
Axel: A Heterogeneous Cluster with FPGAs and GPUs

Kuen Hung Tsoi and Wayne Luk
Department of Computing

Imperial College London, UK
{khtsoi,wl}@doc.ic.ac.uk

ABSTRACT
This paper describes a heterogeneous computer cluster called
Axel. Axel contains a collection of nodes; each node can in-
clude multiple types of accelerators such as FPGAs (Field
Programmable Gate Arrays) and GPUs (Graphics Process-
ing Units). A Map-Reduce framework for the Axel clus-
ter is presented which exploits spatial and temporal locality
through different types of processing elements and commu-
nication channels. The Axel system enables the first demon-
stration of FPGAs, GPUs and CPUs running collaboratively
for N-body simulation. Performance improvement from 4.4
times to 22.7 times has been achieved using our approach,
which shows that the Axel system can combine the benefits
of the specialization of FPGA, the parallelism of GPU, and
the scalability of computer clusters.

Categories and Subject Descriptors
C.5.0 [Computer Systems Organization]: COMPUTER
SYSTEM IMPLEMENTATIONGeneral

General Terms
Design

Keywords
Heterogeneous Cluster, FPGA

1. INTRODUCTION
Despite the continuously increasing clock frequency and

silicon size of modern CPU designs, the performance of a
single processor system is greatly constrained by the mem-
ory wall, the power wall and the ILP (instruction level par-
allelism) wall [6]. A common solution is to increase the num-
ber of processors in a system to achieve the high computa-
tional requirement for applications such as physical simu-
lation, multimedia content creation and financial modeling.
This method is proved practical by the dominance of com-
puter clusters in the TOP500 supercomputer list.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’10, February 21–23, 2010, Monterey, California, USA.
Copyright 2010 ACM 978-1-60558-911-4/10/02 ...$10.00.

Building a cluster of computers is a common technique
to realize the parallel computing model. Hundreds to thou-
sands of computing nodes are connected together in net-
works to form a cluster system. Using commodity CPU
based computers as nodes has the advantages of low unit
price, flexible configuration, rich peripherals, familiar pro-
gramming environments and easy upgrade path.

The computing capacity within a node is a critical factor
for performance improvement besides communication effi-
ciency. There are two ways to increase node performance:
the use of dedicated hardware accelerators and multi-core,
multi-threaded parallelism. A number of high-performance
computers are already adopting this approach [18].

A heterogeneous computer cluster is more efficient than
a homogeneous one since some kinds of processing units
have better performance than others for certain computa-
tion tasks, and tightly coupled hardware accelerators inside
a node can reduce communication requirements by making
use of data locality. Overall system performance can be im-
proved by allowing the heterogeneous cores to work collabo-
ratively on different parts of an application. The challenges
here are communication efficiency, workload balancing and
application portability. We address these issues by providing
dedicated inter-FPGA communication channels, a hardware
abstraction model for resource estimation, and a develop-
ment flow for such heterogeneous computer clusters. The
major contributions of this work include:

- A heterogeneous computer cluster called Axel. Axel
contains a collection of nodes; each node can include
multiple types of accelerators such as FPGAs and GPUs.

- A Map-Reduce framework for the Axel cluster which
exploits spatial and temporal locality through differ-
ent types of processing elements and communication
channels.

- The first demonstration of FPGAs, GPUs and CPUs
running collaboratively for N-body simulation, show-
ing that the Axel system can combine the benefits of
the specialization of FPGA, the parallelism of GPU
and the scalability of computer clusters.

The rest of this paper is organized as follows: Section 2
reviews related work on heterogeneous clustering. Section 3
presents the hardware and software architecture of the Axel
system. Section 4 introduces the Map-Reduce framework
for heterogeneous clusters. Section 5 describes the details
of the N-body simulation example which illustrates our ap-
proach. Section 6 contains experimental results and perfor-
mance evaluation. Finally Section 7 draws conclusions.

2. RELATED WORK
In 2004, the Cray XD1 computer [17] hosts 12 Opteron

CPUs and 6 Xilinx Virtex-II FPGA devices on a single
motherboard through a HyperTransport based communi-
cation network and achieving 58 GFLOPS. In 2009, SRC
releases the SRC-7 MAPstation [16] which integrates CPU
with up to six Altera Startix-II FPGA devices in a single
host through the DDR DIMM slot interface on the moth-
erboard. These examples show that hardware co-processors
such as FPGA devices can offer significant improvement to
many applications [18]. However these examples lack the
framework for developing distributed applications on clus-
ters with multiple nodes.

There are also systems where FPGA devices are used
as the only computing elements forming the cluster. The
Berkeley Emulation Engine 2 (BEE2) [2] developed in 2004
has five Xilinx Virtex-II Pro 70 FPGAs hosted on a sin-
gle motherboard. A 64-bit ring in a star topology con-
nects the four computational FPGAs and a central control
FPGA. Computationally intensive tasks run on the outer
ring while the control FPGA runs Linux Operating Sys-
tem and manages off-board I/Os. In 2007, the Maxwell
project [13] demonstrates a complete cluster with 64 Virtex-
4 FPGA devices arranged in a 2-D torus network through
Infiniband connections. An object based Parallel Toolkit
(PTK) has been developed for the Maxwell hardware. It
provides abstract hardware description and data structure
to enable resource and task management in a FPGA cen-
tric cluster environment. Also in 2007, the Reconfigurable
Computing Cluster (RCC) platform is developed in Univer-
sity of North Carolina [14]. The prototype machine, Spirit,
contains 64 Xilinx ML410 boards connected through SATA
expansion module and cables. A modified Message Passing
Interface (MPI) library [9] as well as the Linux Operating
System are running on the embedded PowerPC processor
in the Virtex-4 FPGA. Reconfigurable accelerator cores are
built as peripherals attached to PowerPC through system
bus. In 2008, the Parton tool [4] was introduced to produce
high performance implementations for the MAX2 hardware
platform. The MAX2 card has 2 Xilinx Virtex-5 LX330T
FPGA and 24GB DDR2 on-board memory. Users can iden-
tify the hot spots in a CPU based implementation by pro-
filing and static code analysis. The Parton tool provides
a modeling and transformation framework for optimization
and performance estimation. A geophysical modeling appli-
cation achieves 374 times speedup over CPU based imple-
mentation.

The above examples provide integrated programming and
runtime environment in FPGA-centric clusters. However,
not all applications can be accelerated effectively using FP-
GAs. The high clock rate and large numbers of floating
point units in GPUs and DSPs make them good candidates
for hardware accelerators. The first generation of TSUB-
AME (Tokyo-tech Supercompyuter and Ubiquitously Ac-
cessible Mass-storage Environment) system, built in April
2006 [3], contains dedicated vector processors as hardware
accelerators. The upgrade of TSUBAME in late 2008 adds
170 nVidia Tesla C1070 cards to the system. The measured
performance of the new version ramps from 56.43 TFlops to
77.48 TFlops.

The combination of CPU, GPU/DSP and FPGA in clus-
ter nodes has been reported recently. In 2009, NCSA in
UIUC publishes the first prototype and performance eval-

uation of the Quadro Plex (QP) Cluster [7]. The proto-
type QP system has two AMD Opteron CPUs, four nVidia
G80GL GPUs and one Xilinx Virtex-4 LX100 FPGA in each
node. With 16 nodes, the theoretical peak performance is
23 TFlops (single precision), where the GPUs contribute
96% of them. Various applications including molecular dy-
namics (NAMD), weather modeling (WRF), cosmology data
analysis (TPACF) have been implemented on the QP sys-
tem. However, no results involve distributing workloads to
both GPU and FPGA and running them concurrently at this
stage. A runtime system, Phoenix, is under development for
QP to integrate various tools including CUDA [11], DIMEt-
alk [10] and MPI.

There is also research on the general architecture of het-
erogeneous system [18]. In this study, the attributes of
uniform node nonuniform systems (UNNSs) and nonuni-
form node uniform systems (NNUSs) are compared and sev-
eral benchmark applications are used to evaluate these plat-
forms.

3. THE AXEL SYSTEM
In this work, we propose a heterogeneous cluster called

Axel, which is intended to enable experiments in recon-
figurable cluster computing. In the Axel system, various
processing elements (PEs) are integrated in a single com-
pute node through a local system bus, and the nodes are
connected together by various global networking topologies.
Different software tools are used together to implement the
distributed versions of applications across the heterogeneous
PEs in the cluster. In the following, we describe the archi-
tecture, hardware, and software aspects of Axel, highlighting
the major design decisions.

3.1 Architecture
There are two methods to group together the elements of a

heterogeneous cluster: either as Uniform Node Nonuniform
System (UNNS) or as Nonuniform Node Uniform Systems
(NNUS). As shown in Figure 1, we generalize the description
of these two approaches of grouping PEs in [18] to include
both FPGA and GPU technologies in each node.

In the UNNS approach, each node has a single type of PE
such that the installation and management of hardware ac-
celerators (e.g. FPGA and GPU) are simpler in a segment
of the cluster. Also, the ratio between these accelerators and
the CPU can be easily adjusted to optimize for the needs of
a specific application. The major drawbacks of the UNNS
aproach are the communication overhead between PEs and
requirement of special hosting boards/links for non-CPU
PEs. The dedicated Hi-Bar switch in the SRC-7 MapSta-
tion and the RC100 Blade module in the SGI RASC server
are both examples of such special hardware, which offers
high performance but can be costly to develop. Applica-
tions with data communication between CPU and accelera-
tors may have to go through the slow and high-latency global
network. To address this overhead, a dedicated ASIC, the
TIO chip, is developed for the SGI RASC system.

Our Axel cluster adopts the NNUS approach in which
heterogeneous PEs are hosted in a single node. All nodes
are uniformly created with the same abilities of hosting and
communicating with PEs mainly through the system bus.
There are several advantages of this approach. First, as
long as the number of accelerators is limited, the communi-
cation between CPU and accelerators can be supported by

Node

CPU

GPU

FPGA

Node

CPU

GPU

FPGA

Node

CPU

GPU

FPGA

Cluster Communication

(b) NNUS

Cluster Communication

GPU

GPU

CPUCPU

FPGA

FPGA

NodeNode Node

(a) UNNS

Figure 1: Approaches of heterogeneous accelerator grouping: (a) UNNS and (b) NNUS.

Gigabit

Ethernet

HCN1

HCNx

System

I/O

Multi−Bank Memory

1G Bytes

Xilinx V5 LX330T

customisable logic

System Memory

4G Bytes DDR2

Video Memory

4G Bytes GDDR3

AMD Phenom X4

9650 Quad−Core

nVidia Tesla C1060

240 streaming cores

Heterogeneous Computing Node (HCN)

Infiniband

Gigabit Ethernet

Fast Serial Link

HCN0

P
C

Ie
 B

u
s:

 8
~

1
6

 l
an

es
;

4
~

8
G

B
p

s

Infiniband

Figure 2: Axel Hardware Architecture.

the CPU system bus, such as the PCIe bus in Axel which
often provides adequate performance for many applications.
Second, the serial links in our FPGA accelerator provide
additional communication channels between nodes. They
effectively increase the total communication bandwidth be-
tween cluster nodes. Third, the single program multiple
data (SPMD) programming paradigm can be easily mapped
to the NNUS architecture. Since all the nodes are uniform
at system level, a single copy of the user application can be
easily scaled to the multi-node cluster. Finally, the NNUS
approach provides a flexible solution by freeing users from
specialized vendor-specific system hardware for connecting
non-CPU PEs in nodes.

3.2 Hardware
Figure 2 provides an overview of the Axel cluster. Our

first prototype contains 16 nodes. As shown in the fig-
ure, there are three different types of PEs in a single node:
an AMD Phenom Quad-Core CPU, an nVidia Tesla C1060
card [12], and a Xilinx Virtex-5 LX330 FPGA hosted on an
ADM-XRC-5T2 card [1]. Each node is a full scale server
in 4U size with local disk storage. All components in the

Axel cluster are commodity parts. Although only GPU and
FPGA are currently used as accelerators, it is possible to
include other forms of hardware accelerators in a similar
system architecture.

The intra-node communication between PEs are based on
PCIe system bus where the GPU and FPGA use separate
channels and thus can transfer data simultaneously without
blocking. The inter-node communication backbone is Giga-
bit Ethernet through the NIC on each node. The versatility
and flexibility of Gigabit Ethernet is at the expense of high
latency and non-deterministic communication. To address
this problem, a second inter-node network is added using
the four GTP interfaces in the FPGA platform.

Another characteristic of the Axel nodes is the large amount
of distributed memory associated with each PE. The band-
width between the PEs and their associated local memory
is much higher than the communication bandwidth between
PEs. Thus data partition and distribution are critical for
performance in Axel.

3.3 Software
Each node in Axel runs its own copy of Linux Operating

System. For an application, there is no single executable
image across the cluster. The application is partitioned into
specific computations on subset of data in the form of tasks
and built by a collection of tools. Each of these tasks is
wrapped into a self-contained executable image for the Op-
erating System. Multiple mechanisms are used to support
communications between these tasks based on their execu-
tion targets. Each node keeps a local copy of data as well
as these task images in disk storage for efficient loading in
runtime.

The tasks targeting CPU execution are built using the
standard GCC compiler (version 4.2.3). This software part
also includes some of the communication between tasks. The
communication between tasks across different nodes is based
on the OpenMPI framework through the Gigabit Ethernet.
The communication between tasks across different PEs in
the same node is based on the shared memory Inter Process
Communication (IPC) framework above the device driver
level.

The CUDA SDK 2.2 from nVidia provides a C-like pro-
gramming environment for building tasks targeting the Tesla
platform. The compiled executable accesses the Tesla card
through the CUDA driver. Xilinx ISE 10.1 tools are used for
FPGA development. The FPGA devices are configured and
controlled through the Alpha Data ADMXRC driver APIs.

To provide a fair and efficient workload distribution scheme
and to enable a deterministic benchmarking environment,

Image
Executable

FPGA

CPU Executable
Image

GPU

Task Wrapper Data
SHM IPC

SW driver

Runtime Resource Manager

HW

Task

Software SHM IPC
Data Task Wrapper

driver

Node X Node Y

MPIMSG IPC Control Application Master

Figure 3: Axel Software Architecture.

the Torque resource manager and the Maui scheduler are in-
stalled in the head node, axelgw. All nodes from axel01 to
axel16 have the Torque client activated after booting. User
can send their jobs to Torque from axelgw and the workload
will be automatically distributed to idle or specified nodes.

While the Torque/Maui combination is useful for CPU
based resource management, the GPU and FPGA have dif-
ferent attributes which are not captured by standard tools.
For example, unlike CPUs, both GPUs and FPGAs are not
time sharing processing elements as CPU, and the internal
states cannot be preserved during context switching.

We develop a resource management (RM) system to check
the condition of GPUs and FPGAs in the cluster. To make
this system work, each Axel program needs to allocate the
hardware resources needed by calling the runtime API. This
RM process communicates with the tasks running on the
same node using the message queue IPC framework. The
resources will be released by calling the free API explicitly
in the user application or by the resource manager check-
ing the existence of the process to which the resources are
allocated. Figure 3 shows the architecture of the system
software running on Axel. The head node collects informa-
tion from the RM in the cluster and prepares a script to
be submitted to the Torque job queue. In this way, special
resources such as GPUs and FPGAs are managed properly
and efficiently. The isolation between worker processes and
the control/communication process, and the introduction of
a wrapper layer, enable us to extend the system to include
different types of accelerators.

4. DEVELOPMENT FRAMEWORK
One main objective in this work is to improve the ac-

cessibility and productivity of application builders target-
ing the heterogeneous cluster. Hardware Abstraction Model
(HAM), a way of systematically characterising resources in
heterogeneous systems, has been developed for Axel users
to partition computations and estimate performance. Also
a development flow is described to specify the methodology
of porting and distributing applications for systems similar
to Axel.

4.1 Hardware Abstraction Model
The HAM captures the available resources in each PE in

three major parts: computation, local memory and commu-
nication. This description is stored as a hierarchical con-
figuration file which is distributed and saved locally in each
node. It is used to reflect the current status of the system
at runtime to help programmers plan better in early stage
of development and to enable estimation of possible perfor-
mance gain in different load distribution schemes.

Each PE in Axel has its own entry in the HAM file re-
gardless of the node it resides in. The major parameters in

the HAM description are summarized below.

Cluster {
Computing Node {
Node ID {}
Processing Element [1 .. PE_Count] {

Core [1 .. Core_Count] {
Integer Units { ... }
Single Precision FPU { ... }
Double Precision FPU { ... }
Bit Manipulation Units { ... }
Internal Memory { ... }
... }

Data Endpoint [1 .. DE_Count] {
Peer [1 .. Peer_Count] { PE : DE }
Latency { ... }
Bandwidth { ... }
Type { Shared Bus | Peer-to-Peer }
... }

Local Memory {
Size { ... }
Latency { ... }
Bandwidth { ... }
Channels { ... }
... }

} } }

In the HAM, the computation resources of a PE are mod-
eled as a collection of cores each of which has its own com-
putation capability. The resources inside a core are cate-
gorized into different functional blocks such as integer and
floating point units. Besides min/max availability count,
the normalized unit cost, in percentage format, of each kind
of block is also given. As the same function can be realised
by different kinds of blocks according to the user design in
the FPGA, this normalized cost ensures that the modeled
design will be mapped within the total available resources.

Unlike many other hardware and performance modeling
systems, the communication capability in Axel is bound to
the individual PE in the hierarchy structure instead of being
at parallel level of PE as channels. In our approach, data
are sent and received through data endpoints (DE) each as-
sociated with a list of PE:DE pairs indicating the connected
parts.

The HAM file facilitates porting applications to different
systems by providing a standard way of representing avail-
able resources. For example, the HAM information can be
used to estimate the resource utilization of an N -by-N ma-
trix multiplication. This process requires N3 multiplications
and (N − 1)3 additions. When targeting the C1060 GPU
platform, programmers may use the sub-matrix multiplica-
tion algorithm as in the CUDA SDK to load data to shared
memory before computation. From the Internal Memory

entry of the HAM file, there are 16KB of shared memory
per multiprocessor in the GPU. Since we need three buffers
for the two input and one output matrices, the maximum
number of threads that can work together on a sub-matrix
in the application is b

p
(16× 1024)/12c2 = 362 = 1296; we

divide the memory size by 12 since 3 buffers are used and 4
bytes are required for a single precision floating point value.

When targeting the FPGA, all distributed logic resources
in a FPGA device are considered as a single core. We esti-
mate the floating point capability of the FPGA device using
the resource consumption reported by Xilinx CoreGen tools.
The Xilinx Virtex-5 LX330T device is able to accommodate

reduce

FPGA

Data Subset

m
ap

m
ap

m
ap

m
ap

GPU

CPU Control

Node

reduce

FPGA

Data Subset

m
ap

m
ap

m
ap

m
ap

GPU

CPU Control

Node

point−to−point

dedicated network

reduce

FPGA

Data Subset

m
ap

m
ap

m
ap

m
ap

GPU

CPU Control

Node

Application

Gigabit Ethernet

(a) FPGA-based Reduce

Application

map

map

map

Set
Data

GPU

map

map

map

Node

Set
Data

FPGA

reduce

Control

CPU

map

map

map

Set
Data

GPU

map

map

map

Node

Set
Data

FPGA

reduce

Control

CPU

map

map

map

Set
Data

GPU

map

map

map

Node

Set
Data

FPGA

reduce

Control

CPU

Gigabit Ethernet

(b) CPU-based Reduce

Figure 4: Possible Map-Reduce schemes for Axel.

300 multipliers or 460 adders for single precision floating
point computation at 333MHz. We assume that both the
multipliers and adders use the LUT/FF resources in FPGA,
so we normalize their cost to 1/300 and 1/460 respectively.
Thus we estimate the FPGA resource utilization to be x
multipliers and y adders where (x/300) + (y/460) ≤ 1 and
x/y = N/(N − 1).

Special attributes which are not applicable to all PEs are
omitted in the HAM. For example, it does not include asym-
metric read/write bandwidth, interrupt and latency of float-
ing point units. We take the maximum generic attribute set
as the abstract hardware representation since this model is
applied to heterogeneous PEs with diverse capabilities and
features. For the Axel system, this granularity is sufficient
to provide relative performance estimation at an early stage
of application development. Also, adding a new PE type
requires changes in parameter values instead of HAM file
structure. Thus the runtime system will continue function-
ing without modification and recompilation.

4.2 Map-Reduce Framework
The Map-Reduce framework is commonly used in dis-

tributed computing platforms due to its scalability [15]. The
Map-Reduce approach accepts a list of key-value pairs and
processes the values in the Map function. Since the compu-
tation inside the Map remains the same for different data,
it is possible to partition the input data set and process the
smaller working sets in multiple instances of the Map func-
tion across different nodes in a cluster. The output of the
Map function is usually a new set of key-value pairs which
will be directed to the Reduce function for final result gen-
eration.

Given no dependency between the working data sets, the
Map function can be executed in parallel. Logically, the
Reduce function is applied to every intermediate key-value
pair. For better communication efficiency, the partially re-
duced results are generated in each node and collected for
further reduction. A library interface similar to the one
in [5] is used to facilitate the Map-Reduce framework in
Axel. The major improvement in this work is that we con-

sider several schemes for collaborative computation between
different types of accelerators, such as FPGAs and GPUs,
in heterogeneous computer clusters.

The effectiveness and scalability of the Map-Reduce frame-
work on homogeneous clusters are based on the spatial local-
ity of the input data set. In a heterogeneous environment,
temporal locality of the application can also be exploited for
Map-Reduce. Since we now have multiple PEs with diverse
computing abilities and connection topologies, it is possible
to assign different computation and communication tasks
to different PEs based on the computation/communication
patterns of these tasks. Figure 4 shows two diagrams of
possible workload distribution. Figure 4(a) is a general ap-
proach for applications which utilize the specialties of the
PEs. The high speed low latency GTP communication ports
in the FPGA accelerator are utilized for passing data for
Reduce in this configuration. In the current implementa-
tion, we use another Map-Reduce scheme, as shown in Fig-
ure 4(b), such that the GPU and FPGA work on the Map
part in parallel and the Reduce part is performed by the CPU
using the Gigabit Ethernet as communication channel.

In both approaches in Figure 4, spatial locality is cap-
tured in distributing data to parallel Map processes which
read from and write to their local data storages. Temporal
locality is captured in the FPGA-based Reduce processes as
the data stream from the CPU to the GPU and from the
GPU to the FPGA using separate channels.

4.3 Development Flow
A development flow has been introduced to utilize the

hardware accelerators in Axel. For example, to port an ap-
plication from a conventional CPU cluster to Axel under the
Map-Reduce framework, one should:

1. Partition the original data set into small subsets which
are processed in different nodes. The partition process
should maximize parallelism by minimizing data de-
pendency between data subsets. This can be achieved
by static analysis of the Data Flow Graph (DFG) of
the original application.

Localize

Kernel

Inter−PE

Partition

Performance

Estimation

Satisfied

IPC/MPI

Warper

FPGA kernel

GPU kernel

CPU kernel

kernels for

each PE

Assemble

Test

Debug

Application

DFG

(HAM file)

Sys Architecture

Inter−Node

Partition

N

Y

Original Single

Thread Design

Figure 5: Axel application development flow. Note
that the HAM file is independent of the specific ap-
plication.

2. Rewrite the application kernel in Map-Reduce frame-
work which operates on the local data subset.

3. Partition the Map-Reduce kernel into different tasks
targeting FPGA or GPU. This process can be achieved
by analyzing and clustering the operations in the ker-
nel source code and matching them to the attributes
of the targeted PE. Also, information from later steps
can be used to guide the process for improved results.

4. Extract the computation requirements of each parti-
tioned tasks and the communication requirements be-
tween them. Apply the HAM described in Section 4.1
to estimate the performance of current configuration.
If performance constraints are not met, go back to data
and/or task partition steps for fine tuning.

5. Wrap the partitioned tasks using IPC interface for
intra-node communication. Create a top level appli-
cation for data initialization and MPI communication.
Create the application configuration file for the Axel
runtime system which loads and manage the collection
of tasks in the application.

6. Program the tasks targeting GPU and FPGA using
appropriate languages and tools, such as CUDA for
GPU and VHDL for FPGA. Provide the actual imple-
mentation of the GPU and FPGA tasks by using the
CUDA compiler and ISE tools.

Figure 5 summarises this development flow of transform-
ing an original single threaded CPU application into sev-
eral executables running on heterogeneous PEs in multiple
nodes.

5. APPLICATIONS
To demonstrate the proposed development flow and scal-

ability of our heterogeneous cluster, the N-Body simulation
process [8] is implemented on Axel utilizing all three types
of PEs in the system.

5.1 N-body Simulation
The N-body system is a simulation process to model the

interaction between N particles under gravitational forces
in space. The operations in N-body force computation are
shown in Algorithm 1. Here p is the array storing the (x, y, z)
coordinate position, the (vx, vy, vz) velocity vector and the
mass of the particles m, and a is the array storing the accel-
eration vectors on the particle in a time step. The constant
EPS is a damping factor to prevent excessive force between
two very close particles. The computations in Algorithm 1
are repeated for each time step in the simulation process.

Algorithm 1 N-body force computation.

for i = 1 to N do
for j = 1 to N do
r.x = p[i].x− p[j].x
r.y = p[i].y − p[j].y
r.z = p[i].z − p[j].z
d = (r.x2 + r.y2 + r.z2 + EPS)−1.5

s = p[j].m ∗ d
a[i].x+ = r.x ∗ s
a[i].y+ = r.y ∗ s
a[i].z+ = r.z ∗ s

end for
end for
for k = 1 to N do
p[k].x = p[k].x+ p[k].vx
p[k].y = p[k].y + p[k].vy
p[k].z = p[k].z + p[k].vz
p[k].vx = p[k].vx+ a[k].x
p[k].vy = p[k].vy + a[k].y
p[k].vz = p[k].vz + a[k].z

end for

First, we implement a CPU based N-body simulation pro-
gram as reference design. We identify the hot spot in this
program to be the inner j-loop where the distances from one
particle to all the other particles are computed.

Following the development flow introduced in Section 4.3
and the knowledge of the configuration of each node, we
partition and distribute the i-loop evenly to all the nodes.
Then we modify the reference design to enable distribution
through the map-reduce API and MPI library. We also pre-
pare the shared memory ID for intra-node communication in
later steps. In the third step, we partition the inner j-loop for
FPGA and GPU. Here, the original computation code is re-
placed by the IPC communication code. In the fourth step,
we estimate the performance of computation on each PE by
extracting the operations and memory references in the ref-
erence design. Such information is then mapped to the hard-
ware resources and bandwidth in the hardware abstraction
model. We then change the partition size between FPGA
and GPU to balance the run time of the two kernels. In the
fifth step, we create the wrapper process for both GPU and
FPGA which includes the IPC communication, the device
initialization and host-device data movement. The complete
application will then be ready for testing and debugging on
a multi-node heterogeneous cluster.

5.2 N-body Simulation in Axel Framework
The i-loop in Algorithm 1 becomes the Map part and the

k-loop which iterates through all the resulting acceleration
vectors from the Map function becomes the Reduce part. To

minimize communication overhead, we reserve the CPU for
the Reduce function and distribute the Map function to both
FPGA and GPU in each node as shown in Figure 4(b).

Following the approach described in Section 4.2, parti-
tioning the i-loop into the Map functions exploits the spatial
locality in data parallelism. Although CPU is used for the
Reduce process, we can still exploit temporal locality in the
deeply pipelined FPGA implementation. Data flow through
a sequence of operators along the data path and are stored
in each pipeline stage.

All data including input, output and internal computation
are in 32-bit IEEE-754 single precision format. To compute
the acceleration for a particle, all position and mass infor-
mation must be read. Thus 16 bytes (4 bytes × 4) of data
are read for each iteration of the inner loop in the above al-
gorithm. In the inner loop, 17 floating point operations are
performed including 3 subtractions, 3 additions, 6 multipli-
cations, 1 square root, 1 reciprocal and 3 accumulations. So
the computation to data ratio in Floating point Operation
Per Byte (flopb) is:

Rcd = 17/16 = 1.0625flopb (1)

Both inner and outer loop need to iterate over all parti-
cles. Thus there are in total N × (N − 1) × 17 operations
in each simulation step. Applying the HAM method to this
situation, the C1060 GPU platform with 480 single precision
floating point ADD and MULT units needs:

Tcg = N × (N − 1)× 17/480/(1296MHz) (2)

to compute one simulation step. Since the intermediate data
can be stored in the stream processors’ register file and the
Pj data is shared by all threads in the GPU, overhead of
memory read/write is ignored. For each particle, we send 5
single precision floating point values to the GPU and receive
3 floating point values from it. So the data communication
time for the GPU design is:

Ttg = N × (5 + 3)× 32bit/(8Gbps). (3)

The total time for the GPU to complete one time step of
N-body simulation is Tcg +Ttg. When targeting FPGAs, we
consider adders and multipliers as different resources instead
of multi-function ALU as in the GPU design. The time for
FPGA computation is:

Tcf = N × (N − 1)×max(8/x, 9/y)/(333MHz) (4)

where x and y are the numbers of multipliers and adders in
the FPGA, (x/300) + (y/460) ≤ 1 and x/y = 8/9. Here we
treat the power function as multiplication as in the GPU
case. So the data transmission time between CPU and
FPGA is:

Ttf = N×(5×32bit/(1.36Gbps)+3×32bit/(1.84Gbps)). (5)

The total estimated time for FPGA design is Tcf + Ttf .
The above calculations provide a theoretical upper bound
of the performance of each type of accelerator. Also, they
assume only the fine grained logic is used in the FPGA im-
plementation. For implementations involving other FPGA
resources such as hardwired multiplier blocks, more complex
models will be required.

6. RESULTS
The experimental results of the N-body simulation are

presented in this section. We implement and evaluate the de-
signs under various configuration of hardware platforms in-
cluding standalone accelerator, heterogeneous combination
of accelerators and multi-node cluster.

Previous work [5] focuses on providing a single source mul-
tiple backend automation and adopts HyperStream library
for FPGA implementation. This simplifies the design entry
process but results in low performance in accelerator ker-
nels. In contrast, we emphasize the performance of the final
designs on the Axel system, and the scalability of applica-
tions across the network. To achieve this, we isolate the
accelerator kernel coding process and use the native tools
for targeting PE such as VHDL for FPGA devices.

6.1 Input and Output
The original input source of this example is the Dubinksi

1995 data set from the N-body Data Archive web site. There
are 81920 particles in the data set. To simplify and speedup
benchmark programs, the ASCII data file is reformatted in
to binary format. The binary data file contains a sequence of
32-bit floating point numbers following the appearance order
of the original Dubinski data file. The simulation data file for
the FPGA implementation contains hexadecimal numbers in
ASCII format.

The output file has the same format as the input file which
contains the updated status of particles after the simulation.

6.2 Single thread CPU Implementation
The reference implementation is a single thread C pro-

gram targeting Intel x86 architecture. It has been compiled
using GCC with the -O3 -mfpmath=sse optimization flags
and tested on Linux. The reference implementation mea-
sures and displays the performance information using the
gettimeofday function. The reference design reports Tcomp =
99.3s and Ttotal = 99.5s for the simulation of 81920 particles
in a single time step. The compute time, Tcomp, is measured
after all required data are ready for the PE (e.g. the CPU
in this case) in the main memory and before the results are
written back to file system. The total time, Ttotal, includes
the file I/O time and device setup time in the cases of GPU
and FPGA.

6.3 Multi-threaded CPU Implementation
OpenMP is used as the framework to parallelize the com-

putation for a multi-core system. The parallel FOR #pragma

directive is used to parallelize the main loop for comput-
ing the acceleration of all particles in the current time step.
The particle data, marked as shared variables, are parti-
tioned evenly according to the loop index. There is no data
dependency between the acceleration computations of differ-
ent particles. The results are written to the corresponding
location in the acceleration array, which are also marked as
shared. No write conflicts exist in this stage.

The update of position by current velocity and the update
of velocity by computed acceleration are performed outside
the OpenMP parallel construct. As in the single thread
version, the program is compiled with the -O3 and SSE flags.

In the Axel cluster, we run the OpenMP version of N-body
simulation on a dual-CPU platform with 4 cores on each
CPU. The program is instructed to run in 4 parallel threads
such that the side effects of system loading are minimized.

The performance is measured in the same way as the single
thread reference design and it reports Tcomp = 29.1s and
Ttotal = 29.3s.

6.4 GPU Implementation
An implementation targeting many-core GPUs is created

for the N-body simulation. The computation of acceleration
of all particles in the current time step is off loaded to the
GPU while the CPU updates the position and velocity.

Information of the particles needed for acceleration com-
putation is copied to GPU memory at the beginning of each
simulation time step. These include the mass and position
in the format of (m, x, y, z). The acceleration vectors (ax,
ay, az) are read back from the GPU memory after the kernel
is finished.

In the kernel, we dedicate one thread per particle. Inside
the thread, it loops through all other particles to generate
the acceleration value and writes it to the GPU memory.
The computation in the loop is the same as the source code
of the CPU reference design. No special optimization is
applied to the kernel and the data are stored in GPU main
memory with the same layout as in CPU main memory.

The performance of this design is not as good as the highly
optimized version of N-body simulation in the CUDA SDK.
Here, we want to provide a fair comparison of the processing
capability by restricting the same type and amount of com-
putations targeting different processors. So the measured
results are Tcomp = 9.26s and Ttotal = 9.53s.

For the same set of input vectors, the results of the GPU
program are different from those of the CPU counterpart.
This is due to the implementation deviations of floating
point operators in each platform.

6.5 FPGA Implementation
This implementation requires that there are four indepen-

dent memory banks connected to the FPGA each with 32-bit
width data bus. The host program will put the values of m,
x, y and z in separate memory banks so that they can be
loaded to the FPGA in the same memory access cycle. The
host program also sends auxiliary information to the FPGA
core including the number of particles in memory N, the
starting and ending index of i in the outer loop.

A deeply pipelined data path is created for the acceler-
ation computation. All floating point operations are per-
formed by macros generated from Xilinx Core Generator.
The latency of the pipeline is 132 clock cycles and it can
operate up to 400MHz according to the core specification.

Our FPGA implementation works as follows. First, the
(x, y, z) values of Pi are read from memory and stored in
internal registers. Then the <m, (x, y, z)> values of all
particles are read as the Pj inputs. The Pj data are fed to
the pipeline one per clock cycle when the data from memory
read operation are valid. After all Pj are read, the internally
stored values in the pipeline are drained. Extra clock cycles
(56 in the example) are needed to perform the final reduction
and output the internal values of the accumulator before
starting the next iteration in the outer loop for a new Pi.

Further optimizations can be done by overlapping the
draining and reduction phase of the current iteration and
the feeding phase of the next iteration. However, this re-
quires extra control logic resources and affects achievable
maximum working frequency. We consider the current time
overhead (192 clock cycles) is negligible since the number

Table 1: FPGA utilization: single core at 333MHz.
Resources Utilization %

Registers 32,483 15%
LUTs 27,674 13%

DSP48Es 18 9%

of particles, N, is sufficiently large. This time overhead is
less than 0.1% when 81920 particles are processed as in the
example.

The final acceleration vectors (ax, ay, az) are stored in
a FIFO where the host program can read through register
interface of the FPGA (uint32 t fpgaReg[USER REG]). The
index of current Pi is also output such that the host program
knows how many data should be read by comparing with
its local index. The host program will update the position
and velocity vectors after all acceleration vectors are read.
A polling scheme with 3µs interval is used for minimizing
both host CPU utilization and FPGA idle time by batch
processing the FIFO data. The host-FPGA communication
time overlaps with the FPGA computation time thus no
further time overhead is introduced.

The theoretical performance of the N-body core without
I/O constraints at 400MHz is:

Tt = (81920 + 192) ∗ 81920 ∗ 2.5ns = 16.82s. (6)

Note that the performance estimation from Equation 4
is not applicable since the above implementation contains
multiplier blocks.

For 333MHz DDRII-SDRAM in the target platform,
171MBps DMA write speed and 230MBps DMA read speed,
the expected performance of the FPGA implementation is:

Te = (81920 + 192) ∗ 81920 ∗ 3ns+

2293760bytes/171MBps

= 20.18 + 0.13 = 20.21s. (7)

The measured performance is Tcomp = 46.6s and Ttotal =
48.9s. The resource utilization of FPGA is listed in Table 1.

The difference between expected and measured perfor-
mance is due to the memory read overhead. We store all
particle data in external DDR2 memory with an effective
4× 32-bit width interface. In estimating the expected perfor-
mance, we assume that all data will be ready when needed.
This is an uninterrupted continuous read operation for the
external DDR2 memory with four 32-bit words per clock
cycle. Due to the nature of the DDR2 memory and the im-
plementation of the memory controller (command buffer),
this assumption is not valid in real world operation.

For the same set of input vectors, the results of the FPGA
program are different from those of the CPU. Two factors
contribute to this deviation and both are related to the
pipelined accumulator. First, the sequential CPU program
accumulates the acceleration vectors once they are computed
from Pi and Pj . In the FPGA design, these vectors are
first accumulated into 12 different partial sums matching the
pipeline stages in the floating point adder. These 12 partial
sums are then added together in the final stage. The differ-
ence between accumulating order introduces the differences
in final results. This factor is confirmed and analyzed by a

Table 2: FPGA utilization: 10 cores at 266.67MHz.

Resources Utilization %

Registers 117,393 56%
LUTs 92,219 44%

DSP48Es 180 93%

special CPU process which recreates the 12 partial sums as
in the FPGA version. The second factor is the stall stage
created by the external memory interface. During the clock
cycles when the data from external DDR2 memory are not
yet ready, the N-Body pipeline should be stalled. Using a
single shared enable signal to stall the pipeline is not real-
istic since the fanout will grow over 10,0000 and the timing
constraints will not be met. A delay pipe and input selec-
tion of the accumulators are used instead to avoid a global
enable signal. This scheme changes the summing order of
the acceleration vectors when invalid data are skipped in the
accumulator input. Thus the final result will be different as
previously discussed. This factor is non-deterministically af-
fected by the state of the external DDR2 memory chip. It
is analyzed by inserting invalid stages in RTL simulation.

Since we use only 3% of logic resources and 9% of the DSP
blocks in the target FPGA for the pipelined data path, we
can easily duplicate 10 copies of the pipelined data path in
the FPGA core. This effectively unrolls the outer loop by a
factor of 10. With several negligible extra memory read op-
erations for the additional Pi values, the speed up with using
multiple cores is linear as all pipelined cores share the same
Pj values read from memory. Overheads also include the
extra control logic for sequencing the Pi access and longer
traces for connecting memory ports to multiple pipelined
data path. Thus the maximum working frequency of the
multi-core design will be lower than that of the single core
counterpart.

At 266.67MHz, the measured performance of this 10-core
FPGA design is Tcomp = 5.62s and Ttotal = 8.43s. This is
17.7 times faster than the single thread CPU implementa-
tion. Table 2 shows the FPGA resource utilization.

The FPGA and GPU designs in previous work [5] are
estimated to take 216 seconds and 18 seconds respectively
to complete a simulation step. They are around 25 times
and 2 times slower than our 10-core FPGA design.

6.6 Collaborative Execution: One Node
To further improve the speed of N-body simulation, we

implement a heterogeneous solution in which both FPGA
and GPU work together to compute the acceleration vec-
tors in Algorithm 1. The host programs of both GPU and
FPGA are modified to accept specific range parameters of
the portion of particles need to be processed. The two pro-
grams use a shared memory model to read the position and
velocity vectors and write the acceleration vectors back in
the corresponding offset in the array. A master thread will
write the updated results to the output file after both FPGA
and GPU have finished their assigned particles.

The FPGA program and the GPU program may not com-
plete at the same time. Thus the master thread will have
to wait for the slowest PE to finish. It is easy to configure
the master thread to start working on the completed par-
ticles once the PE has finished their work. A better and

 1

 2

 4

 8

 16

 32

 64

 128

 0 2 4 6 8 10 12 14 16

ru
n

tim
e

(s
)

number of nodes

CPU
CPU+GPU

CPU+FPGA
CPU+GPU+FPGA

Figure 6: Performance of multi-node collaborative
execution of N-body simulation.

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10 12 14 16

ru
n

tim
e

(s
)

number of nodes

CPU+GPU+FPGA with FPGA setup
CPU+GPU+FPGA without FPGA setup

Figure 7: Performance of multi-node collaborative
execution of N-body simulation.

simpler solution is to balance the work load of each PE such
that they can finish processing the assigned particles at the
same time. By combining the HAM in Section 4.1 and the
measured results in the standalone FPGA/GPU implemen-
tations, we can assign 2/3 of the workload to FPGA and
the rest 1/3 to GPU. This load balanced heterogeneous im-
plementation can process the 81920 particles in less than 4
seconds compute time.

The overhead in this solution includes the synchronization
between different processes since both the FPGA and GPU
programs need to send messages reflecting their status to
the master program.

6.7 Collaborative Execution: Multi-Node
The final scheme of speeding up the N-body simulation

is to use all the resources available across the network. In
this cluster implementation, the heterogeneous scheme in
Section 6.6 is reused. The capability of communication to
other nodes through MPI is added. The current communi-
cation channel is Gigabit Ethernet.

Each instance of the program runs on a single node exclu-
sively. The master program reads the data and identifies the
range of particles need to be processed in this node according
to the MPI Rank ID and group Size. Since the configuration
of each node is the same in the current system, the workload
is distributed to the compute nodes evenly. After the local

range of particles have been processed by both FPGA and
GPU, the master thread calls the MPI_Alltoall function to
distribute the local results to and receive results from all
other nodes. In this example, only the acceleration vectors
need to be distributed. The final results are written to a
file by the program with MPI rank 0. Figure 6 shows the
performance of the heterogeneous version and the CPU ver-
sions with just FPGAs or GPUs running on different number
of nodes. It can be seen that for one node, the collabora-
tive implementation is 22.7 times faster than the CPU only
version; for 16 nodes, the improvement is 4.4 times.

For this result, we find that the major overhead in the het-
erogeneous cluster implementation is the FPGA setup time
which takes around 2 seconds. This includes the time to
download configuration files, initialising and locking multi-
ple clocks and configuring the DDR memory interface. To
have a better understanding of the actual performance scal-
ing with number of nodes, we modify the experiment to
skip the FPGA initialization process, assuming that they
are preloaded with correct configuration in advance; the re-
sulting performance is shown in Figure 7.

In general, it is impossible to preload the FPGA in ad-
vance since the nodes are dynamically allocated according
to the current cluster status. This overhead can become in-
significant if multiple time steps are considered in the sim-
ulation. In both figures, the performance does not linearly
scale with the number of nodes used. This is due to the com-
munication overhead between nodes. The Alltoall function
call has N2 bandwidth requirements. In other applications
without the need for the all-to-all communication pattern,
the performance should scale more linearly.

7. CONCLUSION
Future cluster technology and cloud computing require

high performance at an affordable cost. We have described
an approach which makes use of multiple types of off-the-
shelf hardware accelerators in a scalable and flexible system.
The combination of such systems with an appropriate pro-
gramming model such as Map-Reduce results in a promising
platform for cost-effective high-performance computing.

In this work, we perform experiments on our Axel clus-
ter utilizing various kinds of processing elements including
FPGA, GPU and CPU. The proposed framework has been
shown to map the N-body simulation process to the underly-
ing hardware efficiently. From the results of the experiments,
we achieve significant speed up using a heterogeneous com-
bination of PEs across the cluster network for a practical
simulation process.

The 10-core FPGA design is the fastest implementation
among the three standalone designs. It also achieves better
energy efficiency than GPU and CPU. The largest drawback
of FPGA design is the difficulty of implementation. In con-
trast to the seconds of compile time for CUDA and the less
than 1 day development time of the GPU program, the 5
hours place and route time and over a month development
time of the FPGA seems unattractive.

Current and future work involves finding ways to speed
up the FPGA design and implementation time, possibly by
parallelizing the implementation process so that a heteroge-
neous cluster can be used in optimising its own executables.
Techniques for automating performance estimation and code
generation for multiple accelerators for various applications
will also be investigated.

8. ACKNOWLEDGMENTS
The support of Imperial College London Research Ex-

cellence Award, UK Engineering and Physical Sciences Re-
search Council, Alpha Data, nVidia and Xilinx is gratefully
acknowledged.

9. REFERENCES
[1] Alpha-Data Parallel System Ltd. ADM-XRC-5T2

User Manual, 2008.

[2] Chen Chang et al. BEE2: a high-end reconfigurable
computing system. Design & Test of Computers,
IEEE, 22(2):114–125, March-April 2005.

[3] T. Endo and S. Matsuoka. Massive supercomputing
coping with heterogeneity of modern accelerators. In
IEEE International Symposium on Parallel and
Distributed Processing, IPDPS’08, pages 1–10, 2008.

[4] M. Flynn, R. Dimond, O. Mencer, and O. Pell.
Finding speedup in parallel processors. In Proc. Int.
Symp. on Parallel and Distributed Computing
ISPDC’08, pages 3–7, 2008.

[5] J.H.C. Yeung et al. Map-reduce as a programming
model for custom computing machines. In 16th
International Symposium on Field-Programmable
Custom Computing Machines, 2008. FCCM’08, pages
149–159, April 2008.

[6] K. Asanovic et al. The landscape of parallel
computing research: A view from Berkeley. Technical
Report UCB/EECS-2006-183, EECS Department,
University of California, Berkeley, Dec. 2006.

[7] M. Showerman et al. QP: A heterogeneous
multi-acceleator cluster. In 10th LCI International
Conference on High-Performance Clustered
Computing, Boulder, Colorado, March 2009.

[8] J. Makino. The GRAPE project. Computing in
Science & Engineering, 8(1):30–40, Jan.-Feb. 2006.

[9] Message Passing Interface Forum. MPI: A Message
Passing Interface Standard Version 2.1, 2008.

[10] Nallatech. DIMEtalk V3.0 Application Development
Environment, 2009.

[11] nVidia. nVidia CUDA Programming Guide v2.1, 2008.

[12] nVidia. Tesla C1060 Computing Processor Board, Sep.
2008.

[13] R. Baxter et al. Maxwell - a 64 FPGA supercomputer.
In AHS ’07: Proceedings of the Second NASA/ESA
Conference on Adaptive Hardware and Systems, pages
287–294, 2007.

[14] R. Sass et al. Reconfigurable computing cluster (RCC)
project: Investigating the feasibility of FPGA-based
petascale computing. In 15th International Symposium
on Field-Programmable Custom Computing Machines,
2007. FCCM’07, pages 127–140, April 2007.

[15] L. Ralf. Google’s MapReduce programming model –
revisited. Science of Computer Programming,
68(3):208–237, 2007.

[16] SRC Computers, LLC. SRC-7 MAPstation, 2009.

[17] D. Strenski. The cray XD1 computer and its
reconfigurable architecture. Technical report, Cray
Inc., July 2005.

[18] T. El-Ghazawi et al. The promise of high-performance
reconfigurable computing. In Computer, pages 69–76,
February 2008.

