
Design Validation by Symbolic Simulation and

Equivalence Checking: A Case Study in Memory
Optimization for Image Manipulation

Kong Woei Susanto, Tim Todman, Jose Gabriel Coutinho, and Wayne Luk

Department of Computing, Imperial College London,
180 Queen’s Gate, London SW7 2BZ, United Kingdom

{kws,tjt97,jgfc,wl}@imperial.ac.uk

Abstract. Design optimization exploration is a key element in finding
an optimal resource utilization. The exploration process applies opti-
mizations iteratively; after applying each optimization, the result has to
be validated. The research challenge for formal verification is to develop
an efficient design validation flow and increase the quality of the valida-
tion. In this paper, we propose an automated validation flow to check
the functional equivalence of the source design and its optimized version.
This approach is based on a symbolic simulation technique to obtain the
design properties and automatically check them using an equivalence
checker. The novelty of this approach includes the use of model simpli-
fication techniques, such as if-conversion and loop-conversion, and state
encoding to ease validation analysis.

1 Introduction

The rapid advancement of digital imaging technology has led to the availability of
high resolution digital images. A wave of new applications has emerged in many
fields, such as in photography, entertainment, medicine, and surveying. A RAW
image taken with a Canon EOS-1Ds Mk-III [2] contains more than 14M (5616 by
3744) pixels, each of 14 bit color depth. Manipulating such high resolution data
uses a lot of resources and time. One of the challenges is to develop a system that
can be used to optimize designs so that they can utilize limited resources in the
most efficient ways. We address this first challenge by developing a framework
where a set of rules is used to optimize the designs [21,23]. Using the design
framework, designers can explore various optimizations by mixing and matching
the rules to find the combination that best uses the available resources. A new
challenge emerges: how we ensure that the optimized designs will perform the
intended tasks.

The verification of design optimization tools for large-scale designs is still a
research challenge. As a consequence, designers for such designs will have to re-
validate the target design to ensure that it still preserves the same functional
behavior as its source; this validation process will have to be done every time the
designers optimize the source. It is performed iteratively during the optimization

M. Nielsen et al. (Eds.): SOFSEM 2009, LNCS 5404, pp. 509–520, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

510 K.W. Susanto et al.

exploration stage to find the optimum balance. The continuous need to revalidate
the target design inspires us to automate the design validation processes.

Validating design optimization equivalence is an undecidable problem [13].
It is a difficult proposition to have a complete formal equivalence checker for
all application domains. However, a formal verification framework for a specific
application domain can be defined. Specific information about the target domain
can be exploited and the problem domain can be limited. One approach is not to
verify the full semantic correctness, but only to verify the functional equivalence
of the source and target designs.

In this paper we present our approach for design optimization validation which
is based on a combination of symbolic simulation and equivalence checking tech-
niques. The key features are the use of a variable table for each model and model
simplification techniques such as if-conversion and loop-conversion. The system
automatically generates formal models for each pair of source and target designs.
The models are analyzed using a symbolic simulation technique. A decision pro-
cedure is used to validate the functional equivalence of the symbolic simulation
results between the source and target designs. We demonstrate our validation
approach with case studies in the optimization exploration of an image ma-
nipulation algorithm. In comparison to validation by simulation, validation by
symbolic simulation has a higher degree of assurance. Validation based on sym-
bolic constants eliminates the need of test-cases. As the result, the validation
coverage is higher than the numerical simulation-based methods.

The rest of the paper is organized as follows. Section 2 discusses related work.
The design validation methodology is discussed in section 3. We present the for-
mal modeling approach in section 4, followed by a discussion of our experiments
and case studies in section 5. Finally in section 6, we present the conclusion and
the future work of this paper.

2 Related Work

Although industrial formal verification tools have a relatively short history [8,9],
program transformation has been an active research area for more than four
decades [4]. There are two common approaches used in this verification do-
main. The first approach is to verify the correctness of the transformation
compiler [7,10,15,16,20]. This approach guarantees that the compiler will al-
ways produce a correct transformation. However, most formal verification of the
compiler only targets at algorithmic level, not the actual compiler code itself.
Hence it cannot guarantee that its implementation will be error free. We have
learnt from our previous work [20], that this approach is not suitable for our
current dynamic setting. The second approach is to check that the target de-
sign is semantically equivalent to the source [3,11,13,14,18,25]. The drawback
of this approach is that it will add substantial run time to the optimization.
Singh and Lillieroth [18] demonstrated an approach to automatically validat-
ing the functional equivalence of a design synthesis result with its source using
Prover tools [22]. They minimize the run time validation penalty by targeting a

Design Validation by Symbolic Simulation and Equivalence Checking 511

specific application domain. We adopt a similar approach in this paper and focus
our work on loop optimizations. The validation provides the assurance that the
functional behavior of an efficient but possibly non-obvious design is the same
as the one which is obvious (and already proven correct) but possibly inefficient.

The work closest to ours is by Saito et al. [17] and by Siegel et al. [19]. Both use
a combination of symbolic simulation techniques to analyze the system and an
equivalence checker either by a decision procedure or a model checker. Saito et.
al. validate the equivalence of two C descriptions by identifying their cut points of
textual differences and selecting the functions which have the textual differences.
The cut points localize the scope of the analysis for the validation. Using this
approach, they are able to validate two large C descriptions. One key element to
the success of their approach is that their target C descriptions are close. Siegel
et.al. validate the equivalence of parallel C code with respect to its sequential
one. The approach involves an expression table which is constructed during the
sequential evaluation. The uniqueness of this approach is that because of the
way the transformation is captured, any resulting expressions from simulating
the parallel code already existed in the table.

Similar to Saito and Siegel, our approach is also based on a combination
of symbolic simulation and equivalence checker. Our application domains differ
from the ones explored by Saito and Seigel. In our work, the source and target
codes only have the same functional behavior but the codes are not close or
similar as in Saito’s. The cut point for our codes will be the entire code. Our
system covers more language features, such as arrays and loops, than Saito’s
work. The regularity expected in Siegel’s approach does not exist in ours. Al-
most all our optimizations introduced new variables. The internal operations
of the optimized code which depend on these new variables may not have the
consistency expected by Siegel’s approach.

3 Methodology

The correctness of design optimization depends on the optimized design having
behavior equivalent to the original source. Our approach is to assure the correct
functional behavior of the system which is investigated by equivalence checking
in conjunction with the symbolic simulation technique. We assume that the
source design has been verified. The optimization validation assures that the
optimization process does not change the functional behavior of the optimized
design, hence it maintains the correct behaviour of the source.

The core of our system is a library of functions for automating translations
and evaluating symbolic expressions. Two translation libraries are implemented.
The first one contains functions to translate C code into a formal model. The
second one contains functions to translate the symbolic simulation results into
properties for the equivalence checker. Fig. 1 shows the validation scheme.

We use the ACL2 theorem prover [12] to implement the symbolic simula-
tion environment. ACL2 is a theorem proving system and a programming en-
vironment. The logic of ACL2 is based on quantifier-free First Order Logic. In

512 K.W. Susanto et al.

Source
C code

Target
C code

Equivalent
Counter Example
Not Equivalent +

Optimization Optimizer

Macro

Source
 state

Source
 ACL2

Target
 ACL2

Target
 state

INPUT

Simulator

OUTPUT OUTPUT
 Checker

Equivalence

Validation

Fig. 1. The Optimization Validation Scheme

a programming environment, functions and formal models can be executed or
simulated. This makes ACL2 a unique environment to perform both symbolic
simulation and theorem proving. In this paper, we present our work on validation
by symbolic simulation.

We define LISP macros to automate the formalization of the model from C
to ACL2 and the validation process [1]. The validation method is as follows. A
source design is optimized and transformed by the optimizer algorithms. The
result is an optimized design described in the same language as the source. LISP
macros take these two designs and generate the equivalent formal models. In
addition, a state environment is generated for each of the designs. The state
environments are initialized with a common set of input variables. The models
were symbolically simulated with their respective state environment.

The simulation results from both models are then paired and translated into
properties and checked using an equivalence checker. We use Yices [5] as the
equivalence checker to validate the functional equivalence between the source
and target designs. When the equivalence checker fails to validate the properties,
counter examples are generated for debugging.

4 Formal Models and Validation

4.1 Formal Models

C Intermediate Language
We use an intermediate language which is a C abstract syntax tree (AST) to
describe the C model. The goal of using these form of C code is to simplify the
analysis of the code. Most of the conversions are converting the argument into

Design Validation by Symbolic Simulation and Equivalence Checking 513

TYPE ::= int
IO ::= in | out | inout
CONSTANT ::= number
VAR ::= name [:: array-size]
VAR-DECL ::= TYPE :: VAR [:: IO]
ARITH-OP ::= + | - | * | / | < | > | <> | % | not | or | and
SUB-STMT’ ::= VAR

| CONSTANT
| ARITH-OP :: SUB-STMT’ :: SUB-STMT’

FOR-CONDITION ::= name :: SUB-STMT’ :: SUB-STMT’ :: number
SUB-STMT ::= SUB-STMT’

| if :: SUB-STMT :: SUB-STMT [:: SUB-STMT]
| == :: SUB-STMT :: SUB-STMT

STATEMENT ::= = :: VAR :: SUB-STMT
| for :: FOR-CONDITION :: STATEMENTs
| if :: SUB-STMT :: STATEMENTs [:: STATEMENTs]
| par :: STATEMENTs

PROGRAM ::= VAR-DECLs
STATEMENTs

Fig. 2. A subset of C-like language

left operators (prefix) arguments and adding the parenthesis. For example, a C
code assignment a = b; in AST is defined as (= (a) (b)).

We have implemented a subset of C like grammar with LISP macros. The
macro expansions will generate the formal model of the design and its operating
environment in ACL2 logic. The syntax of C subset used in the analysis is
presented in Fig. 2.

Our application domain predominantly contains expensive arithmetic calcu-
lations targeted for Field Programmable Gate Array (FPGA) implementation.
This is reflected in the choice of the subset of the language. Similar to C, all oper-
ations are based on integer data-type. Only this data-type is implemented in the
system. Our work is focused on validating the optimization of core algorithms.
The AST structure flattens the algorithm. As a result, we do not need to imple-
ment function definitions. We also do not allow pointers data type throughout
the designs. The equivalence checker requires additional knowledge about the
system: users must provide informations about inputs and outputs. The inputs
are used as the common initialization value for the designs; the outputs are used
by the checker as the validation targets.

The image summation (Isum) code shown in Fig. 3 is used to illustrate the
stages of LISP macro expansions in generating its corresponding formal model.
The source design for the macro functions is shown in Fig. 4.

State Encoding
A state environment contains all variables used in the design. These variables
consist of those defined by the variable declaration statements and the loop-
variables of the loop statements. The state environment is a linear list of

514 K.W. Susanto et al.

sum = 0;
for (jc = 0; jc < hc; jc++)

{for (ic = 0; ic < wc; ic++)
{sum = 0;
for (j1 = 0; j1 < h1; j1++)

{for (i1 = 0; i1 < w1; i1++)
sum = sum + imageI[(jc + j1)][ic + i1];}

imageO[jc][ic] = sum;}}

Fig. 3. Image summation (Isum) algorithm in C-code

(= (sum) 0)
(FOR ((= jc 0) (< jc (hc)) (1))

((FOR ((= ic 0) (< ic (wc)) (1))
((= (sum) 0)
(FOR ((= j1 0) (< j1 (h1)) (1))

((FOR ((= i1 0) (< i1 (w1)) (1))
((= (sum)

(+ (sum)
(imageI (+ (jc) (j1)) (+ (ic) (i1)))))))))

(= (imageO (jc) (ic)) (sum)))))))

Fig. 4. Image Summation (Isum) algorithm in ACL2-code

variables. Macros expand array variables and generate a new variable based on
the variable name and its index. The state environment for Isum is as follows:

(list Isum.imageI.0.0 ... Isum.imageI.(hc + h1 - 2).(wc + w1 - 2)
Isum.imageO.0.0 ... Isum.imageO.(hc + h1 - 2).(wc + w1 - 2)
Isum.sum Isum.hc Isum.wc Isum.jc Isum.ic Isum.j1 Isum.h1)

The state contains two array variables (imageI and imageO) and seven integer
variables. The arrays have two integer indices which are separated by a dot (.).

The state is a local object to the design. A name from a different design code
refers to a different object. Along with its state environment, accessor functions
are also generated for each design. For example, a design named Isum will have
Isum-put and Isum-get as the function to update a specific state element and to
read a specific element of the state. In every validation process, two sets of these
functions are generated: one set for the source design, the other for the target
design.

Statement Modelling
A design is represented by a PROGRAM. It is interpreted as a function over
the state environment. Similarly, each STATEMENT of a PROGRAM is a func-
tion over the state environment. We only allow four type of statements: variable
assignment, loop statement, conditional statement, and parallel computation.

Design Validation by Symbolic Simulation and Equivalence Checking 515

The modelling algorithm contains two main features. First, all loop statements
are preprocessed. The body of a loop statement is split as a separate function.
The loop itself is replaced as a function call to the new function. Second, all
top level if statements are normalized using if-conversion. With this normaliza-
tion, we transform predicated evaluation into non-branching/linear evaluation.
The model for variable assignments, conditional statements, and parallel com-
putations are very similar. Every variable operand is an accessor of the state
environment. The result is either used for further computations or updated the
state environment. In a parallel computation, every statement within the same
parallel block uses the same state environment. In this section, variable assign-
ments and loop statements will be elaborated.

A variable assignment updates the content of its current state value with a
new value. The first assignment statement (= (sum) 0) is the assignment of
variable sum with a constant number 0. The macro generated an ACL2 code
for the statement with the accessor function Isum-put. The result is (Isum-put
0 (Isum.n) st-1)). This ACL2 statement has the meaning that it updates the
value of variable Isum.sum of state st-1 with a constant value of 0.

After the state encoding phase, macros analyze the program for any loop
statement. Consider the most inner loop of the Isum code.

for (i1 = 0; i1 < w1; i1++)
sum = sum + imageI[(jc + j1)][ic + i1];

This LISP macro assigns the loop statement as Isum.6. The index 6 denotes the
position of the loop within the algorithm. For each loop statement two additional
functions are generated to represent loop iterations and its body statements. The
first function is the loop’s iteration control Isum.6-loop-it.

(defun Isum.6-loop-it (st loop-list)
(if (consp loop-list)

(Isum.6-loop-it (Isum.6-loop-fn st (car loop-list)) (cdr loop-list))
st))

The Isum.6-loop-it function has two arguments st and loop-list. The first ar-
gument st is the state that will be updated and the second argument is the
loop sequence. The second function is for the statements in the loop’s body
Isum.6-loop-fn.

(defun Isum.6-loop-fn (state-1 loop-val)
(let ((state-2 (Isum-put loop-val (Isum.i1) state-1)))

(Isum-put (’+ (Isum-get ‘(Isum.sum) state-2)
(Isum-get (Isum.imageI

(’+ (Isum-get (Isum.jc) state-2)
(Isum-get (Isum.j1) state-2))

(’+ (Isum-get (Isum.ic) state-2)
(Isum-get (Isum.i1) state-2)))

state-2))
(Isum.sum)
state-2)))

516 K.W. Susanto et al.

The Isum.6-loop-fn function consists of micro operations of the body. It involves
updating the loop variable, getting the value of array argument from the state
table, using them to obtain the content of Isum.imageI, adding it with the con-
tent of Isum.sum, and storing back the result to the location of Isum.sum in the
state table.

4.2 Validation

The validation flow in our proposed approach consists of two stages. In the first
stage, each of the models is evaluated using symbolic simulation technique. Then,
the results are checked using an equivalence checker.

The symbolic simulation is based on a state updating technique. Every in-
struction in the model is represented as a function over the state. Expressions
of the statement access the state to obtain or update its current value. The re-
sult of evaluating an instruction is an updated state. This process is performed
iteratively until the simulation terminates.

Symbolic simulation operates on symbolic expressions rather than an ex-
act/integer values. Symbolic expressions can be considered as a tree like structure
with operands as its leaf nodes. The expressions are denoted in infix notation.
Numerical operations operate on these symbolic expressions resulting in new
symbolic expressions. We use lazy operation where no interpretation is per-
formed on the symbolic expressions during numerical operations when it is not
necessary. As a result, symbolic expressions of (0 + a + b) is maintained as
it is. The expression does not have to be the same as (a + b). A limited sym-
bolic expression interpretation may be performed on the conditional part of an if
statement. In this operation, only total simplification is allowed. It is when the
expression does not contain symbolic constants. When there is simplification,
only one of the if statement will be used. If not, a complete expression will be
maintained. Consider a symbolic expression (if a-expr b-expr c-expr). If a-expr
can be simplified, the final expression will be either b-expr or c-expr. If not, the
original expression (if a-expr b-expr c-expr) will be maintained.

There is a limitation in this symbolic simulation approach. Only symbolic
constant assignment can be applied to data variables. All control variables for
the loop require the exact integer value of the variable. With this we would be
able to perform analysis by loop unrolling.

The functional equivalence checking is performed on the symbolic simulation
results of the source and target designs. The functional equivalence is expected
to be satisfied at all output variables regardless of their local/internal state. We
extract the output variables from each state environments and paired them as in-
equality. For example, the imageO.0.0 (Isum.imageO.0.0) of the source (state-1)
and target (state-2) states is represented as (/= state-1(Isum.imageO.0.0) state-
2(Isum.imageO.0.0). The formulae stated that the content of Isum.imageO.0.0
in state-1 is not the same as the content of Isum.imageO.0.0 in state-2. The
decision procedure (Yices) checks whether the formulae can be satisfied. If they
can be satisfied, Yices will provide the counter examples for debugging. If not,
the arguments of the in-equality formula are equivalent.

Design Validation by Symbolic Simulation and Equivalence Checking 517

5 Case Studies

Manipulating large high resolution images requires a lot of resources but in
many situations, only limited resources are available. Many algorithms, such as
caching, have been developed to speed up the process. While good results have
been achieved by optimizing the code, the complexity of the optimized code also
grows. In this case study, we demonstrate our validation approach in validating a
range of cache optimizations for image manipulation. All experiments are carried
out on a laptop with an Intel CoreTM 2 Duo (2.10 GHz) processor and 4GB
memory.

We have developed an image manipulation algorithm (Isum) that calculated
a local sum of surrounding pixels of an image. the code is described in Fig. 3.
It contains 7 lines of main code. The algorithm is an uncache version of the
algorithm. It is used as the reference/specification in validating the optimized
cache version of the algorithms.

Most image manipulation algorithms contain independent calculations. It is
possible to speed up the process by optimizing cache usage and introducing
parallelization. We develop two cache windowing optimization scenarios: col-
umn cache [24] and zigzag. Column cache is a caching scheme that parti-
tions/divides the image on the column (vertically). Loop zigzaging is used in
nested loops by reversing the inner loop every other run. Without zigzagging, the
cache needed to be refilled at the start of each line. By reversing the direction,
part of the cache can be reused, and only the remainder needs to be refilled.

Using the combination of these memory optimization techniques, we generate
six versions of image manipulation algorithms with cache. Fig. 5 shows the opti-
mized image manipulation algorithm with column cache. All cached algorithms
contain more lines of code. In one case, the size of an optimized code is more
than 19 times longer than the original specifications. The comparison for the
algorithms is shown in Fig. 6.

int sum = 0;
for (jc = 0; jc < hc; jc++)

{for (j1 = 0; j1 < h1; j1++)
{for (i1 = 0; i1 < nCols; i1++)

{cache[j1][i1] = image2[jc + j1][i1];}}
for (ic = 0; ic < wc; ic++)

{sum = 0;
for (j1 = 0; j1 < h1; j1++)

{for (i1 = nCols; i1 < w1; i1++)
{sum += image2[jc + j1][ic + i1];}}

imageC[jc][ic] = sum + cache.sumImage();
for (j1 = 0; j1 < h1; j1++)

{for (i1 = 0; i1 < nCols - 1; i1++)
{cache[j1][i1] = cache[j1][i1 + 1];}
cache[j1][nCols - 1] = image2[jc + j1][ic + nCols];}}}

Fig. 5. Image Summation (Isum) algorithm with column cache in C code

518 K.W. Susanto et al.

Algorithm Code Size Validation time
(lines) (seconds)

Uncached (specification) 8 -
Column cache 15 1.95
Column cache + zigzag 38 1.52
Column cache + one partial Column Cache 23 2.31
Column cache + one partial Column Cache + zigzag 56 3.01
Large Cache zigzag 100 3.38
L-shape cache + zigzag 152 4.25

Fig. 6. Comparison of algorithm code size and validation time

The table contains the size of each algorithm measured in the number of
lines of code and the time to validate the optimized algorithm with the source
(reference) algorithm. The image size selection is based on two factors. First,
the validation system resources are not yet scalable to handle large image. It is
currently limited to deal with maximum image size of 30x30. Second, we argue
that it is sufficient to use a small image to perform a quick sanity check of the
optimization. Furthermore, a large image only adds the validation complexity
while the core features of the algorithms remain the same.

The algorithms are set to manipulate image of size 10x10. The size of cache
memory in the optimized algorithms are approximately 25% of the image size.
Each process, such as loading the library, generating formal models, simulating
symbolically, and validating their functional equivalence, takes less than 5 sec-
onds each. During the validation process, we find one error from incorrect usage
of loop variable outside its scope. The error is not detected by the gcc compiler
during the compilation and no warning is generated. The symbolic simulation
validation proposed in this paper eliminated the need in using a set of images
to check the correctness of the target algorithm.

6 Summary and Future Work

We have adopted a pragmatic approach in developing a formal validation frame-
work to ensure our design optimization algorithm produces correct results. The
proposed validation framework performs the validation every time a source de-
sign is optimized. This process ensures that the optimization and transformation
do not change the design’s functional behavior.

The framework is implemented in the ACL2 theorem prover. ACL2 LISP
macros are used to automatically generate the formal model and the analysis
environment for the design. Key features in the modelling are the state encod-
ing which represents all variables of the model and model simplifications by
if-conversion and loop-conversion. The correctness is assured by checking that
the results of evaluating the models using ACL2 symbolic simulator are equiva-
lent using Yices. A debugging facility is provided for the user to manually check
the symbolic simulation results.

Design Validation by Symbolic Simulation and Equivalence Checking 519

We have demonstrated through our case studies that the technology is suffi-
cient to achieve our goals. It also provides a useful environment for designers to
perform manual debugging by evaluating the symbolic simulation results of the
designs.

We plan to extend the system with the capability to analyze unflattened
abstract syntax tree. We also plan to integrate the validation system as part
of the hArtes [6] framework. The framework is an end-to-end framework for
the development of a real-time embedded system design on a heterogeneous
reconfigurable platform.

Acknowledgment

The authors thank the ACL2 developers and SRI for making the ACL2 and
Yices system available. This research is supported by the European Framework
6 Programme, Project grant 035143, Holistic Approach to Reconfigurable Real-
Time Embedded Systems (hArtes).

References

1. Borrione, D., Georgelin, P., Rodrigues, V.: Using Macros to Mimic VHDL. In:
Computer-Aided Reasoning: ACL2 Case Studies. Kluwer Academic Publishers,
Dordrecht (2000)

2. Canon, http://www.canon.co.uk

3. Cupak, M., Catthoor, F.: Verification of Loop Tranformations for Complex Data
Dominated Applications. In: High Level Design Validation and Test, La Jolla,
California, November 1998, pp. 72–79 (1998)

4. Dave, M.A.: Compiler verification: a bibliography. ACM SIGSOFT Software En-
gineering Notes 28(6) (November 2003)

5. Dutertre, B., Moura, L.: System Description: Yices 1.0, SRI International (2006)

6. hArtes, http://www.hartes.org

7. Hoare, C.A.R., He, J., Sampaio, A.: Normal form approach to compiler design.
ACTA informatica 30(8), 701–739 (1993)

8. Krishnamurthy, N., Abadir, M.S., Martin, A.K., Abraham, J.A.: Design and De-
velopment Paradigm for Industrial Formal Verification CAD Tools. IEEE Design
and Test of Computers 18(4), 26–35 (2001)

9. Kurshan, R.P.: Formal Verification in a Commercial Setting. In: Proc. Design Au-
tomation Conference, Anaheim, pp. 258–262 (1997)

10. Lerner, S., Millstein, T., Chambers, C.: Automatically Proving the Correctness of
Compiler Optimisations. In: Proc. Programming Language Design and Implemen-
tation, SanDiego, California (June 2003)

11. Tristan, J.B., Leroy, X.: Formal verification of translation validators: A case study
on instruction scheduling optimizations. In: Proc. 35th symposium Principles of
Programming Languages, January 2008, pp. 17–27 (2008)

12. Moore, J.S.: Symbolic Simulation: An ACL2 Approach. In: Gopalakrishnan, G.C.,
Windley, P. (eds.) FMCAD 1998. LNCS, vol. 1522, pp. 334–350. Springer, Heidel-
berg (1998)

http://www.canon.co.uk
http://www.hartes.org

520 K.W. Susanto et al.

13. Necula, G.C.: Translation Validation for an Optimizing Compiler. In: Proc. ACM
SIGPLAN Conference on Programming Language Design and Implementation,
Vancouver, British Columbia (June 2000)

14. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate Language
and Tools for Analysis and Transformation of C Programs. In: Horspool, R.N. (ed.)
CC 2002. LNCS, vol. 2304, p. 213. Springer, Heidelberg (2002)

15. Oliveira, M., Woodcock, J.: Automatic generation of verified concurrent hardware.
In: Butler, M., Hinchey, M.G., Larrondo-Petrie, M.M. (eds.) ICFEM 2007. LNCS,
vol. 4789, pp. 286–306. Springer, Heidelberg (2007)

16. Perna, J.I., Woodcock, J.: A Denotational Semantics for Handel-C Hardware Com-
pilation. In: Butler, M., Hinchey, M.G., Larrondo-Petrie, M.M. (eds.) ICFEM 2007.
LNCS, vol. 4789, pp. 266–285. Springer, Heidelberg (2007)

17. Saito, H., Ogawa, T., Sakunkonchack, T., Fujita, M., Nanya, T.: An Equivalence
Checking Methodology for Hardware Oriented C-based Specifications. In: Proc.
High-Level Design Validation and Test Workshop, October 2002, pp. 139–144
(2002)

18. Singh, S., Lillieroth, C.J.: Formal Verification of Reconfigurable Cores. In: Proc.
Field-Programmable Custom Computing Machines, Napa Valley, California, pp.
25–32 (1999)

19. Siegel, S.F., Mironova, A., Avrunin, G.S., Clarke, L.A.: Using Model Checking with
Symbolic Execution to Verify Parallel Numerical Programs. In: Proc. International
Symposium on Software Testing and Analysis, Portland (2006)

20. Susanto, K.W., Melham, T.: Formally Analysed Dynamic Synthesis of Hardware.
Journal of Supercomputing 19(1), 7–22 (2001)

21. Susanto, K.W., Luk, W., Coutinho, J.G., Todman, T.: Validating Design Optimi-
sation. In: Proc. Tools and Techniques for Verification of System Infrastructure,
London, March 2008, p. 36 (2008)

22. Stalmarck, G.: A System for Determining Propositional Logic Theorems by Ap-
plying Values and Rules to Triplets that are Generated from a Formula, Swedish
Patent No. 467 076 (1992), U.S. Patent No 5 276 897 (1994), European Patent No
0403 454 (1995)

23. Todman, T., Coutinho, J.G., Luk, W.: Customisable Hardware Compilation. Jour-
nal of SuperComputing 32 (2005)

24. Todman, T., Luk, W.: Memory Optimisations for High Resolution Imaging, in
Proc. In: Proc. International Conference on Field-Programmable Technology, Bris-
bane, Australia (December 2004)

25. Zuck, L., Pnueli, A., Fang, Y., Goldberg, B., Hu, Y.: Translation and Run-Time
Validation of Optimized Code. Electronic Notes in Theoretical Computer Sci-
ence 70(4) (2002)

	Design Validation by Symbolic Simulation and Equivalence Checking: A Case Study in Memory Optimization for Image Manipulation
	Introduction
	Related Work
	Methodology
	Formal Models and Validation
	Formal Models
	Validation

	Case Studies
	Summary and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

