
Reconfigurable computing: architectures and design
methods

T.J. Todman, G.A. Constantinides, S.J.E. Wilton, O. Mencer, W. Luk and P.Y.K. Cheung

Abstract: Reconfigurable computing is becoming increasingly attractive for many applications.
This survey covers two aspects of reconfigurable computing: architectures and design methods.
The paper includes recent advances in reconfigurable architectures, such as the Alters Stratix II and
Xilinx Virtex 4 FPGA devices. The authors identify major trends in general-purpose and special-
purpose design methods. It is shown that reconfigurable computing designs are capable of
achieving up to 500 times speedup and 70% energy savings over microprocessor implementations
for specific applications.

1 Introduction

Reconfigurable computing is rapidly establishing itself as a
major discipline that covers various subjects of learning,
including both computing science and electronic engineer-
ing. Reconfigurable computing involves the use of
reconfigurable devices, such as field programmable gate
arrays (FPGAs), for computing purposes. Reconfigurable
computing is also known as configurable computing or
custom computing, since many of the design techniques can
be seen as customising a computational fabric for specific
applications [1].

Reconfigurable computing systems often have impressive
performance. Consider, as an example, the point
multiplication operation in elliptic curve cryptography.
For a key size of 270 bits, it has been reported [2] that
a point multiplication can be computed in 0.36 ms with
a reconfigurable computing design implemented in an
XC2V6000 FPGA at 66 MHz. In contrast, an optimised
software implementation requires 196.71 ms on a dual-xeon
computer at 2.6 GHz; so the reconfigurable computing
design is more than 540 times faster, while its clock speed is
almost 40 times slower than the Xeon processors.
This example illustrates a hardware design implemented
on a reconfigurable computing platform. We regard such
implementations as a subset of reconfigurable computing,
which in general can involve the use of runtime reconfi-
guration and soft processors.

Is this speed advantage of reconfigurable computing over
traditional microprocessors a one-off or a sustainable trend?

Recent research suggests that it is a trend rather than a
one-off for a wide variety of applications: from image
processing [3] to floating-point operations [4].

Sheer speed, while important, is not the only strength of
reconfigurable computing. Another compelling advantage is
reduced energy and power consumption. In a reconfigurable
system, the circuitry is optimised for the application, such
that the power consumption will tend to be much lower than
that for a general-purpose processor. A recent study [5]
reports that moving critical software loops to reconfigurable
hardware results in average energy savings of 35% to 70%
with an average speedup of 3 to 7 times, depending on the
particular device used.

Other advantages of reconfigurable computing include a
reduction in size and component count (and hence cost),
improved time-to-market, and improved flexibility and
upgradability. These advantages are especially important
for embedded applications. Indeed, there is evidence [6] that
embedded systems developers show a growing interest in
reconfigurable computing systems, especially with the
introduction of soft cores which can contain one or more
instruction processors [7–12].

In this paper, we present a survey of modern reconfigur-
able system architectures and design methods. Although we
also provide background information on notable aspects of
older technologies, our focus is on the most recent
architectures and design methods, as well as the trends
that will drive each of these areas in the near future. In other
words, we intend to complement other survey papers
[13–17] by:

(i) providing an up-to-date survey of material that appears
after the publication of the papers mentioned above;
(ii) identifying explicitly the main trends in architectures
and design methods for reconfigurable computing;
(iii) examining reconfigurable computing from a perspec-
tive different from existing surveys, for instance classifying
design methods as special-purpose and general-purpose;
(iv) offering various direct comparisons of technology
options according to a selected set of metrics from different
perspectives.

2 Background

Many of today’s computationally intensive applications
require more processing power than ever before. Appli-
cations such as streaming video, image recognition

q IEE, 2005

IEE Proceedings online no. 20045086

doi: 10.1049/ip-cdt:20045086

T.J. Todman, O. Mencer and W. Luk are with the Department of
Computing, Imperial College London, 180 Queen’s Gate, London SW7
2AZ, UK

G.A. Constantinides and P.Y.K. Cheung are with the Department of
Electrical and Electronic Engineering, Imperial College London,
Exhibition Rd, South Kensington, London SW7 2BT, UK

S.J.E. Wilton is with the Department of Electrical and Computer
Engineering, University of British Columbia, 2356 Main Mall,
Vancouver, British Columbia, Canada V6T 1Z4

E-mail: tjt97@doc.ic.ac.uk

Paper first received 14th July and in revised form 9th November 2004

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005 193

and processing, and highly interactive services are placing
new demands on the computation units that implement these
applications. At the same time, the power consumption
targets, the acceptable packaging and manufacturing costs,
and the time-to-market requirements of these computation
units are all decreasing rapidly, especially in the embedded
hand-held devices market. Meeting these performance
requirements under the power, cost and time-to-market
constraints is becoming increasingly challenging.

In the following, we describe three ways of supporting
such processing requirements: high-performance micro-
processors, application-specific integrated circuits and
reconfigurable computing systems.

High-performance microprocessors provide an off-
the-shelf means of addressing processing requirements
described earlier. Unfortunately for many applications,
a single processor, even an expensive state-of-the-art
processor, is not fast enough. In addition, the power
consumption (100 W or more) and cost (possibly thousands
of dollars) state-of-the-art processors place them out of reach
for many embedded applications. Even if microprocessors
continue to follow Moore’s Law so that their density
doubles every 18 months, they may still be unable to keep
up with the requirements of some of the most aggressive
embedded applications.

Application-specific integrated circuits (ASICs) provide
another means of addressing these processing requirements.
Unlike a software implementation, an ASIC implementation
provides a natural mechanism for implementing the large
amount of parallelism found in many of these applications.
In addition, an ASIC circuit does not need to suffer from the
serial (and often slow and power-hungry) instruction fetch,
decode and execute cycle that is at the heart of all
microprocessors. Furthermore, ASICs consume less power
than reconfigurable devices. Finally, an ASIC can contain
just the right mix of functional units for a particular
application; in contrast, an off-the-shelf microprocessor
contains a fixed set of functional units which must be
selected to satisfy a wide variety of applications.

Despite the advantages of ASICs, they are often
infeasible or uneconomical for many embedded systems.
This is primarily due to two factors: the cost of producing an
ASIC often due to the mask’s cost (up to $1 million [18]),
and the time to develop a custom integrated circuit, can both
be unacceptable. Only the very highest-volume applications
would the improved performance and lower per-unit price
warrant the high nonrecurring engineering (NRE) cost of
designing an ASIC.

A third means of providing this processing power is
a reconfigurable computing system. A reconfigurable
computing system typically contains one or more processors
and a reconfigurable fabric upon which custom functional
units can be built. The processor(s) executes sequential and
noncritical code, while code that can be efficiently mapped
to hardware can be ‘executed’ by processing units that have
been mapped to the reconfigurable fabric. Like a custom
integrated circuit, the functions that have been mapped to
the reconfigurable fabric can take advantage of the
parallelism achievable in a hardware implementation.
Also like an ASIC, the embedded system designer can
produce the right mix of functional and storage units in the
reconfigurable fabric, providing a computing structure that
matches the application.

Unlike an ASIC, however, a new fabric need not be
designed for each application. A given fabric can implement
a wide variety of functional units. This means that a
reconfigurable computing system can be built out of
off-the-shelf components, significantly reducing the long

design-time inherent in an ASIC implementation. Also
unlike an ASIC, the functional units implemented in the
reconfigurable fabric can change over time. This means that
as the environment or usage of the embedded system
changes, the mix of functional units can adapt to better
match the new environment. The reconfigurable fabric in a
handheld device, for instance, might implement large matrix
multiply operations when the device is used in one mode,
and large signal processing functions when the device is
used in another mode.

Typically, not all of the embedded system functionality
needs to be implemented by the reconfigurable fabric. Only
those parts of the computation that are time-critical and
contain a high degree of parallelism need to be mapped to
the reconfigurable fabric, while the remainder of the
computation can be implemented by a standard instruction
processor. The interface between the processor and the
fabric, as well as the interface between the memory and the
fabric, are therefore of the utmost importance. Modern
reconfigurable devices are large enough to implement
instruction processors within the programmable fabric
itself: soft processors. These can be general purpose, or
customised to a particular application; application specific
instruction processors and flexible instruction processors are
two such approaches. Section 4.3.2 deals with soft
processors in more detail.

Other devices show some of the flexibility of reconfigur-
able computers. Examples include graphics processor units
and application specific array processors. These devices
perform well on their intended application, but cannot run
more general computations, unlike reconfigurable compu-
ters and microprocessors.

Despite the compelling promise of reconfigurable com-
puting, it has limitations of which designers should be aware.
For instance, the flexible routing on the bit level tends to
produce large silicon area and performance overhead when
compared with ASIC technology. Hence for large volume
production of designs in applications without the need for
field upgrade, ASIC technology or gate array technology can
still deliver higher performance design at lower unit cost than
reconfigurable computing technology. However, since
FPGA technology tracks advances in memory technology
and has demonstrated impressive advances in the last few
years, many are confident that the current rapid progress in
FPGA speed, capacity and capability will continue, together
with the reduction in price.

It should be noted that the development of reconfigurable
systems is still a maturing field. There are a number of
challenges in developing a reconfigurable system.
We describe three of such challenges below.

First, the structure of the reconfigurable fabric and the
interfaces between the fabric, processor(s) and memory
must be very efficient. Some reconfigurable computing
systems use a standard field-programmable gate array
[19–24] as a reconfigurable fabric, while others adopt
custom-designed fabrics [25–36].

Another challenge is the development of computer-aided
design and compilation tools that map an application to a
reconfigurable computing system. This involves determin-
ing which parts of the application should be mapped to the
fabric and which should be mapped to the processor,
determining when and how often the reconfigurable fabric
should be reconfigured, which changes the functional units
implemented in the fabric, as well as the specification of
algorithms for efficient mappings to the reconfigurable
system.

In this paper, we provide a survey of reconfigurable
computing, focusing our discussion on both the issues

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005194

described above. In the following Section, we provide a
survey of various architectures that are found useful for
reconfigurable computing; material on design methods will
follow.

3 Architectures

We shall first describe system-level architectures for
reconfigurable computing. We then present various flavours
of reconfigurable fabric. Finally we identify and summarise
the main trends.

3.1 System-level architectures

A reconfigurable system typically consists of one or more
processors, one or more reconfigurable fabrics, and one or
more memories. Reconfigurable systems are often classified
according to the degree of coupling between the reconfigur-
able fabric and the CPU. Compton and Hauck [14] present
the four classifications shown in Fig. 1a–d. In Fig. 1a, the
reconfigurable fabric is in the form of one or more stand-
alone devices. The existing input and output mechanisms of
the processor are used to communicate with the reconfigur-
able fabric. In this configuration, the data transfer between
the fabric and the processor is relatively slow, so this
architecture only makes sense for applications in which a
significant amount of processing can be done by the fabric
without processor intervention. Emulation systems often
take on this sort of architecture [37, 38].

Figures 1b, c show two intermediate structures. In both
cases, the cost of communication is lower than that of the
architecture in Fig. 1a. Architectures of these types are
described in [28, 29, 33, 35, 39–42].

Next, Fig. 1d shows an architecture in which the
processor and the fabric are very tightly coupled; in this
case, the reconfigurable fabric is part of the processor itself;
perhaps forming a reconfigurable sub-unit that allows for
the creation of custom instructions. Examples of this sort of
architecture have been described in [30, 32, 36, 43].

Figure 1e shows a fifth organisation. In this case, the
processor is embedded in the programmable fabric.
The processor can either be a ‘hard’ core [44, 45], or can
be a ‘soft’ core which is implemented using the resources of
the programmable fabric itself [7–12].

A summary of the above organisations can be found in
Table 1. Note that the bandwidth is the theoretical
maximum available to the CPU: for example, in Chess
[30], we assume that each block RAM is being accessed at
its maximum rate. Organisation (a) is by far the most
common, and accounts for all commercial reconfigurable
platforms.

3.2 Reconfigurable fabric

The heart of any reconfigurable system is the reconfigurable
fabric. The reconfigurable fabric consists of a set of
reconfigurable functional units, a reconfigurable intercon-
nect, and a flexible interface to connect the fabric to the rest
of the system. In this Section, we review each of these
components, and show how they have been used in both
commercial and academic reconfigurable systems.

A common theme runs through this entire section: in each
component of the fabric, there is a tradeoff between
flexibility and efficiency. A highly flexible fabric is typically
much larger and much slower than a less flexible fabric.
On the other hand, a more flexible fabric is better able to
adapt to the application requirements.

In the following discussions, we will see how this
tradeoff has influenced the design of every part of every

reconfigurable system. A summary of the main features of
various architectures can be found in Table 2.

3.2.1 Reconfigurable functional units: Recon-
figurable functional units can be classified as either coarse-
grained or fine-grained. A fine-grained functional unit can
typically implement a single function on a single (or small
number) of bits. The most common kind of fine-grained

Fig. 1 Five classes of reconfigurable systems

The first four are adapted from [14]
a External stand-alone processing unit
b Attached processing unit
c Co-processor
d Reconfigurable functional unit
e Processor embedded in a reconfigurable fabric

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005 195

Table 1: Summary of system architectures

Class

CPU to memory

bandwidth, MB=s

Shared

memory size

Fine grained or

coarse grained Example application

(a) External stand-alone

processing unit

RC2000 [46] 528 152 MB Fine grained Video processing

(b)=(c) Attached processing

unit=co-processor

Pilchard [47] 1064 20 kbytes Fine grained DES encryption

Morphosys [35] 800 2048 bytes Coarse grained Video compression

(d) Reconfigurable

functional unit

Chess [30] 6400 12288 bytes Coarse grained Video processing

(e) Processor embedded in

a reconfigurable fabric

Xilinx Virtex II Pro [24] 1600 1172 kB Fine grained Video compression

Table 2: Comparison of reconfigurable fabrics and devices

Fabric of device

Fine

grained or

coarse grained

Base logic

component

Routing

architecture

Embedded

memory

Special

Features

Actel ProASICþ [19] Fine 3-input block Horizontal and

vertical tracks

256 � 9 bit blocks Flash-based

Altera Excalibur [44] Fine 4-input lookup

tables

Horizontal and

vertical tracks

2 kbit memory blocks ARMv4T embedded

processor

Altera Stratix II [20] Fine=coarse 8-input adaptive

logic module

Horizontal and

vertical tracks

512 bits, 4 kbits,

and 512 kbit blocks

DSP blocks

Garp [29] Fine Logic or arithmetic

functions on four

2-bit input words

2-bit buses in

horizontal

and vertical

columns

External to fabric

Xilinx Virtex II Pro

[45]

Fine 4-input lookup

tables

Horizontal and

vertical tracks

18 kbit blocks Embedded multipliers,

PowerPC 405

processor

Xilinx Virtex II [24] Fine 4-input lookup

tables

Horizontal and

vertical tracks

18 kbit blocks Embedded multipliers

DReAM [48] Coarse 8-bit ALUs 16-bit local

and global buses

Two 16 � 8

dual port memory

Targets mobile

applications

Elixent D-fabrix [27] Coarse 4-bit ALUs 4-bit buses 256 � 8 memory blocks

HP Chess [30] Coarse 4-bit ALUs 4-bit buses 256 � 8 bit memories

IMEC ADRES [31] Coarse 32-bit ALUs 32-bit buses Small register files in

each logic component

Matrix [32] Coarse 8-bit ALUs Hierarchical

8-bit buses

256 � 8 bit memories

MorphoSys [35] Coarse ALU and multiplier,

and shift units

Buses External to fabric

Piperench [28] Coarse 8-bit ALUs 8-bit buses External to fabric Functional units

arranged in ‘stripes’

RaPiD [26] Coarse ALUs Buses Embedded memory blocks

Silicon Hive

Avispa [34]

Coarse ALUs, shifters,

accumulators

and multipliers

Buses Five embedded memories

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005196

functional units are the small lookup tables that are used to
implement the bulk of the logic in a commercial field-
programmable gate array. A coarse-grained functional unit,
on the other hand, is typically much larger, and may consist
of arithmetic and logic units (ALUs) and possibly even a
significant amount of storage. In this Section, we describe
the two types of functional units in more detail.

Many reconfigurable systems use commercial FPGAs as
a reconfigurable fabric. These commercial FPGAs contain
many three to six input lookup tables, each of which can be
thought of as a very fine-grained functional unit. Figure 2a
illustrates a lookup table; by shifting in the correct pattern of
bits, this functional unit can implement any single function
of up to three inputs – the extension to lookup tables with
larger numbers of inputs is clear. Typically, lookup tables
are combined into clusters, as shown in Fig. 2b. Figure 3
shows clusters in two popular FPGA families. Figure 3a
shows a cluster in the Altera Stratix device; Altera calls
these clusters ‘logic array blocks’ [20]. Figure 3b shows a
cluster in the Xilinx architecture [24]; Xilinx calls these
clusters ‘configurable logic blocks’ (CLBs). In the Altera
diagram, each block labelled ‘LE’ is a lookup table, while in
the Xilinx diagram, each ‘slice’ contains two lookup tables.
Other commercial FPGAs are described in [19, 21–23].

Reconfigurable fabrics containing lookup tables are very
flexible, and can be used to implement any digital circuit.
However, compared to the coarse-grained structures in
Section 3.2.2, these fine-grained structures have signifi-
cantly more area, delay and power overhead. Recognising
that these fabrics are often used for arithmetic purposes,
FPGA companies have added additional features such as
carry-chains and cascade-chains to reduce the overhead
when implementing common arithmetic and logic func-
tions. Figure 4 shows how the carry and cascade chains, as
well as the ability to break a 4-input lookup table into four
two-input lookup tables, can be exploited to efficiently
implement carry-select adders [20]. The multiplexers and
the exclusive-or gate in Fig. 4 are included as part of each
logic array block, and need not be implemented using other
lookup tables.

The example in Fig. 4 shows how the efficiency
of commercial FPGAs can be improved by adding

architectural support for common functions. We can go
much further than this, though, and embed significantly
larger, but far less flexible, reconfigurable functional units.
There are two kinds of devices that contain coarse-grained

Fig. 2 Fine-grained reconfigurable functional units

a Three-input lookup table
b Cluster of lookup tables

Fig. 3 Commercial logic block architectures

a Altera logic array block [20]
b Xilinx configurable logic block [24]

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005 197

functional units; modern FPGAs, which are primarily
composed of fine-grained functional units, are increasingly
being enhanced by the inclusion of larger blocks. As an
example, the Xilinx Virtex device contains embedded 18-bit
by 18-bit multiplier units [24]. When implementing algor-
ithms requiring a large amount of multiplication, these
embedded blocks can significantly improve the density,
speed and power of the device. On the other hand, for
algorithms which do not perform multiplication, these blocks
are rarely useful. The Altera Stratix devices contain a larger
but more flexible embedded block, called a DSP block,
shown in Fig. 5 [20]. Each of these blocks can perform
accumulate functions as well as multiply operations. The
comparison between the two devices clearly illustrates the
flexibility and overhead tradeoff; the Altera DSP block may
be more flexible than the Xilinx multiplier, however, it
consumes more chip area and runs somewhat slower.

The commercial FPGAs described above contain both
fine-grained and coarse-grained blocks. There are also
devices which contain only coarse-grained blocks [25, 26,
28, 30, 31, 35]. An example of a coarse-grained architecture
is the ADRES architecture shown in Fig. 6 [31]. Each
reconfigurable functional unit in this device contains a 32-
bit ALU which can be configured to implement one of
several functions including addition, multiplication and

logic functions, with two small register files. Clearly, such a
functional unit is far less flexible than the fine-grained
functional units described earlier; however, if the appli-
cation requires functions which match the capabilities of the
ALU, these functions can be very efficiently implemented in
this architecture.

Fig. 4 Implementing a carry-select adder in an Altera Stratix device [20]

‘LUT’ denotes ‘lookup table’

Fig. 6 ADRES reconfigurable functional unit [31]

Fig. 5 Altera DSP block [20]

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005198

3.2.2 Reconfigurable interconnects: Regard-
less of whether a device contains fine-grained functional
units, coarse-grained functional units, or a mixture of the
two, the functional units needed to be connected in a flexible
way. Again, there is a tradeoff between the flexibility of the
interconnect (and hence the reconfigurable fabric) and the
speed, area and power-efficiency of the architecture.

As before, reconfigurable interconnect architectures can
be classified as fine-grained or coarse-grained. The distinc-
tion is based on the granularity with which wires are
switched. This is illustrated in Fig. 7, which shows a flexible
interconnect between two buses. In the fine-grained
architecture in Fig. 7a, each wire can be switched
independently, while in Fig. 7b the entire bus is switched
as a unit. The fine-grained routing architecture in Fig. 7a is
more flexible, since not every bit needs to be routed in the
same way; however, the coarse-grained architecture in
Fig. 7b contains far fewer programming bits, and hence
suffers much less overhead.

Fine-grained routing architectures are usually found in
commercial FPGAs. In these devices, the functional units

are typically arranged in a grid pattern, and they are
connected using horizontal and vertical channels. Signifi-
cant research has been performed in the optimisation of the
topology of this interconnect [49, 50]. Coarse-grained
routing architectures are commonly used in devices
containing coarse-grained functional units. Figure 8 shows
two examples of coarse-grained routing architectures:
(a) the Totem reconfigurable system [25]; (b) the Silicon
Hive reconfigurable system [34], which is less flexible but
faster and smaller.

3.2.3 Emerging directions: Several emerging
directions will be covered in the following. These directions
include low-power techniques, asynchronous architectures
and molecular microelectronics:

. Low-power techniques: Early work explores the use of
low-swing circuit techniques to reduce the power consump-
tion in a hierarchical interconnect for a low-energy FPGA
[51]. Recent work involves: (a) activity reduction in
power-aware design tools, with energy saving of 23%
[52]; (b) leakage current reduction methods such as gate
biasing and multiple supply-voltage integration, with up to
two times leakage power reduction [53]; and (c) dual
supply-voltage methods with the lower voltage assigned to
noncritical paths, resulting in an average power reduction of
60% [54].
. Asynchronous architectures: There is an emerging
interest in asynchronous FPGA architectures. An asynchro-
nous version of Piperench [28] is estimated to improve
performance by 80%, at the expense of a significant increase
in configurable storage and wire count [55]. Other efforts in
this direction include fine-grained asynchronous pipelines
[56], quasi delay-insensitive architectures [57], and globally
asynchronous locally synchronous techniques [58].
. Molecular microelectronics: In the long term, molecular
techniques offer a promising opportunity for increasing the
capacity and performance of reconfigurable computing
architectures [59]. Current work is focused on developing
programmable logic arrays based on molecular-scale nano-
wires [60, 61].

3.3 Architectures: main trends

The following summarises the main trends in architectures
for reconfigurable computing.

3.3.1 Coarse-grained fabrics: As reconfigurable
fabrics are migrated to more advanced technologies, the cost
(in terms of both speed and power) of the interconnect part
of a reconfigurable fabric is growing. Designers are
responding to this by increasing the granularity of their
logic units, thereby reducing the amount of interconnect
needed. In the Stratix II device, Altera moved away from
simple 4-input lookup tables, and used a more complex
logic block which can implement functions of up to 7 inputs.
We should expect to see a slow migration to more complex
logic blocks, even in stand-alone FPGAs.

3.3.2 Heterogeneous functions: As devices are
migrated to more advanced technologies, the number of
transistors that can be devoted to the reconfigurable logic
fabric increases. This provides new opportunities to embed
complex nonprogrammable (or semi-programmable) func-
tions, creating heterogeneous architectures with both
general-purpose logic resources and fixed-function
embedded blocks. Modern Xilinx parts have embedded 18
by 18 bit multipliers, while modern Altera parts have
embedded DSP units which can perform a variety of

Fig. 7 Routing architectures

a Fine-grained
b Coarse-grained

Fig. 8 Example coarse-grained routing architectures

a Totem coarse-grained routing architecture [25]
b Silicon Hive coarse-grained routing architecture [34]

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005 199

multiply=accumulate functions. Again, we should expect to
see a migration to more heterogeneous architectures in the
near future.

3.3.3 Soft cores: The use of ‘soft’ cores, particu-
larly for instruction processors, is increasing. A ‘soft’ core is
one in which the vendor provides a synthesisable version of
the function, and the user implements the function using the
reconfigurable fabric. Although this is less area- and speed-
efficient than a hard embedded core, the flexibility and the
ease of integrating these soft cores makes them attractive.
The extra overhead becomes less of a hindrance as the
number of transistors devoted to the reconfigurable fabric
increases. Altera and Xilinx both provide numerous soft
cores, including soft instruction processors such as NIOS [7]
and Microblaze [12]. Soft instruction processors have also
been developed by a number of researchers, ranging from
customisable JVM and MIPS processors [10] to ones
specialised for machine learning [8] and data encryption [9].

4 Design methods

Hardware compilers for high-level descriptions are increas-
ingly recognised to be the key to reducing the productivity
gap for advanced circuit development in general, and for
reconfigurable designs in particular. This Section looks at
high-level design methods from two perspectives: special-
purpose design and general-purpose design. Low-level
design methods and tools, covering topics such as
technology mapping, floor-planning, and place and route,
are beyond the scope of this paper – interested readers are
referred to [14].

4.1 General-purpose design

This Section describes design methods and tools based on a
general-purpose programming language such as C, possibly
adapted to facilitate hardware development. Of course,
traditional hardware description languages like VHDL and
Verilog are widely available, especially on commercial
reconfigurable platforms.

A number of compilers from C to hardware have been
developed. Some of the significant ones are reviewed here.
These range from compilers which only target hardware to
those which target complete hardware=software systems;
some also partition into hardware and software components.

We can classify different design methods into two
approaches: the annotation and constraint-driven approach,
and the source-directed compilation approach. The first
approach preserves the source programs in C or Cþþ as
much as possible and makes use of annotation and
constraint files to drive the compilation process. The second
approach modifies the source language to let the designer to
specify, for instance, the amount of parallelism or the size of
variables.

4.1.1 Annotation and constraint-driven
approach: The systems mentioned below employ
annotations in the source-code and constraint flies to control
the optimisation process. Their strength is that usually only
minor changes are needed to produce a compilable program
from a software description – no extensive restructuring is
required. Five representative methods are SPC [62],
Streams-C [63], Sea Cucumber [64], SPARK [65] and
Catapult-C [66].

SPC [62] combines vectorisation, loop transformations
and retiming with automatic memory allocation to improve
performance. SPC accelerates C loop nests with data
dependency restrictions, compiling them into pipelines.

Based on the SUIF framework [67], this approach uses loop
transformations, and can take advantage of runtime
reconfiguration and memory access optimisation. Similar
methods have been advocated by other researchers [68, 69].

Streams-C [63] compiles a C program to synthesisable
VHDL. Streams-C exploits coarse-grained parallelism in
stream-based computations; low-level optimisations such as
pipelining are performed automatically by the compiler.

Sea Cucumber [64] compiles Java programs to hardware
using a similar scheme to Handel-C, which we detail in
Section 4.1.2. Unlike Handel-C, no language extensions are
needed; like Streams-C, users must call a library, in this case
based on communicating sequential processes (CSP [70]).
Multiple circuit implementations of the library primitives
enable tradeoffs.

SPARK [65] is a high-level synthesis framework
targeting multimedia and image processing. It compiles C
code with the following steps: (a) list scheduling based on
speculative code motions and loop transformations;
(b) resource binding pass with minimisation of interconnect;
(c) finite state machine controller generation for the
scheduled datapath; (d) code generation producing synthe-
sisable register-transfer level VHDL. Logic synthesis tools
then synthesise the output.

Catapult C synthesises register transfer level (RTL)
descriptions from unannotated Cþþ; using characteris-
ations of the target technology from RTL synthesis tools
[66]. Users can set constraints to explore the design space,
controlling loop pipelining and resource sharing.

4.1.2 Source-directed compilation approach:
A different approach adapts the source language to enable
explicit description of parallelism, communication and
other customisable hardware resources such as variable
size. Examples of design methods following this
approach include ASC [71], Handel-C [72], Haydn-C [73]
and Bach-C [77].

ASC [71] adopts Cþþ custom types and operators to
provide a Cþþ programming interface on the algorithm,
architecture, arithmetic and gate levels. This enables the
user to program on the desired level for each part of the
application. Semi-automated design space exploration
further increases design productivity, while supporting the
optimisation process on all available levels of abstraction.
The object-oriented design enables efficient code-reuse, and
includes an integrated arithmetic unit generation library
[74]. A floating-point library [75] provides over 200
different floating point units, each with custom bitwidths
for mantissa and exponent.

Handel-C [72] extends a subset of C to support flexible
width variables, signals, parallel blocks, bit-manipulation
operations, and channel communication. A distinctive
feature is that timing of the compiled circuit is fixed at
one cycle per C statement. This allows Handel-C program-
mers to schedule hardware resources manually. Handel-C
compiles to a one-hot state machine using a token-passing
scheme developed by Page and Luk [76]; each assignment
of the program maps to exactly one control flip-flop in the
state machine. These control flip-flops capture the flow of
control (represented by the token) in the program: if the
control flip-flop corresponding to a particular statement is
active, then control has passed to that statement, and the
circuitry compiled for that statement is activated. When
the statement has finished execution, it passes the token to
the next statement in the program.

Haydn-C [73] extends Handel-C for component-based
design. Like Handel-C, it supports description of
parallel blocks, bit-manipulation operations and channel

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005200

communication. The principal innovation of Haydn-C is a
framework of optional annotations to enable users to
describe design constraints, and to direct source-level
transformations such as scheduling and resource allocation.
There are automated transformations so that a single high-
level design can be used to produce many implementations
with different trade-offs. This approach has been evaluated
using various case studies, including FIR filters, fractal
generators and morphological operators. The fastest mor-
phological erosion design is 129 times faster and 3.4 times
larger than the smallest design.

Bach-C [77] is similar to Handel-C but has an untimed
semantics, only synchronising between parallel threads on
synchronous communications between them, possibly
giving greater scope for optimisation. It also allows
asynchronous communications but otherwise resembles
Handel-C, using the same basic one-hot compilation
scheme.

Table 3 summarises the various compilers discussed in
this Section, showing their approach, source and target
languages, target architecture and some example appli-
cations. Note that the compilers discussed are not
necessarily restricted to the architectures reported; some
can usually be ported to a different architecture by using a
different library of hardware primitives.

4.2 Special-purpose design

Within the wide variety of problems to which reconfigurable
computing can be applied, there are many specific problem
domains which deserve special consideration. The motiv-
ation is to exploit domain-specific properties: (a) to describe
the computation, such as using MATLAB for digital signal
processing, and (b) to optimise the implementation, such as
using word-length optimisation techniques described later.

We shall begin with an overview of digital signal
processing and relevant tools which target reconfigurable
implementations. We then describe the word-length optim-
isation problem, the solution to which promises rich
rewards; an example of such a solution will be covered.
Finally we summarise other domain-specific design
methods which have been proposed for video and image
processing and networking.

4.2.1 Digital signal processing: One of the most
successful applications for reconfigurable computing is real-
time digital signal processing (DSP). This is illustrated by
the inclusion of hardware support for DSP in the latest
FPGA devices, such as the embedded DSP blocks in Altera
Stratix II chips [20].

DSP problems tend to share the following properties:
design latency is usually less of an issue than design
throughput, algorithms tend to be numerically intensive but
have very simple control structures, controlled numerical
error is acceptable, and standard metrics, such as signal-to-
noise ratio, exist for measuring numerical precision quality.

DSP algorithm design is often initially performed directly
in a graphical programming environment such as Math-
works’ MATLAB Simulink [80]. Simulink is widely used
within the DSP community, and has been recently
incorporated into the Xilinx System Generator [81] and
Altera DSP builder [82] design flows. Design approaches
such as this are based on the idea of data-flow graphs
(DFGs) [83].

Tools working with this form of description vary in the
level of user intervention required to specify the numerical
properties of the implementation. For example, in the Xilinx
System Generator flow [81], it is necessary to specify the
number of bits used to represent each signal, the scaling of
each signal (namely the binary point location), and whether
to use saturating or wrap-around arithmetic [84].

Ideally, these implementation details could be automated.
Beyond a standard DFG-based algorithm description, only
one piece of information should be required: a lower-bound
on the output signal to quantisation noise acceptable to the
user. Such a design tool would thus represent a truly
‘behavioural’ synthesis route, exposing to the DSP engineer
only those aspects of design naturally expressed in the DSP
application domain.

4.2.2 The word-length optimisation problem:
Unlike microprocessor-based implementations where
the word-length is defined a priori by the hard-wired
architecture of the processor, reconfigurable computing
based on FPGAs allows the size of each variable to be
customised to produce the best tradeoffs in numerical

Table 3: Summary of general-purpose hardware compilers

System Approach Source language Target language Target architecture Example applications

Streams-C [63] Annotation=

constraint-driven

C þ library RTL VHDL Xilinx FPGA Image contrast

enhancement, pulsar

detection [78]

Sea Cucumber

[64]

Annotation=

constraint-driven

Java þ library EDIF Xilinx FPGA none given

SPARK [65] Annotation=

constraint-driven

C RTL VHDL LSI, Altera FPGAs MPEG-1 predictor,

image tiling

SPC [62] Annotation=

constraint-driven

C EDIF Xilinx FPGAs String pattern matching,

image skeletonisation

ASC [71] Source-directed

compilation

C þþ using

class library

EDIF Xilinx FPGAs Wavelet compression,

encryption

Handel-C [72] Source-directed

compilation

Extended C Structural VHDL,

Verilog, EDIF

Actel, Altera

Xilinx FPGAs

Image processing,

polygon rendering [79]

Haydn-C [73] Source-directed

compilation

Extended C Extended C

(Handel-C)

Xilinx FPGAs FIR filter, image erosion

Bach-C [77] Source-directed

compilation

Extended C Behavioural

and RTL VHDL

LSI FPGAs Viterbi decoders,

image processing

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005 201

accuracy, design size, speed and power consumption.
The use of such custom data representation for optimising
designs is one of the main strengths of reconfigurable
computing.

Given this flexibility, it is desirable to automate the
process of finding a good custom data representation.
The most important implementation decision to automate is
the selection of an appropriate word-length and scaling for
each signal [85] in a DSP system. Unlike microprocessor-
based implementations, where the word-length is defined
a priori by the hard-wired architecture of the processor,
reconfigurable computing allows the word-length of each
signal to be customised to produce the best tradeoffs
in numerical accuracy, design size, speed, and power
consumption. The use of custom data representation is one
of the greatest strengths.

It has been argued that, often, the most efficient hardware
implementation of an algorithm is one in which a wide
variety of finite precision representations of different sizes
are used for different internal variables [86]. The accuracy
observable at the outputs of a DSP system is a function of
the word-lengths used to represent all intermediate variables
in the algorithm. However, accuracy is less sensitive to
some variables than to others, as is implementation area.
It is demonstrated in [85] that, by considering error and area
information in a structured way using analytical and semi-
analytical noise models, it is possible to achieve highly
efficient DSP implementations.

In [87] it has been demonstrated that the problem of
word-length optimisation is NP-hard, even for systems with
special mathematical properties that simplify the problem
from a practical perspective [88]. There are, however,
several published approaches to word-length optimisation.
These can be classified as heuristics offering an area = signal
quality tradeoff [86, 89, 90], approaches that make some
simplifying assumptions on error properties [89, 91], or
optimal approaches that can be applied to algorithms with
particular mathematical properties [92].

Some published approaches to the word-length optimis-
ation problem use an analytic approach to scaling and=or
error estimation [90, 93, 94], some use simulation [89, 91],
and some use a hybrid of the two [95]. The advantage of
analytical techniques is that they do not require representa-
tive simulation stimulus, and can be faster; however, they
tend to be more pessimistic. There is little analytical work
on supporting data-flow graphs containing cycles, although
in [94] finite loop bounds are supported, while [88] supports
cyclic data-flow when the nodes are of a restricted set of
types, extended to the semi-analytic technique with fewer
restrictions in [96].

Some published approaches use worst-case instantaneous
error as a measure of signal quality [90, 91, 93], whereas
some use signal-to-noise ratio [86, 89].

The remainder of this Section reviews in some detail
particular research approaches in the field.

The Bitwise Project [94] proposes propagation of integer
variable ranges backwards and forwards through data-flow
graphs. The focus is on removing unwanted most-significant
bits (MSBs). Results from integration in a synthesis flow
indicate that area savings of between 15% and 86%
combined with speed increases of up to 65% can be
achieved compared to using 32-bit integers for all variables.

The MATCH Project [93] also uses range propagation
through data-flow graphs, except that variables with a
fractional component are allowed. All signals in the model
of [93] must have equal fractional precision; the authors
propose an analytic worst-case error model to estimate the
required number of fractional bits. Area reductions of 80%

combined with speed increases of 20% are reported when
compared to a uniform 32-bit representation.

Wadekar and Parker [90] have also proposed a method-
ology for word-length optimisation. Like [93], this tech-
nique also allows controlled worst-case error at system
outputs; however, each intermediate variable is allowed to
take a word-length appropriate to the sensitivity of the
output errors to quantisation errors on that particular
variable. Results indicate area reductions of between 15%
and 40% over the optimum uniform word-length
implementation.

Kum and Sung [89] and Cantin et al. [91] have proposed
several word-length optimisation techniques to tradeoff
system area against system error. These techniques are
heuristics based on bit-true simulation of the design under
various internal word-lengths.

In Bitsize [97, 98], Abdul Gaffar et al. propose a hybrid
method based on the mathematical technique known as
automatic differentiation to perform bitwidth optimisation.
In this technique, the gradients of outputs with respect to the
internal variables are calculated and then used to determine
the sensitivities of the outputs to the precision of the internal
variables. The results show that it is possible to achieve an
area reduction of 20% for floating-point designs, and 30%
for fixed-point designs, when given an output error
specification of 0:75% against a reference design.

A useful survey of algorithmic procedures for word-
length determination has been provided by Cantin et al.
[99]. In this work, existing heuristics are classified under
various categories. However the ‘exhaustive’ and ‘branch-
and-bound’ procedures described in [99] do not necessarily
capture the optimum solution to the word-length determi-
nation problem, due to nonconvexity in the constraint space:
it is actually possible to have a lower error at a system
output by reducing the word-length at an internal node
[100]. Such an effect is modelled in the MILP approach
proposed in [92].

A comparative summary of existing optimisation systems
is provided in Table 4. Each system is classified according
to the several defining features described below.

. Is the word-length and scaling selection performed
through analytical or simulation-based means?
. Can the system support algorithms exhibiting cyclic data
flow (such as infinite impulse response filters)?
. What mechanisms are supported for most significant bit
(MSB) optimisations (such as ignoring MSBs that are
known to contain no useful information, a technique
determined by the scaling approach used)?
. What mechanisms are supported for least significant bit
(LSB) optimisations? These involve the monitoring of
word-length growth. In addition, for those systems that
support error-tradeoffs, further optimisations include the
quantisation (truncation or rounding) of unwanted LSBs.
. Does the system allow the user to tradeoff numerical
accuracy for a more efficient implementation?

4.2.3 An example optimisation flow: One
possible design flow for word-length optimisation, used in
the Right-Size system [96] is illustrated in Fig. 9 for Xilinx
FPGAs. The inputs to this system are a specification of the
system behaviour (e.g. using Simulink), a specification of
the acceptable signal-to-noise ratio at each output, and a set
of representative input signals. From these inputs, the tool
automatically generates a synthesisable structural descrip-
tion of the architecture and a bit-true behavioural VHDL
testbench, together with a set of expected outputs for
the provided set of representative inputs. Also generated is

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005202

a makefile which can be used to automate the post-Right-
Size synthesis process.

Application of Right-Size to various adaptive filters
implemented in a Xilinx Virtex FPGA has resulted in area
reduction of up to 80%, power reduction of up to 98%, and
speedup of up to 36% over common alternative design
methods without word-length optimisation.

4.2.4 Other design methods: Besides signal
processing, video and image processing is another area
that can benefit from special-purpose design methods. Three
examples will be given to provide a flavour of this approach.
First, the CHAMPION system [108] maps designs captured
in the Cantata graphical programming environment to
multiple reconfigurable computing platforms. Second, the
IGOL framework [109] provides a layered architecture for
facilitating hardware plug-ins to be incorporated in various

applications in the Microsoft Windows operating system,
such as Premiere, Winamp, VirtualDub and DirectShow.
Third, the SA-C compiler [110] maps a high-level single-
assignment language specialised for image processing
description into hardware, using various optimisation
methods including loop unrolling, array value propagation,
loop-carried array elimination and multi-dimensional
stripmining.

Recent work indicates that another application area
that can benefit from special-purpose techniques is
networking. Two examples will be given. First, a
framework has been developed to enable description of
designs in the network policy language Ponder [111],
into reconfigurable hardware implementations [112].
Second, it is shown [113] how descriptions in the Click
networking language can produce efficient reconfigurable
designs.

Table 4: Comparison of world-length and scaling optimisation systems and methods

System Analytical=simulation Cyclic data flow? MSB-optimisation LSB-optimisations Error tradeoff Comments

Benedetti

[101]

analytical none through interval

arithmetic

through

‘multi-interval’

approach

no error can be pessimistic

Stephenson

[94, 102]

analytical for finite

loop bounds

through forward

and backward

range propagation

none no error less pessimistic

than [101]

due to backwards

propagation

Nayak [93] analytical not supported for

error analysis

through forward

and backward

range propagation

through fixing

number of

fractional bits

for all variables

user-specified

or inferred

absolute bounds

on error

fractional parts

have equal

word-length

Wadekar

[90]

analytical none through forward

rang propagation

through genetic

algorithm search

for suitable

word-lengths

user-specified

absolute bounds

uses Taylor series

at limiting values

to determine

error propagation

Keding

[103, 104]

hybrid with user

intervention

through

user-annotations

and forward range

propagation

through

user-annotations and

forward world-length

propagation

not automated possible

truncation error

Cmar [95] hybrid for

scaling

simulation

for error

with user

intervention

only

through combined

simulation and

forward range

propagation

word-length

bounded

through

hybrid fixed or

floating simulation

not automated less pessimistic

than [101] due

to input error

propagation

Kum

[89, 105–107]

simulation

(hybrid for

multiply-

accumulate

signals in

[89, 105])

yes through measurement

of variable mean and

standard deviation

through heuristics

based on simulation

results

user-specified

bounds and

metric

long simulation

time possible

Constantinides

[85]

analytical yes through tight analytical

bounds on

signal range and

automatic design of

saturation arithmetic

through heuristics

based on an analytic

noise model

user-specified

bounds on

noise power

and spectrum

only applicable

to linear

time-invariant

systems

Constantinides

[96]

hybrid yes through simulation through heuristics

based on a hybrid

noise model

user-specified

bounds on

noise power and

spectrum

only applicable

to differentiable

nonlinear systems

Abdul Gaffar

[97, 98]

hybrid with user

intervention

through simulation

based range

propagation

through automatic

differentiation

based dynamic

analysis

user-specified

bounds and metric

covers both

fixed-point

and floating-point

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005 203

4.3 Other design methods

In the following, we describe various design methods in
brief.

4.3.1 Run-time customisation: Many aspects of
runtime reconfiguration have been explored [14], including
the use of directives in high-level descriptions [114].
Effective runtime customisation hinges on appropriate
design-time preparation for such customisation. To illustrate
this point, consider a runtime customisable system that
supports partial reconfiguration: one part of the system
continues to be operational, while another part is being
reconfigured. As FPGAs get larger, partial reconfiguration is
becoming increasingly important as a means of reducing
reconfiguration time. To support partial reconfiguration,
appropriate circuits must be built at fabrication time as part of
the FPGA fabric. Then, at compile time, an initial
configuration bitstream and incremental bitstreams have to
be produced, together with runtime customisation facilities
which can be executed, for instance, on a microprocessor
serving as part of the runtime system [115]. Runtime
customisation facilities can include support for condition
monitoring, design optimisation and reconfiguration control.

Opportunities for runtime design optimisation include:
(a) runtime constant propagation [116], which produces a
smaller circuit with higher performance by treating runtime
data as constant, and optimising them principally by
Boolean algebra: (b) library-based compilation – the
DISC compiler [117] makes use of a library of precompiled
logic modules which can be loaded into reconfigurable
resources by the procedure call mechanism; (c) exploiting
information about program branch probabilities [118]; the
idea is to promote utilisation by dedicating more resources
to branches which execute more frequently. A hardware
compiler has been developed to produce a collection of
designs, each optimised for a particular branch probability;
the best can be selected at runtime by incorporating
observed branch probability information from a queueing
network performance model.

4.3.2 Soft instruction processors: FPGA tech-
nology can now support one or more soft instruction
processors implemented using reconfigurable resources on a
single chip; proprietary instruction processors, like Micro-
Blaze and Nios, are now available from FPGA vendors.
Often such processors support customisation of resources
and custom instructions. Custom instructions have two main
benefits. First, they reduce the time for instruction fetch and
decode, provided that each custom instruction replaces
several regular instructions. Second, additional resources
can be assigned to a custom instruction to improve
performance. Bit-width optimisation, described in Section
4.2, can also be applied to customise instruction processors
at compile time. A challenge of customising instruction
processors is that the tools for producing and analysing
instructions also need to be customised. For instance, the
flexible instruction processor framework [10] has been
developed to automate the steps in customising an
instruction processor and the corresponding tools. Other
researchers have proposed similar approaches [119].

Instruction processors can also run declarative languages.
For instance, a scalable architecture [8], consisting of
multiple processors based on the Warren Abstract Machine,
has been developed to support the execution of the Progol
system [120], based on the declarative language Prolog. Its
effectiveness has been demonstrated using the mutagenesis
data set containing 12 000 facts about chemical compounds.

4.3.3 Multi-FPGA compilation: Peterson et al.
have developed a C compiler which compiles to multi-
FPGA systems [121]. The available FPGAs and other
units are specified in a library file, allowing portability.
The compiler can generate designs using speculative and lazy
execution to improve performance, and ultimately they aim
to partition a single program between host and reconfigur-
able resource (hardware=software codesign). Duncan et al.
have developed a system with similar capabilities [122].
This is also retargetable, using hierarchical architecture
descriptions. It synthesises a VLIW architecture that can be

Fig. 9 Design flow for Right-Size tool [96]

Shaded portions are FPGA vendor-specific

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005204

partitioned across multiple FPGAs. Both methods can split
designs across several FPGAs, and are retargetable via
hardware description libraries. Other C-like languages that
have been developed include MoPL-3, a C extension
supporting data procedural compilation for the Xputer
architecture which comprises an array of reconfigurable
ALUs [123], and spC, a systolic parallel C variant for the
Enableþþ board [124].

4.3.4 Hardware=software codesign: Several
research groups have studied the problem of compiling C
code to both hardware and software. The Garp compiler
[125] is intended to accelerate plain C, with no annotations
to help the compiler, making it more widely applicable.
The work targets one architecture only: the Garp chip,
which integrates a RISC core and reconfigurable logic. This
compiler also uses the SUIF framework. The compiler uses
a technique first developed for VLIW architectures called
hyperblock scheduling, which optimises for instruction-
level parallelism across several common paths, at the
expense of rarer paths. Infeasible or rare paths are
implemented on the processor with the more common,
easily parallelisable paths synthesised into logic for the
reconfigurable resource. Similarly, the NAPA C compiler
targets the NAPA architecture [126], which also integrates a
RISC processor reconfigurable logic. This compiler can also
work on plain C code but the programmer can add C
pragmas to indicate large-scale parallelism and the bit-
widths of variables to the code. The compiler can synthesise
pipelines from loops.

4.3.5 Annotation-free compilation: Some
researchers aim to compile a sequential program, without
any annotations, into efficient hardware design. This
requires analysis of the source program to extract paralle-
lism for an efficient result, which is necessary if compilation
from languages such as C is to compete with traditional
methods for designing hardware. One example is the work
of Babb et al. [127], targeting custom, fixed-logic
implementation while also applicable to reconfigurable
hardware. The compiler uses the SUIF infrastructure to do
several analyses to find what computations affect exactly
what data, as far as possible. A tiled architecture is
synthesised, where all computation is kept as local as
possible to one tile. More recently, Ziegler et al. [128] have
used loop transformations in mapping loop nests onto a
pipeline spanning several FPGAs. A further effort is given
by the Garp project [125].

4.4 Emerging directions

4.4.1 Verification: As designs are becoming more
complex, techniques for verifying their correctness are
becoming increasingly important. Four approaches are
described: (i) The InterSim framework [129] provides a
means of combining software simulation and hardware
prototyping. (ii) The Lava system [130] can convert designs
into a form suitable for input to a model checker; a number
of FPGA design libraries have been verified in this way
[131]. (iii) The Ruby language [132] supports correctness-
preserving transformations, and a wide variety of hardware
designs have been produced. (iv) The Pebble [133]
hardware design language has been formally specified
[134], so that provably-correct design tools can be
developed.

4.4.2 Customisable hardware compilation:
Recent work [135] explains how customisable frameworks
for hardware compilation can enable rapid design

exploration, and reusable and extensible hardware optimi-
sation. The framework compiles a parallel imperative
language like Handel-C, and supports multiple levels of
design abstraction, transformational development,
optimisation by compiler passes, and metalanguage
facilities. The approach has been used in producing designs
for applications, such as signal and image processing, with
different tradeoffs in performance and resource usage.

4.5 Design methods: main trends

We summarise the main trends in design methods for
reconfigurable computing below.

4.5.1 Special-purpose design: As explained
earlier, special-purpose design methods and tools enable
both high-level design and domain-specific optimisation.
Existing methods, such as those compiling MATLAB
Simulink descriptions into reconfigurable computing
implementations [81, 82, 93, 96, 97, 136], allow application
developers without electronic design experience to produce
efficient hardware implementations quickly and effectively.
This is an area that would assume further importance in
future.

4.5.2 Low-power design: Several hardware
compilers aim to minimise the power consumption of
their generated designs. Examples include special-purpose
design methods such as Right-Size [96] and PyGen [136],
and general-purpose methods that target loops for config-
urable hardware implementation [5]. These design methods,
when combined with low-power architectures [54] and
power-aware low-level tools [52], can provide significant
reduction in power consumption.

4.5.3 High-level transformation: Many hard-
ware design methods [62, 65, 110] involve high-level
transformations: loop unrolling, loop restructuring and
static single assignment are three examples. The develop-
ment of powerful transformations for design optimisation
will continue for both special-purpose and general-purpose
designs.

5 Summary

This paper surveys two aspects of reconfigurable comput-
ing: architectures and design methods. The main trends in
architectures are coarse-grained fabrics, heterogeneous
functions and soft cores. The main trends in design methods
are special-purpose design methods, low-power techniques
and high-level transformations. We wonder what a survey
paper on reconfigurable computing, written in 2015, will
cover?

6 Acknowledgments

Our thanks to Ray Cheung and Sherif Yusuf for their
support in preparing this paper. The support of Celoxica,
Xilinx and UK EPSRC (grant numbers GR=R 31409, GR=R
55931, GR=N 66599) is gratefully acknowledged.

7 References

1 Luk, W.: ‘Customising processors: design-time and run-time
opportunities’, Lect. Notes Comput. Sci., 2004, 3133

2 Telle, N., Cheung, C.C., and Luk, W.: ‘Customising hardware designs for
elliptic curve cryptography’, Lect. Notes Comput. Sci., 2004, 3133

3 Guo, Z., Najjar, W., Vahid, F., and Vissers, K.: ‘A quantitative analysis
of the speedup factors of FPGAs over processors’. Proc. Int. Symp. on
FPGAs (ACM Press, 2004)

4 Underwood, K.: ‘FPGAs vs. CPUs: trends in peak floating-point
performance’. Proc. Int. Symp. on FPGAs (ACM Press, 2004)

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005 205

5 Stitt, G., Vahid, F., and Nematbakhsh, S.: ‘Energy savings and speedups
from partitioning critical software loops to hardware in embedded
systems’, ACM Trans. Embedded Comput. Syst., 2004, 3, (1),
pp. 218–232

6 Vereen, L.: ‘Soft FPGA cores attract embedded developers’, Embedded
Syst. Program., 2004, 23 April 2004, http://www.embedded.com//
showArticle.jhtml?articleID=19200183

7 Altera Corp., Nios II Processor Reference Handbook, May 2004
8 Fidjeland, A., Luk, W., and Muggleton, S.: ‘Scalable acceleration of

inductive logic programs’. Proc. IEEE Int. Conf. on Field-Programmable
Technology, 2002

9 Leong, P.H.W., and Leung, K.H.: ‘A microcoded elliptic curve processor
using FPGA technology’, IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., 2002, 10, (5), pp. 550–559

10 Seng, S.P., Luk, W., and Cheung, P.Y.K.: ‘Flexible instruction
processors’. Proc. Int. Conf. on Compilers, Arch. and Syn. for
Embedded Systems (ACM Press, 2000)

11 Seng, S.P., Luk, W., and Cheung, P.Y.K.: ‘Run-time adaptive flexible
instruction processors’, Lect. Notes Comput. Sci., 2002, 2438

12 Xilinx, Inc., Microblaze Processor Reference Guide, June 2004
13 Bondalapati, K., and Prasanna, V.K.: ‘Reconfigurable computing

systems’, Proc. IEEE, 2002, 90, (7), pp. 1201–1217
14 Compton, K., and Hauck, S.: ‘Reconfigurable computing: a survey of

systems and software’, ACM Comput. Surv., 2002, 34, (2), pp. 171–210
15 Luk, W., Cheung, P.Y.K., and Shirazi, N.: ‘Configurable computing’,

in Chen, W.K. (Ed.): ‘Electrical engineer’s handbook’ (Academic
Press, 2004)

16 Schaumont, P., Verbauwhede, I., Keutzer, K., and Sarrafzadeh, M.:
‘A quick safari through the reconfiguration jungle’. Proc. Design
Automation Conf., ACM Press, 2001

17 Tessier, R., and Burleson, W.: ‘Reconfigurable computing and digital
signal processing: a survey’, J. VLSI Signal Process., 2001, 28,
pp. 7–27

18 Saxe, T., and Faith, B.: ‘Less is more with FPGAs’ EE Times, 13
September 2004 http://www.eetimes.com/showArticle.
jhtml?articleID=47203801

19 Actel Corp., ProASIC Plus Family Flash FPGAs, v3.5, April 2004
20 Altera Corp., Stratix II Device Handbook, February 2004
21 Lattice Semiconductor Corp, ispXPGA Family, January 2004
22 Morris, K.: ‘Virtex 4: Xilinx details its next generation’, FPGA

Program. Logic J., 2004, June
23 Quicklogic Corp., Eclipse-II Family Datasheet, January 2004
24 Xilinx, Inc., Virtex II Datasheet, June 2004
25 Compton, K., and Hauck, S.: ‘Totem: Custom reconfigurable array

generation’. Proc. Symp. on Field-Programmable Custom Computing
Machines (IEEE Computer Society Press, 2001)

26 Ebeling, C., Conquist, D., and Franklin, P.: ‘RaPiD – reconfigurable
pipelined datapath’, Lect. Notes Comput. Sci. Misc., 1996, 1142

27 Elixent Corporation, DFA 1000 Accelerator Datasheet, 2003
28 Goldstein, S.C., Schmit, H., Budiu, M., Cadambi, S., Moe, M., and

Taylor, R.: ‘PipeRench: a reconfigurable architecture and compiler’,
Computer, 2000, 33, (4), pp. 70–77

29 Hauser, J.R., and Wawrzynek, J.: ‘Garp: a MIPS processor with a
reconfigurable processor’. IEEE Symp. on Field-Programmable
Custom Computing Machines (IEEE Computer Society Press, 1997)

30 Marshall, A., Stansfield, T., Kostarnov, I., Vuillemin, J., and
Hutchings, B.: ‘A reconfigurable arithmetic array for multimedia
applications’, ACM=SIGDA Int. Symp. on FPGAs, Feb 1999,
pp. 135–143

31 Mei, B., Vernalde, S., Verkest, D., De Man, H., and Lauwereins, R.:
‘ADRES: An architecture with tightly coupled VLIW processor and
coarse-grained reconfigurable matrix’, Lect. Notes Comput. Sci., 2003,
2778

32 Mirsky, E., and DeHon, A.: ‘MATRIX: a reconfigurable computing
architecture with configurable instruction distribution and deployable
resources’. Proc. Symp. on Field-Programmable Custom Computing
Machines (IEEE Computer Society Press, 1996)

33 Rupp, C.R., Landguth, M., Garverick, T., Gomersall, E., Holt, H.,
Arnold, J., and Gokhale, M.: ‘The NAPA adaptive processing
architecture’. IEEE Symp. on Field-Programmable Custom Computing
Machines, May 1998, pp. 28–37

34 Silicon Hive: ‘Avispa Block Accelerator’. Product Brief, 2003
35 Singh, H., Lee, M.-H., Lu, G., Kurdahi, F., Bagherzadeh, N., and

Chaves, E.: ‘MorphoSys: an integrated reconfigurable system for data-
parallel and compute intensive applications’, IEEE Trans. Comput.,
2000, 49, (5), pp. 465–481

36 Taylor, M., et al: ‘The RAW microprocessor: a computational fabric for
software circuits and general purpose programs’, IEEE Micro, 2002, 22,
(2), pp. 25–35

37 Cadence Design Systems Inc, Palladium Datasheet, 2004
38 Mentor Graphics, Vstation Pro: High Performance System Verification,

2003
39 Annapolis Microsystems, Inc., Wildfire Reference Manual, 1998
40 Laufer, R., Taylor, R., and Schmit, H.: ‘PCI-PipeRench and the

SwordAPI: a system for stream-based reconfigurable computing’.
Proc. Symp. on Field-Programmable Custom Computing Machines
(IEEE Computer Society Press, 1999)

41 Vuillemin, J., Bertin, P., Roncin, D., Shand, M., Touati, H., and
Boucard, P.: ‘Programmable active memories: reconfigurable systems
come of age’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 1996,
4, (1), pp. 56–69

42 Wittig, R.D., and Chow, P.: ‘OneChip: an FPGA processor with
reconfigurable logic’. IEEE Symp. on FPGAs for Custom Computing
Machines, 1996

43 Razdan, R., and Smith, M.D.: ‘A high performance microarchitecture
with hardware programmable functional units’. Int. Symp. on Micro-
architecture, 1994, pp. 172–180

44 Altera Corp., Excalibur Device Overview, May 2002
45 Xilinx, Inc., PowerPC 405 Processor Block Reference Guide, October

2003
46 Celoxica, RC2000 Development and evaluation board data sheet,

version 1.1, 2004
47 Leong, P., Leong, M., Cheung, O., Tung, T., Kwok, C., Wong, M., and

Lee, K.: ‘Pilchard – a reconfigurable computing platform with memory
slot interface’. Proc. Symp. on Field-Programmable Custom Computing
Machines (IEEE Computer Society Press, 2001)

48 Becker, J., and Glesner, M.: ‘A parallel dynamically reconfigurable
architecture designed for flexible application-tailored hardware/
software systems in future mobile communication’, J. Supercomput.,
2001, 19, (1), pp. 105–127

49 Betz, V., Rose, J., and Marquardt, A.: ‘Architecture and CAD for deep-
submicron FPGAs’ (Kluwer Academic Publishers, February 1999)

50 Lemieux, G., and Lewis, D.: ‘Design of interconnect networks for
programmable logic’ (Kluwer Academic Publishers, 2004)

51 George, V., Zhang, H., and Rabaey, J.: ‘The design of a low energy
FPGA’. Proc. Int. Symp. on Low Power Electronics and Design, 1999

52 Lamoureux, J., and Wilton, S.J.E.: ‘On the interaction between power-
aware FPGA CAD algorithms’, IEEE Int. Conf. on Computer-Aided
Design, 2003

53 Rahman, A., Polavarapuv, V.: ‘Evaluation of low-leakage design
techniques for field programmable gate arrays’. Proc. Int. Symp. on
Field-Programmable Gate Arrays (ACM Press, 2004)

54 Gayasen, A., Lee, K., Vijaykrishnan, N., Kandemir, M., Irwin, M.J., and
Tuan, T.: ‘A dual-VDD low power FPGA architecture’, Lect. Notes
Comput. Sci., 2004, 3203

55 Kagotani, H., and Schmit, H.: ‘Asynchronous PipeRench: architecture
and performance evaluations’. Proc. Symp. on Field-Programmable
Custom Computing Machines (IEEE Computer Society Press, 2003)

56 Teife, J., and Manohar, R.: ‘Programmable asynchronous pipeline
arrays’, Lect. Notes Comput. Sci., 2003, 2778

57 Wong, C.G., Martin, A.J., and Thomas, P.: ‘An architecture for
asynchronous FPGAs’. Proc. Int. IEEE Conf. on Field-Programmable
Technology, 2003

58 Royal, A., and Cheung, P.Y.K.: ‘Globally asynchronous locally
synchronous FPGA architectures’, Lect. Notes Comput. Sci., 2003, 2778

59 Butts, M., DeHon, A., and Goldstein, S.: “Molecular electronics:
devices, systems and tools for gigagate, gigabit chips’, Proc. IEEE Int.
Conf. on Computer-Aided Design, 2002

60 DeHon, A., and Wilson, M.J.: ‘Nanowire-based sublithographic
programmable logic arrays’. Proc. Int. Symp. on FPGAs (ACM Press,
2004)

61 Williams, R.S., and Kuekes, P.J.: ‘Molecular nanoelectronics’. Proc.
IEEE Int. Symp. on Circuits and Systems, 2000

62 Weinhardt, M., and Luk, W.: ‘Pipeline vectorization’, IEEE Trans.
Comput.-Aided Des., 2001, 20, (2), pp. 234–248

63 Gokhale, M., Stone, J.M., Arnold, J., and Kalinowski, M.:
‘Stream-oriented FPGA computing in the Streams-C high level
language’. Proc. Symp. on Field-Programmable Custom Computing
Machines (IEEE Computer Society Press, 2000)

64 Jackson, P.A., Hutchings, B.L., and Tripp, J.L.: ‘Simulation and
synthesis of CSP-based interprocess communication’. Proc. Symp. on
Field-Programmable Custom Computing Machines (IEEE Computer
Society Press, 2003)

65 Gupta, S., Dutt, N.D., Gupta, R.K., and Nicolau, A.: ‘SPARK: a
high-level synthesis framework for applying parallelizing compiler
transformations’. Proc. Int. Conf. on VLSI Design, January 2003

66 McCloud, S.: ‘Catapult C Synthesis-based design flow: speeding
implementation and increasing flexibility’. White Paper, Mentor
Graphics, 2004.

67 Wilson, R.P., French, R.S., Wilson, C.S., Amarasinghe, S.P.,
Anderson, J.M., Tjiang, S.W.K., Liao, S.-W., Tseng, C.-W., Hall,
M.W., Lam, M.S., and Hennessy, J.L.: ‘SUIF: an infrastructure for
research on parallelizing and optimizing compilers’, SIGPLAN Not.,
1994, 29, (12), pp. 31–37

68 Harriss, T., Walke, R., Kienhuis, B., and Deprettere, E.: ‘Compilation
from Matlab to process networks realized in FPGA’, Des. Autom.
Embedded Syst., 2002, 7, (4), pp. 385–403

69 Schreiber, R., et al.: ‘PICO-NPA: high-level synthesis of nonprogram-
mable hardware accelerators’, J. VLSI Signal Process. Syst., 2002, 31,
(2), pp. 127–142

70 Hoare, C.A.R.: ‘Communicating sequential processes’ (Prentice Hall,
1985)

71 Mencer, O., Pearce, D.J., Howes, L.W., and Luk, W.: ‘Design space
exploration with a stream compiler’. Proc. IEEE Int. Conf. on Field
Programmable Technology, 2003

72 Celoxica, Handel-C Language Reference Manual for DK2.0, Document
RM-1003-4.0, 2003

73 De Figueiredo Coutinho, J.G., and Luk, W.: ‘Source-directed
transformations for hardware compilation’. Proc. IEEE Int. Conf. on
Field-Programmable Technology, 2003

74 Mencer, O.: ‘PAM-Blox II: design and evaluation of C++ module
generation for computing with FPGAs’. Proc. Symp. on Field-
Programmable Custom Computing Machines (IEEE Computer Society
Press, 2002)

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005206

http://www.embedded.com//showarticle.jhtml?articleid=19200183
http://www.embedded.com//showarticle.jhtml?articleid=19200183
http://www.eetimes.com/showarticle.jhtml?articleid=47203801
http://www.eetimes.com/showarticle.jhtml?articleid=47203801

75 Liang, J., Tessier, R., and Mencer, O.: ‘Floating point unit generation
and evaluation for FPGAs’. Proc. Symp. on Field-Programmable
Custom Computing Machines (IEEE Computer Society Press, 2003)

76 Page, I., and Luk, W.: ‘Compiling occam into FPGAs’ (Abingdon
EE&CS Books, 1991)

77 Yamada, A., Nishida, K., Sakurai, R., Kay, A., Nomura, T., and Kambe,
T.: ‘Hardware synthesis with the Bach system’. Proc. IEEE ISCAS, 1999

78 Frigo, J., Palmer, D., Gokhale, M., Popkin-Paine, M.: ‘Gamma-ray
pulsar detection using reconfigurable computing hardware’. Proc.
Symp. on Field Programmable Custom Computing Machines (IEEE
Computer Society Press, 2003)

79 Styles, H., and Luk, W.: ‘Customising graphics applications: techniques
and programming interface’. Proc. Symp. on Field-Programmable
Custom Computing Machines (IEEE Computer Society Press, 2000)

80 Simulink, http://www.mathworks.com
81 Hwang, J., Milne, B., Shirazi, N., and Stroomer, J.D.: ‘System level

tools for DSP in FPGAs’, Lect. Notes Comput. Sci., 2001, 2147
82 Altera Corp., DSP Builder User Guide, Version 2.1.3 rev.1, July 2003
83 Lee, E.A., and Messerschmitt, D.G.: ‘Static scheduling of synchronous

data flow program for digital signal processing’, IEEE Trans. Comput.,
1987, 36, pp. 24–35

84 Constantinides, G.A., Cheung, P.Y.K., and Luk, W.: ‘Optimum and
heuristic synthesis of multiple wordlength architectures’, IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst., 2003, 22, (10),
pp. 1432–1442

85 Constantinides, G.A., Cheung, P.Y.K., and Luk, W.: ‘Synthesis and
optimization of DSP algorithms’ (Kluwer Academic, Dordrecht, 2004)

86 Constantinides, G.A., Cheung, P.Y.K., and Luk, W.: ‘The multiple
wordlength paradigm’. Proc. Symp. on Field-Programmable Custom
Computing Machines (IEEE Computer Society Press, 2001)

87 Constantinides, G.A., and Woeginger, G.J.: ‘The complexity of
multiple wordlength assignment’, Appl. Math. Lett., 2002, 15, (2),
pp. 137–140

88 Constantinides, G.A., Cheung, P.Y.K., and Luk, W.: ‘Synthesis of
saturation arithmetic architectures’, ACM Trans. Des. Autom. Electron.
Syst., 2003, 8, (3), pp. 334–354

89 Kum, K.-I., and Sung, W.: ‘Combined word-length optimization and
high-level synthesis of digital processing systems’, IEEE Trans.
Comput. Aided Des., 2001, 20, (8), pp. 921–930

90 Wadekar, S.A., and Parker, A.C.: ‘Accuracy sensitive word-length
selection for algorithm optimization’. Proc. Int. Conf. on Computer
Design, 1998

91 Cantin, M.-A., Savaria, Y., and Lavoie, P.: ‘An automatic word length
determination method’. Proc. IEEE Int. Symp. on Circuits and Systems,
2001, pp. V-53–V-56

92 Constantinides, G.A., Cheung, P.Y.K., and Luk, W.: ‘Optimum
wordlength allocation’. Proc. Symp. on Field-Programmable Custom
Computing Machines (IEEE Computer Society Press, 2002)

93 Nayak, A., Haldar, M., Choudhary, A., and Banerjee, P.: ‘Precision and
error analysis of MATLAB applications during automated hardware
synthesis for FPGAs’. Proc. Design Automation and Test in Europe,
2001

94 Stephenson, M., Babb, J., and Amarasinghe, S.: ‘Bitwidth analysis with
application to silicon compilation’. Proc. SIGPLAN Programming
Language Design and Implementation, June 2000

95 Cmar, R., Rijnders, L., Schaumont, P., Vernalde, S., and Bolsens, I.:
‘A methodology and design environment for DSP ASIC fixed point
refinement’. Proc. Design Automation and Test in Europe, 1999

96 Constantinides, G.A.: ‘Perturbation analysis for word-length optimiz-
ation’. Proc. Symp. on Field-Programmable Custom Computing
Machines (IEEE Computer Society Press, 2003)

97 Abdul Gaffar, A., Mencer, O., Luk, W., Cheung, P.Y.K., and Shirazi, N.:
‘Floating-point bitwidth analysis via automatic differentiation’. Proc.
Int. Conf. on Field-Programmable Technology, IEEE, 2002

98 Abdul Gaffar, A., Mencer, O., Luk, W., and Cheung, P.Y.K.: ‘Unifying
bit-width optimisation for fixed-point and floating-point designs’. Proc.
Symp. on Field-Programmable Custom Computing Machines (IEEE
Computer Society Press, 2004)

99 Cantin, M.-A., Savaria, Y., and Lavoie, P.: ‘A comparison of automatic
word length optimization procedures’. Proc. IEEE Int. Symp. on
Circuits and Systems, 2002

100 Constantinides, G.A.: ‘High level synthesis and word length
optimization of digital signal processing systems’. PhD thesis,
Imperial College London, 2001

101 Benedetti, A., and Perona, B.: ‘Bit-width optimization for configurable
DSP’s by multi-interval analysis’. Proc. 34th Asilomar Conf. on
Signals, Systems and Computers, 2000

102 Stephenson, M.W.: ‘Bitwise: Optimizing bitwidths using data-range
propagation’. Master’s Thesis, Massachussets Institute of Technology,
Dept. Electrical Engineering and Computer Science, May 2000

103 Keding, H., Willems, M., Coors, M., and Meyr, H.: ‘FRIDGE: A fixed-
point design and simulation environment’. Proc. Design Automation
and Test in Europe, 1998

104 Willems, M., Bürsgens, V., Keding, H., Grotker, T., and Meyer, M.:
‘System-level fixed-point design based on an interpolative approach’,
Proc. 34th Design Automation Conf., June 1997

105 Kum, K., and Sung, W.: ‘Word-length optimization for high-level
synthesis of digital signal processing systems’. Proc. IEEE Int.
Workshop on Signal Processing Systems, 1998

106 Sung, W., and Kum, K.: ‘Word-length determination and scaling
software for a signal flow block diagram’. Proc. IEEE Int. Conf. on
Acoustics Speech and Signal Processing, 1994

107 Sung, W., and Kum, K.: ‘Simulation-based word-length optimization
method for fixed-point digital signal processing systems’, IEEE Trans.
Signal Process., 1995, 43, (12), pp. 3087–3090

108 Ong, S., Kerkiz, N., Srijanto, B., Tan, C., Langston, M., Newport, D.,
and Bouldin, D.: ‘Automatic mapping of multiple applications to
multiple adaptive computing systems’. Proc. Int. Symp. on Field-
Programmable Custom Computing Machines (IEEE Computer
Society Press, 2001)

109 Thomas, D., and Luk, W.: ‘A framework for development and
distribution of hardware acceleration’, Proc. SPIE - Int. Soc. Opt.
Eng., 2002, 4867

110 Bohm, W., Hammes, J., Draper, B., Chawathe, M., Ross, C.,
Rinker, R., and Najjar, W.: ‘Mapping a single assignment
programming language to reconfigurable systems’, J. Supercomput.,
2002, 21, pp. 117–130

111 Damianou, N., Dulay, N., Lupu, E., and Sloman, M.: ‘The Ponder
policy specification language’, Lect. Notes Comput. Sci., 2001, 1995

112 Lee, T.K., Yusuf, S., Luk, W., Sloman, M., Lupu, E., and Dulay, N.:
‘Compiling policy descriptions into reconfigurable firewall pro-
cessors’. Proc. Symp. on Field-Programmable Custom Computing
Machines (IEEE Computer Society Press, 2003)

113 Kulkarni, C., Brebner, G., and Schelle, G.: ‘Mapping a domain specific
language to a platform FPGA’. Proc. Design Automation Conf., 2004

114 Lee, T.K., Derbyshire, A., Luk, W., and Cheung, P.Y.K.: ‘High-level
language extensions for run-time reconfigurable systems’. Proc. IEEE
Int. Conf. on Field-Programmable Technology, 2003

115 Shirazi, N., Luk, W., and Cheung, P.Y.K.: ‘Framework and tools for
run-time reconfigurable designs’, IEE Proc., Comput. Digit. Tech.,
2000, 147, pp. 147–152

116 Derbyshire, A., and Luk, W.: ‘Compiling run-time parametrisable
designs’. Proc. IEEE Int. Conf. on Field-Programmable Technology,
2002

117 Clark, D., and Hutchings, B.: ‘The DISC programming environment’.
Proc. Symp. on FPGAs for Custom Computing Machines (IEEE
Computer Society Press, 1996)

118 Styles, H., and Luk, W.: ‘Branch optimisation techniques for hardware
compilation’, Lect. Notes Comput. Sci., 2003, 2778

119 Kathail, V., Aditya, S., Schreiber, R., Ramakrishna Rau, B., Cronquist,
D.C., and Sivaraman, M.: ‘PICO: automatically designing custom
computers’, Computer, 2002, 35, (9), pp. 39–47

120 Muggleton, S.H.: ‘Inverse entailment and Progol’, New Gener.
Comput., 1995, 13

121 Peterson, J., O’Connor, B., and Athanas, P.: ‘Scheduling and
partitioning ANSI-C programs onto multi-FPGA CCM architectures’.
Int. Symp. on FPGAs for Custom Computing Machines (IEEE
Computer Society Press, 1996)

122 Duncan, A., Hendry, D., and Gray, P.: ‘An overview of the COBRA-
ABS high-level synthesis system for multi-FPGA systems’. Proc. IEEE
Symposium on FPGAs for Custom Computing Machines (IEEE
Computer Society Press, 1998)

123 Ast, A., Becker, J., Hartenstein, R., Kress, R., Reinig, H., and
Schmidt, K.: ‘Data-procedural languages for FPL-based machines’,
Lect. Notes. Comput. Sci., 1994, 849

124 Högl, H., Kugel, A., Ludvig, J., Männer, R., Noffz, K., Zoz, R.,
‘Enable++ a second-generation FPGA processor’. IEEE Symp. on
FPGAs for Custom Computing Machines (IEEE Computer Society
Press, 1995)

125 Callahan, T., and Wawrzynek, J.: ‘Instruction-level parallelism for
reconfigurable computing’, Lect. Notes Comput. Sci., 1998, 1482

126 Gokhale, M., and Stone, J.: ‘NAPA C: compiling for a hybrid
RISC/FPGA architecture’. Proc. Symp. on Field-Programmable
Custom Computing Machines (IEEE Computer Society Press, 1998)

127 Babb, J., Reinard, M., Andras, Moritz, C., Lee, W., Frank, M.,
Barwa, S., and Amarasinghe, S.: ‘Parallelizing applications into
silicon’. Proc. Symp. on FPGAs for Custom Computing Machines
(IEEE Computer Society Press, 1999)

128 Ziegler, H., So, B., Hall, M., and Diniz, P.: ‘Coarse-grain pipelining on
multiple-FPGA architectures’, IEEE Symp. on Field-Programmable
Custom Computing Machines, 2002, pp. 77–88

129 Rissa, T., Luk, W., and Cheung, P.Y.K.: ‘Automated combination of
simulation and hardware prototyping’. Proc. Int. Conf. on Engineering
of Reconfigurable Systems and Algorithms (CSREA Press, 2004)

130 Bjesse, P., Claessen, K., Sheeran, M., and Singh, S., ‘Lava: hardware
design in Haskell’. Proc. ACM Int. Conf. on Functional Programming
(ACM Press, 1998)

131 Singh, S., and Lillieroth, C.J.: ‘Formal verification of reconfigurable
cores’. Proc. Symp. on Field-Programmable Custom Computing
Machines (IEEE Computer Society Press, 1999)

132 Guo, S., and Luk, W.: ‘An integrated system for developing regular
array design’, J. Syst. Archit., 2001, 47, pp. 315–337

133 Luk, W., and McKeever, S.W.: ‘Pebble: a language for parametrised
and reconfigurable hardware design’, Lect. Notes Comput. Sci., 1998,
1482

134 McKeever, S.W., Luk, W., and Derbyshire, A.: ‘Compiling hardware
descriptions with relative placement information for parametrised
libraries’, Lect. Notes Comput. Sci., 2002, 2517

135 Todman, T., Coutinho, J.G.F., and Luk, W.: ‘Customisable hardware
compilation’. Proc. Int. Conf. on Engineering of Reconfigurable
Systems and Algorithms (CSREA Press, 2004)

136 Ou, J., and Prasanna, V.: ‘PyGen: a MATLAB=Simulink based tool
for synthesizing parameterized and energy efficient designs using
FPGAs’. Proc. Int. Symp. on Field-Programmable Custom Computing
Machines (IEEE Computer Society Press, 2004)

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005 207

http://www.mathworks.com

