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Abstract

The recent turmoil in global credit markets has demon-

strated the need for advanced modelling of credit risk,

which can take into account the effects of changing eco-

nomic conditions on portfolios of loans. Such models are

most easily described as Monte-Carlo simulations, but take

too long to converge in software based simulators. This pa-

per describes a hardware implementation of a loan portfo-

lio simulator, which uses an event based model to describe

changes both in prevailing economic conditions, and the

behaviour of individual loans within the portfolio. Three

distinct variants of the simulator are developed using trans-

formations of the simulation algorithm, with each variant

trading off area utilisation against the efficiency with which

different event types can be processed. As the distribution of

event types is highly dependent on the input data, each of the

three variants provides the highest overall performance per

FPGA for some set of input data characteristics. The hard-

ware simulators are implemented using a Virtex-4 xc4vsx55

device running at 233MHz in an RC2000 PCI card, and

compared to four parallel software simulation threads run-

ning in a quad-core Pentium-4 Core2 at 2.4GHz, providing

a speed-up of between 60 and 100 times.

1 Introduction

Financial services companies continually look for new

ways to repackage and modify financial products, to provide

a better match between the different risk-profiles required

by debtors and creditors. One example is in the securitisa-

tion of portfolios of loans, whereby a large number of rel-

atively risky loans (e.g. sub-prime mortgages) are repack-

aged and resold as bonds with different risk-return profiles.

During the lifetime of the bonds a certain number of loans

will default, so when the bonds mature the lowest risk (and

most expensive) bonds are paid off first, then the next higher

risk, and so on. Depending on how many loans default, one

or more of the high risk bonds may not provide any payout.

Reselling debt in this way is highly effective, but it is

critical that the risk of each bond is accurately assessed. If

economic conditions change in a way that affects all loans in

the portfolio (for example, if the interest rate paid on mort-

gages increases), then the default risk of all loans may in-

crease, and so the number of bonds that will not payout will

increase. The risk of the bonds is assessed using stochastic

models, but the sophistication of these models is limited by

the speed with which they can be evaluated in software.

In this paper we present a hardware accelerated loan

portfolio simulator, using a flexible stochastic loan model.

Our contributions are:

• A description of an event-based loan portfolio model,

incorporating both environmental events and individ-

ual loan events.

• Three different hardware architectures for simulat-

ing the model, each of which provides different

performance-area characteristics.

• An analysis of the achieved hardware performance,

showing that the choice between the three hardware ar-

chitectures must be made at run-time to match simula-

tor performance to the characteristics of the simulation

input data.

• A comparison between a software implementation

running on four Pentium-4 CPUs, and a Virtex-4

xc4vsx55 accelerator card, showing a speedup of be-

tween 60 and 100 times.

2 Motivation

Consider a set of n loans, such as a set of mortgages or

corporate bonds. One hopes that each loan will be paid back

in full, but there is a chance that each loan might default

(i.e. the loan will not be repaid). To estimate the proba-

bility of default, the loans can be classified into risk bands,

from low-risk, where there is almost no risk of default, to

very high risk, where the probability of seeing any return

on the loan is quite unlikely. At the outset most loans will

be low-risk (else why would they receive a loan?), but dur-

ing the lifetime of the loan the riskiness may vary, both up



and down. This variation may be due to purely intrinsic

factors, for example the viability of a given business, or the

unemployment of a house-holder, or it may be due to extrin-

sic factors, such as the prevailing interest rates and market

conditions. Given this set of n loans, a lender is interested

in how many of the loans can be expected to default, and

what fraction of the n loans will end up in each risk class.

This problem also extends beyond the initial lender, due

to the wide-spread use of debt reselling, where pools of

risky debt are used to create a spectrum of assets of vary-

ing risk. For example, the pool of n loans might be resold

as two bonds, where the first bond has first claim on all

loan repayments, and the second bond is only repaid after

the first bond has been paid off. During the lifetime of the

bonds a number of loans will probably default, so the holder

of the second bond is unlikely to receive the full value of the

bond, but only if a huge number of loans default will the first

bond-holder lose any money. In this a way a pool of risky

loans is transformed into one class of high-price low-risk

assets, and another class of low-price high-risk assets.

When creating and selling these bonds, it is important

to determine how risky they actually are, which requires us

to estimate the number of bonds that will have defaulted at

different points in the future. A simple model might assume

that each loan is independent, and has a fixed probability

of defaulting before the bond payout date, but this ignores

reality: external factors such as interest rates can affect all

loans at once, and could cause a large number of loans to

default at once. The bond seller is also interested in the

risk-adjusted value of the non-defaulted loans over time, as

a portfolio with many risky loans is worth much less than

the same number of stable loans.

3 Simulation Model

To estimate the composition of a loan portfolio over time

(both the number of loans, and their current risk classifi-

cation), we need a model that can capture both the intrin-

sic risk of the loans, plus the extrinsic factors. The model

presented here uses the credit risk model of Davis and Ro-

driguez [1], which requires two stochastic processes. The

environment process is an independent stochastic process

with a finite number of states representing different market

conditions, for example “Growth”, “Recession”, and “Nor-

mal”. The environment process then randomly moves be-

tween states according to a set of transition probabilities.

The second process is the obligor process, which models

the changes in the portfolio of loans. Rather than modelling

each individual loan, loans with similar risk characteristics

are grouped into a finite number of classes, and only the

number of loans in each class is recorded. A loan default

event means that the count for that class decreases by one,

while a risk reclassification (for example a loan improves in

quality) means that the count for the old class decreases by

one and the count for the new class increases by one.

Unlike the environment process, the obligor process is

not truly independent, as the probability of loan reclassifi-

cation and defaults changes according to external factors.

For example, when market conditions are good the proba-

bility of defaults is low and very few loans will decrease

in quality, but when conditions are bad the probability of

defaults will rise and many loans will move into the poor

risk classes. This effect is captured by making the default

and reclassification rates of the obligor process explicitly

dependent on the state of the environment process.

More formally, assume we have m loan classes with dif-

fering risk characteristics, from good to bad. Each of the

n loans within the portfolio is assigned to one risk class,

with the number of loans in each class stored as c1..cm,

where n =
∑m

i=1 ci. The aim of the simulator is to step

the model forward through time, determining how c1..cm

changes over time.

Within each loan class there are three possible events,

each of which has an associated rate:

Upgrade (Ui) A loan is upgraded from class i to i − 1.

The loan in question has become less risky, is less likely to

default, and so is more valuable.

Downgrade (Di) A loan is downgraded from class i to i+1
(it has become riskier, and more likely to default).

Default (Xi) A loan in class i is removed from the portfolio

(for example, the debtor declares bankruptcy).

These events are shown graphically in Figure 1a for a

simple model with just two loan classes. The vertical axis

shows c1, the number of loans in the less risky class, and the

horizontal shows c2, the number of riskier loans. The diago-

nal dashed lines identify groups with the same total number

of loans, but composed of different proportions from each

loan class.

The point in black identifies the state where the portfolio

contains three loans in the low-risk category, and two in the

high-risk category. From this point there are four possible

transitions to the next portfolio. The upgrade event (U2) is

the only event that improves the value of the portfolio, as the

number of loans stays the same and the overall risk of the

portfolio decreases. The downgrade event (D1) also keeps

the number of loans the same, but now the overall risk of

default has increased. The two default events (X1 and X2)

decrease the total number of loans, and so directly affect the

value of the portfolio. All else being equal, X1 is the worst

event, as not only has a loan been lost, but the ratio of high

risk to low risk loans has increased.

As well as loan events, the simulation also needs to

model changes in environment which affect the loans. In

this model we define k distinct environments, for example

with k = 3 these might roughly correspond to economic
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(b) Loan count lattice extended with environmental conditions.

Figure 1: Lattices used to encode current state of simulation portfolio.

conditions such as “Growth”, “Normal”, and “Recession”.

Under growth conditions loans might experience more up-

grade events, while in a recession the number of down-

grades and defaults would increase. The environment can

be viewed as an additional dimension to the simulation lat-

tice, shown in Figure 1b. Changes in the environment index

(i.e. movements to the left and right) do not directly change

the portfolio value, but they alter the likelihood of future

loan events within each vertical cross-section.

We now provide a formal description of the simulation’s

stochastic process. A number of the most important model

elements introduced in this section are summarised in Ta-

ble 1. Ranges with square brackets are integer ranges with

inclusive bounds, while real ranges are shown using an-

gle brackets and vertical lines for inclusive and exclusive

ranges, respectively.

Both loans and the environment are modelled as Poisson

processes, with an event rate defined by the current envi-

ronment. The array of constants r[i,e] gives the event rates

within each loan class and the environment class. Note that

the rate for a loan class applies to each loan within the class,

so as the number of loans within a given class increases, the

overall event rate for that class also increases. However, in

the environment class (i = 0) there is only ever one envi-

ronment, so r[0,e] gives the event rate directly.

The probability of an event being either an upgrade, a

downgrade, or a default is given by two arrays of constants,

u[i,e] and d[i,e]. Note that these probabilities are conditional

upon a given event already having occurred in class i; they

say nothing about whether an arbitrary event is an event

within class i:

u[i,e] = Pr [∆ = Ui|∆ ∈ Ei, e = e] (1)

d[i,e] = Pr [∆ = Di|∆ ∈ Ei, e = e] (2)

1− d[i,e] − u[i,e] = Pr [∆ = Xi|∆ ∈ Ei, e = e] (3)

The last statement shows that probability of default is im-

plicitly defined by these two arrays of constants. To ensure

that the probabilities are well defined and that it is impossi-

ble for a default event to occur in the environment class, the

following condition is required:

∀e :
(

u[0,e] + d[0,e] = 1
)

∧
(

∀i : u[i,e] + d[i,e] ≤ 1
)

(4)

As with the rate constants, the arrays ui,e and di,e are con-

ditional upon the current environment index (e).

Given the number of loans in each asset class (c1..cm)

and the current environment index, the overall event rate

(a0..am) within each class (including the environment) can

be determined:

â =
m

∑

i=0

ai ai =

{

r[i,e], if i = 0
r[i,e]ci, otherwise

(5)

The sum of all the individual class rates (â) provides the

event rate for the entire system. As the loan and environ-

ment processes are Poisson process, the probability distri-

bution of the time till the next event follows the exponential

distribution:

Pr(t < τ) = exp (−tâ) τ ∼ Exp(â) (6)
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m - ℵ Number of asset classes

k - ℵ Number of environments

r[i,e]
i ∈ [1..m], e ∈ [1..k] 〈0..∞| Event rates for each asset in class i

i = 0, e ∈ [1..k] 〈0..∞| Environment event rate

u[i,e] i ∈ [0..m], e ∈ [1..k] 〈0..1〉 Probability that an event on class i is an upgrade

d[i,e] i ∈ [0..m], e ∈ [1..k] 〈0..1〉 Probability that an event on class i is a downgrade

E
v
en

ts

Ui
i ∈ [1..m] - An upgrade event to one asset in class i

i = 0 - An upgrade (improvement) to the environment

Di
i ∈ [1..m] - An downgrade event to one asset in class i

i = 0 - An downgrade (degradation) of the environment

Xi i ∈ [1..m] - A default event to one asset in asset class i
Ei i ∈ [1..m] Ei ∪Di ∪Xi The set of events that can occur in class i
Ei i = 0 E0 ∪D0

∆ - E0..m The type of the next event to occur

τ - 〈0..∞〉 The time until the next event occurs

S
ta

te

e - 1..k Current environment index

ci i ∈ [1..m] ℵ Current count of assets in each asset class

t - ℜ Current time

Table 1: Guide to constants, state elements, and events used in the simulation.

The probability distribution of the next event class can

be given independently of the time distribution, by looking

at the ratio of the rate of each class to the rate of the overall

system:

Pr(∆ ∈ Ei) = ai/â (7)

The type of each individual event is then given by the prob-

abilities of up and down movements in the current environ-

ment (as given by u[i,e] and d[i,e]), allowing the probabilities

of each event to be directly constructed:

Pr(∆ = Ui) = u[i,e]ai/â (8)

Pr(∆ = Di) = d[i,e]ai/â (9)

Pr(∆ = Xi) = (1− u[i,e] − d[i,e])ai/â (10)

We have now completely specified the probability distri-

bution of the time till (τ ) and type (∆) of the next event in a

simulation, given the current simulation state (c1..cm, e, t).

It only remains to define how the state changes in response

to each event:

ci ←







ci − 1, if ∆ ∈ Ei

ci + 1, if ∆ ∈ {Ui+1,Di−1} ∧∆ 6= U0

ci, otherwise

(11)

e←







e + 1, if ∆ = D0

e− 1, if ∆ = U0

e, otherwise

(12)

t← t + τ (13)

4 Simulation Algorithms

The simulation process is now completely defined,

which just leaves the question of how to simulate it algo-

rithmically. There are a number of possibilities, each of

which has different performance characteristics, but all of

which simulate exactly the same random process. The al-

gorithms presented here are based on those used in biolog-

ical cell simulations [2], with extensions to incorporate the

stochastic environment process.

4.1 The First Reaction Method

The First Reaction Method (FRM) does not calculate the

time till the next event within the system as seen in Equa-

tion 6, but instead calculates the time till the next event

within each class. We already know how to calculate the

rate of each class (a0..am), so the time till the next event in

each class (τi) is given by:

Pr(t < τi) = exp (−tâ) /ai τi ∼ Exp(ai) (14)

Once τ0..τm have been generated, the earliest event (i.e. the

smallest τi) is taken as the event that actually happened.

This leads to the following algorithm:

1. Calculate the event rates (Eqn. 5).

2. Generate τ0..τm using m+1 exponential random num-

bers (Eqn. 14).

3. Find the minimum τi, and so select event class i.

4. Select ∆ from the set of events {Ui,Di,Xi} using one

uniform random number (Eqn. 10).



5. Update the state variables (Eqn. 13).

The exponential random numbers required in Step 2 have

varying rate parameters, but efficient random number gen-

erators can typically produce just one rate. However, a stan-

dard exponential generator E ∼ Exp(1) can be converted

to any rate with a division:

τ = E/ai ∼ Exp(ai) (15)

4.2 The Next Reaction Method

The Next Reaction Method (NRM) differs from the FRM

by considering the absolute times of events, rather than the

time relative to the current simulation time. We can generate

a set of random absolute event times t0..tm for each class

by adding the current simulation time:

ti = t + τi (16)

As before we can then look for the earliest time to identify

the class of the next event.

The point of converting from relative to absolute time is

that it allows us to exploit the memoryless property of the

exponential distribution:

Pr(E > t + s|E > s) = Pr(E > t) (17)

Essentially this says that the fact that an event hasn’t hap-

pened by time s does not change the expected waiting time

until the next event after time s. In terms of the simulation,

this means that after selecting the earliest time ti (which de-

termines the time of the next event), all the other potential

event times occur after time ti, and so are still valid random

times as long as the rate of the class does not change.

In the simplest case, this means that if the event Xi is

observed (an asset default), the only new event time which

needs to be calculated is ti: none of the other classes

event rates have changed, so the probability distribution till

their next events is the same. In the case of Di (a loan

downgrade) both ai and ai+1 change, as ci is decremented

and ci+1 is incremented, so both ti and ti+1 must be re-

generated. The only case in which all times must be re-

calculated is if an environment event (U0 or D0) occurs;

assuming we have no specific knowledge about the event

rate and probability matrices (r[i,e],u[i,e], and d[i,e]), then

the distributions of t0..tm could all potentially change. Ta-

ble 2 gives the set of classes indices dependent on each type

of event.

The full Next Reaction Method algorithm is:

1. First step only: Generate random event times t0..tm
for each class (Eqn. 16).

2. Select class i by finding the minimum of t0..tm.

Ui Di Xi

i = 0 [0..m] [0..m] -

i ∈ [1..m] {i− 1, i} {i, i + 1} {i}

Table 2: Classes dependent on event types.

3. Select ∆ from the set of events Ei using one uniform

random number (Eqn. 10).

4. Update the simulation state variables (Eqn. 13).

5. Regenerate tj for all j ∈ D(∆); do not change tj
where j /∈ D(∆).

Gibson’s Next Reaction Method [2], from which this

NRM algorithm was adapted, was originally developed for

simulations of biological process in cells, where there are

usually hundreds or thousands of classes (molecule types).

With so many classes it becomes important to optimise any

processes which operate across all m classes in each step,

specifically the search in Step 2. With this in mind, a prior-

ity queue data structure is used, reducing the cost per step

from O(m) to O(log(m)).
However, in the loan simulation model the number of

classes is much smaller, typically three to five, and never

more than ten. A priority queue is a relatively complex data-

structure, requiring data-dependent branching and memory

accesses, so the fixed cost of each update is significant (ei-

ther in CPU time or hardware area). With few classes the

fixed costs outweigh the better asymptotic performance, so

it is more efficient to use a direct search for the minimum

time.

5 Mapping to Hardware

In this section the mapping of the simulation algo-

rithms into hardware is described, showing the architectural

choices made in terms of data-types and simulation archi-

tecture, and the three different simulator architectures that

are developed.

5.1 Data Types

The simulation algorithms use a number of different

data-types, which must be mapped into concrete hardware

data-types. There is obviously some flexibility in this map-

ping, but the following choices are made:

Loan Counts c1..cm : The number of loans in each class

must be exactly represented, and cannot take on fractional

values, so unsigned integers are used.

Selection Thresholds d[i,e] and u[i,e] : These are values in

the range < 0..1 >, and only need to be compared with

uniform random numbers in < 0..1 > so a fixed point rep-

resentation with no integer bits is used.



Event Rates r[i,e] : The event rates for different classes

could differ by many orders of magnitude, for example very

stable loan event rates might be 1000 times more likely than

very risky loan rates, while the environment process rate

might be orders of magnitude lower than the stable loan

rate. To allow maximum flexibility in the portfolios that

can be simulated, event rates are represented using floating-

point.

Times t, τ0..τm, t0..tm : As with event rates, the magni-

tude of times within the simulation may vary significantly,

as τi for a risky class containing many loans may range over

just the next few hours, while for a stable class with few

loans it may range over months or years. The time scale of

portfolios also changes as loans default, with the time be-

tween events increasing as the number of loans remaining

decreases. To accommodate changes in time scale and to

maximise flexibility floating-point is selected.

5.2 Architectural Style

The process for simulating loan portfolios is inherently

iterative, as each simulation step depends on the result of

the previous step. This introduces a loop-carried depen-

dency between steps, that cannot be optimised out. As the

iteration step requires many high-latency floating-point op-

erations, an architecture that required each simulation step

to complete before the next started would achieve very low

resource utilisation.

To maximise hardware utilisation we adopt a C-Slow ap-

proach [3], so instead of having just one simulation execut-

ing at once, multiple simulations move through the pipeline

in parallel. For example, if the simulation step pipeline re-

quires j cycles, then j independent simulation states enter

the pipeline on j consecutive cycles. As simulations exit

the pipeline they are either circulated back to the top of the

pipeline for the next step, or are removed from the system

and a new initial simulation state enters the pipeline.

The C-Slow approach has been used in FPGA based sim-

ulations before [4], but is particularly appropriate in this

case as the number of steps taken by a given simulation is

unknown. A simulation where the environment process re-

mains neutral might take very few steps, while another sim-

ulation with a recession might take many more steps, be-

cause so many loans are being degraded or defaulting. The

C-Slow architecture automatically manages the system, en-

suring that no matter how many steps each simulation takes,

the pipeline remains occupied on every single cycle.

5.3 First Reaction Method

The abstract FRM algorithm can be mapped almost di-

rectly into a hardware implementation. Figure 2 shows
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Figure 2: Flowchart for the First Reaction Method pipeline.

the data-flow chart for the simulation update pipeline, spe-

cialised for three loan classes, i.e. m = 3. The first task

is to generate τ0..τm, the time until the next event in each

class occurs. This uses the small data-flow graph shown in

the lower left of the figure, with one instance per class (in-

cluding the environment). The array r[i,e] is partitioned into

m+1 RAMs, so each instance of Gen τi has a private RAM

containing just r[i,0]..r[i,k]. Note that the environment class

does not have an associated count, so its generator is opti-

mised by storing the rate as 1/r[0,e] and using a multiplier

instead of a divider.

Once τ0..τm have been generated, the earliest time must

be selected, using a tree of compare-select nodes. This stage

is actually rather simple, as all times will be positive, non-

zero, and non-exceptional, so basic unsigned adders can be

used. The minimum time ti is carried through the tree along

with i, then added to t.

Given that the event class i has been selected, we next

need to decide which kind of event should be selected.

The selection thresholds u[i,e] and d[i,e] are stored as pairs

(u[i,e], u[i,e] + d[i,e]) in a RAM, indexed by the selected

event and current environment. A single uniform random

number is then generated, and the relationship of the ran-

dom number to the pair (above, between, or below) deter-

mines the event type (Xi, Di, or Ui).

The final stage of the simulation step is to update the

environment index and asset counters. As these are all sim-

ple integers, and the only update process required is to in-

crement or decrement in response to each event type (see

Equation 13), few resources are required in this stage. The

simulation state has now been completely updated, and can

return to the top of the pipeline.



t1 t2 t3

e

Find
index j

t0

Gen
tj

Select cj

c1 c2 c3

t1 t2 t3t0

valid

valid

Update
Mask

t

Add

Figure 3: The first stage of the Next Reaction architecture,

which calculates the next event time of one class on each

pass.

5.4 Next Reaction Method

Unlike the FRM, the Next Reaction Method (NRM)

must be modified to be efficient in hardware. The problem

with the software formulation is that, depending on the kind

of event that occurred, either 1, 2, or m+1 new event times

must be calculated in the final step. A hardware solution

requires enough resources to cope with the worst case, so

enough resources to generate m+1 are needed. This would

require even more resources than the FRM, as the NRM re-

quires an additional adder to convert to absolute time, but in

most steps only 1 or 2 new random times are needed.

The solution we adopt is to separate the simulation step

into two stages. The first stage is concerned solely with

generating new event times, but can only generate one new

random time in each pass. So in the case of an environment

event, when all m + 1 of t0..tm must be regenerated, the

simulation state must pass through the pipeline m+1 times

before all the times are ready. However, in the far more

common case of a default, all the new times are ready after

one pass, or two passes for a loan upgrade or downgrade.

The structure of this first stage is shown in Figure 3. The

most important feature is the addition of an extra simulation

state variable valid. This is an m + 1 bit vector, where the

state of bit i indicates whether the time ti is currently us-

able, or needs to be generated. On each pass the first unset

bit is used to determine an invalid ti, and the selected ti is

generated and updated. The valid bit-mask is then modified

to show that the time is valid, and the process will continue

on the next pass.

The second stage of the NRM is very similar to the sec-

ond stage of the FRM (i.e. after τ0..τm have been calcu-

lated). As before, the minimum time must be found to de-

termine the selected event class, but the times are now ab-

solute, so the minimum ti can be directly output as the new

value of t.

The major addition when updating the simulation state,

is that the validity of t0..tm (as indicated by valid) must be

respected. This means that the simulation state is only up-

dated if all bits of valid are set. If any bits are cleared then

the simulation state must be passed through unchanged so

that the first stage can generate more event times. Addition-

ally, the validity of t0..tm must be modified depending on

which event occurred: if Xi was selected then only bit i of

valid is cleared, while if U0 or D0 was selected then all bits

must be cleared.

The central idea of the hardware NRM method is to op-

timise for the average case, rather than the worst case. Usu-

ally (though not always), the rate of environment events is

much lower than that of loan events, so in most cases only

1 or 2 passes will be required per step, rather than the worst

case m + 1. However, it may well be the case that loan up-

grades and downgrades are more frequent that loan defaults,

in which case most simulation steps will require two passes.

To cater for this case, we can extend the NRM archi-

tecture with two time generation units, so the first stage

is able to replace two of t0..tm per cycle. In this version,

the simulation pipeline only requires one pass after all loan

events; only after an environment event are multiple passes

required. In the following evaluation we distinguish be-

tween these two versions of the NRM as Next(Single) and

Next(Dual).

6 Evaluation

In this section we examine the performance of the three

suggested architectures. First we look at the raw resource

counts, but then the more interesting question of achieved

performance is examined.

The three simulation architectures are implemented us-

ing the Handel-C language, as fully parametrised macro-

procedures. This allows all parameters of the simulators

to be modified, just by changing integer constants passed

to the top-level macro. Adjustable parameters include the

number of classes, the width of probabilities, the floating-

point data-type and implementation, the number of environ-

ments, the maximum asset count, and so on. In spite of

this flexibility, the macros are designed with performance

in mind, and informal tests show that the maximum clock

rate is dependent on the underlying float-point cores rather

than the parameter selection. The specific parametrisation

chosen here is to use 32-bit single precision float-point, 24-

bit uniform probability thresholds, and 16-bit loan counters.

We target the lowest speed grade Virtex-4 xc4vsx55, as

this is the part found in the RC2000 card used in testing

and in a number of other popular accelerator cards such as

the RCHTX and Wildstar-4. All designs are compiled using

DK5.1 and Xilinx ISE 9.2. The Handel-C designs are com-

piled to VHDL, then synthesised using XST. Default opti-

misation settings are used throughout, with the exception
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IntToFP 104 100 76 - - 371 6

Multiply 221 178 274 - 4 282 9

ExpRng 405 553 567 2 - 281 11

Add 497 592 610 - - 291 12

Divide 828 836 1378 - - 250 27

Table 3: Resources, speed, and latency for the basic simu-

lation building blocks in the Virtex-4 family.
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Figure 4: Logic resources used per simulator instance, mea-

sured as percentage of total xc4vsx55 FFs.

of timing driven placement, which is enabled. A 233MHz

clock constraint is used on all designs.

A number of components are needed to construct the

simulation pipelines, summarised in Table 3. The floating-

point add, divide, and multiply components are provided by

Xilinx CoreGen, while IntToFP and ExpRng are described

in Handel-C. ExpRng uses the LUT-based uniform RNG [5]

to drive a fixed-point exponential shaper [6], which is then

converted to floating-point.

The number of block-RAM and DSP resources can be

accurately predicted ahead of time for each architecture, as

shown in Table 4. The only DSPs used within the simu-

lators are in the floating-point multipliers, and exactly one

multiplier is used for each new random time. Block RAMs

are used both in the exponential random number generator

component, and to store tables of input data such as event

rates and probability thresholds. The predicted figures ex-

actly match the actual counts reported by the place and route

tools for all design variations.

In all architectures tested, the number of FFs required is

approximately 20% higher than the number of LUTs, pre-

sumably because the simulators are so heavily pipelined,

both within the components and in the buffering between

them. Figure 4 uses FFs as a coarse approximation to logic

utilisation for increasing m, with the vertical axis measur-

ing the percentage of all available xc4vsx55 FFs used in one

simulator instance.

Although the raw resource utilisation is interesting, it
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Figure 5: Changes in performance (steps per cycle per

xc4vsx55) for different application loads.

only tells a small part of the story. What is much more

important is the actual throughput of the system under a

real application load. The effects of the input data are par-

ticularly important in this application, as the balances be-

tween different event types affects the relative performance

of each simulation architecture. Table 4 summarises the

number of passes required per step under different events

and architectures, and it is clear that Next(Single) will al-

ways require more passes than First.

However, performance is also affected by the number of

replicated instances that can be instantiated on each FPGA.

As Figure 4 shows, only a small portion of an xc4vsx55

is required for each simulator instance. A key advantage

of any Monte-Carlo simulation is that multiple parallel in-

stances can be run, with no data dependencies between

them. In an FPGA the independence of the instances means

that there is little clock degradation as the number of in-

stances is increased to fill up the entire chip. It thus becomes

important to measure performance not just as steps/cycle,

but steps/cycle/FPGA.

To measure performance for the whole FPGA, we use

the FFs per simulator instance to estimate the total number

of instances that can fit in the FPGA, using m = 4. To avoid

over-packing, and to save space for logic needed to interface

the FPGA to the controlling PC, this calculation is based

on 90% of the total resources available in the device. This

means that in principle more instances could be squeezed in,

but in our experiments the tools could not meet our 233MHz

timing constraints with more instances per device.

Figure 5 shows the performance of the whole FPGA,

measured in total steps per cycle. Because the number of

steps each variant can complete is heavily dependent on the

types of events that occur, the performance is shown with

respect to two characteristics of the application input data.

rMov/rDef is the ratio of loan movements to loan default

events, and rEnv/rDef is the ratio of environment events to



Resources Cycles per step

DSPs RAMs Xi UiDi U0D0

First 4m + 4 2m + 5 1 1 1

Next (Single) 4 5 1 2 m + 1
Next (Dual) 8 7 1 1 ⌈(m + 1)/2⌉

Table 4: Number of RAM/DSP resources required per simulator instance, and number of passes required for simulation

events.

defaults. Both properties can be estimated from the portfo-

lio description before simulation starts, and can be further

refined with running statistics gathered during simulation.

The performance shown in the figure is actually the best

performance across all three variants, with the shading of

the columns indicating which variant should be chosen for

each pair of portfolio characteristics. Where rMov/rDef is

high (along the front right side), the First variant is most ef-

fective, as it can complete one step per pass. Moving along

the left hand side from the front of the figure, the number

of environment events decreases, and the number of loan

movements is higher than the number of defaults. These

conditions favour the Next(Dual) variant, as it can complete

most steps in a single pass, and because more instances can

fit into the FPGA. At the back of the figure the most com-

mon type of event is the loan default, which heavily favours

the Next(Single) variant, as only one new random time is

needed per event. Because this variant is half the size of

the other two, one can double the number of simulator in-

stances, with a large increase in performance.

The motivation for the hardware simulator is that the

software is too slow, so now we compare performance of

a single FPGA against that of a software implementation.

The NRM algorithm is used, with single-precision floating-

point and a software-specific optimisation that allows re-

use of some exponential random numbers [2]; this opti-

misation is not used in the FPGA versions, as generating

fresh exponential random numbers uses fewer resources

than reusing previous ones. Our target machine contains

two 2.4GHz Pentium-4 Core2 Duo processors, providing

four CPU cores, which is representative of computational

nodes found in contemporary data-centres. Because Monte-

Carlo applications are inherently parallel, it is trivial to scale

across CPUs, so we compare against the total performance

of all four CPUs.

As with the hardware simulator, software performance

varies according to input data characteristics, so Figure 6

shows the speedup of the hardware simulator over the

quad core Pentium-4 for differing input loads. The low-

est speedup of around 60 times is seen at left of the graph,

where the number of loan movements and defaults is bal-

anced, and higher than the number of environment events.

On the right side of the graph the rate of environment
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Figure 6: Speedup realised by a Virtex-4 xc4vsx55 over a

2.4GHz Pentium-4 Core2.

events is high compared to loan movement events, which

strongly favours the First variant, providing up to an 95

times speedup. The rear of the graph shows the increase

in performance from the Next(Single) variant. Right at the

back of the graph practically all events are loan defaults,

which provides the best overall hardware performance, and

gives a speedup of just under 100 times over four parallel

software simulators.

7 Related Work

FPGAs have previously been used to accelerate finan-

cial Monte-Carlo simulations, with an emphasis on the

pricing of individual financial instruments, such as op-

tions [4, 7, 9]. Such simulations use a stochastic model of

asset price movements over a discrete time period, with the

overall time-series generated by iteratively stepping simu-

lation time forward by regular amounts for a fixed number

of steps. This is in contrast to the event-based model used

here, where each simulation takes an unknown number of

steps to complete.

A second body of related work is in the simulation of

biological cells, which provided the initial simulation al-

gorithms that were adapted for the loan portfolio simula-

tion [2]. Simulation of cells is also computationally ex-

pensive, so FPGA-based cell simulators have been devel-



oped [8]. Although similar in terms of the high-level

stochastic model, the two applications are very different in

terms of implementation. The first difference is that cell

simulations use hundreds or thousands of molecule types,

so the asymptotic performance of the priority-queue based

NRM algorithm is critical. The second difference is that

cell simulations usually involve a constant environment, so

there is no equivalent to the environment event which re-

quires large numbers of times to be regenerated.

8 Conclusion

This paper presents a description of an event-based loan-

portfolio model, and an evaluation of a hardware acceler-

ated simulator for this model. By transforming the simu-

lation algorithm, three different hardware architectures are

produced, each of which has a different trade-off between

resources used, and the time taken to simulate different

event types. Because the performance of each architecture

varies according to input data characteristics, we find that

there is no single best architecture, so for optimal perfor-

mance the FPGA configuration should be chosen for each

set of input data.

The hardware simulators are tested using a Virtex-4

xc4vsx55 FPGA hosted in an RC2000 card, and compared

with a software implementation using all four CPUs of

a 2.4GHz Pentium-4 quad-core computer, with observed

speedups ranging from 60 to 100 times. This kind of

speedup allows each portfolio simulation to run for much

longer, allowing more catastrophic “high-sigma” events to

be observed, so that the risk of loan portfolios can be more

accurately estimated.

Future work will concentrate on increasing the sophisti-

cation of the model, by allowing arbitrary jumps between

environment and risk classes, and by incorporating multiple

interdependent environmental factors. Another interesting

possibility is to incorporate more than one type of simulator

architecture into the overall configuration, allowing simula-

tion states to migrate to the fastest simulator for their current

environment.
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