptions, signal
descriptions, citations to standardized descriptions, written descriptions, or a

ACM Transactions on Design Automation of Electronic Systems, Vol. 15, No. 2, Article 14, Pub. date: February 2010.

14:8 • P. Jamieson et al.

Table I. The Characteristics of Designs in Our Benchmark Suite

Processing Memory Arithmetic Performance
Design Name Bit-Width Flow Usage Complexity Requirements
GH09.B.1 - Port expand 90% bit-level Control Simple Simple Low
and keypad controller
GH09.B.2 - Glue logic 90% bit-level Control Simple Simple Low / High
GH09.B.3 - AES 90% bit-level Data Simple Simple High
encryption cypher
GH09.B.4 - Compression 90% bit-level Control Random Simple High
using Lempel-Ziv Access
GH09.B.5 - Bridge chip bits and bytes Data Simple Simple High
GH09.B.6 - 90% byte-level Data Simple Complex High
2d convolution

mixture of all these. For the sake of space, we have not included an example
here, but design specifications can be viewed by downloading the benchmark
suite.

The benefit of the high-level approach is that benchmark users can map the
designs to any target architecture, but to achieve this, the benchmark user
needs to make a synthesizable version of each design. For this reason, the six
designs in GroundHog 2009 were picked based on how common and simple
these designs are.

The six designs have also been chosen to differ based on a set of characteris-
tics that includes the following.

—Bit-Width. This is the width of the operations varying between bit-level and
word-level operations.

—Processing Flow. This defines how computation is performed for a design. We
classify a design as control if there are data dependencies between present
and past data results, because these dependencies result in varying de-
lays. Designs without past/present data dependencies are classified as data
flow.

—Memory Usage. This characterizes a design based on how it uses memory.
This can either comprise simple state and shift registers or more complex
random memory accesses.

—Arithmetic Complexity. This defines a design based on the computation struc-
tures used where a design that uses operations such as division, multiplica-
tion, and more complex math functions would be considered complex.

—Performance Requirements. This is the expected speed at which the outputs
need to be generated.

Table I shows each of the six benchmarks classified based on the design char-
acteristics. Column 1 contains the benchmark name, and columns 2 through 6
contain each of the design characteristics. From this characterization we can
see that the benchmarks have been chosen to differ from each other in at least
one characteristic. This does not cover the complete set of possibilities which
may be covered in future versions of the benchmark suite.

ACM Transactions on Design Automation of Electronic Systems, Vol. 15, No. 2, Article 14, Pub. date: February 2010.

Benchmarking and Evaluating ReconÞgurable Architectures • 14:9

Fig. 1. Parameters for the pulse wave.

Fig. 2. Parameters for events in a burst.

3.3 Input Stimuli
One of the missing aspects of existing benchmark suites, especially those that
are to be used in benchmarking circuit-level designs, is the inclusion of input
stimuli. Input stimuli are not needed for all experiments, but when targeting
power measurements in the mobile domain, input stimuli are necessary for
two reasons. The first reason is, though there are existing methods to estimate
power consumption, the most realistic method is to measure power while a
device is executing real input stimuli. The second reason is that applications
within a mobile system will execute at varying rates. This means that an appli-
cation ranges from executing in full throttle mode to not executing at all, and
for this reason, power modes are used in mobile devices, which puts parts of
the system in different power consuming states.

The GroundHog 2009 benchmark suite includes a tool to synthetically gen-
erate input stimuli. Based on a set of parameters, we can generate a time-line
of input stimuli for a particular design, and we call these time-lines of events
and workloads.

The workloads within the GroundHog 2009 benchmark suite are created syn-
thetically based on parameters that describe a pulse wave. These parameters
are shown in Figure 1 and Figure 2, where an event burst Tburst is the burst
time wave in which events happen every Tevent in burst time units. Each burst
occurs within a period defined by the parameter Tperiod.

ACM Transactions on Design Automation of Electronic Systems, Vol. 15, No. 2, Article 14, Pub. date: February 2010.

14:10 • P. Jamieson et al.

Fig. 3. Example of what a timeline of events would look like for a parametrized wave.

Given these wave parameters, and parameters for random variations in the
pulse wave, total time of workload execution, and a random model for what
input events happen, we can generate a sequence of events. Figure 3 represents
a view of a synthetically generated wave and events on a time-line. Based on this
method of synthetically generating workloads it is possible to create workloads
representing a range of design execution instances.

Workloads are created within the provided tool. Events on the time-line rep-
resent input actions that are as simple as an input signal changing to as com-
plex as a packet of information being sent on a port. We output the workloads
to XML. The drawback with this approach is that the benchmark user must
convert high-level descriptions of the input stimuli into a form usable by their
measurement setup.

To help benchmark users in this process, we provide a synthetic workload
generator as an open-source tool. This means that the workloads can be mod-
ified and outputted in a form that is compatible with their chosen setup. For
example, if the benchmark user is targeting an FPGA platform, then the work-
load generation tool can be modified to output test vectors directly or via another
system to the FPGA under test. It is also possible to map the workload gener-
ation tool to a soft-processor on an FPGA and then the processor will generate
input vectors internally.

3.4 Environment Description
The GroundHog 2009 benchmark suite is meant to push innovation of reconfig-
urable architectures in the mobile domain. The problem is this mobile domain
includes a vast array of devices where each device is built under a range of
constraints and technologies. For this reason, our benchmark suite includes a
concept called environment specification. This specification is in the form of
what we call an Environment Description File (EDF), and allows institutions,
external to the benchmark specifiers and benchmark users, to describe mobile
frameworks. The goal of this description is to allow institutions to define the
constraints under which reconfigurable architectures can be benchmarked to
satisfy the institution’s needs.

In GroundHog 2009 there are two example EDFs that describe a minimum
set of parameters needed for a simple benchmarking environment. These pa-
rameters include the following.

—minimum operating speed. This parameter is defined in terms of a time and
specifies the operating speed of the device. If interpreted as a clock speed,

ACM Transactions on Design Automation of Electronic Systems, Vol. 15, No. 2, Article 14, Pub. date: February 2010.

Benchmarking and Evaluating ReconÞgurable Architectures • 14:11

Fig. 4. One of the sample EDFs included with GroundHog 2009.

then the frequency is 1/time. However, we have not made this specification
since the implementation could be asynchronous.

—minimum sampling speed. This parameter defines the sampling rate of the
device. This is also known as the heartbeat of a device that is present to
receive messages from the system. This can be thought of as the sampling
rate when the device goes into power saving modes such as standby mode or
other power saving mode.

—minimum arrival rate on serial interfaces. This parameter defines the rate
of general serial interfaces.

—minimum arrival rate on parallel interfaces. This parameter defines the
rate of general parallel interfaces.

Figure 4 shows one EDF file included in the distribution that describes a
32MHz clock and 32KHz heartbeat clock for a synchronous device, which are
typical for mobile devices. These files are distributed in XML form, and the tools
included with the suite can read this EDF to create the workloads. The EDFs
included only contain rates of operation. There is a huge range of possibilities of
other items that could be included in an EDF. For example, the EDF may include
items such as voltage rails, off-chip resources and their interfaces, temperature
constraints, etc.

4. RELATIONSHIPS FROM BENCHMARKING
In the previous section, we described the EDF files used to facilitate the de-
scription of constraints for a mobile device. We feel this is necessary so that
we can benchmark a wide range of possibilities. This approach contrasts with
traditional processor and system benchmarking suites. The difference is that
in these benchmarks, the tool flow (compiler) and benchmarking environment
include a restricted range of choices.

The benefit of decoupling the environment from the benchmark is that in-
stead of providing a benchmark suite that is simply used to compare solu-
tion A to solution B under conditions C, we facilitate a broader comparison.
For example, solution A may be better than solution B under conditions C,
which is representative of one particular type of mobile device, but solution B
may be better than solution A under conditions D. Also, this approach avoids
the scenario where reconfigurable architecture vendors use our benchmarks
for marketing claims that their devices are better. The reality, at present, is
that reconfigurable architectures are roughly an order of magnitude away in

ACM Transactions on Design Automation of Electronic Systems, Vol. 15, No. 2, Article 14, Pub. date: February 2010.

14:12 • P. Jamieson et al.

Fig. 5. Relationships in benchmarking.

power consumption and support for power modes from being adopted in main-
stream mobile devices, and these simple technology comparisons are irrelevant
at present.

The GroundHog 2009 benchmark suite has an additional layer of decoupling.
Within the benchmark suite, there is no specification of what rules need to be
specifically followed when using the suite. The reason for this is that these
rules, much like the environment, may only apply in certain scenarios, and this
would restrict the potential for innovation. For example, a scenario might exist
where solution A needs to be benchmarked for a device, but on that device it
will never be used for designs GH09.B.3, GH09.B.4, or GH09.B.6. Under this
scenario, the benchmark suite only needs to be used for the designs it intends
to cover, and the unused designs could be left out.

Figure 5 illustrates how relevant relationships exist for a benchmark envi-
ronment. Decoupling benchmark providers (us) from the more relevant rela-
tionship between benchmark users and environment providers is a better solu-
tion for our given situation and goals. This, we believe, is one of the strengths
of the GroundHog 2009 benchmark suite.

5. USING THE BENCHMARKS ON COMMERCIAL FPGAS
In this section, we illustrate how the GroundHog 2009 benchmark suite can
be used to benchmark reconfigurable architectures in terms of power consump-
tion. Our target architectures are SiliconBlue’s iCE65L04 FPGA and Actel’s
Igloo AGL600 FPGA. For both of these target architectures, we will map HDL
versions of the designs GH09.B.1 and GH09.B.2 to these FPGAs and mea-
sure power consumption for a particular workload. These results are meant
to show the viability of our setup, and for reasons explained shortly the val-
ues presented are not a fair comparison of the two FPGA architectures. The
reason that only two of the benchmarks are used is that they are, presently,
the only low-level implementations of the designs. Based on contributions by
the research community we hope to have low-level implementations of all of the
benchmarks, but for this work, we only show how the benchmark can be used in
practice.

ACM Transactions on Design Automation of Electronic Systems, Vol. 15, No. 2, Article 14, Pub. date: February 2010.

Benchmarking and Evaluating ReconÞgurable Architectures • 14:13

Table II. Resources Available on the FPGAs

FPGA System Gates RAM bits I/O Pins
AGL600 600k 108k 235
iCE65L04 200k 80k 176

Fig. 6. The measurement system.

5.1 Architectures and Experimental Setup
The two FPGAs to be measured as Systems Under Test (SUT) are Actel’s
AGL600 [Actel 2008] and SiliconBlue’s iCE65L04 [SiliconBlue 2008]. Both of
these devices are on the leading edge of low-power-consuming FPGA architec-
tures for mobile applications.

Table II provides a brief overview of these two FPGAs. In column one, the
FPGAs are listed. Columns two, three, and four show the number of system
gates, RAM bits, and I/O pins. In terms of system gates per FPGA chip, this
number is very hard to compare between different manufacturers, and these
numbers are taken from each vendor’s documentation. The main point to draw
is that both of these architectures are small FPGAs, and not to compare these
two devices based on the number of system gates.

The GroundHog 2009 designs GH09.B.1, a port expander and keypad con-
troller, and GH09.B.2, a glue logic design consisting of a state machine and
three adders, are implemented in HDL design and mapped to both of these
SUTs using provided tool flows corresponding to the FPGA. Figure 6 shows how
the FPGAs (SUTs) are included in our measurement system. In this figure, a
National Instruments PXI-4130 [National Instruments 2008] is the measuring
instrument that supplies the core voltage to a SUT and measures and records
the current supplied to these devices. Additionally, a DE2 board with an Altera
Cyclone FPGA [Altera 2007] is used as a stimulus generator, which sends the

ACM Transactions on Design Automation of Electronic Systems, Vol. 15, No. 2, Article 14, Pub. date: February 2010.

14:14 • P. Jamieson et al.

Table III. Power Consumption of 7×8 Keypad

Operation
FPGA Frequency VCC, avg(V) Iavg(mA) Pavg(mW)
AGL600 32MHz 1.5 3.75 5.62
AGL600 32MHz 1.2 2.95 3.54
AGL600 150KHz 1.5 0.09 0.13
AGL600 150KHz 1.2 0.06 0.07
iCE65L04 32MHz 1.2 1.50 1.80
iCE65L04 32MHz 1.0 1.33 1.33

Table IV. Power Consumption of GPIOs

Operation
FPGA Frequency VCC, avg(V) Iavg(mA) Pavg(mW)
AGL600 32MHz 1.5 3.76 5.64
AGL600 32MHz 1.2 2.95 3.55
AGL600 150KHz 1.5 0.09 0.14
AGL600 150KHz 1.2 0.06 0.07
iCE65L04 32MHz 1.2 1.52 1.82
iCE65L04 32MHz 1.0 1.34 1.34

events in the workload to stimulate the SUT. The stimuli generator reads the
timestamp of the events in a workload and generates corresponding vectors.

In the measurements that follow, we are measuring the core FPGA power
consumption, which does not include I/O power consumption. We have cho-
sen this power measurement to alleviate some of the complications with board
power consumption due to the boards the FPGAs are mounted on and I/O pin
loads, which impact the power consumption.

5.1.1 GH09.B.1 Power Measurements. As described earlier, the GH09.B.1
design consists of a port expander and keypad controller. This design includes
registers that determine how the device is to operate including modes for up
to a 7×8 keypad controller, for 15 General Purpose Input and Output pins
(GPIOs), and for a mixture of uses of the two. For our experiments, we measure
the power consumption for two workloads where workload one stimulates the
device operating as a 7×8 keypad controller, and workload two stimulates the
device operating with 8 input pins and 8 output pins.

For the 7×8 keypad mode, the system is operated for two system clocks
(32 MHz and 150 kHz) for the Actel FPGA and 32 MHz for the SiliconBlue
FPGA. The keypad response time is 50ms (which allows 20 key-presses a sec-
ond). The design when mapped to the Actel Igloo FPGA uses 10% of the FPGA
resources and on the SiliconBlue iCE FPGA it uses 28% of the FPGA resources.

Table III shows the power measurements for the 7×8 keypad controller de-
sign for a workload that randomly sends key-presses based on the workload pa-
rameters Tevent in burst = 25ms, Tburst = 500ms, and Tperiod = 1000ms. Columns
1 and 2 show the FPGA and operating frequency of the SUT. Columns 3, 4, and
5 show the voltage, average current, and average power consumption over 5
minutes.

Table IV shows the power measurements for the design with 8 input and
8 output GPIO pins for a workload that randomly updates the output pins or

ACM Transactions on Design Automation of Electronic Systems, Vol. 15, No. 2, Article 14, Pub. date: February 2010.

Benchmarking and Evaluating ReconÞgurable Architectures • 14:15

Table V. Power Consumption for GH09.B.2

Chip Operation VCC, avg Iavg Pavg
FPGA Utilisation Frequency (V) (mA) (mW)
AGL600 6% 32MHz 1.2 1.79 2.15
iCE65L04 4% 32MHz 1.2 1.42 1.70
iCE65L04 4% 32MHz 1.0 1.17 1.17

generates an input value based on the workload parameters Tevent in burst = 1ms,
Tburst = 10ms, and Tperiod = 1000ms. This table has the same structure as
Table III.

These results show that for both architectures there is a slight increase in
power consumption for workload two compared to workload one. This is due to
a slight increase of activity of the SUT on the serial parallel interface for this
scenario.

5.1.2 GH09.B.2 Power Measurements. GH09.B.2 is a glue logic design con-
sisting of a state machine and three adders. Each adder is either incrementing
with the slow clock, incrementing with the fast clock, or remaining constant in
an idle state. These states are controlled by the state machine, which in turn is
controlled by external signals. Within the design the three adders are a 4-bit,
8-bit, and 12-bit adder.

Table V has the same structure as the previous two tables and shows the
power measurements for the glue logic design with random state changes
defined by the workload parameters Tevent in burst = 1ms, Tburst = 10ms, and
Tperiod = 1000ms. These results show that SiliconBlue’s low-power FPGA is
better than Actel’s in this case, but note that this comparison is preliminary,
and many design factors have not been considered for a fair comparison. For
example, the AGL600 has an active-phase locked loop compared to the no-phase
locked loop on the iCE65L04. The goal of this comparison is to illustrate how
the benchmarks can be mapped and measured for power consumption, and we
have not made an attempt to perform a fair comparison.

Figure 7 shows the power measurements for the first 9 seconds of this design
on the Actel Igloo FPGA. The x-axis shows time in seconds and the y-axis shows
the power consumption in watts. In this figure, we can see how the power con-
sumption increases as more or fewer adders are incrementing at the slower and
higher clock frequencies due to state changes. These step transitions suggest
there is room for improvement of the entire design’s power consumption. For
example, at the points where part of the device (a portion of the adders) is in
an idle state, a smart design maybe able to reduce the power consumption of
the overall chip. The challenge, however, is that it is unknown when the idle
parts of the design will be reactivated, and some sort of quick power on recovery
solution needs to be created.

6. USING GROUNDHOG 2009 IN AN ACADEMIC FRAMEWORK
Our previous setup and measurements on commercial FPGAs is useful to com-
pare different existing commercial FPGAs, but these measurements provide
very little insight or a framework to evaluate architectural changes and the

ACM Transactions on Design Automation of Electronic Systems, Vol. 15, No. 2, Article 14, Pub. date: February 2010.

14:16 • P. Jamieson et al.

Fig. 7. Power measurements of GH09.B.2.

CAD flow that maps designs to these devices. In this section, we briefly intro-
duce the VPR 5.0 framework, which we have updated for power estimation,
and we show how both GroundHog designs can be mapped to a range of FPGA
architectures and evaluated in terms of power consumption.

First, we describe the VPR 5.0 framework for power estimation. This frame-
work includes details of the CAD flow that maps designs to the architecture
and how an architecture is described. Once we have described the framework
we perform two experiments. In the first experiment, we map GH09.B.1 (port
expander and keypad controller) to different FPGA architectures with varied
cluster sizes and the different routing architectures. In the second experiment,
we map GH09.B.2 to a specific architecture and investigate the energy con-
sumption in terms of details of the design and the architecture.

6.1 VPR 5.0 for Power Estimation
In our experiments, we use an island-style FPGA that consists of an array of
logic blocks and I/O cells that are interconnected using programmable rout-
ing [Betz et al. 1999]. The programmable routing consists of wire segments
that connect, via programmable switches, to both logic blocks, and other wire
segments. These connection points are called either switch blocks or connection
blocks, where a switch block joins wires and a connection block joins a logic block
to wires. The logic blocks, also called clusters, consist of a number of (BLEs),
which themselves are commonly a combination of a LUT and flip-flop [Singh
and Marek-Sadowska 2002].

Most modern FPGAs within the traditional domain use what is called unidi-
rectional routing architectures, where the wires making up the programmable
routing only propagate signals in one direction. This routing architecture choice
is made based on work by both Lemieux and Lewis [2004] and Lewis et al.
[2005] that shows that unidirectional architectures result in faster and more

ACM Transactions on Design Automation of Electronic Systems, Vol. 15, No. 2, Article 14, Pub. date: February 2010.

Benchmarking and Evaluating ReconÞgurable Architectures • 14:17

area-efficient designs mapped to these architectures compared to an FPGA with
bidirectional routing (in which wires can propagate signals in either direction).
In the first experiment we will evaluate FPGAs with both types of routing ar-
chitecture.

Each FPGA architecture is described using many parameters that define its
connectivity and makeup, including the number of (BLEs) per cluster (N), the
input size of a LUT (K) in a BLE, the number of routing tracks per channel
(W), the input connectivity to the BLEs in a soft logic cluster (FCin), the output
connectivity from the BLEs to the routing tracks (FCout), logical wire length in
terms of the number of clusters spanned (L), and the switch block flexibility
connecting routing tracks with each other (Fs). In addition to these parameters,
an architecture is also described in terms of its routing architecture and the
transistor sizings for the programmable routing and clusters.

These architectural details are inputted into VPR 5.0 [Luu et al. 2009], which
is a tool that can estimate the speed and area consumption of a design mapped to
an FPGA. VPR creates an FPGA (based on the parameters) onto which it places
and routes a design that has been mapped into clusters by previous CAD flow
stages. The point of such a tool is that it allows us to experiment with different
architectures and the CAD flow that maps a design to these architectures to
find the best implementations in terms of speed and area consumption (and
power for our updated tool).

Figure 8 shows the entire CAD flow including VPR’s placer and router. In
this figure, for each stage of the CAD flow we list the academic tool used in
this work in parentheses. High-level synthesis of the GroundHog benchmarks
is done via OdinII (an improved version of Odin [Jamieson and Rose 2005]).
This tool converts a Verilog design into a netlist of logic. For logic optimization
and technology mapping we use ABC [Mishchenko et al. 2007]. For clustering
we use T-VPACK [Marquardt et al. 1999], and for both placement and routing
we use VPR 5.0 placement and routing algorithms [Luu et al. 2009] originally
created by Betz et al. [1999].

As mentioned earlier, VPR 5.0 can estimate speed and area, but in this work
we are concerned with power consumption. Poon et al. [2002] created a power
estimation framework for VPR 4.3, and for this work we have updated this
framework for VPR 5.0.

Poon et al.’s [2002] original power estimation framework first estimates
switching activity on the nets connecting the clusters (where a net is com-
prised of wires making up a connection between one output and a number of
inputs). Next, these switching activation estimates, the FPGA architecture,
and the placed-and-routed design are used to compute the dynamic and static
power consumption of that design on a particular FPGA architecture. Our up-
dated framework uses this estimation framework as a starting point, making
the needed changes to support the basic estimation as well as a new feature in
VPR 5.0, unidirectional routing.

Activity estimation of a design is done using ACE 1.0, a tool developed by
Poon et al. [2002]. This activation estimation tool uses transition density mod-
els, assuming all primary inputs have a transition density of 0.5. This approach
does not fit well with the principles of GroundHog 2009, where we emphasize

ACM Transactions on Design Automation of Electronic Systems, Vol. 15, No. 2, Article 14, Pub. date: February 2010.

14:18 • P. Jamieson et al.

Fig. 8. CAD flow to map a design to an FPGA.

the need for realistic input stimuli. To improve this estimation, future efforts
will need to use the workloads generated by the GroundHog framework to to
activity estimation, but we leave this as future work.

The power models created by Poon et al. [2002] are in 180nm CMOS tech-
nology, and we use this technology point in our results. This choice allows us to
see trends in power and energy consumption, but we cannot experiment with
the power consumption of modern FPGAs.

For our experiments we use the following architectural parameters:

(1) Fcin = 0.15
(2) Fcout = 0.10
(3) Fs = 3
(4) L = 1

Note that for routing parameters Fcin, Fcout, and Fs a decimal number in these
columns represents fractional connectivity that depends on the channel width,
W , and integer values represents absolute connectivity. For example, if W is 20
then each output of the cluster for Basic will connect to 2 of the tracks in the
channel. The architectures have routing parameters Fcin, Fcout, and Fs selected

ACM Transactions on Design Automation of Electronic Systems, Vol. 15, No. 2, Article 14, Pub. date: February 2010.

Benchmarking and Evaluating ReconÞgurable Architectures • 14:19

Fig. 9. Critical path delay as N increases.

based on the ranges given in previous work by Lemieux and Lewis [2001]. For
the rest of the parameters in the architecture, we use architecture files created
by Kuon and Rose [2008]. We used the architecture file for an N = 10, K = 4,
and transistors sized based on Area-Delay for 180nm technology.

For each benchmark and for each given architecture, we map the benchmark
to the architecture and find both the minimum array size and the minimum
channel width, W , using a binary search. The channel width is then increased
by 20% to alleviate any routing pressure. This approach is commonly used in ar-
chitectural experiments using VPR. The critical path delay, area consumption,
and power consumption results are geometrically averaged for all the bench-
marks, and these averaged results are used in our analysis.

6.2 Evaluating GH09.B.1 for Cluster Size and Routing Architecture
In our first experiment, we map the port expander and keypad controller to
FPGA architectures where cluster size (N) varies from 4 to 12, and we use ar-
chitectures with bidirectional and unidirectional routing. For this experiment
we will show graphs of the critical path delay, area, and energy consumption
per clock cycle as N increases. In general, as N increases, the logic block ab-
sorbs more of the design and intracluster routing is traded off for intercluster
routing. Intercluster routing is expensive in terms of speed, area consumption,
and power consumption, so as N increases we expect to see improved results.
However, as the cluster increases in size, there is a point where the intracluster
routing begins to dominate area and power consumption, and this is a tradi-
tional trade off between intercluster and intracluster routing.

Figure 9 shows the critical path delay of GH09.B.1 on the two FPGA routing
architectures as N increases. We can see that the critical path delay decreases
as more of the design logic is absorbed into the cluster. Figure 10 shows the area
of GH09.B.1 on the two FPGA routing architectures as N increases, and we see
a similar trend where area goes down as more logic is absorbed into the cluster
and the programmable routing area decreases. In terms of comparing the two
routing architectures, bidirectional is faster and unidirectional is smaller, but
these observations are only true for this specific benchmark and for the given

ACM Transactions on Design Automation of Electronic Systems, Vol. 15, No. 2, Article 14, Pub. date: February 2010.

14:20 • P. Jamieson et al.

Fig. 10. FPGA area as N increases.

Fig. 11. Total energy consumed per clock cycle as N increases.

routing architecture and architectural parameters. A more detailed experiment
would need to be done to make a more conclusive statement on the effects of
the two routing architectures on area and speed for this design.

Figure 11 shows the energy consumed per clock cycle as N increases. We use
energy per clock cycle as a metric instead of power consumption since energy
measurements remove the impact of switching speed, and we can compare
both routing architectures in terms of energy consumption regardless of the
operating frequency. In the total energy graph, we can see that the energy con-
sumption is somewhat erratic for increasing values of N , but in general values
of N in the range of 5 to 10 seem to result in an architecture that consumes less
energy. Also, for the given architecture parameters, the bidirectional routing
architecture is more energy efficient.

To understand the the internal energy consumption, we can break down
the results into energy consumption of the clock, clusters, and routing.
Figure 12 shows a breakdown of energy for the routing, logic, and clock of our
design mapped to a unidirectional routing architecture as N increases. Clock
energy, in our estimation framework, is a function of the size of the FPGA, so as
area decreases the clock power also decreases. In terms of the energy trade-off
between routing and cluster energy consumption, we can see in general that

ACM Transactions on Design Automation of Electronic Systems, Vol. 15, No. 2, Article 14, Pub. date: February 2010.

Benchmarking and Evaluating ReconÞgurable Architectures • 14:21

Fig. 12. Total energy consumed as N increases.

Table VI. FPGA Architectural Parameters and Transistor Sizes for This Experiment

Routing Routing
Routing Fcin Fcout Fs L N K Buffer Size Multiplexer Size
unidirectional 0.15 0.10 3 1 10 4 6.2 2.363

routing energy is a small contributor to total energy, and as N increases the
intercluster routing decreases. The logic energy consumption is the dominating
factor, and increases as N grows.

Note that FPGAs normally consume a high amount of energy in the pro-
grammable routing, but our results don’t show this. The reason is that, in our
experiments, programmable routing is sized for a minimum-width transistor in
all the programmable switches and buffers. This is not normally the case for real
FPGAs, and an FPGA would be transistor sized for some optimization criteria
such as Area-Delay or Delay-Energy. For our experiments, we are not focused
on looking for an optimal FPGA architecture and instead are demonstrating
the feasibility of running such experiments.

Also from Figure 12, we can see that when N is equal to 9 the energy con-
sumed per clock cycle spikes and doesn’t follow trends. These results are not
surprising given that the graph is generated for only one benchmark and one
random placement seed. Many of the CAD algorithms that map the design to
the FPGA are meta-algorithms that use random seeds, and normally, we would
run multiple executions to smooth out possible random effects. Again, we are
not interested on a complete study here, and are showing what is possible with
the GroundHog 2009 benchmark suite and VPR 5.0.

6.3 Analysis of GH09.B.2 Power Consumption
In the last experiment, we showed that a GroundHog 2009 benchmark can be
mapped into an academic framework to measure speed, area, and power con-
sumption to evaluate different architectures. In this section, we will show some
instances where our framework can be used to evaluate the internal elements
of a design’s power consumption mapped to an FPGA.

For this experiment, we map GH09.B.2 (glue logic) to an FPGA architecture
with the parameters listed in Table VI. The result of is the design is mapped to
a 4x4 array, and there are 49 clusters and 102 nets connecting the clusters to

ACM Transactions on Design Automation of Electronic Systems, Vol. 15, No. 2, Article 14, Pub. date: February 2010.

14:22 • P. Jamieson et al.

Fig. 13. Histogram of the power consumed for each routing net in GH09.B.2.

each other and primary inputs and outputs. The minimum channel width found
by VPR is 18, which was increased to 22 (for the 20% increase). The critical path
delay is 4.25e-09 seconds and this path travels through 5 clusters. The routing
consumed 25% of the power (0.00285 Watts), and the clusters consumed 42%
of the power (0.00491 Watts). Finally, 13% of the total power consumption was
due to leakage power.

Figure 13 shows a histogram of power consumption of each routing net in
GH09.B.2. When we look at these internal details of the power consumed in the
device we see that 41 of the 102 intercluster routing nets consume no power. The
reason for this is that the activation estimation tool assumes random inputs,
and some of the nets have an activation that becomes so small that they do
not consume any significant amount of power. The highest power consuming
routing net is part of the critical path, which isn’t surprising, and from the
details, we know that this critical path is based on the third input pin of the
input bus in the GH09.B.2. This bus is used to control the states of the finite
state machine. By looking at the Verilog design, it is clear that this bus signal
is one of the signals that is used in many comparisons. This is the case based
on the choice of encoding schemes in our finite state machine, and with this
information we might consider another encoding scheme that would reduce the
impact of this signal on power consumption.

More importantly, this brief experiment shows how the academic framework
can be used to examine the details of power consumption, and can lead into
insights on how to reduce overall power consumption for a design mapped to
an FPGA.

7. CONCLUSION
In this work, we introduce the GroundHog 2009 benchmarking suite targeting
reconfigurable architectures in the mobile domain. We describe the composi-
tion of this benchmark suite and describe how it differs from existing available
benchmarks, emphasising how the relationships in benchmarking can be lever-
aged to create a flexible benchmarking suite.

ACM Transactions on Design Automation of Electronic Systems, Vol. 15, No. 2, Article 14, Pub. date: February 2010.

Benchmarking and Evaluating ReconÞgurable Architectures • 14:23

We use this suite to measure the power consumption of two designs from the
suite (including input stimuli) and show how these results can be used to com-
pare commercial devices and identify potential power optimizations. Also, we
demonstrate how the benchmarks can be used within an academic framework
to try new architecture designs, CAD algorithms, and evaluate a benchmark’s
power consumption.

The GroundHog 2009 benchmark suite and all publications related to this
work can be found at:

http://cc.doc.ic.ac.uk/projects/GROUNDHOG/.
In addition to the basic description of the benchmarks, we have also created

an online repository on OpenCores at:
http://www.opencores.org/?do=project&who=groundhog2009_repository.
The idea behind this repository is to allow individuals to post and down-

load existing synthesizable solutions for each of the benchmarks, and all the
files used in this work are available there. Hopefully, over time there will be
more synthesizable instances of these designs to download that are not only
synthesizable on FPGAs, but other architectures such as microprocessors.

It is our hope to establish a community of researchers in this area. The
contributions needed are synthesizable versions of the benchmarks for a range
of architectures, and new research into reconfigurable architectures targeting
this domain.

REFERENCES

ACTEL. 2008. Igloo Handbook. Actel.
ALTERA. 2006. Stratix III Device Handbook. Altera.
ALTERA. 2007. Cyclone II Device Handbook. Altera.
ANDERSON, J. AND NAJM, F. 2004. Power estimation techniques for FPGAs. IEEE Trans. Very Large

Scale Integr. Syst. 12, 10, 1015–1027.
BECKER, T., JAMIESON, P., LUK, W., CHEUNG, P., AND RISSA, T. 2008. Towards benchmarking energy

efficiency of reconfigurable architectures. In Proceedings of the International Conference on Field-
Programmable Logic and Applications. 691–694.

BECKER, T., JAMIESON, P., LUK, W., CHEUNG, P., AND RISSA, T. 2009. Power characterisation for the
fabric in fine-grain reconfigurable architectures. In Proceedings of the Southern Programmabla
Logic Conference.

BETZ, V. AND ROSE, J. 1996. Directional bias and non-uniformity in FPGA global routing
architectures. In Proceedings of the 14th IEEE/ACM International Conference on CAD.
652–659.

BETZ, V., ROSE, J., AND MARQUARDT, A. 1999. Architecture and CAD for Deep-Submicron FPGAs.
Kluwer Academic.

BURLESON, W., TESSIER, R., GOECKEL, D., SWAMINATHAN, S., JAIN, P., EUH, J., VENKATRAMAN, S., AND THYA-
GARAJAN, V. 2001. Dynamically parameterized algorithms and architectures to exploit signal
variations for improved performance and reduced power. In Proceedings of the International
Conference on Acoustics, Speech, and Signal Processing.

GAYASEN, A., LEE, K., VIJAYKRISHNAN, N., KANDEMIR, M., IRWIN, M., AND TUAN, T. 2004. A dual-Vdd low
power FPGA architecture. In Proceedings of the International Conference on Field Programmable
Logic and Application. 145–157.

GUSTAFSON, J., ROVER, D., ELBERT, S., AND CARTER, M. 1991. The design of a scalable, fixed-time
computer benchmark. J. Parallel Distrib. Comput. 12, 4, 388–401.

HAVINGA, P., SMIT, L., SMIT, G., BOS, M., AND HEYSTERS, P. 2001. Energy management for dynam-
ically reconfigurable heterogeneous mobile systems. In Proceedings of the 15th International
Parallel and Distributed Processing Symposium (IPDPS). 840–852.

ACM Transactions on Design Automation of Electronic Systems, Vol. 15, No. 2, Article 14, Pub. date: February 2010.

14:24 • P. Jamieson et al.

JAMIESON, P., BECKER, T., LUK, W., CHEUNG, P., AND RISSA, T. 2009. Benchmarking reconfigurable ar-
chitectures in the mobile domain. In Proceedings of the IEEE Symposium on Field-Programmable
Custom Computing Machines.

JAMIESON, P. AND ROSE, J. 2005. A Verilog RTL synthesis tool for heterogeneous FPGAs. In Proceed-
ings of the International Conference on Field-Programmable Logic and Applications. 305–310.

KUON, I. AND ROSE, J. 2008. Automated transistor sizing for FPGA architecture exploration. In
Proceedings of the IEEE-ACM Design Automation Conference (DAC’08). 792–795.

LAMOUREUX, J. 2007. On the interaction between power-aware computer-aided design algorithms
for field-programmable gate arrays. Ph.D. thesis, University of British Columbia.

LEMIEUX, G. AND LEWIS, D. 2001. Using sparse crossbars within LUT clusters. In Proceedings of
the ACM/SIGDA International Symposium on FPGAs. 59–68.

LEMIEUX, G. AND LEWIS, D. 2004. Directional and single-driver wires in FPGA interconnect. In
Proceedings of the IEEE International Conference on Field-Programmable Technology. 41–48.

LEWIS, D., AHMED, E., BAECKLER, G., BETZ, V., BOURGEAULT, M., CASHMAN, D., GALLOWAY, D., HUTTON, M.,
LANE, C., LEE, A., LEVENTIS, P., MARQUARDT, S., MCCLINTOCK, C., PADALIA, K., PEDERSEN, B., POWELL,
G., RATCHEV, B., REDDY, S., SCHLEICHER, J., STEVENS, K., YUAN, R., CLIFF, R., AND ROSE, J. 2005.
The Stratix II logic and routing architecture. In Proceedings of the ACM/SIGDA International
Symposium on FPGAs. 14–20.

LIANG, J., TESSIER, R., AND GOECKEL, D. 2004. A dynamically-reconfigurable, power-efficient turbo
decoder. In Proceedings of the 12th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM’04). 91–100.

LUU, J., KUON, I., JAMIESON, P., CAMPBELL, T., YE, A., FANG, W. M., AND ROSE, J. 2009. VPR 5.0: FPGA
CAD and architecture xploration tools with single-driver routing, heterogeneity and process
scaling. In Proceedings of the ACM/SIGDA International Symposium on FPGAs.

MARQUARDT, A., BETZ, V., AND ROSE, J. 1999. Using cluster-based logic blocks and timing-driven
packing to improve FPGA speed and density. In Proceedings of the ACM/SIGDA International
Symposium on FPGAs. 37–46.

MISHCHENKO, A., CHATTERJEE, S., AND BRAYTON, R. K. 2007. Improvements to technology mapping
for LUT-based FPGAs. IEEE Trans. CAD 26, 2, 240–253.

NATIONAL INSTRUMENTS. 2008. NI PXI-4130 - 20V 2A Source Measure Unit. National Instruments.
NOGUERA, J. AND KENNEDY, I. 2007. Power reduction in network equipment through adaptive

partial reconfiguration. In Proceedings of the International Conference on Field Programmable
Logic and Application. 240–245.

PLESSL, C., ENZLER, R., WALDER, H., BEUTEL, J., PLATZNER, M., THIELE, L., AND TRESTER, G. 2003. The
case for reconfigurable hardware in wearable computing. Personal Ubiq. Comput. 7, 5, 299–308.

POON, K., YAN, A., AND WILTON, S. 2002. A flexible power model for FPGAs. In Proceedings of the
Field-Programmable Logic and Applications. 312–321.

SHANG, L., KAVIANI, A. S., AND BATHALA, K. 2002. Dynamic power consumption in Virtex-II
FPGA family. In Proceedings of the ACM/SIGDA 10th International Symposium on Field-
Programmable Gate Arrays (FPGA’02). 157–164.

SILICONBLUE 2008. iCE DiCE: iCE65L04 Ultra Low-Power FPGA Known Good Die. SiliconBlue.
SINGH, A. AND MAREK-SADOWSKA, M. 2002. Efficient circuit clustering for area and power reduction

in FPGAs. In Proceedings of the ACM/SIGDA International Symposium on FPGAs. 59–66.
TINMAUNG, K. O., HOWLAND, D., AND TESSIER, R. 2007. Power-Aware FPGA logic synthesis using

binary decision diagrams. In Proceedings of the ACM/SIGDA 15th International Symposium on
Field Programmable Gate Arrays (FPGA’07) . 148–155.

TUAN, I., KAO, S., RAHMAN, A., DAS, S., AND TRIMBERGER, S. 2006. A 90nm low-power FPGA for
battery-powered applications In Proceedings of the International Symposium on Field Pro-
grammable Gate Arrays. 3-11.

XILINX. 2003. Virtex-II Pro Platform FPGAs: Functional Description. Xilinx.
XILINX. 2006. Virtex-5 Family Overview. Xilinx.
YANG, S. 1991. Logic synthesis and optimization benchmarks, version 3.0. Tech. rep. Microelec-

tronics Centre of North Carolina. Research Triangle Park, NC.

Received June 2009; revised October 2009; accepted December 2009

ACM Transactions on Design Automation of Electronic Systems, Vol. 15, No. 2, Article 14, Pub. date: February 2010.

