
Hardware Implementation Trade-Offs of
Polynomial Approximations and Interpolations

Dong-U Lee, Member, IEEE, Ray C.C. Cheung, Member, IEEE,

Wayne Luk, Senior Member, IEEE, and John D. Villasenor, Senior Member, IEEE

Abstract—This paper examines the hardware implementation trade-offs when evaluating functions via piecewise polynomial

approximations and interpolations for precisions of up to 24 bits. In polynomial approximations, polynomials are evaluated using stored

coefficients. Polynomial interpolations, however, require the coefficients to be computed on-the-fly by using stored function values.

Although it is known that interpolations require less memory than approximations, but at the expense of additional computations, the

trade-offs in memory, area, delay, and power consumption between the two approaches have not been examined in detail. This work

quantitatively analyzes these trade-offs for optimized approximations and interpolations across different functions and target

precisions. Hardware architectures for degree-1 and degree-2 approximations and interpolations are described. The results show that

the extent of memory savings realized by using interpolation is significantly lower than what is commonly believed. Furthermore,

experimental results on a field-programmable gate array (FPGA) show that, for high output precision, degree-1 interpolations offer

considerable area and power savings over degree-1 approximations, but similar savings are not realized when degree-2 interpolations

and approximations are compared. The availability of both interpolation-based and approximation-based designs offers a richer set of

design trade-offs than what is available using either interpolation or approximation alone.

Index Terms—Algorithms implemented in hardware, interpolation, approximation, VLSI systems.

Ç

1 INTRODUCTION

THE evaluation of functions is essential to numerous
signal processing, computer graphics, and scientific

computing applications, including direct digital frequency
synthesizers [1], Phong shaders [2], geometrical transforma-
tions [3], and N-body simulations [4]. Dedicated hardware-
based function evaluation units on field-programmable gate
arrays (FPGAs) or application-specific integrated circuits
(ASICs) are often desired over their software-based counter-
parts due to their huge speed advantages.

Direct lookup tables are sometimes used due to their ease
of design and fast execution times. However, the table size
grows exponentially with the number of bits at the input and
can become impractically large for high input precisions.
Iterative techniques such as CORDIC [5] have been popular,
but they are less suitable for high throughput applications
due to their multicycle execution delays. Function approx-
imation via weighted sum of bit products was recently
proposed, which was shown to lead to improved throughput
and area characteristics over CORDIC [6]. Polynomial-only
approximations have the advantage of being ROM-less, but

they can impose large computational complexities and
delays [7]. Table addition methods [8] provide a good
balance between computation and memory, without the
need for multipliers, but their memory requirements can
become large for precisions beyond 16 bits.

Our research covers table-based methods using piece-
wise polynomials, which are generally considered to be
suitable for low-precision arithmetic of up to 32 bits.
Furthermore, they offer flexible design trade-offs involving
computation, memory, and precision. The input interval is
partitioned into multiple segments and a (typically) low-
degree polynomial is used to evaluate each segment. The
evaluation accuracy can be controlled by varying the
number of segments and/or the polynomial degree. With
piecewise polynomials, one can opt for either “approxima-
tion” or “interpolation.” Approximation is “the evaluation
of a function with simpler functions,” whereas interpolation
is “the evaluation of a function from certain known values
of the function” [9]. Hence, in this paper, in piecewise
polynomial approximations, each segment is associated
with a set of table entries, giving the coefficients for the
appropriate approximating polynomial. In contrast, in
piecewise polynomial interpolation, the function values at
the segment end points are stored and the coefficients of
approximating polynomials are computed at runtime [10].
Thus, in a broad sense, interpolations can be regarded as
approximations as well, but, as is customary in the
literature, we shall use the terms “approximation” and
“interpolation” to distinguish the first and second ap-
proaches described above.

Both methods have their advantages and disadvantages.
To achieve a given precision, interpolations potentially
require smaller tables than approximations since a single

686 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 5, MAY 2008

. D. Lee is with Mojix, Inc., 11075 Santa Monica Blvd., Suite 350, Los
Angeles, CA 90025. E-mail: dongu@mojix.com.

. R.C.C. Cheung is with Solomon Systech Limited, No. 3 Science Park East
Avenue, Hong Kong Science Park, Hong Kong. E-mail: cccheung@ieee.org.

. W. Luk is with the Department of Computing, Imperial College London,
London, UK. E-mail: w.luk@imperial.ac.uk.

. J.D. Villasenor is with the Electrical Engineering Department, University
of California, Los Angeles, 420 Westwood Blvd., Los Angeles, CA 90095-
1594. E-mail: villa@icsl.ucla.edu.

Manuscript received 20 Dec. 2006; revised 27 July 2007; accepted 23 Oct.
2007; published online 29 Oct. 2007.
Recommended for acceptance by M. Gokhale.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0478-1206.
Digital Object Identifier no. 10.1109/TC.2007.70847.

0018-9340/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

function value, rather than a set of coefficients, is stored for
each segment. However, interpolations impose higher
computational burdens due to the coefficient computation
step. Although there is a significant body of literature
addressing implementation methods and associated trade-
offs, either for approximation or interpolation alone, the
detailed memory, area, delay, and power trade-offs between
the two methods have not been investigated.

In this paper, we quantitatively examine such trade-offs
for degree-1 and degree-2 designs across various functions,
segmentation methods, and target precisions. Among the
more notable findings are that, for degree-2 designs, the
average memory savings obtainable by using interpolation,
instead of approximation, is under 10 percent, which is
significantly lower than the commonly believed savings of
20 percent to 40 percent [11], [12]. This is primarily due to
the effect of the memory location bit widths, which was not
taken into account in previous work. Another interesting
result is that, for degree-1 interpolations, the increase in
circuit area due to the additional computations is more than
compensated for by the decrease in area due to lower
memory requirements. This leads to significant area and
power advantages over degree-1 approximations.

To summarize, the main contributions of this paper are:

. propose a common framework for capturing the
design flow and error analysis of both approxima-
tion and interpolation designs,

. examine the application of uniform and hierarchical
segmentations,

. review and compare hardware architectures for both
approximation and interpolation methods,

. apply techniques based on analytical bit width
optimization and resource estimation for improving
speed, area, and power consumption, and

. present experimental results targeting Xilinx FPGAs
to illustrate and evaluate our approach.

In what follows, precision is quantified in terms of the
unit in the last place (ulp). The ulp of a fixed-point number
with n fractional bits (FBs) would be 2�n. We target
“faithful” rounding in which results are rounded to either
the nearest or the next nearest fraction expressible using the
available bits and are thus accurate to within 1 ulp.

This paper focuses on degree-1 and degree-2 designs for
the following reasons: First, degree-1 and degree-2 poly-
nomials are generally regarded as the most efficient for the
target precisions of 10 to 24 bits considered in this work
[13]. Second, the evaluation of coefficients from function
values for degree-1 and degree-2 interpolations involves
multiplications that are powers of two, thus significantly
reducing the implementation cost. That said, higher degree
approximations are commonly used in situations where
memory requirements must be minimized at the expense of
increased computation or when precisions beyond 24 bits
are required [13], [14].

2 RELATED WORK

Between the two methods, polynomial approximation has
received more attention in the literature. Noetzel [15]
examined piecewise polynomial approximations involving

uniformly sized segments with Lagrange coefficients. It was
demonstrated that, by adjusting the polynomial degree for a
given target precision, the function can be approximated
with a variety of trade-offs involving computation and
memory. Takagi [16] presented a degree-1 approximation
architecture for performing powering operations. The
multiplication and addition involved in degree-1 approx-
imation were replaced with a larger multiplication and
operand modification. Single multiplication degree-2 archi-
tectures were proposed in [17], [18]. A multiplier was
eliminated through precomputing partial polynomial terms
at the expense of higher memory requirements. Piñeiro
et al. [19] proposed a highly optimized degree-2 architec-
ture with a dedicated squarer and a fused accumulation
tree. Their implementations result in significant reductions
in table size, with a slight increase in execution time
compared to other methods. Lee et al. [13] explored the
design space of different-degree piecewise approximations
in terms of area, latency, and throughput on FPGAs. It was
demonstrated that polynomials with certain degrees were
better than others for a given metric and target precision.
Schulte and Swartzlander [20] studied the impact of
achieving an exact rounding (1/2 ulp of accuracy) on the
area and delay with polynomial approximations. Their
results indicated that the exact rounding typically imposed
33 percent to 77 percent of hardware area penalty over the
faithful rounding. Walters and Schulte [21] described
degree-1 and degree-2 architectures with truncated multi-
pliers and squarers. Their approach required up to
31 percent fewer partial product computations compared
to approximations with standard multipliers/squarers.

One of the earliest examinations of digital interpolation
was performed by Aus and Korn [22] in the 1960s, who
examined software routines for degree-1 interpolations for
sine and cosine functions on the DEC PDP-9 platform.
Lewis [11] described an interleaved memory architecture
for interpolation and its application to evaluating the
addition/subtraction functions in logarithmic number
systems. It was estimated that, compared to approxima-
tions, interpolations used 30 percent to 50 percent less
memory for degree-1 designs and 20 percent to 40 percent
less memory for degree-2 designs. Cao et al. [12] examined
degree-2 interpolation circuits for the evaluation of elemen-
tary functions. Several variants of degree-2 interpolation
that trade off computation and memory were investigated.
Cao et al. state that degree-2 interpolations use 33 percent
less memory than approximations, a result that is consistent
with the range provided in [11]. Paliouras et al. [23]
explored degree-2 interpolation hardware for evaluating
sine and cosine functions. The interval was partitioned
nonuniformly to minimize the number of function values
required. McCollum et al. [24] employed degree-1 inter-
polations for the evaluation of the inverse Gaussian
cumulative distribution functions. Lamarche and Savaria
[25] studied the mapping of degree-1 interpolations on
FPGAs. Synthesis results for the interpolation of the error
function on a Xilinx Virtex XCV300 FPGA were presented.
As noted earlier, the contributions cited above address
approximations and interpolations separately, whereas this

LEE ET AL.: HARDWARE IMPLEMENTATION TRADE-OFFS OF POLYNOMIAL APPROXIMATIONS AND INTERPOLATIONS 687

present work investigates the hardware implementation

trade-offs of the two approaches.

3 FRAMEWORK

Consider an elementary function fðxÞ, where x is to be

evaluated over a range ½a; b� and to a given target precision

requirement. The evaluation of fðxÞ typically consists of the

following steps [7]:

1. range reduction: reducing the input interval ½a; b� to
a smaller interval ½a0; b0�;

2. function approximation/interpolation over the re-
duced interval;

3. range reconstruction: expanding the result back to
the original result range.

Since range reductions and reconstructions are well-studied

topics, we focus on the approximation/interpolation of a

function over the reduced interval.
Fig. 1 depicts the design flow for polynomial approx-

imation and interpolation hardware design. The following

input parameters are required:

1. target function (for example, lnð1þ xÞ),
2. evaluation interval (for example, x ¼ ½0; 1Þ),
3. segmentation method (uniform or nonuniform),
4. target output precision (for example, 20 FBs), and
5. evaluation method (approximation or interpolation)

and degree of polynomials (for example, degree-2
interpolation).

The target function can be any continuous differentiable

function, including elementary functions and compound

functions. Arbitrary evaluation intervals of interest can be

specified. A “segment” refers to the subinterval over which

a set of precomputed coefficients are used for the case of

approximation and for which the starting and ending

function values are stored for the case of interpolation. The

two segmentation options are 1) uniform segmentation, in

which the segment widths are equal, and 2) nonuniform

segmentation, in which the segment widths can be variable.

The desired target precision is specified in terms of the

number of FBs. Since faithful rounding is used, specifying

20 FBs, for instance, would lead to a worst-case error bound
of less than or equal to 2�20 at the output.

The first step of the design flow in Fig. 1 is segmentation.
For a given segmentation method, this step finds the
minimal number of segments while respecting the error
constraint of the target precision. Once segmentation is
completed, a table containing the polynomial coefficients
(in case of approximation) or the set of function values (in
case of interpolation) is generated. In addition, if nonuni-
form segmentation is selected, an additional table holding
the segmentation information is also produced. The second
step, that is, bit width optimization, identifies the required
bit width for each fixed-point operand in the data path. The
last step is hardware generation, which uses the table(s) and
the operand bit widths to generate synthesizable VHDL
code. In this flow, certain portions of the total error budget
are preallocated to the segmentation step (for inherent
approximation/interpolation errors) and the bit width
optimization step (for finite-precision effects). This avoids
the need to include feedback from the hardware generation
step to the segmentation step, which would greatly
complicate the design process with little or no benefit to
the resulting design.

Fig. 2 shows an overview of the computational steps
involved in polynomial approximation and interpolation.
Given the input x, its corresponding segment address
Seg_Addr and the input argument ~x for the polynomial
evaluation is computed. ~x is given by ~x ¼ ðx� xiÞ=h, where
xi is the x-coordinate of the beginning of the current
segment, and h is the segment width. For approximation,
Seg_Addr simply serves as the index to the polynomial
coefficient ROM. For interpolation, Seg_Addr indexes the
ROM(s) from which the function values need to be fetched
and the polynomial coefficients are then computed on-the-
fly from the function values. In both methods, polynomial
evaluation is performed via the coefficients and the
polynomial input ~x to produce the approximated/inter-
polated output f̂ðxÞ. The resulting approximation/inter-
polation designs can then be implemented in a variety of

688 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 5, MAY 2008

Fig. 1. Design flow for polynomial approximation and interpolation

hardware design.

Fig. 2. Overview of the steps involved in polynomial approximation and

interpolation.

technologies. Section 7 covers speed, area, and power
consumption variations for the FPGA technology.

3.1 Polynomial Approximation

Approximation involves the evaluation of functions via
simpler functions. In this work, the simpler functions are
realized via piecewise polynomials. Different types of
polynomial approximations exist with respect to the error
objective, including least square approximations, which
minimize the root mean square error, and least maximum
approximations, which minimize the maximum absolute
error [7]. When considering designs that meet constraints
on the maximum error, least maximum approximations are
of interest. The most commonly used least maximum
approximations include the Chebyshev and minimax
polynomials. The Chebyshev polynomials provide approx-
imations close to the optimal least maximum approximation
and can be constructed analytically. Minimax polynomials
provide slightly better approximations than Chebyshev but
must be computed iteratively via the Remez algorithm [26].
Since minimax polynomials have been widely studied in
the literature (for example [13], [18], [19]) and offer better
approximation performance, they are adopted for our work
here. The Horner rule is employed for the evaluation of
polynomials in the following form:

f̂ðxÞ ¼ ððCd~xþ Cd�1Þ~xþ . . .Þ~xþ C0; ð1Þ

where ~x is the polynomial input, d is the degree, and C0::d

are the polynomial coefficients.

3.2 Polynomial Interpolation

Interpolation is a method of constructing new data points
from a discrete set of known data points. In contrast with
polynomial approximation-based hardware function eva-
luation, interpolation has received somewhat less attention
in the research community. In this section, we address
degree-1 and degree-2 interpolations.

3.2.1 Degree-1 Interpolation

Degree-1 interpolation uses a straight line that passes
through two known points ðxi; fðxiÞÞ and ðxiþ1; fðxiþ1ÞÞ,
where xi < xiþ1, as illustrated by the dashed line in Fig. 3.
At a point x ¼ ½xi; xiþ1Þ, the point-slope formula can be used
for the interpolation of f̂ðxÞ:

f̂ðxÞ ¼ ðfðxiþ1Þ � fðxiÞÞ
x� xi
xiþ1 � xi

þ fðxiÞ: ð2Þ

The standard degree-1 polynomial is given by
f̂ðxÞ ¼ C1 ~xþ C0. Examining (2), we find that

C1 ¼ fðxiþ1Þ � fðxiÞ; ð3Þ

C0 ¼ fðxiÞ; ð4Þ

~x ¼ x� xi
h

; ð5Þ

where h ¼ xiþ1 � xi. The computation of the coefficients
requires two lookup tables and one subtraction. The worst-
case approximation error is bounded by [27]

�max ¼
h2

8
maxðjf 00ðxÞjÞ; where x ¼ ½xi; xiþ1Þ: ð6Þ

Fig. 4a shows the error plot when evaluating lnð1þ xÞ
over x ¼ ½0; 1Þ with degree-1 interpolations using nine
equally spaced function value points corresponding to
eight segments. The average interpolation error generally
decreases with an increasing x because the magnitude of
the second derivative of lnð1þ xÞ decreases with x (6). The
maximum error occurs in the interpolation between the first
two function values over x ¼ ½0; 0:125Þ (first segment).
Using (6), this error is bounded at 1:95� 10�3. However,
(6) is a loose bound and, in fact, the actual interpolation
error is 1:73� 10�3. The knowledge of the exact interpola-
tion error is essential for producing optimized hardware, as
will be discussed in Section 6. In order to compute the exact
interpolation error for each segment, we first find the root of
the derivative of fðxÞ � f̂ðxÞ, where fðxÞ is the true function
and f̂ðxÞ is the interpolating polynomial of the segment.
The root is the x value at which the maximum interpolation
error occurs. Finally, this x value is substituted into fðxÞ �
f̂ðxÞ to give the exact interpolation error of the segment.

In Fig. 4a, it is observed that the errors have the same sign
throughout the interval. This will always be the case for
functions whose derivative is monotonically increasing or

LEE ET AL.: HARDWARE IMPLEMENTATION TRADE-OFFS OF POLYNOMIAL APPROXIMATIONS AND INTERPOLATIONS 689

Fig. 3. Illustration of degree-1 interpolation.

Fig. 4. Interpolation error when evaluating lnð1þ xÞ over x ¼ ½0; 1Þ with

degree-1 interpolations using nine equally spaced function values.

(a) Original. (b) Adjusted.

decreasing over the interpolation interval. As noted by Lewis
[11], it is possible to reduce the errors in such situations by
adjusting the function values. The specific-adjustment
method [11] assumes that the maximum error occurs
precisely at the midpoint of the segment. However,
although the maximum error position is typically near the
midpoint, it is not typically exactly at the midpoint. By
using an alternate adjustment methodology described as
follows, a slight improvement in the postadjustment error
can be obtained:

Let seg errj denote the maximum interpolation error of
the jth segment and M denote the number of segments. The
first and last function values fðx0Þ and fðxMÞ are reduced
by seg err0=2 and seg errM�1=2, respectively. Each inter-
mediate function value fðxiÞ, however, affects seg erri�1

and seg erri. To balance the errors of the consecutive
segments, ðseg erri�1 þ seg erriÞ=4 is subtracted from the
intermediate function values. Fig. 4b shows the error plot of
the adjusted function values. Unlike the error plot of the
original function values (Fig. 4a), the error behaves in a
symmetric manner around fðxÞ ¼ 0, reducing the max-
imum absolute error by a factor of two to 8:67� 10�4. The
adjusted function values are illustrated in Fig. 3. For
segments on the boundaries, each of such segments has a
function value not shared by any other segments. This
adjustment process leads to a degree-1 interpolating line
that has the same maximum-error properties as the
minimax degree-1 approximation. For interior segments,
however, the degree-1 interpolation and degree-1 approx-
imations will differ.

3.2.2 Degree-2 Interpolation

The degree-2 Lagrange interpolating polynomial through the
three points ðxi�1; fðxi�1ÞÞ, ðxi; fðxiÞÞ, and ðxiþ1; fðxiþ1ÞÞ,
where xi�1 < xi < xiþ1, is [27]

f̂ðxÞ ¼ fðxi�1Þ
ðx� xiÞðx� xiþ1Þ

ðxi�1 � xiÞðxi�1 � xiþ1Þ

þ fðxiÞ
ðx� xi�1Þðx� xiþ1Þ
ðxi � xi�1Þðxi � xiþ1Þ

þ fðxiþ1Þ
ðx� xi�1Þðx� xiÞ

ðxiþ1 � xi�1Þðxiþ1 � xiÞ
:

ð7Þ

Assuming that the function values are equally spaced,
substituting h ¼ xi � xi�1 ¼ xiþ1 � xi and ~x ¼ ðx� xiÞ=h
into (7) gives

f̂ðxÞ ¼ fðxiþ1Þ þ fðxi�1Þ
2

� fðxiÞ
� �

~x2

þ fðxiþ1Þ � fðxi�1Þ
2

~xþ fðxiÞ:
ð8Þ

Since the degree-2 polynomial in the Horner form is given
by f̂ðxÞ ¼ ðC2 ~xþ C1Þ~xþ C0, from (8), the coefficients are
given by

C2 ¼
fðxiþ1Þ þ fðxi�1Þ

2
� fðxiÞ; ð9Þ

C1 ¼
fðxiþ1Þ � fðxi�1Þ

2
; ð10Þ

C0 ¼ fðxiÞ; ð11Þ

which require three lookup tables, three additions and
subtractions, and constant shifts. The worst-case approx-
imation error is bounded by [27]

�max ¼
h3

9
ffiffiffi
3
p maxðjf 000ðxÞjÞ; where x ¼ ½xi�1; xiþ1Þ: ð12Þ

In degree-2 interpolation, the following strategies are
possible:

. Method 1. Use fðxi�1Þ, fðxiÞ, and fðxiþ1Þ for the
interpolation over x ¼ ½xi�1; xiþ1Þ.

. Method 2. Use fðxi�1Þ, fðxiÞ, and fðxiþ1Þ for the
interpolation over x ¼ ½xi�1; xiÞ or x ¼ ½xi; xiþ1Þ only.

Method 1 is employed by Paliouras et al. [23] and Cao et al.
[12], whereas method 2 is employed by Lewis [11].
Although method 1 is simpler to implement from the
hardware perspective (Section 5), method 2 can result in
lower interpolation errors and allows the function values to
be adjusted as discussed in Section 3.2.1 to reduce the
maximum absolute error. For instance, consider the inter-
polation of a function over the range x ¼ ½xi; xiþ1Þ with a
decreasing third derivative. With method 1, function values
fðxi�1Þ, fðxiÞ, and fðxiþ1Þ will be used and the error will be
bounded by h3=9

ffiffiffi
3
p
jf 000ðxi�1Þj and its sign alternates. With

method 2, however, function values fðxiÞ, fðxiþ1Þ, and
fðxiþ2Þ will be used, resulting in a reduced error bound of
h3=9

ffiffiffi
3
p
jf 000ðxiÞj and the error has constant sign, making it

suitable for function value adjustments. Although method 2
lowers the interpolation error, it requires an extra function
value. As will be discussed in Section 4, it imposes higher
hardware complexity.

Fig. 5 shows the interpolation error when evaluating
lnð1þ xÞ over x ¼ ½0; 1Þ with degree-2 method-1 interpola-
tions using nine equally spaced function values. To
determine the interpolation error, instead of using the
bound in (12), we use the exact error computation technique
discussed in Section 3.2.1. Method 1 results in a maximum
absolute error of 1:86� 10�3 and the sign of the error
alternates between successive segments.

Fig. 6a shows the same error plot when method 2 is used.
For this particular example, the maximum absolute error is
identical to method 1 since the error is dominated by the
first segment and the set of function values used for the first
segment is identical for both methods. However, the sign of
the error in method 2 is constant throughout the interval,
allowing the function value adjustment method described
in Section 3.2.1 to be applied. The error plot of method 2
with adjusted function values is shown in Fig. 6b. Note that

690 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 5, MAY 2008

Fig. 5. Interpolation error when evaluating lnð1þ xÞ over x ¼ ½0; 1Þ with

degree-2 method 1 interpolations using nine equally spaced function

values.

an extra function value is required for interpolating the last
segment. The interpolation error is 9:75� 10�5, which is
about half the unadjusted interpolation error and an order
of magnitude lower than the adjusted degree-1 interpola-
tion error (Fig. 4b). When degree-2 minimax approxima-
tions are applied to the example above, the maximum
absolute error is 1:70� 10�5, which is considerably lower
than any of the degree-2 interpolation methods discussed
above. In general, the degree-2 polynomials obtained
through interpolation (whether adjusted or not) can deviate
significantly from the optimal minimax polynomials. As
noted earlier, in the case of degree 1, the differences
between the interpolation polynomial (that is, a straight
line) and the minimax line are much smaller.

4 SEGMENTATION

The most common segmentation approach is uniform
segmentation, in which all segment widths are equal,
with the number of segments typically limited to powers
of two. This leads to a simple and fast segment indexing.
However, a uniform segmentation does not allow the
segment widths to be customized according to local
function characteristics. This constraint can impose high
memory requirements for nonlinear functions whose first-
order or higher order derivatives have high absolute
values since a large number of segments are required to
meet a given error requirement [28].

A more sophisticated approach is to use nonuniform
segmentation, which allows the segment widths to vary.
Allowing completely unconstrained segment widths would
lead to a number of practical issues. Thus, we use
hierarchical segmentation [28], which utilizes a two-level
hierarchy consisting of an outer segmentation and an inner
segmentation. The outer segmentation employs uniform
segments or segments whose sizes vary by powers of two,
whereas the inner segmentation always uses uniform
segmentation. Compared to uniform segmentation,
hierarchical segmentation requires significantly fewer seg-
ments for highly nonlinear functions such as the entropy

computation �x lnðxÞ over x ¼ ½0; 1Þ. For relatively linear
functions such as lnð1þ xÞ over x ¼ ½0; 1Þ, moderate savings
can still be achieved due to the constraint of uniform
segmentation, in which the total number of segments must
be a power of two. However, due to its nonuniformity,
hierarchical segmentation requires extra circuitry for seg-
ment indexing.

Fig. 7 illustrates the hierarchical segmentations for
functions lnð1þ xÞ and �x lnðxÞ using degree-2 method-1
interpolations for an error requirement of 2�14. Uniform
segments are used for the outer segmentation of lnð1þ xÞ,
whereas segments that increase by powers of two are used
for the outer segmentation of �x lnðxÞ. lnð1þ xÞ and
�x lnðxÞ require a total of 12 and 48 segments, respectively.
lnð1þ xÞ uses four outer segments, whereas �x lnðxÞ uses
10 outer segments. Note that the number of uniform
segments within each outer segment is variable. The figure
demonstrates that the segment widths adapt to the non-
linear characteristics of the functions. If uniform segmenta-
tions are used instead, lnð1þ xÞ requires 16 segments and
�x lnðxÞ requires 2,048 segments.

Table 1 compares the number of segments and the number
of function values that need to be stored for degree-1 and
degree-2 interpolations with hierarchical segmentation.
Degree-2 method-2 results use adjusted function values.
Both degree-1 methods and degree-2 method 1 require
storage of M þ 1 function values, where M is the number of
segments, as noted in Section 3.2. However, an additional
function value is required just before or after each outer
segment for degree-2 method 2. The table shows that, as
expected, the number of segments increases with the error
requirement and degree-2 interpolations require signifi-
cantly fewer segments than degree-1 interpolations. In
degree-1 interpolations, adjusted function values reduce the
required number of function values by up to 30 percent. For
degree 2, little reduction is obtained by adopting method 2
over method 1. This is due to the overhead of the extra
function value for each outer segment.

LEE ET AL.: HARDWARE IMPLEMENTATION TRADE-OFFS OF POLYNOMIAL APPROXIMATIONS AND INTERPOLATIONS 691

Fig. 6. Interpolation error when evaluating lnð1þ xÞ over x ¼ ½0; 1Þ with

degree-2 method 2 interpolations using 10 equally spaced function

values. (a) Original. (b) Adjusted.

Fig. 7. Hierarchical segmentations to lnð1þ xÞ and �x lnðxÞ using
degree-2 method 1 interpolations at an error requirement of 2�14. lnð1þ
xÞ requires four outer segments, resulting in a total of 12 segments,
whereas �x lnðxÞ requires 10 outer segments, resulting in a total of
48 segments. The black and gray vertical lines indicate the boundaries
for the outer segmentation and inner segmentation, respectively.

Similar experiments are conducted for uniform segmen-
tations. Results indicate that the degree-1 adjusted method
and degree-2 method 2 can occasionally reduce the number
of function values by half compared to the degree-1 original
method and degree-2 method 1, respectively. In most cases
though, the number of function values is identical. This is
due to the fact that, with uniform segmentations, the
number of segments always varies by powers of two.
Hence, in certain boundary cases, a slight reduction in error
can avoid the jump to the next power of two.

5 HARDWARE ARCHITECTURES

As illustrated in Fig. 2 in Section 3, the first step is to
compute the segment address Seg_Addr for a given input x.
Let Bz denote the bit width of an operand z. With a uniform

segmentation, segment address computation is nearly free
since the leading Bxaddr bits of the input x are simply used to
address 2Bxaddr segments. A hierarchical segmentation has
the benefit of adaptive segment widths but at the price of
extra hardware for segment address computation. If uni-
form segments are used for an outer segmentation (for
example, lnð1þ xÞ in Fig. 7), a barrel shifter is needed. If
segments that vary by powers of two are selected for outer
segmentation (for example, �x lnðxÞ in Fig. 7), a leading
zero detector and two barrel shifters are required. In both
cases, a small ROM for storing the segmentation informa-
tion is necessary [28].

With approximations, the segment address is used to
index the coefficient ROM. The coefficient ROM has
M rows, where M is the number of segments. As illustrated
in Fig. 9, each row is a concatenation of the polynomial
coefficients to each segment.

With interpolations, the segment address indexes the
ROMs that hold the function values. Fig. 8 shows degree-1
and degree-2 method 1 single-port ROM architectures for
extracting the corresponding function values to each
segment. These architectures work for both uniform and
hierarchical segmentations. The degree-1 single-port design
in Fig. 8a uses ROM0 and ROM1 as the interleaved
memories. As illustrated in Fig. 10, ROM0 stores function
values with even indices, whereas ROM1 stores function
values with odd indices. The incrementer and the two
shifters ensure that the correct function values are extracted.
The least significant bit (LSB) of Seg_Addr is used as the
select signal of the two multiplexers to correctly order the
two function values read from the ROMs. The degree-2
single-port design in Fig. 8b works in the same way as the
degree-1 case, except that it has an extra ROM (ROM2).
ROM2 is used to store the midpoint fðxiÞ between the
function values fðxi�1Þ and fðxiþ1Þ of ROM0 and ROM1.
However, due to this midpoint approach, Seg_Addr is used
to address two consecutive segments.

Fig. 11 depicts the corresponding degree-1 and degree-2
architectures utilizing dual-point ROMs. In the degree-1
case (Fig. 11a), the ROM simply stores the function values in
order. Since the index of fðxiÞ is identical to Seg_Addr,
fðxiþ1Þ is simply the next location in the ROM. Analogously

692 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 5, MAY 2008

TABLE 1
Comparisons of the Number of Segments and Function Values

for Interpolations with Hierarchical Segmentation

Degree-2 method 2 results use adjusted function values. �REQ refers to
the error requirement.

Fig. 8. Single-port ROM architectures for extracting function values for degree-1 and degree-2 method 1 interpolations. ROM0 and ROM1 are

interleaved memories. (a) Degree-1. (b) Degree-2.

to the single-port case, the dual-port degree-2 design in
Fig. 11b is identical to the degree-1 design, with ROM1
storing the midpoints. Notice that, unlike the single-port
architectures, the dual-port architectures do not require
multiplexers at the ROM outputs.

In order to implement degree-2 method 2 interpolations,
the degree-2 architectures in Figs. 8b and 11b cannot be
used. Lewis [11] proposes a degree-2 method 2 architecture
involving a large collection of ROMs. Each segmentation
requires the function values to be partitioned into four
interleaved single-port ROMs, four multiplexers, an adder,
a barrel shifter, and some logic. For the �x lnðxÞ example in
Fig. 7, since 10 outer segments are required, a total of
40 ROMs would be necessary. Although method 2 demands
slightly fewer function values than method 1 (Table 1), due
to the overhead of control circuitries in each ROM, the total
amount of hardware required is likely more than method 1.
Furthermore, technology-specific issues need to be ad-
dressed: For instance, the size of an embedded block RAM
on Xilinx FPGAs is fixed at 18 Kbits. Consuming small
portions of multiple memories leads to poor device
utilization. Therefore, in the following discussions, we
consider method 1 when targeting degree-2 interpolations.

As noted earlier, for both approximations and interpola-
tions, the polynomial input ~x is defined as ~x ¼ ðx� xiÞ=h.
This means that, for approximations and degree-1 interpola-
tions, ~x will be over the range ~x ¼ ½0; 1Þ and, for degree-2
interpolations, ~x will be over the range ~x ¼ ½�1; 1Þ. For
approximations and degree-1 interpolations, this involves
selecting the least significantB~x bits of x that vary within the
segment. For instance, in a uniform segmentation involving
2Bxaddr segments, the most significant Bxaddr bits remain
constant and the remaining least significant part ~x varies
within a given segment. For degree-2 interpolations, the LSBs
that remain constant are left shifted by 1 bit and the most
significant bit (MSB) is inverted to give the range ~x ¼ ½�1; 1Þ.

The polynomial coefficients are easily computed from
the function values via constant shifts and additions/
subtractions by following (3) and (4) for degree-1 and

(9)-(11) for degree-2. Fig. 12 depicts the coefficient compu-
tation and polynomial evaluation circuit for degree-2
interpolations. One of the major challenges of such designs
is the determination of the number of bits for each operand,
which will be addressed in the following section.

In Fig. 12, the Horner method is utilized for the
evaluation of degree-2 polynomials. It has been shown in
[19] that a direct evaluation of the polynomial (that is,
C2 ~x2 þ C1 ~xþ C0) with the use of a dedicated squaring unit
and a carry-save addition (CSA)-based fused-accumulation
tree can lead to a more efficient VLSI implementation.
However, as will be shown in Section 7, our studies show
that this efficiency advantage does not necessarily hold for
FPGA implementations.

6 BIT WIDTH OPTIMIZATION

For hardware implementations, it is desirable to minimize
the bit widths of the coefficients and operators for area,
speed, and power efficiency while respecting the error

LEE ET AL.: HARDWARE IMPLEMENTATION TRADE-OFFS OF POLYNOMIAL APPROXIMATIONS AND INTERPOLATIONS 693

Fig. 9. Coefficient ROM organization for degree-d polynomial

approximation.

Fig. 10. Data for the interleaved memories ROM0 and ROM1 in single-

port degree-1 interpolation architecture (see Fig. 8a).

Fig. 11. Dual-port ROM architectures for extracting function values for

degree-1 and degree-2 method 1 interpolations. (a) Degree 1.

(b) Degree 2.

Fig. 12. Coefficient computation and polynomial evaluation circuit for

degree-2 interpolations.

constraint at the output. Two’s complement fixed-point
arithmetic is assumed throughout. Given an operand z, its
integer bit-width (IB) is denoted by IBz, and its FB width
is denoted by FBz, that is, Bz ¼ IBz þ FBz. The dynamic
ranges of the operands are inspected to compute the IBs,
followed by a precision analysis to compute the FBs, which
are based on the approach described in [29].

Many previous contributions on approximations and
interpolations optimize bit widths via a dynamic method,
where a group of arithmetic operators is constrained to
have the same bit width [11]. The design is exhaustively
simulated and the error at the output is monitored. This
process is performed iteratively until the best set of bit
widths is found. In contrast, the bit width methodology
presented here is analytical and the bit widths are allowed
to be nonuniform and are minimized via a user-defined cost
function involving metrics such as circuit area. Recently,
Michard et al. [30] have proposed an analytical bit width
optimization approach for polynomial approximations. The
work described in [30] focuses on minimizing bit widths
rapidly and achieving guaranteed error bounds. In contrast,
in this present work, the implementation costs of the
operators and tables are considered.

6.1 Framework

To compute the dynamic range of an operand, the local
minima/maxima and the minimum/maximum input values
of each operand are examined. The local minima/maxima
can be found by computing the roots of the derivative. Once
the dynamic range has been found, the required IB can be
computed trivially. Since piecewise polynomials are being
targeted, the polynomial evaluation hardware needs to be
shared among different sets of coefficients. The IB for each
operand is found for every segment and is stored in a
vector. Since the operand needs to be wide enough to avoid
an overflow for data with the largest dynamic range, the
largest IB in the vector is used for each operand.

There are three sources of error: 1) the inherent error �1
due to approximating/interpolating functions with poly-
nomials, 2) the quantization error �Q due to finite-precision
effects incurred when evaluating the polynomials, and
3) the error of the final output rounding step, which can
cause a maximum error of 0.5 ulp. In the worst case, �1 and
�Q will contribute additively, so, to achieve a faithful
rounding, their sum must be less than 0.5 ulp. We allocate
a maximum of 0.3 ulp for �1 and the rest is for �Q, which is
found to provide a good balance between the two error
sources. Round to the nearest must be performed at the
output f̂ðxÞ to achieve a faithful rounding, but either
rounding mode can be used for the operands. Since
truncation results in better delay and area characteristics
over round to the nearest, it is used for the operands.

Quantization errors �z for truncation and round to the
nearest for an operand z are given as follows:

Truncation : �z ¼ maxð0; 2�FBz � 2�FBz0 Þ; ð13Þ

Round to the nearest : �z ¼
0; if FBz � FBz0

2�FBz�1; otherwise;

�

ð14Þ

where FBz0 is the full precision of z before quantization. For
the addition z ¼ xþ y and the multiplication z ¼ x� y,
FBz0 is defined as follows:

z ¼ xþ y : FBz0 ¼ maxðFBx; FByÞ; ð15Þ

z ¼ xþ y : FBz0 ¼ maxðFBx; FByÞ: ð16Þ

Using the equations above, an analytical error expression
that is a function of the operand bit widths can be
constructed at the output f̂ðxÞ. Simulated annealing is
applied to the error expression in conjunction with a
hardware area estimation function (discussed in Section 6.2).

Table 2 shows the bit-widths determined for the degree-2
interpolation (Fig. 12) of lnð1þ xÞ accurate to 16 FBs (that is,
FBf̂ðxÞ ¼ 16) using hierarchical segmentation. A negative
IB refers to the number of leading zeros in the fractional
part. For example, for the operand C2, IB ¼ �9 indicates
that the first nine FBs of C2 will always be zero. This fact can
be exploited in the hardware implementation. The table
indicates that the bit widths of high-degree coefficients are
considerably smaller than those of low-degree coefficients,
that is, BC2

< BC1
< BC0

. This is always the case for both
approximations and interpolations and is due to the LSBs of
high-degree coefficients contributing less to the final
quantized result. The table also indicates that the width of
each function value is 23 bits. After hierarchical segmenta-
tion, it is found that a total of 31 function values is required.
Hence, the total size of the three ROMs in Fig. 8b for this
particular example is 23� 31 ¼ 713 bits.

6.2 Resource Estimation

Resource estimations are required as the cost function for
the simulated annealing process performed during the bit
width optimization step. More precise resource estimations
will lead to the determination of a better set of bit widths.
Hence, a precise resource estimation is crucial to achieving
fair comparisons between optimized approximations and
interpolations.

In this work, we perform a validation using Xilinx
FPGAs and thus need to identify appropriate cost functions.
Such cost functions are, of necessity, specifically to the

694 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 5, MAY 2008

TABLE 2
Bit-Widths Obtained after the Bit-Width Optimization for the Degree-2 Interpolation (Fig. 12)

to lnð1þ xÞ Accurate to 16 FBs Using Hierarchical Segmentation

target platform. For other synthesis tools and devices, other
target-specific resource models can be used with appro-
priate modifications. The primary building block of Xilinx-
Virtex-series FPGAs is the “slice,” which consists of two
4-input lookup tables (except for the recently released
Virtex-5, which uses 6-input lookup tables), two registers
and two multiplexers, and additional circuitry such as carry
logic and AND/XOR gates [31]. The four-input lookup table
can also act as 16� 1 RAM or a 16-bit shift register.
Although recent-generation FPGAs contain substantial
amounts of hardwired-dedicated RAM and dedicated
multipliers, we consider implementations based on slices
only in order to obtain comparisons on lookup table-based
structures. The estimated FPGA area is expressed in units of
slices for ROM, addition, rounding, and multiplication,
which are the four major building blocks of polynomial
structures. These resource estimates are only used during
the design optimization process. The resource utilization
results reported in Section 7 are based on experiments and
measurements and not estimates.

6.2.1 Read-Only Memory

A ROM can be implemented either by logic or by
configuring a series of lookup tables as memory. The size
of a ROM implemented via logic is rather difficult to predict
due to various logic minimizations performed during
synthesis. However, it is possible to estimate the size of a
lookup table ROM, which is known as the distributed ROM
[32]. Since each slice can hold 32 bits in its two lookup
tables, the slice count can be estimated by

Slices ¼ ROM Size = 32; ð17Þ

where the “ROM Size” is in bits. For instance, the degree-2
example in Table 2 with 31 function values would require
ð31� 23Þ=32 � 23 slices.

6.2.2 Addition

On FPGAs, additions are efficiently implemented due to the
fast carry chains, which run through the lookup tables.
Through the use of xor gates within the slices, two full
adders can be implemented within a slice [33]. The addition
xþ y requires maxðBx;ByÞ full adders. Therefore, the slice
count of an addition can be estimated by

Slices ¼ maxðBx;ByÞ=2: ð18Þ

6.2.3 Rounding

Whereas truncation does not require any hardware, round
to the nearest requires a circuitry for rounding. We perform
an unbiased symmetric rounding toward � inf , which
involves adding or subtracting half an LSB of the desired
output bit width. Hence, when rounding a Bx-bit number to
By bits, where Bx > By, we simply need a By-bit adder. The
slice count is given by

Slices ¼ By=2: ð19Þ

6.2.4 Multiplication

A commonly used but sometimes inaccurate measure of the
slice count of an Xilinx lookup table-based multiplication
x� y is given by

Slices ¼
Xn
i¼1

2n�i�1ðBx þ 2iÞ; ð20Þ

where n ¼ bðlog2 ByÞ þ 0:5c, which defines the number of

stages in the multiplier [34]. However, when Bx and By are

not powers of two, (20) can generate misleading estimates.

For instance, a 14-bit � 12-bit multiplier (that is, n ¼ 3)

requires 61 slices by using (20), whereas the actual mapped

area on the FPGA is 93 slices, which is over 50 percent

greater than the estimate.
In order to establish a more accurate measure, we have

mapped various lookup table multipliers with operand

sizes of 4 to 40 bits in steps of 4 bits on the FPGA and we

record the slice counts. The resulting plot for steps of 8 bits

is shown in Fig. 13. For any given Bx and By, we perform

bilinear interpolation using the data points in Fig. 13. For

the 14-bit � 12-bit multiplication, for instance, the inter-

polation results in 93 slices, which is identical to the actual

mapped area. An alternative approach to estimating the

multiplication area is to examine the additions involved and

incorporate (18). This approach gives better estimates than

(20) but is slightly inferior to the bilinear interpolation

approach described above.

7 EXPERIMENTAL RESULTS

The Xilinx XUP platform [35], which hosts a 0.13 �m Xilinx

Virtex-II Pro XC2VP30-7 FPGA is chosen for experimental

evaluation. The designs are written in behavioral VHDL.

Synplicity Synplify Pro 8.6.1 is used for synthesis and Xilinx

ISE 8.1.03i is used for placement and routing. The placement

and routing effort level is set to “high.” All designs are fully

combinatorial, with no pipeline registers. The Virtex-II Pro

XC2VP30-7 has a total of 13,696 slices. “Precision” refers to the

number of FBs at the output f̂ðxÞ. With the exception of

Table 3, which provides both ASIC and FPGA results, all

figures and tables represent FPGA results.
Distributed ROMs are used for all of the results.

However, distributed ROMs cannot realize true dual-port

ROMs: They emulate dual-port functionality by replicating

single-port ROMs [32], which has the obvious disadvantage

of area inefficiency. Thus, the single-port ROM architectures

in Fig. 8 are chosen for interpolations.

LEE ET AL.: HARDWARE IMPLEMENTATION TRADE-OFFS OF POLYNOMIAL APPROXIMATIONS AND INTERPOLATIONS 695

Fig. 13. Area variation of a Xilinx combinatorial LUT multiplier mapped

on a Virtex-II Pro XC2VP30-7 FPGA.

Table 3 compares the ASIC and FPGA implementation
results for 12-bit and 20-bit degree-2 approximations to
lnð1þ xÞ using the Horner rule (utilizing the standard
ripple-carry addition (RCA)) and the direct evaluation
approach via squaring and CSA-based fused accumulation
tree [19]. Results for the direct evaluation implementation
using RCA for the fused accumulation tree are also
provided as reference. The bit widths of the operands are
optimized via the approach described in Section 6. The
number of segments is identical for both the Horner and
direct evaluations and the coefficient bit widths are very
similar in the two approaches, thus resulting in comparable
coefficient ROM sizes. The ASIC results are obtained using
the UMC 0.13 �m standard cell library with Synopsys
Design Compiler and Cadence Encounter. The ASIC results
show that the direct approach requires more area than
Horner, but approximately halves the delay. As one might
expect, when targeting ASICs, CSA leads to a more efficient
design than RCA. However, a somewhat different trend is
observed with the FPGA results. Horner is still the best in
terms of area, but the differences in delays are now very
small. This is primarily due to the significance of routing
delays on FPGAs. Furthermore, the CSA results are inferior
to the RCA results in both area and delay. FPGAs contain
dedicated fast carry chains for additions and CSA cannot
exploit this feature, resulting in a less efficient implementa-
tion than the use of RCA.

Table 4 compares a uniform segmentation and a
hierarchical segmentation of 16-bit degree-2 approxima-
tions to three functions over x ¼ ½0; 1Þ. For lnð1þ xÞ and
sinðx�=2Þ, the hierarchical segmentation results in fewer
segments and less memory burden. Nevertheless, for the
extra circuitry required for computing the segment address,
the area on the device is larger and a minor delay penalty is
introduced. For �x lnðxÞ, however, due to its nonlinear
nature, significant memory and area savings are achieved
through the hierarchical segmentation, but at the expense of
moderate delay overhead. Hence, for the remaining results,

a uniform segmentation is used for lnð1þ xÞ and sinðx�=2Þ
and a hierarchical segmentation is used for �x lnðxÞ.

7.1 Memory

Table 5 shows the variation in the total number of
segments and ROM size of approximations/interpola-
tions. With respect to the degree-1 results, the segment
counts for approximations and interpolations are identical
for lnð1þ xÞ (a uniform segmentation) and interpolations
require just two segments for �x lnðxÞ (a hierarchical
segmentation). This is due to degree-1 interpolations
exhibiting comparable worst case error performance with
degree-1 approximations, as discussed at the end of
Section 3.2.1. The function �x lnðxÞ has high nonlinearities
over the interval and thus requires more segments than

696 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 5, MAY 2008

TABLE 3
ASIC and FPGA Implementation Results for 12-Bit
and 20-Bit Degree-2 Approximations to lnð1þ xÞ
Using the Horner Rule and Direct Evaluation [19]

RCA refers to ripple-carry addition, while CSA refers to carry-save
addition.

TABLE 4
Comparisons of the Uniform Segmentation and the Hierarchical

Segmentation of 16-Bit Degree-2 Approximations

TABLE 5
Variation in the Total Number of Segments

and ROM Size of Approximations/Interpolations

lnð1þ xÞ. Our examination of other functions confirms the
general trends observed in Table 5. Generally, degree-1
interpolations require in the range of 28 percent to
35 percent less ROM than approximations. This is because
degree-1 interpolations need to store one function value per
segment, whereas degree-1 approximations need to store
two coefficients per segment. This range is generally
consistent with, but at the lower end of, the range of
30 percent to 50 percent provided by Lewis, who considers
only the number of memory locations [11]. In contrast, we
also consider the impact of the bit widths and are thus able
to narrow the range of ROM size differences.

For degree-2 designs, interpolations require about twice
the number of segments as approximations. This is due to
the higher errors of degree-2 interpolations compared to
degree-2 minimax approximations, as discussed in Sec-
tion 3.2.2. The ROM size results indicate that interpolations
utilize in the range of 4 percent to 12 percent less memory
than approximations (these results, like those for degree-1,
generalize across other functions, in addition to the ones
shown in the table). This is a much smaller difference than
the reported range of 20 percent to 40 percent [11], [12] since
that work was focused primarily on specific architectures,
with ROM comparisons offered as estimates as part of the
general discussion. In contrast, this present work specifi-
cally focuses on implementation details such as operator bit
widths, which, in the degree-2 case, have the effect of
dramatically reducing the ROM differences between ap-
proximation and interpolation.

Table 6 compares the memory requirements of different
degree-2 architectures using a uniform segmentation for the
evaluation of sinðxÞ accurate to 24 FBs. We are able to save
significant memory over [36], mainly because, although
Lagrange polynomials are used in [36], minimax polyno-
mials are used in our work, which exhibit superior worst-
case error behavior. Compared to [19], our design requires
the same number of segments, but the ROM size require-
ment is slightly higher. In [19], an iterative bit-width
optimization technique based on an exhaustive simulation
is employed, which can result in smaller bit widths than our
approach (Section 6) but at the expense of longer optimiza-
tion times. Compared to the composite interpolation
architecture by Cao et al. [12], our design leads to margin-
ally higher memory requirements. This is because two
polynomials are combined in [12], which can reduce the
interpolation error slightly, but increases the computation
burden on the coefficient computation (five additions/
subtractions instead of three) and demands, fetching four
function values instead of three. The hybrid interpolation

architecture [12] stores the second-degree coefficient C2 in
the memory and the function values. This approach
eliminates two additions/subtractions in the coefficient
computation step but results in a threefold increase in
storage requirements.

7.2 Area and Delay

Fig. 14 illustrates the hardware area variation of approx-
imations/interpolations to lnð1þ xÞ. The upper and lower
parts of each bar indicate the portion used by the
computation and memory, respectively. The computation
area of interpolations is slightly larger than approximations,
most likely due to the overhead of the coefficient computa-
tion and the extra circuitries around the ROMs (an
incrementer and two multiplexers, as shown in Fig. 8).

Fig. 15 examines the hardware area variation of various
degree-1 and degree-2 approximations/interpolations. The
overall trend in degree-1 designs is similar to the ROM size
variation in Table 5 because the ROM size is the dominant
area factor in degree-1 approximations/interpolations, as
discussed earlier. The area requirements of degree-1
interpolations are similar to those of approximations at
precisions below 18-20 bits. However, at higher precisions,
degree-1 interpolations lead to significant area savings.
Although Table 5 suggests that degree-2 interpolations
require slightly less memory than approximations, the
hardware area of degree-2 interpolations is, in fact, higher.
This is due to the additional hardware required for
transforming function values to coefficients and the extra
circuitries for the ROMs.

LEE ET AL.: HARDWARE IMPLEMENTATION TRADE-OFFS OF POLYNOMIAL APPROXIMATIONS AND INTERPOLATIONS 697

TABLE 6
Memory Requirements of Different Degree-2 Architectures Using Uniform Segmentation

for the Evaluation of sinðxÞ Accurate to 24 Fractional Bits

Fig. 14. Area variation of approximations/interpolations to lnð1þ xÞ with

uniform segmentation. The upper and lower parts of each bar indicate

the portion used by computation and memory, respectively.

Fig. 16 shows the delay variation with precision of
approximations/interpolations. Interpolation generally suf-
fers delay penalties of around 5 ns relative to approxima-
tion due to the burden of extra computation. Note that, if
dedicated RAMs inside the FPGA are utilized, degree-1
designs would benefit more than degree-2 designs due to
their larger memory requirements. On the other hand, if
dedicated multipliers are utilized, degree-2 designs would
benefit more due to their extra multiplication step.

7.3 Power

To obtain power consumption, the current flowing into the
FPGA (which runs at 1.5 V) is measured via a multimeter at
room temperature. A 32-bit Tausworthe uniform random
number generator [37] is placed in front of each design to
supply random inputs. The output bits are XORed and fed
an output pin. The power results shown in this section
correspond to the total power, which is the sum of two main
components: static power and dynamic power. Static power
largely results from the transistor leakage current, whereas
dynamic power is primarily due to switching activities for
charging and discharging load capacitance. Although static
power is becoming increasingly significant as process
geometries shrink [38], dynamic power is still the dominant
factor in the 0.13 �m FPGA considered here.

Fig. 17 examines variations in the total power consump-
tion per megahertz with precision of approximations/

interpolations. The figure indicates that the total power

consumption per megahertz increases exponentially with

precision and the general trend tracks the area results in

Fig. 15. At precisions below 14-16 bits, degree-1 designs

have a modest power advantage over degree-2 designs. At

higher precisions, however, degree-2 designs demand less

power and the gap widens rapidly with precision. Degree-1

interpolations lead to considerable power savings over their

approximation counterparts due to their smaller memory

requirements.

7.4 Trade-Off Plots

Fig. 18 shows the scatter plots in the area and delay and

area and power space for 12-bit approximations/interpola-

tions, whereas Fig. 19 shows the corresponding scatter plots

for a 20-bit precision. The 12-bit precision plots indicate

that, depending on the function, degree-1 approximations/

interpolations are the most desirable in terms of all three

dimensions (area, delay, and power). The 20-bit precision

plots, however, exhibit Pareto-optimal behavior: The

majority of the data points are the best that can be achieved

without disadvantaging at least one dimension. In both

cases, the presence of results from both approximation and

interpolation, as opposed to one of these methods alone,

populates the space more richly and offers a wider range of

design options.

698 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 5, MAY 2008

Fig. 15. Area variation of approximations/interpolations.

Fig. 16. Delay variation of approximations/interpolations.

Different applications impose different constraints on
area, delay, power, and memory. Hence, depending on the
target function and precision requirements, the plots shown
here enable the selection of the most suitable function
evaluation method. If looking at single dimensions, for the
20-bit evaluation of lnð1þ xÞ, for instance, a degree-2
approximation leads to the least area, a degree-1 approx-
imation results in the shortest combinatorial delay, whereas
a degree-2 interpolation leads to the lowest memory and
power requirements. Furthermore, requirements involving
multiple dimensions can be satisfied at the same time: If an

application imposes an area below 1,400 slices, a combina-

torial delay below 55 ns, and a power consumption under

5 mW/MHz for the 20-bit evaluation of �x lnðxÞ, then a

degree-2 approximation provides a satisfactory solution.

8 CONCLUSIONS

We have examined the hardware implementation trade-offs

when evaluating functions via piecewise polynomial

approximations and interpolations. Hardware architectures

for approximations and interpolations have been described

LEE ET AL.: HARDWARE IMPLEMENTATION TRADE-OFFS OF POLYNOMIAL APPROXIMATIONS AND INTERPOLATIONS 699

Fig. 17. Power consumption variation of approximations/interpolations.

Fig. 18. Scatter plots in the area and delay and area and power space for 12-bit approximations/interpolations. Memory requirements are shown in

the square brackets.

Fig. 19. Scatter plots in the area and delay and area and power space for 20-bit approximations/interpolations. Memory requirements are shown in

the square brackets.

and realized on a 0.13 �m Xilinx Virtex-II Pro FPGA. Results

indicate that, although interpolations have an inherent

drawback of having to compute coefficients at runtime, they

have certain advantages over approximations. For degree-1

interpolations, thanks to a function value adjustment

approach at the compilation time, the worst-case error

behavior can be calibrated to be comparable to that of

degree-1 minimax approximations. This leads to an average

degree-1 memory savings of 28 percent to 35 percent over

approximation. In addition, for precisions exceeding 16 bits,

interpolation offers considerable savings in area and power

over approximation. For degree-2, the memory size reduc-

tions of interpolation over approximation are in the range of

only 4 percent to 12 percent, which are significantly lower

than what is commonly assumed. The degree-2 hardware

area and power consumption for approximation and

interpolation is found to be similar. The methodology

presented here can be used to produce area, delay, and

power trade-off plots, thereby enabling the choice of the

most suitable function evaluation method for a given

application requirement.

ACKNOWLEDGMENTS

The authors thank Hyungjin Kim and David Choi for their

assistance. The support of the US Office of Naval Research

under Contract N00014-06-1-0253, the US National Science

Foundation under Grants CCR-0120778 and CCF-0541453,

the Croucher Foundation, Xilinx Inc., and the UK Engineer-

ing and Physical Sciences Research Council under Grants

EP/C509625/1, EP/C549481/1, and GR/R 31409 is grate-

fully acknowledged. Dong-U Lee was with the Electrical

Engineering Department at the University of California, Los

Angeles when this work was conducted.

REFERENCES

[1] Y. Song and B. Kim, “Quadrature Direct Digital Frequency
Synthesizers Using Interpolation-Based Angle Rotation,” IEEE
Trans. VLSI Systems, vol. 12, no. 7, pp. 701-710, 2004.

[2] H. Shin, J. Lee, and J. Kim, “A Hardware Cost Minimized Fast
Phong Shader,” IEEE Trans. VLSI Systems, vol. 9, no. 2, pp. 297-
304, 2001.

[3] K. Karagianni, V. Paliouras, G. Diamantakos, and T. Stouraitis,
“Operation-Saving VLSI Architectures for 3D Geometrical Trans-
formations,” IEEE Trans. Computers, vol. 50, no. 6, pp. 609-622,
June 2001.

[4] P. Liu and S. Bhatt, “Experiences with Parallel N-Body Simula-
tion,” IEEE Trans. Parallel and Distributed Systems, vol. 11, no. 12,
pp. 1306-1323, Dec. 2000.

[5] Y. Hu, “CORDIC-Based VLSI Architectures for Digital Signal
Processing,” IEEE Signal Processing Magazine, vol. 9, no. 3, pp. 17-
34, 1992.

[6] K. Johansson, O. Gustafsson, and L. Wanhammar, “Approxima-
tion of Elementary Functions Using a Weighted Sum of Bit-
Products,” Proc. IEEE Int’l Symp. Circuits and Systems, pp. 795-798,
2006.

[7] J.-M. Muller, Elementary Functions: Algorithms and Implementation,
second ed. Birkhauser, 2006.

[8] F. de Dinechin and A. Tisserand, “Multipartite Table Methods,”
IEEE Trans. Computers, vol. 54, no. 5, pp. 319-330, May 2005.

[9] Numerical Analysis, Encyclopedia Britannica Online, http://
www.search.eb.com/eb/article-235500, 2006.

[10] M. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann,
2004.

[11] D. Lewis, “Interleaved Memory Function Interpolators with
Application to an Accurate LNS Arithmetic Unit,” IEEE Trans.
Computers, vol. 43, no. 8, pp. 974-982, Aug. 1994.

[12] J. Cao, B. Wei, and J. Cheng, “High-Performance Architectures for
Elementary Function Generation,” Proc. 15th IEEE Symp. Computer
Arithmetic, pp. 136-144, 2001.

[13] D. Lee, A. Abdul Gaffar, O. Mencer, and W. Luk, “Optimizing
Hardware Function Evaluation,” IEEE Trans. Computers, vol. 54,
no. 12, pp. 1520-1531, Dec. 2005.

[14] R. Michard, A. Tisserand, and N. Veyrat-Charvillon, “Small FPGA
Polynomial Approximations with 3-Bit Coefficients and Low-
Precision Estimations of the Powers of X,” Proc. 16th IEEE Int’l
Conf. Application-Specific Systems, Architecture and Processors,
pp. 334-339, 2005.

[15] A. Noetzel, “An Interpolating Memory Unit for Function Evalua-
tion: Analysis and Design,” IEEE Trans. Computers, vol. 38, no. 3,
pp. 377-384, Mar. 1989.

[16] N. Takagi, “Powering by a Table Look-Up and a Multiplication
with Operand Modification,” IEEE Trans. Computers, vol. 47,
no. 11, pp. 1216-1222, Nov. 1998.

[17] M. Arnold and M. Winkel, “A Single-Multiplier Quadratic
Interpolator for LNS Arithmetic,” Proc. 19th IEEE Int’l Conf.
Computer Design, pp. 178-183, 2001.

[18] J. Detrey and F. de Dinechin, “Table-Based Polynomials for Fast
Hardware Function Evaluation,” Proc. 16th IEEE Int’l Conf.
Application-Specific Systems, Architecture and Processors, pp. 328-
333, 2005.

[19] J. Piñeiro, S. Oberman, J. Muller, and J. Bruguera, “High-Speed
Function Approximation Using a Minimax Quadratic Interpola-
tor,” IEEE Trans. Computers, vol. 54, no. 3, pp. 304-318, Mar. 2005.

[20] M. Schulte and E. Swartzlander Jr., “Hardware Designs for
Exactly Rounded Elementary Functions,” IEEE Trans. Computers,
vol. 43, no. 8, pp. 964-973, Aug. 1994.

[21] E.G. Walters III and M. Schulte, “Efficient Function Approxima-
tion Using Truncated Multipliers and Squarers,” Proc. 17th IEEE
Symp. Computer Arithmetic, pp. 232-239, 2005.

[22] H. Aus and G. Korn, “Table-Lookup/Interpolation Function
Generation for Fixed-Point Digital Computations,” IEEE Trans.
Computers, vol. 18, pp. 745-749, 1969.

[23] V. Paliouras, K. Karagianni, and T. Stouraitis, “A Floating-Point
Processor for Fast and Accurate Sine/Cosine Evaluation,” IEEE
Trans. Circuits and Systems II: Analog and Digital Signal Processing,
vol. 47, no. 5, pp. 441-451, 2000.

[24] J. McCollum, J. Lancaster, D. Bouldin, and G. Peterson, “Hard-
ware Acceleration of Pseudo-Random Number Generation for
Simulation Applications,” Proc. 35th IEEE Southeastern Symp.
System Theory, pp. 299-303, 2003.

[25] P. Lamarche and Y. Savaria, “VHDL Source Code Generator and
Analysis Tool to Design Linear Interpolators,” Proc. First IEEE
Northeast Workshop Circuits and Systems, pp. 69-72, 2003.

[26] J. Rice, The Approximation of Functions, vol. 1. Addison-Wesley,
1964.

[27] J. Mathews, Numerical Methods for Mathematics, Science, and
Engineering. Prentice Hall, 1992.

[28] D. Lee, W. Luk, J. Villasenor, and P. Cheung, “Hierarchical
Segmentation Schemes for Function Evaluation,” Proc. IEEE Int’l
Conf. Field-Programmable Technology, pp. 92-99, 2003.

[29] D. Lee and J. Villasenor, “A Bit-Width Optimization Methodology
for Polynomial-Based Function Evaluation,” IEEE Trans. Compu-
ters, vol. 56, no. 4, pp. 567-571, Apr. 2007.

[30] R. Michard, A. Tisserand, and N. Veyrat-Charvillon, “Optimisa-
tion d’Opérateurs Arithmétiques Matériels à Base d’Approxima-
tions Polynomiales,” Proc. Symp. Architectures Nouvelles de
Machine, pp. 130-141, 2006.

[31] C. Maxfield, The Design Warrior’s Guide to FPGAs. Newnes, 2004.
[32] Using Look-Up Tables as Distributed RAM in Spartan-3 Generation

FPGAs (Xilinx Application Note: XAPP464). Xilinx, http://www.
xilinx.com/bvdocs/appnotes/xapp464.pdf, 2005.

[33] Design Tips for HDL Implementation of Arithmetic Functions: Xilinx
Application Note: XAPP215, Xilinx, http://www.xilinx.com/
bvdocs/appnotes/xapp215.pdf, 2000.

[34] Variable Parallel Virtex Multiplier V2.0: Xilinx Logicore Product
Specification. Xilinx, http://www.xilinx.com, 2000.

[35] Xilinx Univ. Program Virtex-II Pro Development System: Hardware
Reference Manual, Xilinx, http://www.xilinx.com/univ/
xupv2p.html, 2005.

700 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 5, MAY 2008

[36] V. Jain, S. Wadekar, and L. Lin, “A Universal Nonlinear
Component and Its Application to WSI,” IEEE Trans. Components,
Hybrids, and Manufacturing Technology, vol. 16, no. 7, pp. 656-664,
1993.

[37] P. L’Ecuyer, “Maximally Equidistributed Combined Tausworthe
Generators,” Math. Computation, vol. 65, no. 213, pp. 203-213, 1996.

[38] “Power Consumption in 65 nm FPGAs,” Xilinx White Paper
WP246, Xilinx, http://www.xilinx.com/bvdocs/whitepapers/
wp246.pdf, 2006.

Dong-U Lee received the BEng degree in
information systems engineering and the PhD
degree in computing from the Imperial College
London in 2001 and 2004, respectively. From
2005 to 2007, he was a postdoctoral researcher
in the Department of Electrical Engineering at
the University of California, Los Angeles
(UCLA), where he developed high-performance
hardware designs for wireless communications
and mathematical function evaluations. He is

now a research scientist at Mojix Inc., Los Angeles, specializing in the
hardware implementation aspects of RFID receivers. His research
interests include computer arithmetic, communications, design automa-
tion, reconfigurable computing, and video image processing. He is a
member of the IEEE.

Ray C.C. Cheung received the BEng degree in
computer engineering and the MPhil degree in
computer science and engineering from the
Chinese University of Hong Kong (CUHK) in
1999 and 2001, respectively, and the PhD
degree in computing from the Imperial College
London in 2007. From January 2002 to Decem-
ber 2003, he was an instructor in the Department
of Computer Science and Engineering at CUHK.
He was with Stanford University and the

University of California, Los Angeles (UCLA) in 2005 and 2006 as a
visiting scholar. He worked as a postdoctoral researcher in the
Department of Electrical Engineering at UCLA. He is currenlty a
research engineer at Solomon Systech Limited, Hong Kong. His current
research interests are reconfigurable computing and computer arith-
metic hardware designs. He is a member of the IEEE.

Wayne Luk received the MA, MSc, and DPhil
degrees in engineering and computer science
from the University of Oxford, United Kingdom.
He is currently a professor of computer en-
gineering in the Department of Computing at
Imperial College London and a visiting professor
iat Stanford University, California, and Queen’s
University, Belfast, United Kingdom. His re-
search interests include the theory and practice
of customizing hardware and software for

specific application domains such as multimedia, communications, and
finance. Much of his current work involves high-level compilation
techniques and tools for parallel computers and embedded systems,
particularly those containing reconfigurable devices such as field-
programmable gate arrays. He is a senior member of the IEEE.

John D. Villasenor received the BS degree in
electrical engineering from the University of
Virginia in 1985 and the MS and PhD degrees
in electrical engineering from Stanford University
in 1986 and 1989, respectively. From 1990 to
1992, he was with the Radar Science and
Engineering Section at the Jet Propulsion
Laboratory, Pasadena, California, where he
developed methods for imaging the Earth from
space. In 1992, he joined the Department of

Electrical Engineering at the University of California, Los Angeles
(UCLA), where is currently a professor and was the vice chair of the
department from 1996 to 2002. His research interests include commu-
nications, computing, imaging and video compression, and networking.
He is a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LEE ET AL.: HARDWARE IMPLEMENTATION TRADE-OFFS OF POLYNOMIAL APPROXIMATIONS AND INTERPOLATIONS 701

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

