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Pipeline Vectorization

Markus Weinhardt and Wayne Luklember, IEEE

Abstract—This paper presents pipeline vectorization, amethod ~ There are significant differences between pipeline vector-
for synthesizing hardware pipelines based on software vector- jzation and software vectorization. For instance, our approach
izing compilers. The method improves efficiency and ease of .,vers a wider range of loops since it does not consider
development of hardware designs, particularly for users with . . .
little electronics design experience. We propose several IoopOUt'Of',Order execution. It can be used with a varlgty 9f storage
transformations to customize pipelines to meet hardware resource allocation methods. In contrast to software vectorization, we do
constraints while maximizing available parallelism. For runtime not explicitly generate vector instructions. Instead, all instruc-
reconfigurable systems, we apply hardware specialization to tions of the loop body are vectorized and chained by pipelining
increase circuit utilization. Our approach is especially effective input data through the entire dataflow graph synthesized from
for highly repetitive computations in digital signal processor - . . .

(DSP) and multimedia applications. Case studies using field pro- the ,IOOD body. To widen the app!lcablllty of 0}” technique, we
grammab|e gate arrays (FPGAs)_based p|atf0rms are presented to deV|Se Several |00p transforma“ons that a.d]ust the amount Of
demonstrate the benefits of our approach and to evaluate tradeoffs hardware used in vectorized loops to the available hardware

between alternative implementations. For instance, the loop-tiling resources. For reconfigurable implementations, we explore
transformation, has been found to improve vectorization perfor- nethods to increase circuit utilization by runtime circuit
mance 30-40 times above a PC-based software implementation, AN . . .

specialization and runtime reconfiguration (RTR).

depending on whether runtime reconfiguration (RTR) is used. ] ) e o
Our approach includes the synthesis of nonpipelined circuitry

for nonvectorizable loops and conditional and sequential pro-

gram code. It can be used in two modes—hardware mode and

codesign mode. Ihardware modga processor is generated for

I. INTRODUCTION the entire program (which includes only synthesizable opera-

ANY application developers recognize that the key to eflons as defined in Section I1l-Al), rendering descriptions from

M fective use of custom computing systems is to maximizznigh-level sequential programming language into an efficient
their available parallelism. This task, which has to be achiev@&rd""are description language (HDL). AIternatlver,chje-
while meeting specific hardware resource constraints, is diffi9n modeparts of the program (such as nonsynthesizable or
cult to perform by hand. highly irregular parts) remain in software to be executed on

Vectorizing compilers have proved successful in detectirfy0St microprocessor. This mode results in a hardware-soft-
and exploiting parallelism for conventional processors with §are codesign system with data and control transfer between
fixed architecture. A vector execution unit adapted for digit41°St Processor and custom hardware automatically being imple-
signal processor (DSP) and multimedia processing has also bE¥ited. . _ _ .
identified as an important component of novel computer archi- T1iS Paper is organized as follows. First, we discuss relevant
tectures such as the vector IRAM [1]. This paper presents an &€vious work. Section Il then presents the core pipeline vec-
proach for automatically producing optimized pipelined circuit®rization design flow, the main contribution of this paper. Next,
from a high-level program using techniques derived from sofe€ctions IV and V describe the other important contributions:
ware vectorizing compilers. The compile-time and runtime ré?pt|m|zmg loop transformations and runtime C}rcu!t specializa-
configurability of field programmable gate arrays (FPGAs) ca{Pn- Section VI reports on a prototype compiler implementa-
also be efficiently exploited. tion an_d Section VII prqwdes_ case stud_les and results evalu-

Our approach, which we cafiipeline vectorizatior2]-[4], atmg pipeline vectorization. Finally, Section VIII presents con-
essentially involves the synthesis of pipelined processors tif4sions and future work.
execute inner loops of programs. Data dependence analysis sim-
ilar to software vectorization is performed, which determines if Il. BACKGROUND

a pipeline can be generated for a loop. Therefore, it generategncreasingly, system description is written in a high-level

circuits that exhibit more parallelism than many other automatigftware language [5]. This method simplifies algorithm
high-level hardware design tools. development and facilitates experiments to map different
components into hardware. Our approach not only supports this
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include analyzing the tradeoffs between software and hard-

ware, designing software and hardware parts using different

languages and tools and debugging the interface between these Hardware Candidate Selection
parts. {

Some tools approach these problems by using a programming Loop Normalization
language input to specify both software and hardware in a uni- +
form manner. This enables systematic analysis of the tradeoffs Dependence Analysis
as well as automatic synthesis of the interface between software +
and hardware. However, while a sequential program is a nat- Removing Vector Dependences

ural specification for the host processor, hardware coprocessors {
synthesized from sequential code often fail to exploit the hard-
ware’s parallelism sufficiently. For instance, this is the case in

Preprocessed Program

annotated with: candidates, hardware

the PRISM system [9]. The configuration and communication dependence information
overhead is often larger than the achieved speedup itself. Better 1 Coﬁg Z?;m
results can be obtained for systems that integrate a micropro- Dataflow Graph Generation
cessor core and reconfigurable hardware on a chip. An example '
of this approach is the Garp chip [10] anddtsbased compiler Pipelining =~ - - _____
[11].
Guccione adoptsgata-parallel C' vector operations on data Controller Synthesis
streams to describe pipelined circuits [12], [13]. However, this {

method requires the user to learn a new programming language

. o9 Program (with hardware pipelines)
that is only used for the hardware part of an application. The

annofated with: candidates.dependence

same is true for Transmogrifi€r [14], a research compiler al- information, dataflow graphs
Hardware programming systems based on communicating Hardware/Software Partitioning
sequential processes such as OCCAM [15] and Handel-C —

[16] are suitable for control intensive applications. However, Program Dataflow Graphs
the user has to specify parallel operations explicitly. As for with coprocessor calls of candidates

data-parallelC’, the software parts of an application must be

|
|
|
|
|
|
|
|
|
|
:
|
lowing only task-level parallelism. !
|
|
|
|
|
|
|
|
|
|
|
|

written in a different language and interfaced manually to the Software Compiler Hardware ____
hardware parts. Integration ~<+———
mstances
In the application-specific integrated circuit domain, +
high-level synthesisystems generate register-transfer struc- (Differential netlist generation)

tures from behavioral (algorithmic) specifications [17]-[19].
These methods employ sophisticated scheduling, resource

allocation, and binding techniques for general processor archi-

tectures. They perform an exhaustive design-space exploratiog, 1. Core design flow.

which makes the tools very slow, especially if compared to a

software compiler. A commercial high-level synthesis systefilso included in the Alpha System [24]. However, it is restricted
is Synopsys’ Behavioral Compiler [20], which can handle arrayp producing linear systolic arrays whereas our techniques can
data and generate memory accesses. However, to pipeline logggtorize more general programs.

the user has to analyze loop-carried dependences manually (as

defined in Section 111-A3) and specify a safe initiation interval, Ill. CORE DESIGN FLOW

which preserves the dependences and the original order of o o )
memory reads and writes. Another system, C2Verilog, [21] We first present the core pipeline-vectorization design flow,

uses ANSIC to produce a Verilog register-transfer structur@S shown _in Fig. 1. Most parts of the figure are relevant for both
using high-level synthesis techniques. However, it does codesign and the hardware mode. Only the software branch

perform loop pipelining. on the bottom left side and the hardware—software partitioning

Several research projects address the automatic synthesigh:ﬁs_e do not exist for_the hardware mode. Th_e core design flow
pipelined circuits from program loops. The closest to our aPNSiSts of three major phases: preprocessing, hardware syn-
proach is the NAPAC compiler [22]. However, that system tar_the5|s, an_d partltl_onlng and |ntegr_at|0n. They are dgscrlbed in
gets specifically the NAPA processor [23] and considers only if?€ following sections. The extension of the core design flow to
nermost loops. No automatic vectorization or optimizing tran{1clude loop transformations will be covered in Section IV.
formations similar to ours are reported. The scheduling of in-
structions is performed on an atomic basis and, thus, is dss
flexible than hardware pipelining, which can also use internally Preprocessing consists of four steps: hardware candidate se-
pipelined operators. Finally, a loop parallelization method Isction (Section 1lI-Al), loop normalization (Section IlI-A2),

Preprocessing
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dependence analysis (Section 111-A3), and removing vector de- cbkar ptlvlen][hlen], p2[vlen]([hlen];

pendences (Section Ill-A4). These steps are necessary to per- /+ Vertical and horizontal edge detection */
form hardware synthesis effectively. /* in both directions )/ *;
i ; i _ for (v=1; v<vlen-2; v++) /* non-pipeline cand. *
1) Hardwarg Candidate SelectionThis step selects'pro _ for (he1: h<blem-2; h++) { /% pipeline cand. */
gram parts suitable for hardware synthesis. Regular iterative int vedge = (pi[v-1][h+1] - pilv-1J[h-1]) +
computations, which perform identical operations on a large % *[(pijtgtllx;l] -llzltg EII;—H; +
: : : - pllv+ + - pliv+ - ;
set of data. are likely to ach|eve_h|gh performance in hardware. int hedge = (pilv+1][h-1] - pifv-11[h-11) +
Hence, loops are natural candidates for hardware processors. 2 * (pilv+11[h] - pilv-11[h]) +
We attempt to vectorize innermost FOR loops and generate _ ~ (p1[v+1§ Dfli Ehp;EV;?J (h+11);
pipelines for them. FOR loops have an induction (index) ;‘f‘t(:g N ;‘g;gvedge apsthecge)s
variable necessary for normalization and vectorization and tmp = 265;
have predetermined loop counts. Thus, they can be handled p2lvl[h] = (char) tmp;

by efficient control circuitry. It is possible to transform some ¥

WHILE loops to FOR loops by induction variable detectior'}ig‘ 2. Edge detector program.
[25]. Other WHILE loops, outer loops, and other program
constructs are nonpipeline candidates and, therefore, are
unlikely to result in fast efficient hardware. They should only 3) Dependence AnalysisThe next processing stage ana-
be considered in combination with pipeline candidates or Idtzes pipeline candidate loops for dependences. There are three
for software execution. However, our procedure will considgeneral types of dependences [2Tjue or flow dependence
all loops since the loop transformations presented in Section Pgcurs when a variable is assigned or defined in one statement
rearrange loop nests. and used in a subsequently executed statematidependence
There are some additional restrictions for the candidates: tfegeurs when a variable is used in one statement and reassigned
must not contain nonsynthesizable operations such as recuréivé subsequently executed statem&nitput dependencec-
function calls, external operating system calls, or library callscurs when a variable is assigned in one statement and reassigned
In hardware mode, programs containing any nonsynthesifi-a subsequently executed statement. General dependences
able operations are not considered legal input. Thus, the engfé eithetoop independentr loop carried The former occurs
legal input program is a candidate and candidate selection oRBtween statements in the same loop iteration and the latter
distinguishes between pipeline and nonpipeline candidates. between statements in different iterations. For loop-carried de-
The example edge detector program in Fig. 2 will be used B&ndences, theependence distanégthe number of iterations
synthesize a pipeline circuit. Its inner loop is a pipeline candpetween the statements that cause the dependence. In a loop
date and its outer loop (by definition) a nonpipeline candidatéest, we determine for each loop hierarchy the loop-carried
We useC language syntax here because our compiler prototyggpendences since only these affect the loop-level parallelism.
(Section VI) uses & front end. Our approach is valid for any Since pipeline execution overlaps the loop iterations but
sequential imperative programming language. maintains their order, memory writes are never out of order.
2) Loop Normalization: For vectorization, we have to nor-Hence, we only have to consider true dependences but not
malize the pipeline candidate loops by the following transfognti or output dependences. Therefore, pipeline vectorization
mations. applies to more loops than software vectorization. We utilize
- Remove all additional induction variables and normalizéfandard dependence analysis methods [27] to detect these
the loop’s lower bound to zero and its step to one (induéependences. Unfortunately, these methods are not completely
tion variable substitution [26]). accurate. In some cases, they cannot determine the absence of
« Normalize the index expressions to linear expressions @¢pendences, thus failing to detect potential parallelism.
the induction variable (subscript normalization [26]). For Next, we check if the detected true loop-carried dependences
induction variabld, the resulting expression has the fornccur in all loop iterations with the same dependence distance.
S x I+ C. S is called the accesstride We call these dependencegular. All dependences stemming
If one or more index expressions cannot be normalized, tfiem scalar variables and from array accesses with the same
loop is only a nonpipeline candidate. In particular, indirect arregfride are regular [3]. It is possible to synthesize hardware
accesses, where array elements are accessed by intermediaf@@ying these dependences, but the resulting circuits may
sults prevent vectorization as in software vectorizing compileggntain feedback cycles. In contrast to software vectorization,

[26]. regular dependences do not prevent pipeline synthesis, although
Normalizing the inner candidate loop in Fig. 2 will create théhey can reduce parallelism because the feedback paths restrict
loop header the speedup achieved by pipelining in a later processing stage.
Irregular dependences can be handled provided that the orig-
for (h = 0; h < hlen — 3; h++) inal order of read and write accesses of the arrays involved
are maintained. However, this usually requires many sequential
and substituté by h + 1 in the loop body. memory accesses and is only feasible with very fast memories

such as on-chip memories.

INonrecursive function calls can be inlined. Therefore, we assume—uwithout In the program !n Fig. 2, there are no de_pendencgs from array
loss of generality—that no function calls exist in the candidates. accesses: arrgylL is only read and array?2 is only written.
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int x[NJ; int x[N];
x{0] = 0; x[0] = 0;
x[1] = 1; x[1] = 1;
for(i=0; i<N-2; i++) int new0 = x[0];
x[i+2] = x[i] + x[i+1]; int newl = x([1];
for(i=0; i<N-2; i++) {
Fig. 3. Fibonacci numbers program. x[i+2] = new0 + newl;

new0 = newl;
. . newl = x[i+2];
The following example shows that our approach can deal with ¥

loops not usually vectorized by software vectorizing compilers.
The |00p Fig. 4. Transformed Fibonacci program.

for (1 =0; 1 <N; i++) memory. Array elements are fed to the pipeline as continuous
x[i] = x[i] + x[i + 1]; data streams through vector inputs and output streams are
written back to local memory through vector outputs. In this
has a loop-carried dependence stemming from the assignmey#g, one loop iteration is executed every pipeline cycle. All
arrayx but no value written to memory is read in a subsequeslement addresses for the linear array accesses can be computed
loop iteration. Only out-of-order execution of the assignmengg parallel with the loop computations. Thus, they do not slow
would lead to a real dependence. Hence, it is an antidepende@é@n the application. However, for arbitrary accesses, address
and we can disregard it and vectorize the loop. computations depend on loop computation results and must
To the contrary, the program computing the Fibonacci nume scheduled accordingly, thereby slowing down the circuits.
bers in Fig. 3 contains true loop-carried dependences. The pginter accesses are indirect accesses to the entire host memory
signment tax[i + 2] depends on the two previous assignmentgpace and are only possible in tightly coupled architectures
Since both dependences are regular (dependence distances @Rdtirect memory access (DMA).
2), we can generate a pipeline circuit for this program. But the we first generate an acyclitataflow graphfor the loop body.
dependences have to be handled as described in the next pRExt, regular loop-carried dependences are resolved, possibly
graph. introducing feedback cycles. Finally, the circuit is pipelined and
4) Removing Vector DependenceBhe hardware synthesis g controller is synthesized.
technique presented in the next section cannot handle true loopt) Dataflow Graph Generation\We generate an acyclic
carried dependences stemming from array (vector) accessegagifibinationaldataflow graphfor the loop body by analyzing
shown in Fig. 3. Therefore, pipeline candidate loops have to k¢ internal dependences and allocating a new operator for each
transformed to remove them in the following way. First, VECtQj’peration in the program’s expressions. This simple “direct
accesses depending on earlier iterations are substituted by gewpilation” shares no resources within the loop body but
scalar variables in the candidate loop body. Next, at the end|gfer allows overlapping loop iterations by pipelining. We treat
the loop body, instructions are inserted that assign these vajiray accesses and scalar variables uniformly. Since the loop
ables to the values they depend on in the original program. Rjdy can only contain linear code and conditional statements,
dependences with dependence distances larger than one, agéican use a control flow/data flow transformation [19] to
tional variables and assignments are inserted. Finally, assig@nerate one combined dataflow graph for the entire loop body.
ments to initialize the variables are added before the loop. F]Qrcomputes all program branches in para||e| and uses multi-
the Fibonacci number program, accessg$ andx[i + 1] are plexers to select the correct values of conditionally assigned
substituted. Fig. 4 shows the resulting transformed programy$riables. Resources in these mutually exclusive paths can
only contains dependences stemming from the new scalar Vg shared without interfering with pipelining (cf. the PISYN
ablesnew0 andnewl. In every iteration, their values from thesystem [18]). For instance, an adder and a subtractor with the
previous iteration are read. These dependences will be handigghe inputs can be replaced by a combined adder/subtractor if

by the hardware synthesis phase. their outputs are not required concurrently. Our dataflow graph
i generation is similar to the method used in the Transmogrifier
B. Hardware Synthesis C compiler [14], but our method avoids unnecessary memory

The hardware synthesis phase contains three stepscesses: when aninputvalue remains unchanged in one branch
dataflow graph generation (Section IlI-B1) and extensiowf a conditional statement, we do not read the old value in and
(Section 111-B2), pipelining (Section IlI-B3), and controllerwrite the unchanged value back. Instead, write-enable signals
synthesis (Section I11-B4). are generated for the RAM accesses to write values only if the

For those candidate loops that pass the dependence testappropriate conditions are met.
dependent pipeline circuits are synthesized. They are later inteTo further reduce redundant memory accesses, index-shifted
grated in larger designs or instantiated in separate configuratiatsesses to the same array are combined and realized by shift
(see Section 11I-C). registers [28]. Using these delayed values of the input stream

Various storage allocation schemes can be used. For instare®jds accessing the same value in memory more than once and
scalar variables can be held in hardware registers and arreggduces the number of required vector inputs. This reduction is
can be stored on off-chip memory. On some FPGA familiestucial since all vector input streams must be read and all output
small arrays of data can also be stored in very fast on-chéfreams written once for every loop iteration. Thus, the pipeline
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Fig. 5. Edge detector dataflow graph.
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Fig. 6. Incomplete Fibonacci dataflow graph. new( x[i+2]
scalar in

throughput directly depends on the number of vector inputs and
outputs. . . .

Fri)g. 5 shows the dataflow graph for the edge detector prograFﬁg]' 7. Complete Fibonacc! datafiow graph.
from Fig. 2. There are three vector inputs fafv — 1], p1[v],
andp1[v + 1] and a vector output fos2[v]. The shift registers the output values of the variables in the previous iteration. In
are represented by delay elememtdlote that theif statement this example, deedback cyclérom the output of the adder to
of the loop body is implemented by a multiplexer, which eithghe register holdingew1 is created (bold lines in Fig. 7). How-
selects the conditionally assigned valaeg) or the unchanged ever, not all dependences result in feedback cycles.
value oftmp generated in the previous statement. This example shows that the feedback operators synthe-

The dataflow graph generated for the transformed Fibonaséted by pipeline vectorization are more general than those
program in Fig. 4 is shown in Fig. 6. Obviously, this circuit doegvailable in single-instruction multiple-data (SIMD) parallel
not produce correct outputs since the loop-carried dependengeggramming languages [27]. Such languages feature special
stemming from variablesew0 andnew1 are not accounted for. REDUCE or SCAN operations but they are limited to single
The registers are only initialized but never updated. The nexperators with direct output feedback to one input (for instance,
section shows how the circuit can be altered to produce corréd2D-SCAN for an accumulator). The same is true for software
output. vectorizing compilers, which extract these operations. Arbi-

2) Dependences and Feedback Cyclésa loop has reg- trarily, customized feedback units, as the one shown in Fig. 7,
ular loop-carried dependences, the dataflow graph must be as only possible when a pipeline is implemented in hardware.
tended to use the correct values upon which a computation de3) Pipelining and Timing:So far, we have generated a
pends. The transformation in Section I11-A4 substituted depediataflow graph that computes one loop iteration once all input
dent array accesses by scalar variables. Thus, all loop-carriegisters are set. It may not be very efficient because the
dependences remaining in a pipeline candidate stem from sc&@mbinational delays of chained operators may accumulate to
variables. Such dependences are treated in the following wayong critical path. The critical path delay can be reduced by
Since one loop iteration is executed every pipeline cycle, tRépelining, effectively overlapping different loop iterations, and
input register of such a variable (which is read written in  thereby improving the performance. Although the latency is
the loop) must always contain the value computed in the pr@so increased, it often has only a minimal effect since the time
vious pipeline cycle. To achieve this, a multiplexer is added tar filling and flushing the pipeline is normally negligible.
the register’s input. It selects the input value during initializa- Theoretically, it is possible to pipeline an acyclic dataflow
tion and the feedback value during normal operation dependigigiph very deeply and run it at a very high clock speed. In a
on an external control signal provided by the environment. practical implementation, however, the system clock cyelés

Fig. 7 shows the result for the Fibonacci program in Fig. 4estricted by the combinational delay of the controller (cf. Sec-
For new0 andnew1, multiplexers have been inserted betweetion 111-B4). Since most pipelines are fed by data from external
the inputs and the registers storing the variables. During initiahemory, we also require that an external memory access (as-
ization, the control signadcalar_in selects the input values suming synchronous RAM) completes in one cycle. Hence, we
that are used for the first loop iteration. All subsequent iteratiosboose an appropriate value fof for each target architecture,
select the other inputs of the multiplexers that are connectedcfo Section VI-C.
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Fig. 8. Pipelined edge detector dataflow graph.

For correct operation, pipelining has to insert the samePipelining reduces the critical path of the edge detector in
number of registers on all noncyclic paths from an inpuig. 5 by inserting additional registers. Fig. 8 shows the cir-
register to an output. Register insertion, however, is forbiddenit after two pipeline stages have been inserted. The Fibonacci
in feedback cycles because this would change the circuitiataflow graph in Fig. 7 cannot be improved since it contains
behavior. If the maximum delay within a feedback cy€lg is only one operator. Nevertheless, wherever possible, the hard-
larger tharil~, several system clock cycles are required for ongare computation and the writing of output values are pipelined
pipeline cycle. Then the pipeline cycle tirfig is a multiple of in candidate loops.
1¢ such thatl’p > 1'n,. As mentioned above, vector accesses 4) Controller SynthesisFinally, control circuitry for the
restrict the throughput, too. The pipeline cycle must contapipeline is generated. For FPGA implementations where there
at least N, clock cycles, whereV,,.,, is the number of are abundant latches, we generate a one-hot controller triggered
clock cycles needed to perform all vector accesses to exterhglan externaSTARTsignal. As mentioned above, &t be
memory required for one loop iteration. the cycle time of the controller. First, the controller initializes

Every access to the same memory bank takes one cycle tha pipeline loop’s index variable and then repeatedly loops
accesses to different banks can occur concurrently. Hence,tiatbugh Ny cycles to complete a pipeline cycle. At the be-
accesses are sequential for architectures with one memory bgimining of a new pipeline cycle, the loop index is incremented.
and N, equals the number of accesses. However, on archi-All memory accesses of a loop iteration are scheduled in one
tectures with several memory banks the allocation of the profthe Np cycles with memory writes (for results produced in a
gram arrays to the memory banks determines how many @cevious iteration) before memory reads (for input values of the
cesses can occur concurrently. This allocation can be perfornmexkt iteration). By storing them in registers, all input and output
manually by the user or automatically [28], which aims to minvalues are presented to the pipeline synchronously at the begin-
imize Npem- ning of a pipeline cycle. The registers within the pipeline are

The resulting pipeline cycle time i¥» = Npc x T¢, only clock enabled at the beginning of a pipeline cycle. Thus,
where the number of clock cycles per pipeline cyé¥e>.x the pipeline is effectively clocked with the peri@g and it con-
is the smallest number such tha} meets the above statedtains multicycle operators.
requirementd’r > 1y, andi’p > Nyem X 1. Itis computed A validity bit is used to control the filling and flushing of the

as the following: input shift registers and the pipeline stages. It also guarantees
T that only valid output values are written to external memory.
Npe = max <[ﬁw , Nmem) . When all computations are completeds 8OPsignal is raised.
Ic It can be used by external circuitry or to notify the calling host

Neglecting the time required for filling and flushing theProgram in codesign mode about completion of coprocessor
pipeline, we can now easily predict that a loop witfterations tasks. Along with the controller states, we generate operators
executes im x Npc cycles or in timen x Npe x Te. to compute memory addresses for the external memory banks
We use a standard retiming technique [29] to insert the miid multiplex them to the memories’ address buses.

imal number of flip-flops necessary to achi€¥g. For recon-
figurable devices, the technique is extended to take into accofmt
that in many FPGAs, combinational gate outputs can be latchedrhe last pipeline vectorization phase performs hard-
in the same cell. Pipelining requires estimates of all operatorsare—software partitioning as well as hardware integration.
delays. They are provided by a technology-specific componentl) Hardware—Software PartitioningPartitioning deter-
library parametrized by operator bit width. The same library imines which parts of a program will be executed in software
used to estimate the pipeline’s area (or resource usage) by samd which in hardware and it does not exist in hardware mode.
ming up the area used by all components. These estimates®re partitioning depends on several properties of the program.
used in the partitioning step described later. Obviously, only hardware candidates can be allocated to

Partitioning and Integration
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hardware. The combined area estimations of the correspondohack cycleZ can normally be achieved. Though it is difficult
circuits of all chosen candidates must not exceed the given estimate routing delays, it suffices to include reasonable
hardware area. For reconfigurable systems, separate configstaek for routing in the delay estimates used in pipelining and
tions can be generated for each loop and the FPGA resoursgstax directed synthesis. The controllers do not contain deep
are reused by reconfiguration. combinational logic since we generate one-hot controllers.

The main partitioning criterion, however, is the expected In case the implemented circuit does not meet the estimated
speedup achieved by the coprocessor. This estimation problemea or delay targets, a step indicated by the dotted line in
and an automatic partitioning procedure have been addreskegl 1 back annotates the dataflow graphs with more accurate
elsewhere [3], [4] and are beyond the scope of this paper. Peatues and the subsequent steps are repeated. For instance,
titioning extensions related to the optimizing transformatiomaore pipeline stages can be inserted to reduce the delay.
will be covered in the respective sections. Alternatively, an experienced user can review and optimize the

However, automatic partitioning is not always desirable. Thgenerated circuits manually.
user might want to influence the result. Our methodology sup-
ports producing explanations and helps the user in partitioning IV. LooP TRANSEORMATIONS

a program manually. . . s
Partitioning also determines if hardware is synthesized for.The core design flow discussed so far is limited to programs

nonpipeline candidates. Though they are not likely to signi vith innermost loops of suitable size: problems occur when the

cantly speed up computations, they can, for instance, initialit pI b°d3; |?_tt_ootr?ma_ll to r\:va:jrant theTzhhardV\;zF]\red (_)vejheads or
variables directly in hardware and, therefore, reduce the negq 'arge tohitin the given hardware. The method Is also sensi-
e to programming styles. For instance, the edge detector pro-

for slow data transfers from the host. Generating hardware &

the outer loop in Fig. 2 sets variabldor each execution of the gram in Fig. 2 could not be vectorized if small inner loops had
inner loop and thus allows us to compute the memory addres2&§" used to compuigsdge andhedge. Theh loop would no
er be an innermost loop and, therefore, would not be con-

for the array accesses completely in hardware. Hence, the en L . : .
y pletely ered a pipeline candidate. This section shows how transfor-

program can be executed in hardware without host interactiot. < : - .

The hardware integration phase discussed in the next secfigAtion techniques known f“’(‘f‘ parallelizing s_oftware co_mpllers

synthesizes circuitry for the selected nonpipeline candidates.s.UCh as loop “’.‘ro”'”g’ loop tiling, loop merging, loop distribu-
jon, and loop interchange can be adapted to overcome these

On the software side, the program running on the host is gé . S o o
erated by substituting the chosen loops by runtime library cal goblems and widen the applicability of pipeline vectorization.

for executing the pipeline as well as copying data between h fice the trgn_sformations naturally involve the part OT the appli-
and coprocessor. For reconfigurable hardware implementatigﬁ:"on remaining in software, they are more systematic and com-

appropriate library functions reconfigure the FPGAs if a ne\wehenswg rt]hag Just opt|m|21[.ng t.he harc;ngre paftter p?Nrtl- |
coprocessor is needed. loning and hardware generation in a codesign system. We apply

2) Hardware Integration: Hardware integration first synthe- all transformations when applicable, giving priority to unrolling

sizes dataflow graphs for the selected nonpipeline candida f;ir"r:grigce they have the biggest influence on the resulting

and integrates them with the selected pipeline circuits. We L&%jh hard thesi ¢ of th desian flow i
a simple syntax directed synthesis technique [15]. It generates € hardware synthesis part ot the core design Tlow 1S ex-

controller executing instructions in their original order. Only a gnde:_d, as ?Tﬁwn m;:jg.tQ. Thztrzr&s{grma?o?ﬁ g.e?eratcle new
signments within a basic block (a linear piece of program codéjrations o te;:an _'”? estr;l]n ha d em oth € Interna pr?-d
are performed concurrently if there are no local dependenc :E represlen ation. etr;], | 'eFiar gvvalr:g S>|/In tﬁSIZ |strep$ade
between them. If the resulting delay of an assignment beco @5the Newloops (see pa in F1g. )- Finally, € best suite
larger thanZ¢, the clock-cycle time of the pipelined circuit,among the.orlgmal gnd alternative processors are |mp|.emented
the assignment is performed in several cycles. Thus, the p ath 111, Fig. 9)2 Since the transformations only manipulate

’ e internal program and high-level dataflow graph representa-

formance-critical pipelined part of the design is never slowd . , ; .
down. Since nonpipelined circuitry is only intended for oute&?ns’ all interesting alternatives can be generated quickly. Only

control loops and initialization, we do not attempt to share o ne implementation of the selected processors involves running

erators amongst instructions as in high-level synthesis systeﬂ%’v hardware design tools, such as place and route tools.

[19]. This avoids time-consuming optimizations and compli- ,

cated control. The new controllers are easily combined with the L00P Unrolling

pipeline controllers by combining theBTARTand STOPsig- In software compilers, loop unrolling is an important tech-

nals. nique to increase basic block sizes, extending the scope of
Next, the dataflow graphs are transformed into a device-spgeeal optimizations. Unrolling inner loops results in larger loop

cific netlist by instantiating all operators with macros fronbodies. For pipeline vectorization, this means larger processors

the component library also used for estimation. These netlistisd, therefore, more potential parallelism. However, the size of

have to be combined with interface circuitry for host anthe processors must match the available hardware resources.

local memory access and clock signals on the system usedA candidate loop can be completely unrolled if its bounds are

Differential netlist generation applies only for partially reconstant. This situation occurs in many programs; for instance,

configurable systems (see Section V-C). The netlists are then

further processed with off-the-shelf vendor tools. The fixed 2Path Il in Fig. 9 refers to the circuit specializations discussed in Section V.
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+ 1 for (i=0; i<M; i++) {
2 PRE(i);
Preprocessed Program 3 for (j=0; j<n; j++)
annotated with: candidates, 4 F(i,3);
dependence information 5 POST(i); }
> 1 for (i=0; i<M; i++) {
y 2 PRE(i);
Datatlow Graph Generation = 3 for (jt=0; jt<(n-1)/tsize+l; jt++)
o (1) 4 for (j=0; j<min(tsize,n-jtxtsize); j++)
[ '+ 5 F(i,j+jt*tsize);
Circuit Speciali- Pipelining 6 POST(i); %
sation for RTR
i 1 for (jt=0; jt<(n-1)/tsize+l; jt++)
Controller Synthesis 2 for (i=0; i<M; i++) {
Candidate Loop + = 3 if (jt==0) /* first tile */
Transtormations - 4 PRE(I);. . . . . -
i Program (with hardware pipelines) (2) 5 for (j=0; j<min(tsize,n-jtxtsize); j++)
annotated with: candidates,dependence 5 . F(:.L’J*’Jt*tnze).; .
information, dataflow graphs 7 if (jr==(n-1)/tsize) /x last tile */
I ' Eraph: 8 POST(i); }
P —— |
m 1 for (jt=0; jt<(n-1)/tsize+l; jt++) {
2 for (i=0; i<M; i++) {
Hardware/Software Partitioning 3 if (jt==0) /* first tile */
— 4 PRE(i);
; ; ; . 5 for (j=0; j<tsize; j++)
Fig. 9. Extended hardware synthesis design flow. (3) 6 it (jti=(n-1)/tsize| [j<(n-1)%tsizes1)
7 F(i,j+jt*tsize);
. . . . 8 if (jt==(n-1)/tsize) /* last tile */
in image processing applications with loops over small co 9 POST(i); } }
stant-size templates [30]. Specific examples include the ske
tonization program used in Section VII-B or filters with a con ; foz (J"("fo(; j'fzén-%)/';si{zeﬂ; jte) o
or (i=0; i<M; i++
stant number of taps. 3 if (jt==0) /* first tile /
If an innermost loop is completely unrolled, the next oute 4 PRE(i);
i ¥ 5 F(i,jt*tsize); /* no guard necessary */
Ioop_can pe v_ectorlzed. However, this does not alyvays lead t . if (Joi=(no1)/osize 1] 1€(no1)lteinest)
feasible pipeline coprocessor for the outer loop since the tra|(4) 7 F(i,1+jttsize);
formed loop body might be larger than the available hardwa g i G im(aet) /teize ||
. , i jti=(n- size
resources or the coprocessor might be too slow due to too m: 10 tsize-1<(n-1)%tsize+1)
vector inputs and outputs. Therefore, partitioning will decide 11 F(i,tsize-1+jt*tsize);
the original or the unrolled candidate is selected. 1; 1fpé§;?f§n“;)§t“ze) /* last tile x/
N . . . . . . . i);
Partial unrolling is not useful for pipeline vectorization sinct
it increases the number of vector inputs and outputs and 1 1 guard_1 = 1<(n-1)Y%tsize+l;
pipeline cycle time and the hardware size. It is only useful whe 2 guard_ 2 = 2<(n-1)%tsize+i;
comblneqwnh vectqnzmg the next outer loop. This is achieve 4 guard_last = tsize-1<(n-1)%tsize+1;
by loop tiling, described next. 5 for (jt=0; jt<(n-1)/tsize+l; jt++) {
6 first_tile = jt==0;
7 last_tile = jt==(n-1)/tsize;
B. Loop Tilin 8  for (i=0; i<M; i++) {
P g = 9 if (first_tile)
Loop tiling is a transformation for cases where complete u(®) i? re _Pﬁf(i)f ). . ,
. . . . . 1,] *tsize); * no guard necessary *
rolling is not applicable due to variable loop bounds or resultir 12 if (1last_tile || guard_i)
coprocessors becoming too large. In these cases, it is very be 13 F(i,1+jt*tsize);
ficial to partially unroll a loop, thereby adjusting the circuit size 14 e _
. K 15 if (!last_tile || guard_last)
to the glven'hardware resoqrce&md vect.orlze the next'(.)ut('er 16 F(i,tsize-1+jt*tsize);
loop. Loop tiling achieves this by combining loop partitioning 17 if (last_tile)
18 POST(i); } }

and interchange (Section 1V-D). We adapt this technique fu

pipeline vectorization.
Transformation steps 1 and 2 in Fig. 10 show loop tiling in the

general form used here. The transformation works on two nested

Fig. 10. Hardware-specific loop tilting.

loops, wherePRE(i) andPOST(i) do not contain loops them- estimated by tsize = (areagw — areaprp -—
selves. The inner loop is partitionedtites, which will eventu- areaposrt)/arcar, whereareagw is the size of the hardware
ally be unrolled. The tile sizésize is chosen as the maximumresourcesareapre, arcapost, andarcar are the estimated
number of “processing elements” [instances of the loop bodjzes ofPRE(i), POST(i) andF(i, j); and “/” denotes integer
F(1i, j)] fitting in the given hardware resources along with thdivision. Loop tiling will then result in a coprocessor that is
operations irPRE(i) andPOST(i), which are executed beforeapproximatelytsize times larger andsize times faster than
the first tile and after the last tile, respectively. Hengeéze is  the coprocessor generated from the original loop.
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Transformation step 1 partitions the loop for a giverize 1 for (v=1; v < vlien-2; v++)
. .. . 2 for (h=1; h < hlen-2; h++)
(also known as strip m|n|_ng) anq renormalizes the_ bounds and 3 p2(v] [h] = F(pilv-11,p1lv],pilv+i]);
steps. Rather than unrolling the inner loop, step 2 interchanges 4 for (v=1; v < vlen-2; v++)

5 for (h=1; h < hlen-2; h++)

the outer loop with the tile loop. This allows us to vectorize 6 p3Lv] (] = G(p2lv-11,p2[v],p2[v+11);

the former outet loop and to unroll the reduced inngdoop

without considering the (now outermost) tile lo®RE(i) and

POST(i) are first “sunk” in the tile loop (by adding guards) since

interchange is only possible for perfectly nested loops—loop

nests without statements between the inner and outer loop. =
However, loop tiling is not possible if the bounds of the inner

loop depend on the outer loop index or if data dependences pre-

vent the loop interchange. Fortunately, this can be checked be-

fore starting the entire transformation since step 2 is legal {fy 14

the original loops aréully permutableg[31]. This is the case if

for (v=1; v < vlen-2+d; v++)
for (h=1; h < hlen-2; h++) {
if (v < vlen-2)
p2[vl[h] =
F(pilv-1], pilv]l, pilv+1]);
if (v >= 1+4d)
p3[v-dl[n] =
G(p2[v-1-d],p2[v-d],p2[v+1-d]); }

O ~NDU B WN -

Shifted loop merging.

all dependences carried by these loops have nonnegative pé[v—Z] o p2v-3]
tances. This condition can be tested during dependence al
ysis. It means that no dependence on an earlier iteration of P2[V-!1 | G-l p2lv2E == G p3lv-2]
inner loop is allowed. In the generated pipelines, no backwe p2fv-11 =
dataflow between “processing elements” is allowed but no
local forward flow is. pllv-11 = pllv-11 =
The output of step 2 cannot directly be vectorized. Thup!lvVl—™ F p2[v] pllvl— F = p2[v]
we devise additional hardware-specific transformations epl[v+1] —* pliv+1] —
tending software loop tiling. The nonconstant upper bour (a) dei ) de2

min(tsize, n — jt X tsize) prevents unrolling the inner loop.
Sincetsize is constant, the upper bound can never be largep. 12. Dataflow graphs for merged loop.
and we substitute it b¥size. To maintain correctness, the loop
bodyF has to be guarded by< n — jt x tsize for the case that merging violates dependences, shifted loop merging may be
n — jt x tsize is the actual minimum. We rewrite this guard tqossible. It combines loop alignment with loop merging [27].
An exampleis given in Fig. 11, wheFeandG represent linear
image processing operators depending oxa&heighborhood.
jt # (n— 1)/tsizeV j < (n — 1)%tsize + 1 Since direct merging would violate dependences from line 3 to
line 6 in the original program, the loops have to be aligned: iter-

where % denotes the modulo operator. It is now explicit thationz of the firstloop is fused with iteration— d of the second
this formula can only evaluate to false for the last tite= |00p. The alignment parametéris chosen as the minimal in-
(n — 1)/tsize. Step 3 shows this transformation. teger that preserves all dependences. The shifted merged loop
Now the inner loop can be unrolled in step 4. UnfortunatelOntains an extrd iterations and guards are added to skip ex-
the guard has to be replicated, too, although it can be omit@gution during either the first or the lastd iterations. For this
for the casej = 0. This condition is always true because ever§xampled = 1 (for the outer loop) is sufficient.
tile performs at least one inner loop iteration. Fig. 12(a) shows the corresponding dataflow graphifer 1.
Implementing the guards in hardware adds a comparatorT[Be operatof; is delayed by one iteration of the outer loop. We
each processing element. However, since the guards do not¥f& that the merged pipeline requires five vector inputs and two
pend on the index variablg, flags for the guards can be asOUutputs. This rr_nght slow dqwn the pipeline considerably gnd
signed outside the vectorized loop. In codesign mode, the ouét Make merging worthwhile. It must be checked by the final
loops can generate the flags in software and pass them to ¢Qgrocessor selection in the hardware-software partitioning
hardware, thus avoiding the hardware comparators. Step FPf}se. On the other hand, we can efficiently implement these
Fig. 10 shows this final transformation. Note thgatard_1 to VECtor inputs gnd outputs on architectures Wlth several concur-
guard last need only be computed once since they do n&gntly accessible memory banks by allocatply, p2 andp3
change in the tile loop, whereddrst_tile andlast_tile © d|fferent banks. We discuss a detailed case study on this in
need to be adjusted in the tile loop. The resulting program genggction VII-B.

ates a dataflow graph adjusted to the given hardware resource8Y choosing a larger alignment paramefgthis transforma-
An example will be given in Section VII-A. tion becomes suitable for multichip systems. Fig. 12(b) shows

the resulting dataflow graph if we “overdelag’ by one ¢ = 2

in this example). In this case, the pipelines of the original loop

bodies become completely independent and communicate only
Loop merging is another means of increasing parallelismia memory. Hence, they can easily be allocated to separate

in loop bodies. Its scope is limited to loops (or loop nest$)PGAs that share access to a memory bank for grzain this

traversing the same index space and all dependences of case, we do not really merge the loops but determine how two

original loops must be preserved in the merged loop. If direfdr more) pipelines can overlap forming a composite pipeline.

C. Loop Merging
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Forn pipelines, a speed-up factor uprt@an be achieved com- 4. Limited Value Propagation
pared to sequential execution. The minimal or overdelayed

value is chosen depending on the given target architecture. é pat = (sel) 7 "new" : "mot";
3 for (i=0; i<N-2; i++)
D. Other Loop Transformations 4 yl[i] = PM(x, i, pat);
The following paragraphs discuss loop transformationi ) , .
which are of limited importance for pipeline vectorization. W] : f°;[i(]1'2’P;z§j2;,lzziel) ? 'new" : "mot"));
do not attempt to transform entire loop nests as in [31] since
is difficult to define a strategy for such a global transformatio if (seD)

in the context of pipeline vectorization. This is an area of futui

research. =
Loop Distribution: Loop distribution is the opposite of loop ()

merging. It results in smaller pipelines and, thus, can be appli

if a loop body is too large to fit on the given hardware. A loop

cannot be distributed if dependences of the original loop dri§- 13- Limited value propagation.

violated. As in loop tiling—which is a form of loop distribu-

tion—pipeline feedback paths must not be cut. We do not coftcompile time. Second, there is an arbitrary number of values

sider loop distribution any further since it is only necessary féfnknown at compile time. We present methods for exploiting
very limited FPGA resources. these cases for pipeline vectorization next.

Loop Interchange:Loop interchange swaps perfectly neste
loops. As discussed for loop tiling, itis legal if the interchange
loops are fully permutable. This transformation does not changdf the number of possible values is limited, the hardware can-
the size of the generated hardware, but can increase the lerftifiate can be reproduced for all values. Consider the transfor-
of the vectorized loop, thereby reducing the overhead for s@tation of the example in Fig. 13. The program is a string pat-
ting up, filling, and flushing the pipeline. Furthermore, it caiern matcher wher& M (x, i, pat) computes a Boolean value
increase the locality of data accesses by changing the index viiflicating if the input stringe contains the patterpat at posi-
able relevant for vectorization. tion i. The original version uses the variable input: in the

Strip Mining: Finally, strip mining (the first step of loop FOR loop. By standard definition-use analysis, the conditional
tiling) can reduce local memory requirements if combined withssignment tpat can be propagated to its use in the FOR loop

array region analysis and applied to the vectorized loop.  (Fig. 13, step 1). Next, step 2 moves the evaluatioreaf out
of the FOR loop. The loop is duplicated but each instance now

E. Partitioning Extensions has a constant input 1, which results in smaller and faster
Automatic hardware—software partitioning is extended byhardware. This transformation can easily be extended for more

recursive algorithm that selects the transformed loop, which }ﬁ—"’m two values or more than one variable being considered. It

e L ;
sults in the largest feasible coprocessor. Alternatively, the ust grforms constant propagation in software and effectively pro-
selects the applied transformations. He can also select parame:

deurces several independent loops. Standard hardware generation
ters as the tile size. This is especially useful if the area targets 5 pplicable and the design ﬂ.OW path | n '.:'g' 9 is used. As
not met and the dotted design flow cycle in Fig. 1 is activated”"" the othgr loop "a”Sform‘T"F'or!s' the orlglnall program code
Is retained since only the partitioning phase decides if the prop-

agated version will be used.

We can also generate independent loops for tiled loops if the

Constant propagation has long been used in software aiithg is necessary due to limited hardware resources while the
hardware compilers to optimize programs or circuit designisner loop length (and, therefore, the number of tiles) stays con-
The advent of reconfigurable hardware has opened the opposgtant. Unrolling the tile loop (which is the outermost loop con-
nity to propagate values that are not constant, thereby reducsidered) generates an independent vectorizable loop for every
a design’s delay and area [32]. Whenever a value changes, titeewith constant values foft and for all guards (cf. Fig. 10).
circuit is reconfigured. Rather than changing the input of flexNote, however, that the tiling transformation should be repeated
ible operators, a design that exploits RTR uses smaller operatiéRTR is considered since value propagation reduces the area of
obtained by constant propagation. Hence, more of a prograra’éprocessing element.” Hence, more elements fit on the avail-
operators can be implemented on a given hardware area. Bele hardware and the tile size can be increased.
cause of the reconfiguration overhead, only values changing in-This case of RTR is suitable for chip-level and partially re-
frequently should be considered. Therefore, we only considanfigurable systems. However, the tradeoffs will be different.
those variables for value propagation that do not change insifipartial reconfiguration is not supported, the reconfiguration
the loops to be vectorized. The hardware—software partitionitijme will be large regardless of how small the difference be-
must evaluate the tradeoff between design improvement andtweeen two configurations is. Therefore, chip-level RTR will not
configuration overhead. be useful for examples like the pattern matcher in Fig. 13, where

We distinguish two cases of RTR. First, the number of projpnly three comparators can be simplified. The gain will be neg-
agated values is limited and the values themselves are knadwgible compared with the reconfiguration overhead.

for (i=0; i<N-2; i++)
y[i] = PM(x,1,"new");
else
for (i=0; i<N-2; i++)
y[{i] = PM(x,1i,"not");

U W0 N

. Limited Value Propagation

V. RUNTIME CIRCUIT SPECIALIZATION
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On the other hand, for partially reconfigurable devices, the re- VI. COMPILER IMPLEMENTATION
configuration time is proportional to the amount of logic altered.
We use tools like ConfigDiff [33] to determine the fastest paA. SUIF Pipeline Compiler

tial configuration to switch between two similar designs. Hence, o o ) o
small changes can be performed very quickly. Our pipeline vectorization prototype implementation is based
on the SUIF compiler framework [34], which providésand

] ) Fortran front ends and powerful loop analysis and transforma-
B. Arbitrary Value Propagation tion libraries. We have implemented a prototype SUIF pipeline

The second case of RTR occurs if a variable can assume SR{IPIET (SPC), which targets FPGA-based reconfigurable sys-
value at runtime. Then we cannot prepare separate configdg{l'S- The supported input languageis _
tions for each of them at compile time. Since it is prohibitive to The compiler's analysis phase produces explanations
run the entire design tool suite for new values at runtime, thi¢1€ther a loop is a hardware candidate and if it can be vector-
case cannot be handled with FPGAs that can only be configed- This helps the user to change the program accordingly, for
ured completely. It is only suitable for partially reconfigurabléstance, by eliminating dependences, so that faster hardware
FPGAs that allow adaptation of an operator to any constaffin be generated for more loops. For the candidates, area and
input values within a few cycles at runtime. Therefore, a circuf€ed estimations are given as well. Thus, an experienced
“skeleton” is synthesized, which reserves area for the largé§er can assess the chances of improving the generated circuit
possible constant input operator. At runtime, all these opef@anually and decide which parts of an application benefit from
tors are adapted to the given values. Doing this also requifd3GA hardware. .

a special component library that provides the operator skeletond N€ user selects hardware candidates and loop transforma-
along with information on how to generate the configuration iflons either interactively or using program annotations. Then an
structions for a given input value and a given position of tHgPerator-level ngtllst is synthesized for the selected candidates
operator on the chip. and output to a file.

Generating such a circuit skeleton adds an alternative
implementation for a given hardware candidate, but the cang- Target Systems
date loop itself remains unchanged. Since the constant input
operators have smaller delays than their flexible counterpartsSPC is not developed for specific board architectures or
their pipelined versions might contain less registers. Therefofd? GA families. Only the number and size of the target architec-
pipelining and controller synthesis—but not dataflow graptire’s memory banks and FPGA-specific component libraries
generation—is repeated for these new implementations ($&@ve to be provided so that SPC can generate an architecture
path Il in Fig. 9). As for limited value propagation, the tileand device-specific netlist. An FPGA family-specific extension
size for partially unrolled loops is increased. Thus, tilingenerates a constraint file for place and route tools.
should be repeated. Eventually, the best suited processors aNd/e currently use a PC-based RC1000-PP board [7] with a
implemented (see path Ill in Fig. 9) as outlined in Section IV. Xilinx XC4085XL FPGA and two 2-MB memory banks. The

This is the most flexible approach to RTR. Unfortunatelypoard allows for fast DMA transfers between host and local
generating such designs has not yet been completely auto@-board RAM at 100 MB/s. FPGA configuration takes 780 ms

tized. However, we present a manually implemented case st@fythis board but we expect much faster configuration for the
in Section VII-A. new Xilinx Virtex FPGA used in the next version of this board.

C. Runtime Reconfiguration Partitioning and Integration C. Tool Integration

In RTR systems, the original or the specialized circuit must Both SPC and the low-level vendor tools are controlled by
be selected automatically (unless only the specialized circuit fascompilation script. After completion of SPC, the generated
on the given hardware). There is a tradeoff between the recortlist is combined with hardware descriptions of RC 1000-PPs
figuration time and the amount of computation performed in ori®st and RAM interfaces to form a complete FPGA design. The
configuration. The reconfiguration time depends on the FPGRAM interface contains logic to generate control signals for the
technology (partial or complete reconfiguration) and on the rbeard’s asynchronous RAM so that it can be accessed like syn-
configuration frequency. The latter depends on the overall catiironous RAM by the generated circuit. Next, the script calls
trol flow of the program. Its analysis involves estimating loogphe vendor tools and generates a bitstream. The place and route
and branch execution counts and must be addressed in the ¢oal uses the constraint file generated by SPC, which also spec-
text of the overall speed-up estimation, cf. [3], [4]. Alternativelyifies the maximum delays permitted for multicycle operators
an implementation can be selected manually. in the pipelines. Thus, all generated designs run at the same

For partially reconfigurable systems, differential netlists carliock speed. For the current chip generation, we use 25 MHz
be generated. This additional step replaces complete configuwed = 40 ns.
tions by differential configurations that just change the differ- The results given in Section VII have been produced with the
ences between two consecutive configurations. Therefore, egssistance of SPC. For all applications, the SPC runtime is just
the configuration times of unrelated coprocessors are reducadew seconds. The entire compilation time is by far dominated
especially if they share the same control circuitry. by the FPGA vendor’s place and route tool.
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f°;[§]i=9:1§<’“‘?*1? i) { include the times for changing a tile, amortized over 100 000
for (j = 0; j<P; j++) pipeline cycles. .
if Ep?t (3] !; x{i+j1) However, the hardware performance data do not include the
y[i] = 0;

overheads for initializing the FPGA configuration and data
transfer since their significance depends on the overall number
of tiles. The CTR and RTR performance numbers only concern
the case when all processing elements are used. Fig. 15 shows

Fig. 14. String pattern matcher program.

TABLE | Co 4 . i )
ANALYSIS OF STRING PATTERN MATCHER the overall execution times including configuration and data
_ _ transfer times, which are indicated by two additional lines in the
fv‘;f:e veclgfz;tolgﬁ glllflg ‘l’eCto“zga?}‘{ graph. Since the execution time of a tiled implementation only
Berformance || 248 | 25 [ 671 ] o3 depends on the number of't!les,.thelrgraphs are stepfgncnons.
Speedup I 05 [ 27 | ) We concIL_Jde that loop tiling is a _transformanon Whleh?
ablesa considerable speedup for string pattern matching in the
first place and RTR furtheimprovesthe performance by ap-
D. Limitations proximately 50% for large patterns.

SPC is currently limited to the core design flow in hardwarg Morphological Skeletonization
mode and the two most important loop transformations: un- ) ; )
rolling and tiling. Due to the limitations of current FPGA tech- N this section, we apply our method to a morphological skele-

nology, no floating-point operations are allowed. Since irre%onization algorithm [30]. Itis implemented on the RC 1000-PP
ular dependences require complicated control within a pipeliR@ard mentioned in Section VI-B. This example evaluates loop
cycle, SPC does not support these yet. Finally, since most HUolling and shifted loop merging. Fig. 16 shows the algo-
configurable systems do not have direct access to host mem@#Hjm'’s structure IMAGE is initialized with the input image and

we do not handle pointers. We are constantly extending the SBYELETON with an empty image. Then the operators erosion,

prototype to remove these restrictions and to implement the &ation, and difference/union are repeatedly performed on the
tire pipeline vectorization framework. data untilIMAGE is completely eroded. The dotted arrows indi-

cate which operators’ outputs are used for the next repetition.
The erosion operator consists of two nested inner loops that
iterate over a constant® 5 template. Pipelining the innermost
This section presents pipeline vectorization results. First, tWeops would not be beneficial since it only contains one op-
detailed case studies are presented in Sections VII-A and VII-Bgtor computing the minimum of two inputs. However, after
Fina”y, Section VII-C summarizes performance results of theégmp|ete|y unro”ing both inner |00psy a pipe“ne Containing 20

VII. RESULTS

and other benchmark programs. minimum operators can be generated. It can compute one output
. pixel every pipeline cycle.
A. String Pattern Matcher The upper part of Table Il gives pipeline frequenciésn

This case study, a string pattern matcher, evaluates the benegahertz (the reciprocal of pipeline cycle lengths), raw per-
fits of loop tiling and runtime circuit specialization. ThereforeformanceP in 10° operations per second, and execution times
itis implemented on a PC-based Xilinx 6200 DS board [8] usiri§ in milliseconds for a 512« 512 pixel image as well as the
a partially reconfigurable XC6216 FPGA. The program, showptal time for the independent execution of all skeletonization
in Fig. 14, is the same as that in Fig. 13 but with arbitrary pagperators.
tern lengths and valuésTherefore, the inner loop cannot be The performance can be improved by merging all operators
unrolled. However, the outer loop (index can be vectorized to produce one large pipeline. The last line in Table 1l shows
after the tiling transformation has been applied. The resultitigat the advantage of loop merging is limited for one memory
pipeline circuitis a linear data path of comparators and registep@nk since too many memory accesses have to be performed
Both compile-time reconfigurable (CTR) and RTR versions agequentially in one cycle. For two banks, however, merging is
possible. The CTR version contains generic comparators andéfiective. It halves the execution time.

XC 6200s protected registers so that pattern bytes can be loaded/e measured 65 ms for the completion of one skeletonization
directly from the host, whereas the specialized RTR version catgration for a 51% 512 pixel image on the RC 1000-PP. Even
tains constant comparators. The XC 6216 is large enough to itmeluding data transfer (5 ms amortized over 15-30 iterations),
plement the controller and 54 CTR processing elements or $@& hardware coprocessor was measured to be 16 times faster
smaller specialized RTR processing elements. than software (1045 ms on the 300 MHz PC).

Table | shows the raw performance of the implementations To summarize, loop unrolling is agnabling transformation
running at 25 MHz irl0% comparisons per second and speedujfer the erosion and dilation loops, whereas shifted loop merging
over software on a 300 MHz Pentium Il PC. All values are actufirtherimprovesthe entire skeletonization program.
measurements except those related to inner-loop vectorization,
which are estimated. The values for the tiled implementatiofrs Benchmark Results
3Note that much faster algorithms for string pattern matching exist. However, Table 1l summarizes performance results of seve_ral bench-

. rk programs. All bupatmatCTR andpatmatRTR are imple-

they cannot easily be implemented in hardware since they are less regular m )
the simple algorithm used here. mented on the RC 1000-PP board. The columns show runtimes
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Fig. 15. Execution times for string pattern matcher f6r= 1000 000.
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Fig. 16. Morphological skeletonization.

TABLE I cannot directly be derived from PF since the number of micro-
ANALYSIS OF SKELETONIZATION OPERATORS processor clock cycles required per operation depends on the
T memory bank 7 memory banks type of the operation and runtime effects such as cache misses.
F P[] T F ] P] T Also, the hardware cannot exploit the available parallelism com-
Erosion 42 | 840} 63 |1 5.0 1000 [ 52 pletely if the pipeline is I/O bound. Note that the device utiliza-
Dilation 1218104 63 5.0 11000} 52 tion reported is very inaccurate since cells used only for routin
Difference/Union || 6.2 | 125 | 42 || 125 | 250 | 21 p yina Yy uting
Total 168 125 are counted, too. Additionally, the current SPC prototype is not
Merged [ 21882126 ] 3.3 ] 1764 ] 63 optimized for area. For instance, the pipelining algorithm used
does not minimize the registers inserted.
The patmatCTR andpatmatRTR programs are the tiled pat-
TAsLE I tern matcher implementations on the 6200 DS board di d
BENCHMARK RESULTS te atcher implementations on the oa scusse
in Section VII-A. The given runtimes result from a pattern
Program || SW | HW | SpUp | Utilization | PF length of 400 and an input length of 100 000. The speedups are
patmatCIR || 1613 | 74 | 218 100 % | 54 lower than those reported in Table | since not all processing
patmatRTR 1613 54 29.9 100 % [ 90 | ¢ di I il Note that th lelizati
e 1045 5T 161 3907 | 44 elements are used in all tiles. Note that the parallelization
sharpenb5x5 153 53 3.9 20 % 1 29 factor depends on the size of the used FPGA in these tiled
convolv3x3 156 32 4.9 57 % | 20 implementations. In all other programs, it is limited by the
smooth3x3 48 32 1.5 13 % 9 programs themselves.
edge3x3 122 | 32 3.8 14% | 17 Th < the i keletonizati ed i
) 313 T 533 0% T 32 eskel program is the image skeletonization presented in

the previous section ansharpen5 x 5 is an image sharpen
operator which also uses a6 5 template.convolv3 x 3 is

in milliseconds for software (SW) on a 300 MHz Pentium Il P@ general convolver with a & 3 template of loadable coef-
and hardware (HW), hardware speedup (SpUp), device utilif&zients, whereasmooth3 x 3 is a similar program with con-

tion (percent of logic cells used), and parallelization factor (PRtant coefficients—an image smoothing operator. Because gen-
The latter is an indication of the effect of vectorization: it showsral multipliers are substituted by constant multipliers or elimi-
how many arithmetic or logic operations can, in principle, beated at all, the area requirement is hugely decreased. However,
performed in parallel in a pipeline. These operations would halBecause both designs have the same memory access patterns
to be performed sequentially without parallelization. The higand can both be pipelined, similar runtimes are measured. The
values of PF indicate that the observed hardware acceleratiame is true for prograrige3 x 3, the edge detector program

is mainly achieved through vectorization. Note that the speedumpFig. 2.edge3 x 3 shows that several operators (vertical and
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horizontal edge detectors) combined in a bigger pipeline can ex-Our current compiler prototype targets FPGAs. We do not op-
ecute as fast as a simple operatatdoth3 x 3). The runtimes timize space by sharing operators for the sake of both compila-
for all these programs refer to 522 512 pixel greyscale im- tion and execution speed. It is more important to have very fast
ages. processors for the program “hot spots” rather than a slow uni-
Finally, matmult32 is a binary matrix multiplication pro- versal design with many idle operators. Space is not our main
gram. It multiplies input vectors with a loadable 8232 binary concern since reconfigurable systems have other options for
matrix. We measured results for 100 000 input vectors. computations not fitting on a given hardware design: software or
The results show that pipeline vectorization results in FPGi®&configuration. Moreover, hardware sharing may increase the
circuits, which speed up programs from 50% (factor 1.5) up tmount of routing to the shared resource, increasing both delay
53 timesover a fast microprocessor. The parallelization factoand size of the resulting circuit.
an indicator independent of the implementation technology, Our research shows that the systems available today are
shows that the vectorized implementation of all circuits is orgenerally useful for reconfigurable computing applications. For
to two orders of magnitude faster than a nonvectorized circuitost loosely coupled reconfigurable architectures, however,
generated from the same high-level program. the slow communication over the system bus is still a major
obstacle to achieving high speedups. Advanced tightly coupled
systems [10], [23] could improve this situation. Another
VIII. C ONCLUSION AND FUTURE WORK problem is the long runtime of the FPGA vendor tools that are
not comparable to modern software compilers. These tools need
This paper presents a framework for producing optimizéd improve in order to make reconfigurable computing more
pipelined circuits from high-level programs. It combines thattractive. For instance, the place and route tools could offer
vectorization of inner loops to extract parallelism in a sequea-prototyping mode for quick results and a slower optimizing
tial program with circuit pipelining to exploit this parallelismmode just as software compilers do. Coarse-grain FPGAs
in hardware. The framework includes new optimizing transfospecifically designed for reconfigurable applications might be
mations that customize hardware processors to meet spegifiother solution to this problem since simple fast mapping
resource constraints and exploit RTR. The case studies showls can be developed for them [11].
that some transformations result in hardware acceleration thaFuture work will include combining the fine-grain vectoriza-
cannot be achieved easily by hand. Others improve the perftion presented in this paper with coarse-grain task-level paral-
mance of processors significantly. All benchmarks show thelism. With this approach, the abovementioned communica-
pipeline vectorization generally synthesizes much more effion latency could be hidden by overlapping communication
cient circuits than simpler sequential high-level design technd computation. Strategies to transform entire loop nests will
nigues. The time efficiency is often comparable with man@so be studied and automatic partitioning will be included in
ally designed VHDL designs, although the circuits might natur compiler prototype. We are interested in supporting various
be as area efficient. To produce more competitive designs, foput languages, particularly parallel ones, in order to optimize
ture compilers will include advanced design techniques like tlexisting parallel programs. Further extensions will allow users
use of on-chip RAM as delay lines [28]. Our framework can sée include manually designed hardware blocks and to synthesize
lect, generate, and integrate coprocessors automatically widigit-serial designs.
retaining the flexibility to allow users to influence the synthesis
process.
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