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Abstract 
This paper provides an overview of low-power 

techniques for field-programmable gate arrays (FPGAs).  It 
covers system-level design techniques and device-level 
design techniques that have targeted current commercial 
devices. It also describes current research on circuit-level 
and architecture-level design techniques. Recent studies on 
power modelling and on low-power computer-aided design 
(CAD) are also reported. Finally, it proposes future work 
that would enable the use of FPGA technology in 
applications where power and energy consumption is 
critical, such as mobile devices. 

 

1. Introduction 
Field-programmable gate arrays are ideal for adaptive 

systems, since they are reconfigurable and can be 
programmed to implement any digital logic. Applications 
of such FPGA-based adaptive systems include face image 
recognition [22], on-line failure recovery [49], and analysis 
of firefly synchronisation [62]. 

The main drawback of FPGAs is that they are less 
efficient than application-specific integrated circuits 
(ASICs) due to the added circuitry needed to make them 
reconfigurable.  In a recent study [29], FPGAs are 
estimated to be 3-4 times slower, 5-35 times larger, and     
7-14 times less energy efficient than ASICs depending on 
the application and the flexibility of the FPGA. 

Traditionally, FPGA research focused on reducing the 
speed and area overhead [9].  In recent years, however, 
much of the focus has shifted to improving the energy 
efficiency.  This shift is due to process scaling and 
increased demand for low-power applications.  Although 
process scaling reduces the energy needed to perform a 
given computation (since wires and transistors are smaller), 
it increases power dissipation per unit area and therefore the 
overall power for a given die size [24]. At the same time, 
demand for low-power applications is increasing due to the 
proliferation of hand-held devices and increasing energy 
costs.  For hand-held and other battery operated devices, 
reducing power increases battery life.  For non-mobile 

devices, reducing power consumption lowers operating, 
packaging, and cooling system costs. 

There are many ways to make FPGAs more energy 
efficient.  The various techniques can be divided into five 
categories: process, circuit, architecture, system, and 
computer-aided design (CAD). Process techniques refer to 
the use of new low-power process technologies offered by 
the semiconductor manufacturers. Circuit techniques refer 
to the transistor-level implementation of the logic and 
routing resources.  Architecture techniques refer to 
functionality of the logic, I/O, and memory resources and 
the connectivity between these resources. System 
techniques refer to high-level low-power techniques such as 
dynamic voltage control, turning resources off when they 
are not being used, and run-time reconfiguration.  Finally, 
CAD refers to enhancements made to the mapping tools 
which are used to configure the FPGA. 

This paper is organized as follows.  Section 2 describes 
the basic structure of an FPGA and summarizes the sources 
of power dissipation.  Section 3 and Section 4 cover 
respectively system-level design techniques and device-
level design techniques, both of which target mainly current 
commercial devices. Section 5 describes circuit-level and 
architecture-level design techniques for experimental 
devices. Section 6 and Section 7 present recent research 
respectively on power modeling and on low-power 
computer-aided design (CAD). Finally, Section 8 
summarizes the paper and proposes future work.   

2. FPGA Architecture and Power Dissipation  
This section reviews the basic structure of an FPGA, 

focusing on what makes FPGAs power-hungry.  FPGAs are 
made up of a large number of configurable logic blocks, 
which implement the logic part of digital circuits, and a 
configurable routing fabric, which implements the 
connections between the logic blocks.  Modern FPGAs also 
have embedded fixed logic components, such as memories 
and arithmetic logic units.  These embedded components 
are typically aligned with the logic tiles, and are often 
arranged in rows or columns.  Figure 1 provides an abstract 
view of an FPGA with programmable logic and embedded 
fixed-function components.  
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FPGAs dissipate more static power than ASICs for a 
number of reasons. FPGAs use a large amount 
configuration memory to control every programmable 
routing switch and logic function in the FPGA.  Each 
configuration bit dissipates static power.  Another reason is 
that the programmable logic blocks are implemented using 
lookup-tables, which have significantly more transistors 
than the corresponding logic gates in an ASIC.  Similarly, 
FPGA routing resources use significantly more transistors 
than in ASICs because of the large number of multiplexers 
needed to make the routing flexible. 

FPGAs also dissipate more dynamic power than ASICs.  
In both an ASIC and FPGA, connections between gates are 
associated with some amount of parasitic capacitance due 
to the metal wire used to implement the connection as well 
as the driver and driven transistors.  However, as described 
above, a connection in an FPGA also contains a large 
number of programmable switches. These switches 
significantly increase the parasitic capacitance on the wire 
segments and charging and discharging this parasitic 
capacitance consumes dynamic power. 

Figure 2 shows a breakdown of core power consumption 
in a commercial 90-nm FPGA [61].  The figure shows that 
the routing resources dissipate the greatest amount of 
power, followed by logic and clock network resources.  
This study also reports that dynamic power accounts for 
62% of the total power, while static power accounts for 
38%. There is also recent work which considers FPGAs 
with embedded memories; such memories are found to 
account for 14% of core dynamic power [56]. 

3. Low-Power System-Level Design 
This section describes various low-power design 

techniques that have been applied to current FPGA 

technology by application developers.  We classify these 
techniques into three categories: basic techniques, 
techniques involving run-time reconfigurability, and 
techniques for soft processors.  

 

 
Figure 2: Breakdown of core power consumption 
in Xilinx Spartan-3 devices [61]. 

 
First, we provide five examples of basic techniques 

introduced below. 
(a) It is usually preferable to use coarse-grained 

embedded blocks rather than the fine-grained configurable 
logic blocks in an FPGA, since the former are more power-
efficient than the latter for the same function [29]. However 
one needs to ensure that in doing so, power consumption 
for routing would not increase significantly. 

(b) Pipelining is a simple and effective way of reducing 
glitching, and hence minimising power consumption. It is 
found that, at a given clock speed, pipelining can reduce the 
amount of energy per operation by between 40% and 90% 
for applications such as integer multiplication, CORDIC, 
triple DES, and FIR filters [65].  

(c) Word-length optimisation can be applied to obtain 
the best trade-off in speed, area, power consumption, 
flexibility, and accuracy. One approach is to study the 
sensitivity of outputs in a design to small errors due to 
rounding or truncation of internal variables for fixed-point 
hardware implementation. Improvements in power 
consumption of up to 98% (mean 87%) have been achieved 
for adaptive filters and polynomial evaluations [17]. 

(d) Clock gating can be used to reduce dynamic power 
consumption by disabling the clock for the inactive regions 
to prevent signal transitions.  It can be combined with 
word-length optimisation (see (c) above) so that the 
circuitry in an operator is gated when not in use [47]. 

 (e) Dynamic voltage scaling can be used to adapt the 
supply voltage to the FPGA as the temperature changes, to 
minimise power consumption. It has been shown that 
power reduction between 4% and 54% can be achieved for 
various arithmetic circuits [16].  

  Second, we provide two examples of low-power 
techniques involving run-time reconfigurability; the use of 
such reconfigurability has already been reported [49][62].  

 
Figure 1: A generic FPGA with embedded 

components. 
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(a) Word-length optimisation can be combined with run-
time reconfiguration so that the smallest design is adopted 
at a given time, as long as the energy reduction in execution 
is greater than the energy overhead for reconfiguration [48].  

(b) Run-time reconfiguration can be applied to change a 
design in order to adapt to run-time conditions. For instance 
when a communication channel becomes more noisy, a 
more powerful but less energy efficient turbo coder can be 
used to maintain a fixed bit error rate, and vice versa [40]. 
Such run-time adaptation can further benefit from devices 
that support partial reconfiguration [46]. 

Third, we provide two examples of low-power 
techniques for FPGA-based soft processors; the use of such 
processors in adaptive systems has been reported [58].  

(a) Based on an iterative improvement method, 
instruction set extensions to the MicroBlaze soft processor 
have been proposed [10]. Up to 40% reduction in energy 
and 12% reduction in peak power have been reported.  

(b) Combined application of power-aware scheduling 
and instruction recoding techniques can be used to optimise 
a soft processor at multiple levels of abstraction.  Dynamic 
power reduction of up to 74% has been obtained [18]. 

4. Device-Level Design: Commercial Devices 
The latest FPGA devices from vendors such as Altera 

and Xilinx incorporate various low-power device-level 
technologies. This section reviews some of these 
technologies.  

At the device level, Altera and Xilinx both utilize triple 
gate oxide technology, which provides a choice of three 
different gate thicknesses, to trade-off between performance 
and static power [3][67].  In earlier technologies, only two 
thicknesses were available.  Transistors with thicker oxide 
were used for the large, higher voltage tolerant transistors 
in the I/O blocks and the thinner ones were used 
everywhere else.  The new medium thickness oxide 
transistors provide slightly less performance than thin oxide 
transistors, but leak significantly less.  In the latest FPGAs, 
these are used in the configuration memory and the 
switches that are controlled by this memory.  Since the 
configuration memory remains static during the operation 
of the device, the oxide thickness does not affect the 
performance of the corresponding switches.  To reduce 
dynamic power, FPGA vendors use a low-k dielectric 
between metal layers, which reduces the parasitic 
capacitance.  This, in addition to smaller device geometries, 
reduces the average node capacitance and, correspondingly, 
dynamic power.  Dynamic power of the core of the FPGAs 
can be reduced further by lowering the supply voltage 
because dynamic power has a quadratic relationship (CV2f ) 
with the supply voltage.  Xilinx reduces the core supply 
voltage from 1.2V (in Virtex 4 FPGAs) to 1.0V (in Virtex 5 
FPGAs), which cuts core power significantly.  Similarly, 
the core supply voltage of Altera Stratix III FPGAs can be 
selected (by the user) to be either 1.1V, for high 
performance, or 0.9V, for lower power consumption. 

Altera and Xilinx have also made a number of 
architecture-level changes to their latest devices to reduce 
static and dynamic power.  Both vendors have recently 
increased the size of the LUTs (lookup tables) within the 
logic blocks [2][67].  By increasing the size of the basic 
logic elements, from 4-input LUTs to 6 and 7-input LUTs, 
both static and dynamic power are reduced since more logic 
is implemented within each LUT and less routing is needed 
between the LUTs.  This reduces power since LUTs are 
implemented using smaller transistors (compared to 
transistors in the routing resources), which leak less and 
dissipate less dynamic power.  Both vendors have also 
modified their routing architectures to increase the number 
of neighbouring logic blocks that can be reached in only 
one or two hops (each routing segment used counts as one 
hop).  Using more 1-hop routes reduces the average 
capacitance of the routes, which improves both power and 
performance.  Other architecture-level features that reduce 
overall power are the embedded memories, adders, and 
multipliers.  Although each of these functions can be 
implemented using the programmable logic fabric, its 
implementation as a fixed-function embedded block is more 
power-efficient since circuitry to make it flexible is not 
needed, and it can be turned off when not used.  

Finally, a number of low-power techniques have also 
been incorporated into the commercial FPGA CAD tools.  
Detailed power models have been integrated within the 
Altera Quartus II [2] and Xilinx ISE CAD tools [66].  Both 
vendors provide a spreadsheet utility to make early power 
predictions before the design is complete and a detailed 
power model that can be used when the design is complete.  
Early power estimates are based on estimated resource 
usage, I/O types, clock requirements, clock frequencies, and 
environmental conditions.   The detailed power models 
provide estimates after the application has been placed, 
routed, and simulated.  The estimations from the detailed 
power models are more accurate than those from the early 
power models, since detailed capacitance, leakage, and 
switching activity information is known for each node in 
the application circuit.  In the case where simulation results 
are not available, only basic probability-based (vectorless) 
activity estimation is available and the accuracy of the 
power estimates is significantly reduced.  This is especially 
true for sequential circuits.  Power-aware CAD techniques 
have also been incorporated into the commercial CAD 
flows.  In Quartus II, power is minimized during 
technology mapping, placement, and routing by minimizing 
the capacitance of high-activity signals using techniques 
similar to those described in the previous section.  Power is 
also minimized by optimizing the mapping to the embedded 
memories, as described in [56], and, similarly, by 
optimizing the mapping to the embedded DSP blocks.  In 
ISE, power is minimized during placement and routing by 
minimizing the capacitance of high-activity signals. 
Dynamic power dissipation is further minimized by 
strategically setting the configuration bits within partially 
used (some inputs are not used) LUTs to minimize 
switching activity.  Both CAD tools also ensure that all 
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unused logic blocks, embedded blocks, routing resources, 
and clock network resources are turned off to save power.   

Combining the above techniques, Altera reports that 
Stratix III FPGAs are over 50% more power efficient than 
Stratix II FPGAs [2].  Similarly, Xilinx reports that Virtex-
5 FPGAs consume over 35% less dynamic power than 
Virtex-4 FPGAs, with even greater savings when embedded 
components are used [67].  Xilinx also points out that low-
leakage techniques are already incorporated in their Virtex-
4 FPGAs, resulting in 70% lower static power consumption 
when compared with competing FPGAs. 

A low-power alternative to SRAM-based FPGAs is 
flash-based FPGA technology.  Flash-based FPGAs, such 
as Actel’s IGLOO devices, are inherently more efficient 
because flash-based memory dissipates significantly less 
leakage power compared to SRAM memory.  For instance, 
Actel reports that their low-power FPGAs dissipate 4 times 
less leakage power than their nearest competitors [1].  

5. Circuit- and Architecture-Level Design 
The architecture and the circuit-level implementation of 

the FPGA is key in reducing power, since it directly affects 
the efficiency of mapping applications to FPGA resources, 
and the amount of circuitry to implement these resources.  

A number of studies have investigated low-power 
FPGA architecture design.  Energy-efficient FPGA routing 
architectures and low-swing signalling techniques to reduce 
power are described in [21][43].  In [55], a new FPGA 
routing architecture that utilizes a mixture of hardwired and 
traditional programmable switches is proposed, which 
reduces static and dynamic power by reducing the number 
of configurable routing elements.  In [7], a novel FPGA 
routing switch with high-speed, low-power, or sleep modes 
is presented.  The switch reduces dynamic power for non 
timing critical logic and standby power for logic when it is 
not being used.  In [41], power-gating is applied to the 
switches in the routing resources to reduce static power; 
duplicate routing resources, that use either high or low Vdd, 
are used to reduce dynamic power.  In [30], energy-efficient 
modules for embedded components in FPGAs are 
introduced to reduce power by optimizing the number of 
connections between the module and the routing resources, 
and by using reduced supply voltage circuit techniques. In 
[27], several power reduction techniques, such as register 
file elimination and efficient instruction fetch, are proposed 
for a coarse-grain reconfigurable cell-based architecture; up 
to 3.6 times lower energy than an ARM7 device, and up to 
6 times lower energy than a C55X DSP, is reported.   

Although significant improvements have already been 
made, many opportunities to further reduce power in 
FPGAs remain.  The rest of this section describes two 
recent improvements: minimization of FPGA glitch power, 
and efficient FPGA clock network design.  

The first improvement concerns FPGA glitch reduction. 
Glitching occurs when values at the inputs of a LUT toggle 
at different times due to uneven propagation delays of those 
signals.  If the arrival times are far enough apart, spurious 

transitions can be produced at the LUT output, as shown in 
Figure 3(a).  A recent study suggests that glitching accounts 
for 31% of dynamic power dissipation in FPGAs [33]. 

 
Figure 3: Example of delay insertion to eliminate 
glitching. 
 The study proposes a method for minimizing glitching 
which involves adding configurable delay elements to the 
inputs to each logic element in the FPGA (Figure 4).  After 
place and route, detailed timing information is used to 
configure these delay elements so as to align the arrival 
times at the inputs of each logic element.  This eliminates 
glitches as long as the arrival times can be aligned closely 
enough, as shown in Figure 3(b). 

 
Figure 4: FPGA logic block with configurable 
delay elements. 

The amount of glitching that can be eliminated depends 
on several factors.  Specifically, the resolution, maximum 
delay, location, and amount of the programmable delay 
elements all have an affect on glitch elimination and 
overhead. It was found that, on average, the proposed 
technique eliminates 87% of the glitching, which reduces 
overall FPGA power by 17%, while the added circuitry 
increases the overall FPGA area by 6% and critical-path 
delay by less than 1%. 

A 17% reduction in power is significant.  Moreover, the 
method can be applied to all commercial FPGAs, and 
requires only minor changes to the CAD flow or the rest of 
the architecture.  The gains are roughly independent of 
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those that can be obtained using process enhancement 
techniques.  However, there may be some overlap in these 
gains with those that can be obtained using a power-aware 
CAD flow, since by reducing the activity of high-activity 
signals, there may be less “low-hanging fruit” available for 
the power-aware CAD flow.  

The second recent improvement concerns low-power 
clock network design.  New FPGAs are sophisticated 
enough to implement large system-level applications.  
These applications often have many clock domains.  As an 
example, consider a communications application connected 
to several I/O ports.  Each port might have its own clock, 
meaning the circuitry connected to each port must be 
controlled by a separate clock.  FPGA vendors support such 
applications through the use of programmable clock 
networks that are flexible enough to support a wide range 
of applications, yet have low skew. 

These clock networks have a significant impact on 
power since they connect to each flip-flop on the FPGA and 
toggle every clock cycle.  In [61], the clock network in a 
current FPGA is shown to account for 19% of dynamic 
power (Figure 2).  Moreover, depending on how flexible it 
is, the clock network can impose constraints that affect how 
applications can be placed within the FPGA. As an 
example, current FPGAs are divided into regions which can 
support a limited number of different clock domains. For 
applications with many clock domains, these constraints 
could force domains to be placed farther apart than they 
would otherwise be if the clock network is more flexible.   

Recent work [34][35] examines the trade-off between 
the flexibility of FPGA clock networks and overall power 
consumption.  This research has three parts.  First, a 
parameterized framework for describing a wide range of 
FPGA clock networks.  Second, a comparison of clock-
aware placement techniques to determine their 
effectiveness: since clock networks impose hard constraints 
on the placement of logic blocks within the FPGA, a good 
clock-aware placement algorithm must obey these 
constraints and also optimize for speed, routability, and 
power consumption. Several techniques for combining 
these objectives are evaluated, in terms of their ability to 
find a placement that is fast, energy efficient, and legal. 
Third, experiments to determine what makes an efficient 
FPGA clock network. It is found that FPGA clock networks 
with more flexibility near the sources (pads or internal 
sources) and less flexibility near the sinks (flip-flops) are 
more efficient in terms of overall power consumption. Also 
dividing FPGA into clock regions that can be driven by 
global or local clock sources significantly reduces the area 
and power dissipation of the clock network. 

Both the parameterized clock network framework and 
the clock-aware placement techniques have been 
incorporated into the popular VPR CAD tool [9] and is 
publicly available.  The significance of this work is thus 
two-fold: (1) techniques that help FPGA vendors to provide 
more efficient clock networks, and (2) a new approach for 

architectural exploration that helps to guide future 
researchers. 

6. FPGA Power Modelling 
Accurate power modelling is important in low-power 

FPGA design for a number of reasons.  First, application 
designers need detailed power estimates to ensure their 
application meets various power budgets.  Second, power-
aware FPGA CAD tools require detailed power estimates in 
order to minimize power.  Third, FPGA designers who 
development new FPGA architectures and CAD tools need 
power estimates to evaluate new low-power techniques. 

A number of FPGA power models have recently been 
presented in the literature.  In [50], a detailed power model 
that estimates static and dynamic power of the logic, 
routing, and clock network for a range of FPGAs with 
different architecture parameters is described.  For static 
power, the model uses a first-order analytical technique 
which calculates leakage based on transistor size and 
various technology-specific parameters.  For dynamic 
power, the model uses transistor-level capacitance 
information from the VPR place and route tool [9] and 
switching activity information obtained using vectorless 
activity estimation techniques.  In [36], a similar FPGA 
power model estimates static and dynamic FPGA power by 
calculating the power for each clock cycle using simulated 
switching activity information, instead of vectorless 
techniques. This power model has been enhanced to support 
FPGAs with a programmable supply voltage [37] and 
programmable threshold voltages [38].  In [13][25][52], 
high-level FPGA power models that use macro-models to 
estimate power are described.  These models characterize 
the power consumption of various FPGA components, such 
as adders, multipliers, and programmable logic, for low-
power high-level synthesis or design space exploration. 

One of the main challenges in power modelling is 
activity estimation, which involves determining how often 
each node in the FPGA toggles.  This activity information 
is needed in order to calculate how much dynamic power an 
application dissipates when it operates.  Estimating 
activities is challenging because there are large a number of 
nodes within each circuit and complex interactions between 
the nodes which are difficult to model. 

One approach is vectorless activity estimation which 
involves estimating the switching activity of each node 
based on the switching activities of the inputs and the logic 
function of that node.   The advantage of vectorless activity 
estimation is that it is typically fast and does not require 
input vectors.  The disadvantage is that it is less accurate 
than simulation because it typically does not consider the 
complex interactions between nodes. 
 Vectorless techniques that model these complex inter-
actions have been proposed [44][45][52][59][60].  In 
general, however, there is trade-off between speed and 
accuracy. Some vectorless techniques are even slower than 
brute force simulation.  A recent study [32] compares some 
vectorless techniques to determine which are fast enough to 
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be used in FPGA CAD flow.  Specifically, the aim of the 
study is to identify the most accurate techniques that do not 
noticeably slow down the FPGA design flow.  These 
techniques and two novel techniques are then integrated 
into a new publicly available activity estimation tool called 
ACE-2.0. 

7. Low-Power FPGA CAD 
FPGA CAD tools, which map an application to the 

FPGA programmable fabric, can also have a significant 
impact on power consumption.  This mapping generally 
occurs in five stages: high-level synthesis, technology 
mapping, clustering, placement, and routing.  Each stage 
can be optimized to improve the final implementation. 

Power-aware high-level synthesis algorithms for FPGAs 
are presented in [12][15].  In [12], power is reduced by 
minimizing the total power of the operations and the size of 
the multiplexers that connect them. The algorithm 
described in [15] targets FPGAs with programmable power 
supplies and minimizes power by assigning low-Vdd to as 
many operations as possible given resource and timing 
constraints.  Low-power technology mapping algorithms 
are presented in [5][8][14][19][31][39][63][64].  In general, 
these algorithms minimize power by absorbing as many 
high-activity nodes as possible when the gates are packed 
into LUTs and/or by minimizing node-duplication, which 
tends to increase the amount of interconnect between the 
LUTs.  Low-power clustering techniques have been 
described in [11][23][31][54].  These algorithms minimize 
power by absorbing as many small (low fan-out) and high-
activity nets as possible when the LUTs are packed into 
clusters (logic blocks).  Absorbing small nets tends to 
reduce number of inter-cluster nets (which dissipate the 
most power) and absorbing high-activity nets further 
reduces power.  Low-power place and route techniques 
were presented in [28][31][53][57], which minimize power 
by reducing the distance between logic blocks connected by 
high-activity wires (during placement) and by routing high-
activity wires as directly as possible (during routing).  In 
[8], leakage power is minimized by choosing low-leakage 
LUT configurations.  Finally, in [56], power-aware 
algorithms for mapping logical memories to the physical 
FPGA embedded memories were described.  The 
algorithms minimize dynamic power consumed by 
embedded memories by evaluating a range of possible 
mappings and selecting the most power-efficient choice.  

8. Conclusions and Future Work 
 Significant improvements have been made to improve 
power and energy efficiency of FPGAs.  This paper 
describes many of these improvements, which range from 
low-level process and circuit design techniques through to 
high-level CAD techniques. While further improvements 
will likely be made at all levels, there seems to be 
significant potential for power savings at the system level. 
 At the system level, power reduction can be obtained by 
optimizing management and scheduling of system 

resources.  As an example, programmable logic devices 
(PLD) such as FPGAs can be used to reduce power 
dissipation in mobile applications by effective exploitation 
of “deep-sleep” mode in mobile processors. When the 
processor is not needed, a programmable logic device can 
be used to monitor external resources, such as battery 
gauges, sensors, and interrupts, and determine when the 
host processor (or other devices) should be brought out of 
deep-sleep mode.  Although the host processor itself can be 
used to monitor the external resources, it could be 10-100 
times less efficient since it uses more power (when it is not 
in deep-sleep) when compared to a small system monitor 
implemented in a PLD [4]. As another example, FPGAs can 
be used as coprocessors to perform compute intensive tasks 
more efficiently than in software.  Because it is flexible, the 
hardware implementation of the coprocessor can be 
optimized for the given task and even for specific input 
parameters such as media format.  
 Research targeting these system-level power tradeoffs is 
required.  In the previous example, there is a trade-off 
between the power savings that can be achieved by not 
using the host processor and the cost of initializing the PLD 
and the processor when tasks are passed from one to the 
other.  Several factors can affect the power savings, 
including the scheduling of tasks to maximize the duration 
that the processor can sleep and minimizing the cost of 
configuring the programmable logic device.  Moreover, as 
programmable logic devices become more sophisticated, 
many of these system-level issues can be effectively 
addressed by FPGA technology.  FPGAs with embedded 
processors and soft-processors are already available [19].  
This introduces similar system-level tradeoffs and the 
potential for significant power savings. 
 Research targeting low-power system-level benchmarks 
is also required.  To our knowledge, current academic 
benchmarks do not support this type of research.  
Specifically, benchmarks are needed that perform 
complicated tasks and provide realistic input stimuli 
reflecting how the applications are used.  These should 
include description of when and how often different 
computations are required, as well as realistic input data 
that must be processed by the application. Benchmarks 
involving adaptive systems are of particular interest, since it 
appears promising to study how functional adaptation can 
be extended to cover power and energy reduction. 
Acknowledgement.  The support of Canadian Natural 
Science and Engineering Research Council, UK 
Engineering and Physical Research Science Council, 
European Commission FP6 project hArtes, Agility Design 
Solutions, Celoxica and Xilinx is gratefully acknowledged. 

References 
[1] Actel, “IGLOO Handbook,” 2008. 
[2] Altera, “Quartus II Handbook,” Vol. 2, Chapter 9, 2007. 
[3] Altera, “Quartus II Handbook,” Vol. 3, Chapter 10, 2007. 
[4] Altera Corp., “Cut power 100X using CPLD coprocessors in 

Portable Applications,” Webcast, Dec. 2007. 

337343343

Authorized licensed use limited to: Imperial College London. Downloaded on September 14, 2009 at 00:10 from IEEE Xplore.  Restrictions apply. 



[5] M.J. Alexander, “Power optimization for FPGA look-up 
tables,” Proc. ACM Int. Symp. on Physical Design, pp. 156-
162, 1997. 

[6] J.H. Anderson and F.N. Najm, “Power-aware technology 
mapping for LUT-based FPGAs,” Proc. IEEE Int. Conference 
on Field-Prog. Technology, pp. 211-218, 2002. 

[7] J.H. Anderson and F.N. Najm, “A novel low-power FPGA 
routing switch,” Proc. IEEE Custom Integrated Circuits 
Conf., pp. 719-722, 2004. 

[8] J.H. Anderson, F.N. Najm, and T. Tuan, “Active leakage 
power optimization for FPGAs,” IEEE Trans. on Computer-
Aided Design, vol. 25, no. 3, pp. 423-437, March 2006. 

[9] V. Betz., J. Rose, and A. Marquardt, “Architecture and CAD 
for deep-submicron FPGAs,” Kluwer Academic Publishers, 
1999. 

[10] P. Biswas et al, “Performance and energy benefits of 
instruction set extensions in an FPGA soft core,” Proc. Int. 
Conf. on VLSI Design, pp. 651-656, 2006. 

[11] D. Chen and J. Cong, “Delay optimal low-power circuit 
clustering for FPGAs with dual supply voltages,” Proc. Int. 
Symp. on Low Power Electronics and Design, pp. 70-73, 
2004. 

[12] D. Chen, J. Cong, and Y. Fan, “Low-power high-level 
synthesis for FPGA architecture,” Low Power Electronics and 
Design, pp. 134-139, 2003. 

[13] D. Chen, J. Cong, Y. Fan, and Z. Zhang, “High-level power 
estimation and low-power design space exploration for 
FPGAs,” Proc. Asia South Pacific Design Automation Conf., 
pp. 529-534, 2007. 

[14] D. Chen, J. Cong, F. Li, and L. He, “Low-power technology 
mapping for FPGA architectures with dual supply voltages,” 
Proc. ACM Int. Symp. on Field-Prog. Gate Arrays, pp. 109-
117, 2004. 

[15] D. Chen, J. Cong, and J. Xu, “Optimal module and voltage 
assignment for low-power,” Proc. Asia South Pacific Design 
Automation Conf., pp. 850-855, 2005. 

[16] C.T. Chow et al, “Dynamic voltage scaling for commercial 
FPGAs,” Proc. IEEE Int. Conf. on Field Prog. Technology, 
2005. 

[17] G. Constantinides, “Word-length optimization for different-
iable nonlinear systems,” ACM Trans. on Design Automation 
of Electronic Sys., vol. 11, no. 1, pp. 26-43, 2006. 

[18] R. Dimond, O. Mencer and W. Luk, “Combining instruction 
coding and scheduling to optimize energy in system-on-
FPGA,” Proc. IEEE Symp. on Field-Prog. Custom 
Computing Machines, IEEE Computer Society Press, 2006. 

[19] A.H. Farrahi and M. Sarrafzadeh, “FPGA technology 
mapping for power minimization,” Proc. Int. Workshop on 
Field-Prog. Logic and Applications, pp. 167-174, 1994. 

[20] B.H. Fetcher, “FPGA embedded processors: revealing true 
system performance,” Proc. Embedded Sys. Conf., ETP-357, 
2005. 

[21] V. George, H. Zhang, and J. Rabaey, “The design of a low 
energy FPGA,” Proc. Int. Symp. on Low Power Electronics 
and Design, pp. 188-193, 1999. 

[22] K. Glette, J. Torresen and M. Yasunaga, “Online evaluation 
for a high-speed image recognition system implemented on a 

Virtex-II Pro FPGA,” Proc. NASA/ESA Conf. on Adaptive 
Hardware and Sys., pp. 463-470, IEEE, 2007. 

[23] H. Hassan, M. Anis, A. El Daher, and M. Elmasry, “Activity 
packing in FPGAs for leakage power reduction,” Proc. 
Design Automation and Test in Europe, pp. 212-217, 2005. 

[24] International Technology Roadmap for Semiconductors, 
2005. 

[25] T. Jiang, X. Tang, and P. Banerjee, “Macro-models for high 
level area and power estimation on FPGAs,” Proc. ACM 
Great Lakes Symp. on VLSI, pp. 162-165, 2004. 

[26] B. Kapoor, “Improving the accuracy of circuit activity 
measurement,” Proc. ACM Design Automation Conf., pp. 
734-739, 1994. 

[27] S. Khawam et al, “The reconfigurable instruction cell array,” 
IEEE Trans. on VLSI Sys., vol. 16, no. 1, pp. 75-85, 2008. 

[28] B. Kumthekar, and F. Somenzi, “Power and delay reduction 
via simultaneous logic and placement optimization in 
FPGAs,” Proc. Design Automation and Test in Europe, pp. 
202-207, 2000. 

[29] I. Kuon and J. Rose, “Measuring the gap between FPGAs and 
ASICs,” IEEE Trans. on Computer-Aided Design, vol. 26, 
no. 2, pp. 203-215, Feb. 2007. 

[30] E. Kusse and J. Rabaey, “Low-energy embedded FPGA 
structures,” Proc. Int. Symp. Low Power Electronics and 
Design, pp. 155-160, 1999. 

[31] J. Lamoureux and S.J.E. Wilton, “On the Interaction between 
Power-Aware CAD Algorithms for FPGAs,” Proc. IEEE Int. 
Conf. on Computer Aided Design, pp. 701-708, 2003. 

[32] J. Lamoureux and S.J.E. Wilton, “Activity estimation for 
Field-Programmable Gate Arrays,” Proc. Intl. Conf. on Field-
Prog. Logic and Applications, pp. 87-94, 2006. 

[33] J. Lamoureux, G.G. Lemieux, and S.J.E. Wilton, “GlitchLess: 
dynamic power minimization in FPGAs through edge 
alignment and glitch filtering,” to appear in IEEE Trans. on 
Very Large Scale Integration Systems, 2008. 

[34] J. Lamoureux and S.J.E. Wilton, “FPGA clock network 
architecture: flexibility vs. area and power,” Proc. ACM Int. 
Symp. on Field-Prog. Gate Arrays, pp. 101-108, 2006. 

[35] J. Lamoureux and S.J.E. Wilton, “Clock-aware placement for 
FPGAs,” Proc. Int. Conf. on Field-Prog. Logic and 
Applications, pp. 124-131, 2007. 

[36] F. Li, D. Chen, L. He, and J. Cong, “Architecture evaluation 
for power-efficient FPGAs,” Proc. ACM Int. Symp. on Field-
Programmable Gate Arrays, pp. 175-184, 2003. 

[37] F. Li, Y. Lin, and L. He, “FPGA power reduction using 
configurable dual-Vdd,” Proc. Design Automation Conf., pp. 
735-740, 2004. 

[38] F. Li, Y. Lin, L. He, and J. Cong, “Low-power FPGA using 
pre-defined dual-Vdd/dual-Vt fabrics,” Proc. ACM Int. 
Symp. on Field-Prog. Gate Arrays, pp. 42-50, 2004. 

[39] H. Li, S. Katkoori, and W.-K. Mak, “Power minimization 
algorithms for LUT-based FPGA technology mapping,” 
ACM Trans. on Design Automation of Electronic Sys., vol. 9, 
no. 1, pp. 33-51, 2004. 

[40] J, Liang, R. Tessier and D. Goeckel, “A dynamically 
reconfigurable power efficient turbo coder,” Proc. IEEE 

338344344

Authorized licensed use limited to: Imperial College London. Downloaded on September 14, 2009 at 00:10 from IEEE Xplore.  Restrictions apply. 



Symp. on Field-Prog. Custom Computing Machines, IEEE 
Computer Society Press, pp. 91-100, 2004. 

[41] Y. Lin, F. Li, and L. He, “Routing track duplication with fine-
grained power-gating for FPGA interconnect power 
reduction,” Proc. Asia South Pacific Design Automation 
Conf., pp. 645-650, 2005. 

[42] R. Marculescu, D. Marculescu, and M. Pedram, “Switching 
activity analysis considering spatiotemporal correlations,” 
Proc. IEEE Int. Conf. Computer-Aided Design, pp. 294-299, 
1994. 

[43] M. Meijer, R. Krishnan, and M. Bennebroek, “Energy 
efficient FPGA interconnect design,” Proc. Conf. on Design 
and Test in Europe, pp. 1-6, 2006. 

[44] J. Monteiro and S. Devadas, “A methodology for efficient 
estimation of switching activity in sequential logic circuits,” 
Proc. ACM/IEEE Design Automation Conf., pp. 12-17, 1994. 

[45] F. Najm, “Low-pass filter for computing the transition density 
in digital circuits,” IEEE Trans. on Computer-Aided Design, 
vol. 13, no. 9, pp. 1123-1131, 1994. 

[46] J. Noguera and I.O. Kennedy, “Power reduction in network 
equipment through adaptive partial reconfiguration,” Proc. 
Int. Conf. on Field Prog. Logic and Applications, IEEE, pp. 
240–245, 2007. 

[47] W.G. Osborne, W. Luk, J.G.F. Coutinho and O. Mencer, 
“Power and branch aware word-length optimisation,” Proc. 
IEEE Symp. on Field-Prog. Custom Computing Machines, 
IEEE Computer Society Press, 2008. 

[48] W.G. Osborne, W. Luk, J.G.F. Coutinho and O. Mencer, 
“Reconfigurable design with clock gating,” Proc. Int. Symp. 
on Systems, Architectures, Modelling and Simulation, 2008. 

[49] K. Paulsson, M. Hubner and J. Becker, “Strategies to on-line 
failure recovery in self-adaptive systems based on dynamic 
and partial reconfiguration,” Proc. NASA/ESA Conf. on 
Adaptive Hardware and Sys., IEEE, pp. 288-291, 2006. 

[50] K.K.W. Poon, S.J.E. Wilton, and A. Yan, “A detailed power 
model for field-programmable gate arrays,” ACM Trans. on 
Design Automation of Electronic Systems, vol. 10, no. 2, pp. 
279-302, April 2005. 

[51] A. Raghunathan, S. Dey and N. K. Jia, “Register transfer 
level power optimization with emphasis on glitch analysis 
and reduction,” IEEE Trans.on Computer-Aided Design, vol. 
18, no. 8, pp. 1114-1131, 1999. 

[52] A. Reimer, A. Schulz, and W. Nebel, “Modeling 
macromodules for high-level dynamic power estimation of 
FPGA-based digital designs,” Proc. Int. Symp. on Low Power 
Electronics and Design, pp. 151-154, 2006. 

[53] K. Roy, “Power-dissipation driven FPGA place and route 
under timing constraints,” IEEE Trans. on Circuits and Sys., 
vol. 46, no. 5, pp. 634-637, 1999. 

[54] A. Singh, G. Parthasarathy, and M. Marek-Sadowski, 
“Efficient circuit clustering for area and power reduction in 
FPGAs,” ACM Trans. on Design Automation of Electronic 
Systems, vol. 7, no. 4, pp. 643-663, 2002. 

[55] S. Sivaswamy, G. Wang, C. Ababei, K. Bazargan, R. Kastner, 
and E. Bozargzadeh, “HARP: hard-wired routing pattern 
FPGAs,” Proc. Int. Symp. on Field-Prog. Gate Arrays, pp. 21-
29, 2005. 

[56] R. Tessier, V. Betz, D. Neto, A. Egier, and T. Gopalsamy, 
“Power-Efficient RAM mapping algorithms for FPGA 
embedded memory blocks,” IEEE Trans. of Computer- Aided 
Design, vol. 26, no. 2, pp. 278-289, Feb 2007. 

[57] N. Togawa et al, “A simultaneous placement and global 
routing algorithm for FPGAs with power optimization,” Proc. 
Asia Pacific Conf. on Circuits and Sys., pp. 125-128, 1998. 

[58] J. Torresen and J. Jakobsen, “An FPGA-implemented 
processor architecture with adaptive resolution,” Proc. 
NASA/ESA Conf. on Adaptive Hardware and Sys., IEEE, pp. 
386-389, 2006. 

[59] C.Y. Tsui et al, “Exact and approximate methods for 
calculating signal and transition probabilities in FSMs,” Proc. 
ACM/IEEE Design Automation Conf., pp. 18-23, 1994.  

[60] C.Y. Tsui, M. Pedram, and A.M Despain, “Efficient 
estimation of dynamic power consumption under a real delay 
model,” Proc. IEEE Int. Conf. Computer-Aided Design, pp. 
224-228, 1993. 

[61] T. Tuan, A. Rahman, S. Das, S. Trimberger, and S. Kao, “A 
90-nm low-power FPGA for battery-powered applications,” 
IEEE Trans. on Computer-Aided Design, vol. 26, no. 2, pp. 
296-300, Feb. 2007. 

[62] A. Upegui and E. Sanchez, “Evolving hardware with self-
configurable connectivity in Xilinx FPGAs,” Proc. 
NASA/ESA Conf. on Adaptive Hardware and Sys., IEEE, pp. 
153-162, 2006. 

[63] C-C. Wang and C-P Kwan, “Low power technology mapping 
by hiding high-transition paths in invisible edges for LUT-
based FPGAs,” Proc. IEEE Int. Symp. on Circuits and Sys., 
pp. 1536-1539,1997. 

[64] Z-H. Wang, E-C. Liu, J. Lai, and T-C. Wang, “Power 
minimization in LUT-based FPGA technology mapping,” 
Proc. ACM Asia South Pacific Design Automation Conf., pp. 
635-640, 2001. 

[65] S.J.E. Wilton, S-S. Ang, and W. Luk. “The impact of 
pipelining on energy per operation in field programmable 
gate arrays”. In Proc. Field Prog. Logic and Applications, 
LNCS 3203,   pp. 719–728, 2004. 

[66] Xilinx, “Optimizing FPGA power with ISE design tools,” 
Xcell Journal, Issue 60, pp. 16-19, 2007. 

[67] Xilinx, “Power Consumption in 65nm FPGAs,” 2007. 

 

339345345

Authorized licensed use limited to: Imperial College London. Downloaded on September 14, 2009 at 00:10 from IEEE Xplore.  Restrictions apply. 


