IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 1, JANUARY 2008 57

Reconfigurable Architecture for
Network Flow Analysis

S. Yusuf, W. Luk, M. Sloman, N. Dulay, E. C. Lupu, and G. Brown

Abstract—This paper describes a reconfigurable architecture
based on field-programmable gate-array (FPGA) technology for
monitoring and analyzing network traffic at increasingly high
network data rates. Our approach maps the performance-critical
tasks of packet classification and flow monitoring into reconfig-
urable hardware, such that multiple flows can be processed in
parallel. We explore the scalability of our system, showing that it
can support flows at multi-gigabit rate; this is faster than most
software-based solutions where acceptable data rates are typically
no more than 100 million bits per second.

Index Terms—Flow analysis, flow measurement, network mon-
itor, NetFlow, network security.

I. INTRODUCTION

T IS NOW common practice to monitor network traffic in
I order to track statistics on resource-utilization to various
destinations by specific protocols. This ability to monitor
traffic by endpoints and protocols is a key ingredient in man-
aging bandwidth utilization and costs. To this end, enabling
technology such as NetFlow [16] is often used. The NetFlow
protocol is implemented by all major router vendors and pro-
vides “per flow” packet and byte counts. For the purposes of
this paper, a flow is defined as the traffic between a single
source and destination (IP address and port) for a single TCP
connection.

Although the NetFlow protocol generates byte and packet
counts on a per flow basis, the data associated with a flow may
not correspond to a complete TCP session between endpoints
and, indeed, may include data from multiple TCP sessions. To
limit the effects of this, we have developed an experimental
measurement engine (ME), which extends the NetFlow tech-
nology to provide additional relevant data, such as round trip
time (RTT), packet loss, and jitter effects, through the moni-
toring of TCP packet flows at the protocol level.

The NetFlow protocol, as implemented in a router, generates
user datagram protocol (UDP) packets which provide byte and
packet counts for traffic between two endpoints. Data collec-
tion for NetFlow is generally implemented as a flow cache, in

Manuscript received May 10, 2006; revised April 22, 2007. This work was
supported in part by U.K. Engineering and Physical Sciences Research Council
under Grant GR/R 31409, Grant GR/R 55931, and Grant GR/N 66599, by Eu-
ropean Framework 6 Project “DIADEM Firewall,” by Celoxica, by Synplicity,
and by Xilinx.

S. Yusuf, W. Luk, M. Sloman, N. Dulay, and E. C. Lupu with the Department
of Computing, Imperial College London, London SW7 2BZ, U.K. (e-mail:
sy99@doc.ic.ac.uk; wl@doc.ic.ac.uk; mss@doc.ic.ac.uk; nd@doc.ic.ac.uk;
ecll @doc.ic.ac.uk).

G. Brown is with the Department of Computer Science, Indiana University,
Bloomington, IN 47405 USA (e-mail: geobrown@cs.indiana.edu).

Digital Object Identifier 10.1109/TVLSL.2007.912115

TABLE I
THROUGHPUT WITH DIFFERENT LINK SPEEDS

[Link Speed][Max Packet throughput]
10Mbps 10 Kpps
100Mbps 100 Kpps

1Gbps 1 Mpps
2.5Gbps (OC-48) 2.5 Mpps
10Gbps (OC-192) 10 Mpps
40Gbps (OC-768) 40 Mpps

Packet size: 128 bytes. MBPS: million bits per second. KPPS:
thousand packets per second. MPPS: million packets per second.

which data corresponding to a flow is maintained as a set of byte
and packet counters. NetFlow packets are generated whenever
flows are flushed from the cache, for instance, due to inactivity.
The individual flows are identified by source and destination ad-
dresses and ports, as well as protocol type.

Flow monitoring is important in the detection of suspicious
activity which may only become obvious with continuous ex-
amination of data. Monitors can automatically alert system ad-
ministrators after such suspicious activity is detected, and the
data collected is subject to analysis by human intervention, with
some automated analysis depending on the end user’s require-
ments. More sophisticated systems are even able to isolate af-
fected systems or limit/disable affected services when anoma-
lous activity has been detected.

Many existing monitoring systems are software-based. How-
ever, they are unable to provide the required flow processing
rate to keep up with potential network traffic rates (see Table I).
For this reason, most monitors employ packet sampling instead.
These systems process thousands of packets per second (Kpps),
in contrast to a theoretical rate of millions of packets per second
(Mpps) on a 1-Gb/s network, assuming an average packet size
of 128 bytes (see Table I).

Conversely, hardware-based systems suffer from limitations
in terms of resources. We wish to provide a scalable hardware-
based architecture, which can be used to match current and fu-
ture speed levels of network devices. We present a “real-time”
monitoring system based on a combined software/hardware ap-
plication-specific system which is optimized for both speed and
“intelligent” decision-making.

Our approach maps the performance-critical tasks of packet
classification and flow monitoring in hardware, such that opera-
tions can run in parallel where desirable. We utilize a field-pro-
grammable gate array (FPGA) as our hardware target. A key
feature of our work is that the architecture relies on being able
to process multiple flows in parallel. We generate NetFlow [16]
compatible data to provide pertinent flow information, since this
protocol is widely implemented by all major router vendors and
provides “per flow” packet and byte counts.

1063-8210/$25.00 © 2008 IEEE

58 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 1, JANUARY 2008

CLI BGP
Ethernet
Switch »| Interface 0 \ \ \
Flow Flow
/ Cache Aggregator
. » I £ N
Optical » Interface /
Splitter Interface N+1 l
ME NetFlow Collector GuL

v
UDP
Socket (s)

Fig. 1. ME NetFlow System. CLI and GUI, respectively, denote command line interface and graphical user interface. BGP block supports BGP routing.

There has been comparable work carried out on employing re-
configurable hardware as a means of accelerating network pro-
cessing speed [2]-[4], [8], but none focused on processing of
network flows to obtain statistics that could be used to improve
network performance.

The following are the three aims of this paper:

1) to extend the existing NetFlow implementations to enable
the collection of performance statistics with the intention
of diagnosing performance problems, such as regions suf-
fering from high bandwidth utilization or packet loss;

2) to address the limitations of software implementations in
processing traffic at current network rates;

3) to provide a scalable hardware-based architecture, which
can cover current and future speed levels of network de-
vices.

Our approach maps performance-critical tasks of packet classi-
fication and flow monitoring into hardware, such that operations
can run in parallel where desirable. Our proposed architecture
is modular and enables the optimization of individual modules
independently of each other. In addition, we provide a simple
analytical model of the system which can be used to estimate
resource requirements based on the desired performance or to
determine potential system performance based on available re-
sources.

The contributions of this paper include the following:

1) a network flow analysis architecture based on reconfig-
urable hardware, which produces flow statistics to identify
problematic regions in the network (see Section III);

2) a technology independent model of the system which en-
ables the analysis and prediction of the size and perfor-
mance of the system (see Section V);

3) a traffic monitoring system which operates on a multi-gi-
gabit network (see Section VII);

4) the use of run-time reconfiguration to provide flexibility for
end-user requirements (see Section VIII).

II. ME

The ME system is designed to monitor network traffic pas-
sively through multiple interfaces and to produce NetFlow com-
patible data which can be either exported as UDP packets, or

displayed through a Web-based graphical user interface. A basic
assumption here is that all traffic to and from the Internet can be
passively monitored. Estimating performance for a TCP con-
nection requires the ability to “see” traffic in both directions.
However, with multiple Internet connections in a network, there
is little guarantee that traffic associated with both directions of a
flow will utilize the same Internet connection. Thus, all packets
must be linked to a particular flow already identified, or used
to create a new flow. This process utilizes an inordinately large
amount of resources for buffering packet flows, and consumes
a great deal of time in determining which flow, if any, a packet
belongs to.

Fig. 1 is a block diagram of a complete ME NetFlow system,
showing the primary components. The traffic monitored by an
ME NetFlow collector is forwarded from edge routers through
Ethernet mirror ports or optical splitters. Traffic received by the
ME NetFlow collector at its interfaces is classified into flows
based upon layers 2 and 3 addressing information (MAC ad-
dresses, IP address, protocol, and port). The classified flows are
then cached and periodically forwarded to the flow aggregator.

The flow aggregator may then optionally provide NetFlow
V8 style aggregation by address, port, etc. In addition, the ag-
gregator uses information received through border gateway pro-
tocol (BGP) to provide source and destination prefix data. Fi-
nally, the output of the aggregator is forwarded through UDP
socket(s) to other devices or displayed on a locally generated
graphical user interface (GUI). The configuration of the ME
NetFlow collector is controlled through a command-line inter-
face (CLID).

The main purpose of the ME is to collect statistics in order
to diagnose performance problems such as determining desti-
nation regions suffering excessive bandwidth utilization, packet
loss, jitter, or long round trip time and also to determine whether
the network’s security has been breached in some way. This is
in contrast to existing NetFlow implementations, which collate
certain data in order to provide byte or packet per flow infor-
mation. Instead, our ME determines the statistics and uses them
to identify areas where efficient changes will improve overall
security. In addition, as the statistics are being collected, identi-
fication of attacks or intrusions will prompt the monitor to alert

YUSUF et al.: RECONFIGURABLE ARCHITECTURE FOR NETWORK FLOW ANALY SIS 59

Flow
Monitor
Packet Flow Flow NetFlow
Headers Classification Summary Packets
Flow
Monitor

Fig. 2. ME backend.

system administrators in real-time, so that damage to the system
can be limited.

As illustrated in Fig. 1, the ME consists of a back-end, a flow
cache which handles packets at wire rates, and a front-end which
processes the resulting flow statistics at a much lower rate. To il-
lustrate the differences in throughput required, consider the pro-
cessing required to handle 1 Gb/s. This data rate is sufficient to
support most enterprises and campuses, although probably not
major web-hosting companies. Studies have suggested that this
will roughly correspond to 1 000 000 packets/s, but only 10 000
flows/s. Data produced by the University of Wisconsin support
this general trend [11]. Undoubtedly, there is no need for the
back-end to touch all of the packet data—just the IP and TCP
headers—but the processing required for 1000000 packets/s
is nevertheless a considerable task. Table I shows theoretical
throughput for different link speeds.

As the prototype ME is purely software-based, the previously
discussed data rates are not attempted. Instead, the prototype
is field-tested at a tier 3 ISP where it is capable of handling
10-20 Mb/s of sustained traffic (roughly 20 000 packets/s). The
ME prototype back-end is built upon existing software, with
packet header capture performed using the Pcap library [13] and
packet processing performed with a heavily modified version of
TCPtrace [14].

While the prototype ME demonstrates the feasibility of the
approach to track packet data and the utility of such data in iden-
tifying potential security attacks, in practice, its performance is
limited when applied to the Internet. Therefore, software imple-
mentations struggle to cope with the typical Internet capacity of
1 Gb/s bandwidth.

For instance, the Click router project involves a highly opti-
mized router in software, which is only able to achieve a rate of
hundreds of kpps [3]. However, this requires only packet clas-
sification, and not subsequent interpretation of flow data. Al-
though there has been some development in hardware systems
capable of packet classification at gigabit rate, these are also lim-
ited in that they do not process the classified packets as flows [2],
(6], [10].

A view of the flow cache and flow aggregator as ME back-end
is illustrated in Fig. 2. Packet headers, consisting of address
and port information, flags, etc., are passed to the classifier to

determine the flow to which the packet belongs. The classifier
also decides which flow monitor is responsible for processing
packets belonging to the flow. When a new flow arrives, the
classifier allocates space for a “key” and assigns the flow to a
flow monitor. The “key” to a flow consists of a five tuple, source
and destination addresses, source and destination ports, and pro-
tocol. For TCP connections, the flow consists of packets in both
directions, so that the keys need to be normalized, i.e., the source
and destination identifiers must be rearranged in order to iden-
tify packets belonging to the same flow.

It may be desirable for the classifier to track all “active flows,”
where an active flow is defined as a flow still receiving packets.
As with NetFlow implementations, a reasonable criterion for ac-
tive flows is that some packets have been received for the same
flow within a period of a few seconds. These active flows are
accumulated and buffered until storage capacity runs out. When
this occurs, the most outdated flow should be flushed by the
cache. Flushing consists of passing the flow header to the ap-
propriate flow monitor for TCP flows, or to the flow-summarizer
for other flows. The role of the flow-summarizer is to generate
an (extended) NetFlow packet for the flow.

A flow monitor interprets the arriving packets in order to de-
termine relevant statistics. To this end, it must store, for each
flow it is assigned, basic TCP header information such as ac-
knowledgements and sequence numbers, as well as all packet
headers for which further processing is required (for example,
unacknowledged data packets). In general, analysis of TCP be-
havior can be quite complex [5]. Hence, compromises and inac-
curacies must be accommodated if processing is to be handled
at the desired rates.

III. TWO-LEVEL FLOW ANALYSIS ARCHITECTURE

Our approach consists of an architecture with both hardware
and software to support a two-level flow analysis scheme. This
combined system allows the processing of flows at rates ex-
ceeding 1 Gb/s. It adopts the use of software for less time-critical
operations or those which require flexibility, for example, the
display of statistics via a GUI, and adopts the use of hardware
for those aspects which can be enhanced through parallelism,
such as the processing of multiple flows.

60 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 1, JANUARY 2008

Module 1 Module 2 Module 3 Module 4
Get Packets Classifier Flow Monitor Stats Analysis
(Software) (Hardware) (Hardware) (Software)

Fig. 3. Hardware and software system overview.

This section describes how our software-based ME can be
enhanced to provide the flow monitoring rate for 1 Gb/s traffic.
Although a fully hardware-based ME would be quicker, it would
also be relatively inflexible, as well as impractical, as there are
insufficient resources available on current reconfigurable de-
vices to store sufficient flow information. Our approach, in con-
trast, involves both hardware and software to provide a cost-ef-
fective solution which is also scalable.

The hardware element is responsible for processing flows,
determining byte and packet count for flows, and returning sta-
tistics to the software. This is the first-level flow analysis which
produces preliminary statistics in the form of NetFlow-compat-
ible packets, which are then further analyzed by software.

The software element performs further analysis on the statis-
tics derived from hardware. This analysis can be used to deter-
mine which areas of the network are suffering from high packet
loss or excessive bandwidth utilization. For example, take the
scenario where all TCP packets to a server are counted and
compared to the normal average volume of traffic: the software
detects that the volume of packets to the server is higher than
normal. This may suggest suspicious activity that needs fur-
ther investigation. Such events can alert network administra-
tors without the need for human intervention [7]. In addition,
inherent software flexibility also allows room for yet-to-be-de-
fined user analysis criteria. We shall explain in Section VIII how
run-time reconfigurability of the hardware elements can be ex-
ploited to support such user analysis criteria.

We identify and then port to hardware the time-consuming el-
ements of the software implementation (i.e., the classification of
packets and the tracking of flows), utilizing fully the parallelism
available in hardware, ensuring that we are able to provide pro-
cessing at high speed, and consequently enabling us to monitor
live feeds.

Fig. 3 provides an overview of the system. It is possible for
some of the software modules to be replaced by hardware mod-
ules described in Sections V and VI. The resulting performance
improvement is presented in Section VII.

Module I: The current software implementation of the ME
system receives traffic at its interfaces and buffers them for pro-
cessing. When the buffer is full or a specified time period has
elapsed, the packets are transferred to subsequent modules. The
use of software for online processing incurs a delay for buffering
the packets and transferring them the classifier. We assume that
this delay, between the packet’s arrival at the network and when
it is transferred to hardware, is negligible in the overall pro-
cessing of the packets.

Modules 2 and 3 represent the first-level analysis and are de-
tailed in Section VI.

Module 4: The software implementation receives the Net-
Flow-compatible packets and performs further analysis in

order to determine areas of high packet loss or high bandwidth
utilization; this constitutes the second-level flow analysis. In
Section VIII, we shall explore how this analysis can be used
to support recognition of suspicious activities and managed by
run-time reconfiguration.

These modules provide the flexibility lacking in hardware
and enable our system to automatically recognize time-critical
occurrences of suspicious packet activity, such as host drop-
ping/losing excessive numbers of packets, or receipt by a host of
unusually large amounts of packets. These activities can be au-
tomatically alerted in near real-time to network administrators.

There are several possibilities for implementing the software
blocks, such as the following:

* employing the processor in a PC;

* utilizing an embedded processor (for example a Power PC)

on an FPGA (for example, the Virtex II Pro);

* making use of a soft core processor (for example, the Mi-

croBlaze).

To assess the feasibility of our system, we implement the soft-
ware module of our prototype using a PC and, although not fully
examined in this paper, the latter two approaches would allow
us to eliminate the use of a slower PCI bus, since the processors
are physically located on the FPGA. In addition, they eliminate
the need for a memory transfer as shown in Fig. 4 and allow
the transfer of captured packets directly to the classifier, for ex-
ample, by capturing the packets using an Ethernet module pro-
vided by the Xilinx RC300 development board [15].

IV. HARDWARE ARCHITECTURE AND ANALYSIS

The hardware implementation phase classifies the packets
into flows. A flow descriptor is then passed to a flow monitor
which tracks the flows and keeps statistics. Our hardware com-
ponent of the system is therefore comprised of two main mod-
ules: the flow classifier module and the flow processor module
(see Section VI).

A global view of the architecture of our hardware-based
system is illustrated in Fig. 4. The packet header data is read
from the memory and used to classify the flows. Once classified,
these flows are processed by a flow processing engine, with the
resulting data stored in on-chip fast memory. There are Ny ax
flows stored in fast memory; the data in the external memory
is used to classify the flows. The value of N, is determined
by the amount of resources available in one or more FPGA
devices. Up to Np.x flows are processed simultaneously, and
statistics from these operations are sent to software.

In this architecture, each flow is allocated to a processing unit,
with each flow monitor ultimately multiplexing over multiple
flows.

YUSUF et al.: RECONFIGURABLE ARCHITECTURE FOR NETWORK FLOW ANALY SIS 61

[e————q == —m—mm— | = ————1
: Software : | Hardware : : Software :
| | > Flow Monitor > 11 |
| | I 1 |
| l B 11 |
| l > o I 1 |
: Packet Data : S| < | 2 > Flow Monitor "2 : : Statistics :
(o] [%)]
l —> 5 > = £ H——— |
I i > 2 ! SZ0) |
| AR p ! A |
BEE = i	
	i 11
	11
I > Flow Monitor > I I	
	11
11 I 1	
N I S I J

Fig. 4. Architecture of the hardware components of the combined measurement engine.

There are the following two possible methods of processing
multiple flows:

1) we can assign each new flow to a flow monitor based upon

queue length, allowing support of multiple memories;

2) we can allow a packet to be processed by any flow monitor.
With both methods of processing, there is a potential compli-
cation in that the packets associated with a single flow may
be spread over several seconds or minutes; so with a possible
10 000 flows/s, there may be many times that number of active
flows.

In method 1, since flows are buffered before processing,
if one wishes to wait for completed flows before processing,
then a large amount of storage would be required since many
packets are being held for a potentially long time. Method
2 does not suffer from such drawbacks. However, there are
inherent difficulties in assigning individual packets to a flow,
and then keeping track of the packet data relating to the various
flows. Details of the method used for processing are given in
Section VL.

V. TECHNOLOGY-INDEPENDENT ANALYSIS

We quantify the size Ny, ,x of the maximum number of active
flows that can be implemented in a reconfigurable device, by
providing a technology-independent algebraic expression which
can be used to estimate the system flow rate based on our archi-
tecture. For this purpose, we express N p,.x as a function of the
small and fast internal memory space Mgy, and the number of
logic cells Ly, required for implementing each flow monitor
module. Also, we express the flow processing rate Raow—rate i1
terms of the number of N, flows processed per second.

The maximum number of active flows that can be processed
depends on the maximum amount of flow data Fjj,¢,, which can
be stored in the small fast access memory.

To determine the number of flow processing engines that can
be implemented in parallel, we assume that the modules de-
picted in Fig. 4, except for the flow monitor modules, use a
constant number of logic cells L¢onst; then we can express one

possible maximum value of flow engines based on available re-
configurable logic Nfow—engines aS

Nﬂow—ongincs = (Ltotal - Lconst) /Lmon (1)

where Liota is the total number of logic cells available on the
reconfigurable device. This value of Ngow—cngines 1S used if
method 1, stated in Section III, is used. However, with method
2, the maximum number of flow monitor modules that is imple-
mented is derived by determining the number of pipeline stages
required to obtain high throughput. Therefore, another possible
maximum value of flow engines is

Nﬂow—engines = Cﬂow—(‘,ycles (2)

where Ciiow - cycles Fepresents the number of cycles taken by one
monitor engine to process one packet.

We calculate the number of flows which can be processed
per second, Reow—rate, in terms of the maximum operating fre-
quency Fi.x of the system

C(J\fmax = (Pave X Nmax) X (Pcycles + Cclass—cycles)
+ Cmon—cy(‘,les + Cr,y(‘,les (3)
Rﬂowfrate = (Fmax/CNmax> X Nmax X Pave (4)
where Cp_ .. is the total number of cycles to process

Nmax flows, Cilass—cycles 1S the number of cycles to clas-
sify Nmax flows based on the average number of packets
(Pave); Cmon—cycles 1S the number of cycles to process a flow
consisting of P,,. packets, and Ccycles is the constant number
of cycles needed during the processing of each flow.

In the calculation of Rgow—_rate, We make use of Cn,
which includes the time taken to transfer the required number
of packets to classify NV, flows. We can calculate the packet
transfer rate, Tkt trans, between the large memory Mj,,qe and
the flow classifier. If = bytes can be transferred from Miarge to
the flow classifier per clock cycle, then

Pcyclos = Bpackots/x (5)

62 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 1, JANUARY 2008

TABLE II
NUMBER OF CYCLES TO MONITOR 100 FLOWS BY
VARYING THE PACKETS PER FLOW

Max Flows 65,536 65,536 65,536
Packets/Flow 60 I 80 ’ 100
Transfer cycles 7,864,320 10,485,760 13,107,200
Classify cycles 58,982,400 | 78,643,200 | 98,304,000
Flow cycles 600 800 1,000
Constant cycles 131,100 131,100 131,100
Total 66,978,420 | 89,260,860 | 111,543,300

[Speed (50MHz) | 2.93 Mpps | 2.94 Mpps | 2.94 Mpps |

Total row in the table equates to the number of cycles needed for
processing the flows.

where Bpackets 18 the number of bytes per packet and Peycies
denotes the number of cycles used to transfer a packet. Using
(5), we can express the packet transfer rate as

Tpkt—trans = max/Pcycles~ (6)

In Section VI, we utilize the equations to show how they are
used to estimate the performance of the system, with Table II
detailing the results.

VI. DEVICE-SPECIFIC MAPPING

We develop a prototype for the proposed architecture tar-
geting a development board which contains a Xilinx Virtex II
XC2V8000 FPGA device and six external memory banks. The
modules in our architecture, shown in Fig. 4, can be described
as follows.

Module 1: Memory Transfer. We transfer the packet header
from M],,q. to the flow classifier, at 4 bytes per clock cycle from
each memory bank (six in total). This uses approximately two
clock cycles, Peycles (5), to transfer one packet header, achieving
a Thkt—trans (6), of up to five million packets per second at an
approximate F,,x of 10 MHz.

Module 2: Flow Classifier. This module classifies individual
packets into flows. The classifier accepts a packet and, using
a hash function, produces a unique 16-bit flow identification
for the packet based on a five tuple value (source, destination,
source port, destination port, and protocol). The hash function
used is a standard RSA hash function. In our implementation,
Ninax amounts to Fy,t, Which is 65 536, restricted to this only
by the available block RAM on the FPGA device to retain the
flow statistics. This figure may vary depending on the width of
the hash code and/or the widths of the data for the flows. The
data gathered include the number of packets and bytes trans-
mitted per flow, with 16-bit values being used to store this data.
We adopt method 2 in Section III. Therefore, from (2), we de-
termine that the Cgow—cycles required is 10. This value rises as
the processor engine becomes more complex.

Each monitor module L,,,, uses approximately 200 FPGA
slices (not including routing resources used) and, from (1),
it means the required value of Nfow—cngines i limited to
100. However, one monitor engine takes approximately ten
clock cycles, (Chow—cycles)» t0 process one packet for a flow;
this means the required value Ngow—_engines 15 10. Since
Nfiow—engines Needs to be the smaller of the two calculated
Nfow—engines, from (1) and (2), therefore, Naow —engines in our
case is 10. So, in order to process multiple flows simultane-

ously, the classifier provides multiple flow descriptors to ten
flow monitor engines.

Module 3: Flow Monitor. In this module, flow tracking is per-
formed in parallel. Our implementation uses ten monitors run-
ning concurrently. Although the system is limited to processing
65 536 flows simultaneously, this is a result of the block RAMs
available on the FPGA device. The F},.x obtained after place-
and-route from Xilinx tools, is approximately 50 MHz for Virtex
XC2V8000. If we assume a P,y of 100 packets per flow, from
our implementation, C'y,_ . from (3), is approximately 111.5
million cycles. Starting with (4) and given N, = 65536,
we calculate the overall flow rate Rgow—rate for the system
is approximately 29 360 flows/s or 2.94 million packets/s (see
Table II).

Module 4: Stats Analysis. Here we simply collate the statistics
of each flow and send them to the software module for further
analysis. The statistics include the number of packet and bytes
transmitted per flow, as well as the packet header data such as
the source and destination addresses, ports, etc. The results of
the second level analysis will in some cases determine whether
or not reconfiguration is required.

VII. PERFORMANCE RESULTS

Our experiment uses a tcpdump file from a server at Impe-
rial College which monitors incoming and outgoing traffic for
security reasons. The software element of the system accepts a
tcpdump file as input, removes the file header and the tcpdump
headers, and then buffers the packets. The packets are then trans-
mitted to the external memory banks as explained in Section VI.

Two parameters affect the results: 1) the transfer rate of
packets from large memory and 2) the number of packets per
flow. Transferring packets from large memory to the classifier
uses a great number of clock cycles, and hence, the number
of packets transferred affects the overall flow processing rate.
If the only packets to arrive belong to one of the Ny, flows,
then we would only require sufficient packets to fill each flow.
However, not all packets for a flow will arrive consecutively, or
even in close proximity to each other. Therefore, it is possible
for a packet in a flow that is not already one of the Ny, flows
to arrive when there is not enough storage room. Nevertheless,
to investigate the feasibility of our system, we assume that we
would only require sufficient packets to complete Ny, ,x flows,
as the limits of our hardware resources mean that we would not
be able to accommodate any more flows once we have reached
our maximum of 65 536.

From (3) and (4), we calculate in Table II the flow monitoring
rates RAow—rate by varying the P,.. packets in each flow, as-
suming that we only receive packets that belong to one of the
Npax flows available. The calculations are based upon an Fi,,x
of 50 MHz for the design, as reported by Xilinx place-and-route
tools. It can be seen that our hardware-assisted approach can
support up to 3 Mpps, although it is limited to 65536 active
flows, while the corresponding pure software prototype only
supports 20 Kpps (see Section II); this gives a speedup factor
of 150.

Table II shows performance of the system based on our an-
alytical model. Here we give further details of how the analyt-
ical model can be used to estimate scalability properties of the

YUSUF et al.: RECONFIGURABLE ARCHITECTURE FOR NETWORK FLOW ANALY SIS 63

TABLE III
EFFECTS OF (A) REMOVING CURRENT FPGA DEVICE CONSTRAINTS
AND (B) OPTIMIZATION OF MODULES

With Without Optimised
Constraints Constraints Modules
Max Flows 65,536 100,000 100,000
Packets/Flow 100 100 100
Transfer cycles 13,107,200 20,000,000 10,000,000
Classify cycles 98,304,000 | 150,000,000 | 10,000,000
Flow cycles 1,000 1,000 1,000
Stats cycles 131,100 200,000 200,000
Total 111,543,300 | 170,201,000 | 20,201,000
Speed (50MHz) 2.94 Mpps 2.94 Mpps | 24.75 Mpps

Constraints: the limitation of resources available to implement multi-
ple flow modules and store flow statistics. Optimisation: data transfer
time between the PC and the Classifier module and the Classifier
itself.

system if the device constraints are eliminated, and hence, pro-
vide approximate traffic rates which the system will be capable
of handling. The main constraint which affects the system is
the area resource available to implement multiple flow modules
and the amount of flow statistics that can be stored in the fast
memory. In addition, the modular architecture of our system al-
lows for the optimization of individual modules.

There are the following two main optimizations that can be
applied to the system:

1) the time taken to transfer the packets from the PC to large
memory to the classifier can be eliminated by using an em-
bedded processor, or by constructing dedicated logic for
fast transfer of data from external memory to the FPGA
logic, or by using a hardware platform with in-built Eth-
ernet access;

2) we envisage the optimization of the Classifier module, by
adopting multiple parallel instances and by undertaking
rigorous pipelining of the modules. In other words, im-
provements can be made with the availability of a suffi-
cient amount of fast memory, as well as by optimizing one
or more modules in the system.

To illustrate the effects of eliminating the memory resource
constraint together with further optimizations of individual
modules, we provide below an estimate of performance en-
hancements to the designs shown in Table II. We assume an
average of 100 packets per flow and the capability of achieving
at least 50 MHz FPGA operating frequency. Table III, column
2, shows the results of calculations for the flow rate without
the resource constraint, which allows us to process a large
number of active flows in real time. As shown from Table III,
we can maintain a throughput of approximately 2.94 Mpps for
larger amounts of active flows, with the only criterion being the
availability of the required resources.

In column 3 of Table III, we show the potential transfer rate
of using a hardware platform with access to the Ethernet, which
could result in transfer of a packet per clock cycle from PC to
external memory to classifier. In addition, as suggested before, if
the classifier module is heavily pipelined to support classifying
a packet in every clock cycle, then the effects of this on the
system are remarkable. In fact, any optimization that reduces
the number of clock cycles used for any module increases the
throughput of the system.

TABLE 1V
RESOURCE REQUIREMENTS FOR MONITORING LARGE NUMBERS
OF FLOWS SIMULTANEOUSLY

Max Flows 65,536 | 100,000 | 250,000 | 500,000
Packets/Flow 100 100 100 100
Block RAM 116 177 442 885
Monitor Slices 2,000 2,000 2,000 2,000

It is clear from Table III that it is possible to achieve pro-
cessing rates in excess of 20 Mpps, if we are not constrained by
the resources available on the hardware device, or by an inability
to optimize individual modules. This is adequate for most net-
works nowadays, and sufficient for 10 Gb/s traffic rates as shown
in Table 1.

Table IV shows the amount of resources that would be re-
quired for large active flows to be processed at the estimated
performance rate.

These results indicate that we are capable of using our ar-
chitecture to determine the hardware requirements for different
throughput, or to determine the throughput achievable based on
available resources and module capabilities.

VIII. RUN-TIME RECONFIGURATION

The modules described in Section III and Fig. 3 can be used
to provide the flexibility lacking in a full hardware implementa-
tion, enabling the system to automatically recognize time-crit-
ical occurrences of suspicious packet activity, such as host drop-
ping/losing excessive number of packets, or receipt by a host of
unusually large amounts of packets. These activities can be au-
tomatically notified in near real-time to network administrators
[7].

The hardware part of the ME may be modified through recon-
figuration. We can modify the number of active flows in order to
alter the overall size of the ME, or modify the user requirements
in order to revise the analysis target(s) and the statistical infor-
mation stored. There is potential here for tailor-made tradeoffs
between the speed of the ME and the number of services re-
quired to work in parallel. For example, more defined denial of
service attack detection or encryption services may be added to
the remit of the FPGA if the ME does not use up all the available
hardware capacity.

To determine the effects of the proposed reconfigurations on
an ME, we can calculate the time taken, Ttu11—config, to fully
reconfigure the FPGA using the following equation:

Tfull—conﬁg = Sconﬁg/Frecon (7)

where Scontig s the total configuration size in bytes of the FPGA
and Flecon 1s the reconfiguration frequency in bytes per second.
For example, if we choose to partially reconfigure the FPGA, if
only minor modifications are required, then it takes less time,
assuming the FPGA supports partial reconfiguration.

Such run-time reconfiguration may have overheads: for ex-
ample, during reconfiguration, it is possible that packets cannot
be processed. Two ways of addressing this problem are that we
can 1) accept the inevitable loss of some packets during this time
or 2) buffer the packets with the software module of the system.

64 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 1, JANUARY 2008

This will be a decision for the end-user, but ideally it is desir-
able to reconfigure in a time that would allow on-chip buffering.
We can derive the required size of buffer memory Sy with the
following equation:

Sbuf = Rﬂowfrate X Tfullfconﬂg X Bpackets- (8)

If we reconfigure the system, for instance by reducing some of
the modules to create space, to include a custom built intrusion
detection system to eliminate an attack, then once this is done
we can reconfigure again to restore the system back to normal.

Full reconfiguration is relatively simple; many systems use
the Xilinx SelectMap interface for reconfiguration. 8-bits of data
can be written every clock cycle, and the typical average clock
speed for reconfiguration is 50-60 MHz. However, on a Virtex 4
device, for example, the ICAP port can be 32 bits wide [19] and
can be clocked up to and in excess of 100 MHz. This reduces
the configuration time and the buffer size required.

Using (7), we can determine the length of time taken to make
modifications to the number of modules, as well as to add an-
other service to the FPGA function. We calculate the reconfig-
uration time taken, and its impact, by altering the analysis re-
quirements as well as adding a payload pattern matching en-
gine to the FPGA. The total configuration bits for a Virtex II
XC2V8000 are 26 194 208 bits [20], and given an average re-
configuration clock speed of 50 MHz, the reconfiguration time
Tieconfig 18 65.5 ms. We calculate that 192 500 packets could
have been processed within that time. In such circumstances,
we must either buffer the packets or accept packet loss during
reconfiguration. If the packets are buffered, using (8), we calcu-
late that 7.7 MB of memory is required to store the packets.

This result is for full reconfiguration; reconfiguration time
will be far less if the FPGA supports partial reconfiguration. For
partial reconfiguration in a Virtex device, we must decide how
many frames we would like to reconfigure, as different devices
have different frame sizes—for example, the XC2V8000 has
2860 frames and each frame has 9152 bits.

We can express the partial reconfiguration as

Tpart—conﬁg = Qcolumns X Sconﬁg/Frocon (9)
where Sconsig in this case is determined by

Sconﬁg = Nirames X Llongth~ (10)

This is with the assumption that the design is precisely packed
onto reconfiguration frame boundaries. For the device, we used
the XC2V8000 has 46 592 slices, in an array of 112 rows by
104 columns [20]. On average, 1 CLB column = 46 592/104 =
448 slices, approximately 27.5 frames. Our design takes approx-
imately 11 000 slices, therefore, a minimum of (11000/448) =
25 columns are required. We can derive the required buffer space
needed as follows:

Seconfig = 28 x 9152 = 32032 bytes. an

So, the configuration time for one column is 32 032/50 MHz =
0.64 ms. Therefore, for 25 columns, the partial configuration
time (13), is

Tpart—contig = 25 X 0.64 = 16 ms. (12)

Hence, using (8), Syt requires 1.9 MB, which is more feasible
for storage using memory on the FPGA. For example, by ap-
plying (13) to the use of Virtex 4 XC4VFX140 FPGA

Tpart—config = 15 x 18 902(words)/100 MHz = 2.8 ms. (13)

We note the significant decrease in the time taken for partial
reconfiguration [18], [19]. Hence, the S},u¢ required [from (8)]
is only 334 KB, which allows the storage, on on-chip memory,
of received packets during reconfiguration.

IX. CONCLUSION

We have described how statistics gathered from monitoring
flow traffic between endpoints on a network can be employed to
better utilize bandwidth and resources and to locate areas of pos-
sible security failure and intrusion incidents. Having found that
current software-based systems lack the ability to process flows
at current link speeds of gigabit rate, we develop a combined
hardware and software measurement engine which supports ef-
fective flow processing between the endpoints in a network at
gigabit rates.

Our preferred method makes use of software to capture IP
packets, then employs hardware to classify the flows and process
them to collate statistics about byte and packet count, potentially
also providing statistics about round trip times, retransmissions
or packet losses. These statistics are forwarded to software for
a second-level analysis, determining areas of high bandwidth
utilization or high packet loss or any other user-defined analysis.
Our results demonstrate that the proposed hardware-enhanced
system has the potential for processing flows at gigabit rates.

Current and future work includes validating our performance
estimations using the latest reconfigurable hardware platforms,
such as those based on Xilinx Virtex-5 FPGAs. It would also
be useful to extend the analysis in this paper to cover the de-
sign tradeoffs involved in speed, resource usage, and power con-
sumption. Additionally, we are exploring the development of the
monitoring architecture to provide quality of service (QoS) and
denial of service (DoS) detection. There is also the possibility
of detecting new threats and attacks based on our approach:
the amount of hardware and software resources, and the use of
run-time reconfiguration, can be adjusted to meet the character-
istics of such threats and attacks.

ACKNOWLEDGMENT

The authors would like to thank Sockeye Networks for pro-
viding the initial ME software, upon which they based their ex-
perimental ME.

REFERENCES

[1] K. G. Anagnostakis et al., “Open packet monitoring on FLAME:
Safety, performance and applications,” in Proc. 4th Int. Working Conf.
Active Netw. (IWAN), 2002, pp. 120-131.

[2] D. Nguyen, J. Zambreno, and G. Memik, “Flow monitoring in high-
speed networks with 2D hash tables,” Field Program. Logic Appl., vol.
3203, pp. 1093-1097, 2004.

[3] E.Kohler et al., “The click modular router,” ACM Trans. Comput. Syst.,
vol. 18, no. 3, pp. 263-297, 2000.

[4] M. Necker et al., “TCP-stream reassembly and state tracking in hard-
ware,” in Proc. IEEE Field Program. Custom Comput. Mach., 2002,
pp. 286-287.

YUSUF et al.: RECONFIGURABLE ARCHITECTURE FOR NETWORK FLOW ANALY SIS 65

[5] V. Paxson, “Automated packet trace analysis of TCP implemen-
tations,” in Proc. ACM SIGCOMM Conf. Appl., Technol., Arch.,
Protocols Comput. Commun., 1997, pp. 167-179.

[6] G.Memik, S. O. Memik, and W. H. Mangione-Smith, “Design & anal-
ysis of a layer seven network processor accelerator using reconfigurable
logic,” in Proc. IEEE Field-Program. Custom Comput. Mach., 2002,
pp. 131-140.

[7] T. H. Ptacek and T. N. Newsham, “Insertion, evasion, and denial of
service: Eluding network intrusion detection,” Secure Networks, Inc.,
Calgary, AB, Canada, 1998.

[8] D. V. Schueler and J. Lockwood, “TCP-splitter: A TCP/IP flow mon-
itor in reconfigurable hardware,” in Proc. 10th High Perform. Intercon-
nects Hot Interconnects, 2002, pp. 54-59.

[9] J. Gause, P. Y. K. Cheung, and W. Luk, “Reconfigurable shape-adap-
tive template matching architecture,” in Proc. IEEE Field-Program.
Custom Comput. Mach., 2002, pp. 98-107.

[10] J. van Luteren and T. Engbersen, “Fast and scalable packet classifica-
tion,” in Proc. IEEE Global Commun. Conf., 2003, pp. 560-571.

[11] D. Plonka, “University of Wisconsin network performance statistics,”
University of Wisconsin, Madison, 2004.

[12] The WinPcap Team, “WinPcap documentation,” 2007 [Online]. Avail-
able: winpcap.org

[13] LBNL’s Network Research Group, Berkeley, CA, “Libpcap,” 2007.

[14] S. Ostermann, “TCPtrace,” Ohio University, Athens, 2003.

[15] Celoxica Limited, Abingdon, U.K., “RC300: High performance devel-
opment and evaluation board,” 2003, pp. 1-2.

[16] Cisco Systems, San Jose, CA, “Cisco I0S NetFlow—A technical
overview,” 2006, pp. 1-16.

[17] D. Plonka, “FlowScan: A network traffic flow reporting and visualiza-
tion tool,” in Proc. 14th Syst. Admin. Conf., 2000, pp. 305-317.

[18] Xilinx, San Jose, CA, “Virtex-4 family overview,” Tech. Doc. DS112
(v2.0) Preliminary Product Specification, 2007, pp. 1-8.

[19] Xilinx, San Jose, CA, “Virtex-4 configuration guide,” Tech. Doc.
UGO071 (v1.5), 2007, pp. 1-116.

[20] Xilinx, San Jose, CA, “Virtex II platform FPGAs: Complete data
sheet,” Tech. Doc. DS031 (v3.4) Product Sepecification, 2005, pp.
1-318.

S. Yusuf received the B.Eng. degree in electronic
engineering from the University of Leeds, Leeds,
U.K.,, and the M.Sc. degree in computer science and
the Ph.D. degree in custom computing for network
security applications from Imperial College London,
London, U.K.

He was a Research Associate with the Department
of Computing, Imperial College London. His current
research interests include the areas of network se-
curity architecture, telecommunications, information
technology, and wireless technology.

W. Luk received the M.A., M.Sc., and D.Phil. de-
grees in engineering and computer science from the
University of Oxford, Oxford, U.K.

He is a Professor with the Department of Computer
Engineering, Imperial College London, London,
U.K,, and a Visiting Professor with Stanford Univer-
sity, Stanford, CA, and Queen’s University Belfast,
Belfast, Northern Ireland. His research interests
: include theory and practice of customizing hardware

¥ and software for specific application domains, such
as graphics and image processing, multimedia, and
communications. Much of his current work involves high-level compilation
techniques and tools for parallel computers and embedded systems, particularly
those containing reconfigurable devices such as field-programmable gate
arrays.

e
wlll -

M. Sloman chairs the UKCRC Ubiquitous Com-
puting Grand Challenge steering committee, is a
member of the editorial board of the Journal of
Network and Systems Management, the Advisory
Council for INESC-Lisboa, and U.K. Defence Sci-
entific Advisory Council—Information Superiority
Board. He was program co-chair for Mobile Data
Management (MDM) conference in 2003 and is
on the steering committees for the conferences on
Policies for Distributed Systems and Networks, Inte-
grated Management (IM), Network Operations and
Management (NOMS). His research interests include autonomic management
of ubiquitous and distributed systems, adaptive security management, trust and
security for pervasive systems. See http://www.doc.ic.ac.uk/~mss for more
details and selected papers.

N. Dulay received the B.Sc. degree in computer sci-
ence from the University of Manchester, Manchester,
U.K,, and the Ph.D. degree in computing from Impe-
rial College London, London, U.K.

He is a Senior Lecturer with the Department of
Computing, Imperial College London. His current
research interests include the areas of languages,
architectures, and protocols for distributed, mobile,
and pervasive systems, particularly to address secu-
rity, privacy, trust, and context-awareness.

E. C. Lupu received the Diplome d’Ingenieur from
the ENSIMAG, Grenoble, France, and the Ph.D. de-
gree from Imperial College London, London, U.K.,
in 1998.

He is currently a Senior Lecturer with the De-
partment of Computing, Imperial College London,
where he leads several research projects in the areas
of policy-based network and systems management,
pervasive computing, and trust and security funded
o \ by the U.K. EPSRC, European Union, and Industry.

He has over 60 publications in these areas and serves
on the program committee of numerous international conferences including
the IFIP/IEEE Symposia on Network Operations and Management, the IEEE
International Conference on Self-Adaptive and Self-Organizing Systems and
the IEEE Workshop on Policies for Distributed Systems and Networks.

G. Brown received the B.S. degree in engineering
from Swarthmore College, Swarthmore, PA, the
M.S.E.E. degree from Stanford University, Stanford,
CA, and the Ph.D. degree from the University of
Texas at Austin, Austin, in 1987.

He is a Professor with the Department of Com-
puter Science, Indiana University, Bloomington. He
taught at Cornell University, Ithaca, NY, from 1987
to 1997 and worked as a Research Scientist with
Hewlett Packard Laboratories, Cambridge, MA,
and an Architect at several networking startups. His
research interests include verification and design of digital systems and the
preservation of digital documents.

