Journal of VLSI Signal Processing Systems, 1, 1-15 (March, 2001)
© March, 2001 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Quantitative Analysis of
FPGA-based Database Searching

N. SHIRAZI
Xilinz, Inc., 2100 Logic Drive, San Jose, CA 95124-3400, USA

D. BENYAMIN
Department of Electrical Engineering, UCLA, 56-125B, Engr. IV Bldg., Los Angeles, CA 90095, USA

W. LUK
Department of Computing, Imperial College, 180 Queen’s Gate, London SW7 2BZ, UK

P.Y.K. CHEUNG
Department of Electrical Engineering, Imperial College, Exhibition Road, London SW7 2BT, UK

S. GUO
Philips Semiconductors, 811 E. Arques Ave. MS81, Sunnyvale, CA 94088-3409, USA

Editors: W. Burleson and N. Shanbhag

Abstract. This paper reports two contributions to the theory and practice of using reconfigurable
hardware to implement search engines based on hashing techniques. The first contribution concerns
technology-independent optimisations involving run-time reconfiguration of the hash functions; a quanti-
tative framework is developed for estimating design trade-offs, such as the amount of temporary storage
versus reconfiguration time. The second contribution concerns methods for optimising implementations
in Xilinx FPGA technology, which achieve different trade-offs in cell utilisation, reconfiguration time and
critical path delay; quantitative analysis of these trade-offs are provided.

1. Introduction print matching algorithm that can search through
250,000 fingerprint records per second. FPGA-
based search engines have also been reported for

As the volume of information stored in databases biological databases [3], [8].

continues to expand, fast database searching has

become an important and necessary activity. For
this reason, two database searching algorithms
have been mapped to the Splash 2 FPGA-based
custom computing machine [1]. These algorithms
are a text searching algorithm that can process
20 million characters per second, and a finger-

This paper reports two contributions to the the-
ory and practice of search engines based on hash-
ing techniques, which have been used in the two
database searching algorithms on Splash 2 de-
scribed above. Our first contribution concerns
technology-independent optimisations involving

2 Shirazi, et. al.

run-time reconfiguration of the hash functions for
such search engines. A quantitative framework is
developed for estimating design trade-offs, such as
the amount of temporary storage versus reconfig-
uration time. Our second contribution concerns
methods for optimising implementations in Xilinx
FPGA technology, which achieve different trade-
offs in cell utilisation, reconfiguration time and
critical path delay. Quantitative analysis of these
trade-offs are provided.

There are several reasons for selecting database
searching as our case study. First, for many appli-
cations including signal processing and computer
vision, a database search facility often constitutes
an essential component such that extracted data
features can be matched against known ones. Sec-
ond, some of our observations and analyses for
database search, such as those in Section 4 on
technology-independent analysis, can be adapted
to cover other computations. Third, database
searching is simple enough on the one hand to
illustrate the principles involved, while complex
enough on the other hand to provide a feel for
how real systems may behave.

The paper is organised as follows. Section 2
motivates the use of FPGAs in implementing
hash functions. Section 3 covers technology-
independent optimisations involving run-time re-
configuration of such hash functions. Section 4 de-
scribes an analytical model for estimating design
trade-offs. Section 5 presents methods for optimis-
ing implementations in Xilinx FPGA technology,
while Section 6 contains quantitative analysis of
the resulting trade-offs. Concluding remarks are
provided in Section 7.

2. Hash Functions in FPGAs

The text searching application on Splash 2 tests
a stream of words for inclusion and/or exclusion
in a dictionary, given a predetermined list of key-
words. The words are streamed through a series of
FPGAs, each configured to implement a different
hash function. These hash functions are set up to

use a single bit on each attached memory module
to represent the inclusion of a word in the search
list.

The database search facility that we have de-
veloped is based on the version implemented on
Splash 2 described above. This design performs a
database search by using a hash function to map
a word to a pseudo-random value. This value ref-
erences a lookup table, indicating whether a given
word is in the user dictionary. The lookup ta-
bles are generated by passing the user dictionary
through the same hash functions that are used at
run time.

FPGA-based computing platforms are well
suited for this type of application. A hash function
and lookup tables can be more efficiently imple-
mented in an FPGA with an attached memory, as
opposed to a general-purpose processor. The effi-
cient implementation of the hash function is due
to: (1) the size of the hash function not always
being 32 or 64 bits in size, and (2) the irregular
bit-level operations that are performed.

For instance, the core of the hardware imple-
mentation of a hash function is a barrel shifter.
Barrel shifters of any size can be implemented effi-
ciently using FPGAs. While on a microprocessor,
barrel shifting operations are restricted to the size
of its ALU — often 16 or 32 bits.

The hash function computation involves com-
puting the XNOR or XOR of each bit of the input
word with the current hash value according to the
hash function mask, and then performing an n-bit
circular shift. Figure 1 shows what happens when
the word “the” is passed through a 22-bit hash
function. These hash functions are set up to use
a single bit to represent the inclusion of a word
in the search list. A 22-bit hash function will be
used in our examples in Section 5, since 222 bits of
memory has been shown to be sufficient for many
uses [1]. The English language, for example, has
around 2'® words, and 222 bits of memory would
allow a sparse scattering of words throughout the
memory address space. Search facilities based on
hash functions have shown to be effective for a
variety of exact data matching.

Quantitative Analysis of FPGA-based Database Searching 3

Shift Amount:
Hash Function Mask:

7 bits

00 0000 0000 0000 0000 0000
01 1101 00

> 01 0000 1100 0000 0000 0000

7 bit circular shift

00 0000 0010 0001 1000 0000
01 1010 00

> 01 0111 1110 0001 1000 0000

7 bit circular shift

00 0000 0010 1111 1100 0011
01 1001 01

01 0100 1001 1111 1100 0011

7 bit circular shift

10 0001 1010 1001 0101 1111

1100 1000

where 1=XOR; O0=XNOR

Cleared Hash Register
Input the letter "t~

Temporary result

Result for string "t"
Input the letter "h*

Temporary result

Result for the string "th"
Input the letter "e”

Temporary result

Result for the string 'the"

Fig. 1. A 22-bit hashing example of the string “the”.

3. Database Searching

This section describes the use of run-time reconfig-
uration to optimise FPGA-based search engines.
The system concerned should be partially and in-
crementally reconfigurable: the smaller the size of
the reconfigured region, the lower the reconfigura-
tion time.

It has been observed that cascading indepen-
dent hash functions has the effect of reducing the
probability of a false match [1]. The cascade can
be implemented in two ways. The first imple-
mentation is a pipeline where multiple hash func-
tions operate in parallel. While the parallelism

is attractive, a pipeline with a fixed number of
stages can have complications: when one of the
stages detect a false match, the remaining pipeline
stages will have to be skipped and become redun-
dant. This requirement complicates the control of
the pipeline, and the implementation may not be
space efficient because of skipping.

The second implementation involves sequential
execution of the hash functions. Only one hash
function is used at one time; the results of each
match is put into a temporary storage while the
hardware is reconfigured to implement the next
hash function (Figure 2).

4 Shirazi, et. al.

Temporary Storage
(empty)

FPGA

#1

(@

Temporary Storage
(with data from
configuration #2)

FPGA

#3

(©)

v

Temporary Storage
(with data from -+
configuration #1)

FPGA
Configuration »

()

Temporary Storage
(with data from
configuration #3)

FPGA
Configuration
#4

v

(d)

Fig. 2. Reconfigurable implementation of the sequential method. Each FPGA configuration implements a particular hash
function, so that the input is passed through four hash functions before producing the output.

Note that the design operates in two modes:
the “input” mode and the “feedback” mode. In
the input mode shown in Figure 2(a), the hard-
ware is connected to the external input and data
pass through the first hash function implemented
in the FPGA. Results are stored in the temporary
storage, and the design then operates in the feed-
back mode so that the data can be processed by
the second hash function, and so on, as shown in
Figure 2(b)—(d). The design reverts to the input
mode when existing data have been processed by
all the appropriate hash functions.

The sequential method has the advantage that
it may result in shorter execution time, since out-
put can be produced as soon as possible and addi-

tional hash functions are not required to test for
a false match. It also requires less resources than
the pipeline method, since only one hash function
is implemented in the FPGA. For these reasons,
the sequential method has been chosen for our im-
plementation.

Another reason for changing the hash functions
at run time is to adapt to different computational
loads to achieve the highest performance. Sec-
tion 6 contains the analysis of a situation when
different designs are used to minimise execution
time, depending on the number of words to be
searched and the amount of temporary storage
available.

Quantitative Analysis of FPGA-based Database Searching

Words to
check for

v v v
Hash Hash Hash
Function #1 Function #2 Function #N
Lookup Lookup Lookup
Table #1 Table #2 Table #N

Fig. 3. Off-line generation of lookup tables from different hash functions.

It should be noted that the hash functions and
the lookup tables are both produced off-line (Fig-
ure 3). Each hash function is implemented by
an FPGA configuration, generated using design
tools from the FPGA vendor and from recent re-
search [6]. The configurations can then be loaded

Input Set of
Words

Indicate Word not in
Lookup Table

Fig. 4. Flowchart showing the execution steps. The hash function and the lookup tables are generated off-line.

l

Hash Function

)

Use hash value to
index Lookup Table

Indicate Match

Satisfactory number of
hash functions used?

Indicate Word is in
Lookup Table

Change hash
function to avoid
collisions

5

onto the FPGA, following the steps in Figure 2.
The flowchart in Figure 4 shows in greater detail
what happens during execution, when a set of in-
put words are passed through one or more hash
functions to check against the entries stored in the
lookup tables.

6 Shirazi, et. al.

Run-time reconfiguration can be used to alter
the hash function parameters and to switch be-
tween different hash functions. The two hash func-
tion parameters that can be altered at run time
are the mask and shift values.

match =0or 1

match = 1

Shift: 5
Mask: C8

match =1

Hashing Function

with parameter set to:
Shift: 7

Mask: C8

Shift: 4
Mask: AE

An example reconfiguration state machine for
the sequential method is shown in Figure 5. The
hash function parameters in each state are given.
This diagram shows that the design will revert to
its initial state when a false match occurs.

match =0

*‘

match = 0

Shift: 3
Mask: 8E

match = 1

match =0 match = 1

Fig. 5. Example of a reconfiguration state machine for the hash function used in the database searching application. Note

that the initial state is at the top of the diagram.

Different hash functions will be optimised indi-
vidually by partial evaluation [6] to take advan-
tage of their constant coefficients. Since the hash
functions are usually known at compile time, the
combined reconfiguration method [9], which in-
volves incrementally reconfiguring from one pro-
cessing state to another, can be used.

A single bit of temporary storage is required for
each input word to indicate whether the word is a
match or not. If the hash function can itself be im-
plemented as a pipeline, then the virtual pipeline
method [7], which involves overlapping computa-
tion and reconfiguration, can be used in imple-
menting the run-time reconfiguration.

The temporary storage can be implemented in
many ways. If a large amount of temporary stor-
age is required, then external memory can be used;
otherwise on-chip registers or embedded memo-
ries within the FPGA may be sufficient. New FP-
GAs, such as Xilinx Virtex devices, contains var-

ious types of configurable memories which can be
used in implementing temporary storage.

Our database engine, however, has been imple-
mented on a platform [5] involving Xilinx 6200
FPGAs. The platform contains a Xilinx 6216 or a
Xilinx 6264 device and four 8-bit wide memories
organised into two banks. Each bank of memory
can be accessed from either of the two separate ad-
dress busses (Figure 6), and each of the four mem-
ories can be controlled individually. This mem-
ory architecture allows multiple modes of opera-
tion to be set-up by selecting multiplexers and bus
switches for flow control in the desired manner; it
has proved convenient in experimenting with tem-
porary storage for the database search application
covered by this paper.

A framework will be introduced in the next
section for quantitatively assessing various de-
sign trade-offs, such as the amount of tempo-
rary storage versus the length of reconfiguration
time. Device-specific aspects will be covered in
Sections 5 and 6.

Quantitative Analysis of FPGA-based Database Searching 7

Mezzanine Board Connectors
'y

Bank 2

~/B—> SRAM D —
65
v
5] SRAM -~
West|Data East Data
32
Xilinx 6216 or
Bank 1
6264
~/E—> SRAM
17
~/E—> SRAM
East Address -
West Address D
.,
32
19
v
Xilinx 4013E

(PClI Interface)

?

v

PCI Bus

Fig. 6. Xilinx 6200 PCI system.

4. Technology-Independent Analysis

Under what circumstances is it worth using run-
time reconfiguration within an application? We
attempt to answer this question by quantifying
the trade-offs between implementing the database
searching application by using multiple FPGAs
or a single partially reconfigurable FPGA. For
this analysis, the design parameters that we will
address are total execution time, FPGA area
within a single FPGA or multiple FPGAs, and the
amount of memory required for temporary storage
to support data recirculation [7].

For this application, the input data set are di-
vided into distinct parts to minimize the amount
of temporary storage, and also to control the fre-
quency of reconfiguration. We divide the total
number of words, w, into I subsets of words, so
each subset contains w/l words. This data subset
is processed using a particular hash function, and
one bit per word is used to indicate if a match

has occurred. The indicator bit is stored along
with the corresponding word in temporary mem-
ory. The temporary data are recirculated and pro-
cessed by the next hash function, and the match
indicator bit is updated on each iteration. This
cycle is repeated until all the hash functions have
been used. Once the cycle is completed, all tempo-
rary data are discarded and the next data subset
is processed. The frequency of reconfiguration is
controlled by the size of the data subset, because
reconfiguration occurs once after each data subset
has been processed.

In the equation describing the total execution
time, we do not take into account the possibility
that, if a match does not occur, the cycle is ter-
minated and the remaining hash functions in the
sequence are not used. Instead, we assume the
worst case and execute all the hash functions in
the reconfiguration state diagram.

The total execution time to process one subset
of data, Tsypset, is the sum of the reconfiguration
time, Teonfig, and the processing time, Tpoc,

8 Shirazi, et. al.

Tsubset = Tconfig + Tproc (]-)

The configuration time is a product of the num-

ber of cycles required for reconfiguration, Neonfig,

and the speed the FPGA can perform a single re-
configuration cycle, tconfig,

Tconfz'g = Nconfig X tconfig (2)

Note that Ncopnrig can take into account device-
specific optimizations, such as wildcarding in Xil-
inx 6200 devices.

The time to process a subset of data is a func-
tion of the size of the data set, w/l, the number of
cycles needed to calculate the hash value, and the
critical path of the hash function circuit ¢,,,.. The
number of cycles required to calculate the hash
value of a word is determined by the number of
cycles to access the lookup table in memory, m,
and the average number of characters per word,
c. The equation for the processing time T}, is
expressed as:

%(m + Ot proc (3)

From Equation 1, the total execution time for
one subset of data is given by:

Tproc =

w
Tsupset = Nconfig X tconfig + T(m + C)tproc (4)

Since the execution order of the hash functions
is not important, a number of them can execute
as a reconfigurable pipeline to emulate the virtual
pipeline of hash functions. The total execution
time varies with the number of hash functions, h,
and the number of hash functions that are exe-
cuted in parallel, p. The ratio h/p is the number
of hash functions that are being computed at one
time. This ratio, together with the number of data
sets to be processed | and the execution time for
a single subset of data (Equation 4), result in the
equation for the total execution time, Tio¢qr:

hl w
Ttotal = ; (Nconfig X tconfig + _(m + C)tI”'OC)

l
()

where h denotes the number of hash functions
p denotes the number of pipeline stages
[denotes the number of subsets of the
complete input data set

Necongig denotes the number of cycles
needed for reconfiguration

tconfig denotes the duration for a single
reconfiguration cycle

w denotes the number of words

m denotes the number of cycles needed to
access a lookup table in memory

¢ denotes the average number of characters
per word

tproc denotes the critical path of a
hash function

Equation 5 is only valid for w > 1, I < w, [> 0
and p < h.

It would be useful to provide a measure of the
amount of time spent on reconfiguration compared
to the total time Tyoiq;- Assuming that the con-
figuration cycle time t.onfig is the same as the
execution cycle time tpoc, this measure is given
by the ratio:

Tconfz'g _ Nconfz'g
= , (6)
Ttotal Nconfzg + w(m + C)/l

The amount of temporary memory storage needed
is based on the number of words in a subset of
data, and the average number of characters per
word of the subset. Also, an additional bit is
added per word to indicate if a match has oc-
curred. The total number of bits needed for tem-
porary storage is given by:

Memz%(bxc)—k% (7

where b is the number of bits per character, typ-
ically of value 7 or 8. The total circuit area is
determined by the number of hash functions that
are computed in parallel, p, and the size of each
hash function, a,

Area =pxa (8)

Although Equations 5, 7 and 8 have been de-
rived for the text searching application, they can
be adapted for other applications. For instance,
Equation 5 can be used for analysing another ap-
plication, say F', provided that the term (m +c¢) is
replaced by a term denoting the number of cycles
to compute F'.

As shown in Figure 1, the circular shifter is
the primary component in hash function compu-

Quantitative Analysis of FPGA-based Database Searching 9

tations. We therefore use the above equations in
Section 6 to estimate the speed and size of shifter
implementations for Xilinx 6200 FPGAs presented
in the next section. Their efficiency will be cal-
culated according to the functional density met-
ric proposed by Wirthlin and Hutchings [10]: see
Equation 9 below.

1
(Area)(Tiotar) ©)

Since we are also interested in characterising the
efficient use of temporary memory, an additional
metric, given by Equation 10, is obtained by re-
placing the area term in Equation 9 by the amount
of temporary memory used:

DATea =

Dyrem = (! (10)

Mem) (Ttotal)

5. Device-Specific Mapping

The reconfiguration time of a circuit can be
greatly reduced by taking into account the mecha-
nism used to program an FPGA, as well as device-
specific optimizations that may be available. This
section introduces several shifter designs that can
be used in one stage of a hash-function pipeline
for a database search facility. The designs are im-
plemented in Xilinx 6200 FPGA technology which
supports partial run-time reconfiguration.

The Xilinx 6200 FPGA has a facility called
‘wildcarding’ that allows simultaneous configura-
tion of multiple FPGA cells with the same data.
Wildcarding can be performed on all 64 rows of
the chip to allow an entire column to be config-
ured in one configuration write cycle. However,
wildcarding can only be performed on 4 columns
at a time, therefore only 4 cells in a row can be
configured at one time. Due to this limitation, it is
advantageous to align components that are going
to be reconfigured vertically along the columns of
the FPGA in order to take maximum advantage
of wildcarding.

A compact variable circular shifter has been im-
plemented in Xilinx 6200 technology (Figure 7)
[4]. The component is made up of an array of
multiplexors that circularly shift the data n-bits;
this design uses only the four nearest neighbour
connections available in each FPGA cell.

S1 S2
| |
— | — lﬁ
)“ j»“-* out2
— S3

j“» outl

-S4
] \: out0

inl in2

ICTETE:ER
=

in

Fig. 7. Circuit diagram of a 3-bit Variable Circular
Shifter. S0, S1, S2, S3 and S4 are signals controlling the
shift amount.

The clock period for a 22-bit variable circu-
lar shifter is 105 ns; this large critical path
delay is due to the control lines routed diago-
nally across the array to each of the multiplex-
ors. The counter-flowing data organization makes
this design difficult to be pipelined. For FPGAs
with more abundant and faster routing resources,
higher performance can be achieved with this im-
plementation.

Without taking routing into account, this com-
ponent requires n2 FPGA cells, or 484 cells in the
case of a 22-bit shifter. If routing is taken into
account, the area of the 22-bit variable circular
shifter grows to 638 cells. Since the component is
constructed as a variable circular shifter, it only
takes a single cycle to change the shift amount.
The relevant statistics are summarised in the top
row of Table 1.

10 Shirazi, et. al.

Table 1. Trade-offs between different implementations of a 22-bit circular shifter.

Area including
routing
(FPGA cells)

Reconfiguration Time

N, config
(number of cycles)

638 1
88 245

484 44

484 4

Circuit Clock Period
tproc
(ns)

Variable 105
Fixed 29.5
Square Hybrid 37
Rhombus Hybrid 55

[&]

[

B

=2

(&

&

]

128

IZi

I

[

128

IZi

il

|H]B

IZiis

Hlo

it

it

IZiis

G

=) x|

Fig. 8. Fixed Circular Shift Component on a Xilinx 6216
device. Note the abundance of random routing to perform
the shift.

Three different implementations of the circular
shifter have been developed to reduce their crit-
ical path delay. The first method uses constant
propagation techniques. The variable n-bit circu-
lar shifter is converted to an n-bit constant circu-

lar shifter, by treating the variable shift amount
as a constant. The propagation of this constant
converts the array of multiplexors into simple wire
connections.

For example, a 22-bit fixed circular shifter with
a 7-bit shift amount has been designed by prop-
agating the constant shift value into the circuit
(Figure 8). The size of the component is reduced
from 638 cells to 88 cells and its critical path from
105 ns to 29.5 ns. However, this shifter requires
much random routing to perform the shift, and
hence the time needed to reconfigure it is large.

The second method, known as the square hy-
brid method, is a hybrid between the variable im-
plementation and the fixed version of the circu-
lar shifter. A two-dimensional array of buffers are
used to control the routing of the component. The
input data enter the component from the bottom
and perform a corner turn and exit from the right.
The shift amount is determined by the location of
the corner turn in the array of FPGA cells; the
corner turn is implemented by diagonally connect-
ing the bottom inputs to the outputs on the right
at different positions, resulting in two diagonally-
placed reconfigurable regions (Figure 9). The re-
configuration time for this method is 2n cycles,
where n is the size of the circular shifter, since it
takes two clock cycles to make a new connection
and remove the previous one.

The third method, known as the rhombus hy-
brid method, is similar to the square hybrid
method except that the layout has been rear-
ranged to enable fast partial reconfiguration. As

Quantitative Analysis of FPGA-based Database Searching

previously discussed, the Xilinx 6200 FPGA sup-
ports wildcarding more effectively along a column
of the chip rather than a row. The layout of the
square hybrid implementation has been skewed
into a rhombus shape, so that the previous diag-
onal reconfiguration regions are aligned into two
columns (Figure 10). The number of cells used
in the rhombus hybrid method is the same as that
for the square hybrid method. However, due to its
irregular shape, it is harder to take advantage of
the unused triangular-shaped areas on either side
of the component. Also, the input data have to
propagate diagonally across the component; since
the FPGA only has Manhattan-style routing, this
increases the critical path.

11

The advantage of using the rhombus hybrid
method is that the reconfiguration time is re-
duced to a constant value regardless of the size
of the component, thanks to wildcarding. Wild-
carding can be performed since the reconfigura-
tion involves changing the reconfigurable region
to identically configured cells. This reconfigurable
region consists of buffers that either perform a cor-
ner turn or pass data from the left to the right. As
shown in Table 1, the reconfiguration time for the
rhombus hybrid method is an order of magnitude
less than that for the square hybrid method, with
the same circuit area and a modest reduction in
clock speed.

AN

xS S - A v O

o

/W

h
AN

N

/5 Y

N

rqai

fddE B O8O0 @

63

i

/
/0

s

Fig. 9.
regions are enclosed by the two boxes.

Square Hybrid Implementation of a Fixed Circular Shift Component on a Xilinx 6216 device. The reconfigurable

12 Shirazi, et. al.

A e W G

e

IppﬂpWJanl
A ;.'{

Fig. 10. Rhombus Hybrid Implementation of a Fixed Circular Shift Component on a Xilinx 6216 device. The reconfigurable

regions are enclosed by the two boxes.

6. Device-Specific Design Analysis

Three test cases are used to illustrate the trade-
offs between execution time and the amount of
temporary storage required. The first test case
assumes that there is a large amount of tempo-
rary storage available. The second test case ex-
amines the other extreme case and assumes that
only a very small amount of temporary storage
is available. In reality, there is usually a moder-
ate amount of temporary storage available, either
off chip or within the FPGA, and the third case
examines this possibility.

Case #1. If a large amount of temporary stor-
age is available, then we do not need to subdivide
the input data set. Since the input data set is not
subdivided, the amount of reconfiguration is min-
imized and reconfiguration only occurs after the

complete data set has been processed. To specify
this case, the value of [is set to 1 in Equation 5 in
Section 4. This value indicates that the input data
set is one complete set. A typical number of words
to be searched is 10 x 10, hence w = 10 x 10%, and
the average number of characters per word is set
to 5, so ¢ = 5. Since it takes one cycle to access
memory, m = 1. The number of hash functions
used to statistically ensure that false matches do
not occur is 8, so h = 8, and we set p = 1 which
indicates sequential execution of hash functions.

Using these parameters, along with the area and
speed data given in Table 1, we calculate the to-
tal execution time, functional densities and the
percentage reconfiguration time with respect to
the number of cells and the amount of temporary
storage for each of the circuits described in the
preceding section. The results are shown in Ta-
ble 2

Quantitative Analysis of FPGA-based Database Searching 13

Table 2. Case #1: Total Execution Time, Functional Densities and Percentage Reconfiguration Time when [= 1.

Circuit Tiotal Darea Dprem Tconfig /Ttotal
(sec) (1/(cells x sec)) (1/(bits x sec)) (%)
Variable 50.4 0.31 x 10~4 0.48 x 10~10 1.7 x 10~
Fixed 14.16 8.03 x 10— 1.72 x 10~10 4.1 x10~*
Square Hybrid 17.76 1.16 x 10~4 1.37 x 1010 7.3x 10753
Rhombus Hybrid 26.4 0.78 x 10— 0.92 x 10—10 6.7 x 10~
Since reconfiguration time is very small com- Case #2. If limited temporary storage is

pared to execution time, the circuit with the
smallest critical path, the Fixed Circular Shift
Component, is the fastest design. In this case,
the critical path delay is the dominating factor in
the overall computation time. The Fixed Circu-
lar Shift Component also has the maximum func-
tional density with respect to both area and tem-
porary storage size of the four different implemen-
tations. The disadvantage of using this method is
that, in this case, 48 megabytes of temporary stor-
age are required.

available, frequent reconfiguration minimizes the
amount of temporary storage needed. In this case,
we examine the extreme case by reconfiguring to
the next hash function after every word. This
is done by dividing the input data set into the
smallest possible unit, a single word, by setting
| = w. When [= w, Equation 7 is reduced to
Mem = (bxc)+1, and therefore only 41 bits needs
to be stored between reconfigurations. This can be
achieved using a single register on the FPGA, and
off-chip temporary storage is not required.

Table 3. Case #2: Total Execution Time, Functional Densities and Percentage Reconfiguration Time when ! = w.

Circuit Tiotal Drea Durem Tconfig/Ttotal
(sec) (1/(cells x sec)) (1/(bits x sec)) (%)
Variable 58.8 2.7 x 1073 4.15 x 1074 14
Fixed 592 1.9 x 105 0.412 x 10~4 98
Square Hybrid 148 1.4 x 1075 1.65 x 10—4 88
Rhombus Hybrid 44 4.7 x 10753 5.54 x 10~4 40

Using the same parameters in Case #1, we cal-
culate the total execution time, functional densi-
ties and percentage reconfiguration time with re-
spect to the number of cells and the amount of
temporary storage for each of the circuits (Ta-
ble 3). In this case, since reconfiguration time is
large compared to processing time, the reconfigu-
ration time of the circuit is the dominating factor
in the overall execution time; in particular it can
be seen from Table 3 that the Fixed method in-

volves the largest percentage reconfiguration time
as well as the largest total execution time.

An implementation that involves the minimum
amount of run-time reconfiguration may be ex-
pected to have the fastest overall computation
time. However, this is not the case in this exam-
ple, since the Rhombus Hybrid method involves
a larger percentage reconfiguration time than the
Variable method, but it still has the overall fastest
execution time. The small reconfiguration time of
the Rhombus Hybrid method is due to the opti-
mizations discussed in Section 3.

14 Shirazi, et. al.

Table 4. Case #3: Total Execution Time, Functional Densities and Percentage Reconfiguration Time when w/l = 16.

Circuit Tiotal Darea Dprem Tconfig/Ttotal
(sec) (1/(cells x sec)) (1/(bits x sec)) (%)
Variable 50.9 0.31 x 10—4 2.99 x 10-10 1
Fixed 50.3 2.26 x 10~4 3.03 x 10~10 72
Square Hybrid 25.9 0.79 x 10~ 5.88 x 10~10 31
Rhombus Hybrid 27.5 0.75 x 10~ 5.54 x 10~10 4

Case #3. A more realistic scenario occurs when
there is limited amount of temporary storage and
the optimal implementation has to be found. For
example, if there is enough left-over chip area for
100 bytes of temporary storage on the FPGA, we
need to know which one of the four circuits would
have the fastest execution time. The same pa-
rameters in Case #1 yield a value of [to be ap-
proximately 1/16t" of w. Again, total execution

time, functional densities and percentage recon-
figuration time for each of the circuits are calcu-
lated and are shown in Table 4. We find that
the circuit with the fastest execution time, given
these parameters, is the Square Hybrid Circular
Shift circuit. It involves the second largest per-
centage reconfiguration time, showing once more
that large amount of reconfiguration does not nec-
essarily increase the total execution time.

Time vs. Number of Words for w/l = 16

100 T T T T T
90 B
g0} CG—o—© Rhombus Hybrid Circular Shift Circuit B
ek Square Hybrid Circular Shift Circuit
H———x Fixed Circular Shift Circuit
70 Variable Circular Shift Circuit]
60 B
o
Q
@
> 50 E
£
i
40 B
30 b
20 B
10_{ B
0 1 1 1 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Number of Words %10

Fig. 11. Graph of Total Execution Time (T}otq;) versus Number of Words (w) for w/l = 16.

Quantitative Analysis of FPGA-based Database Searching 15

For w/l = 16, a plot of execution time versus
the number of words is shown in Figure 11. If data
partitioning is kept at w/l = 16, and fewer than
107 words are processed, we note from Figure 11
that the Rhombus Hybrid method is the circuit
with the fastest execution time. In this case we
can reconfigure the FPGA to use this circuit until
the cross over point is reached where the Square
Hybrid circuit is the faster circuit.

The test cases do not cover the use of multiple
FPGAs executing the text search in parallel as a
pipeline. However, by changing the value of p,
this case can be explored using the same method
described in this section.

Equations 5, 7 and 8 enable us to find the cir-
cuit which is the most appropriate under given
constraints, such as the availability of FPGA re-
sources, by quantifying the trade-offs between the
amount of temporary storage and execution time
for this application. Other applications such as
image processing can also be explored using these
methods.

7. Concluding Remarks

This paper describes how run-time reconfiguration
can be used to optimise database search engines.
Both technology-independent and device-specific
aspects are covered by our framework, which sup-
ports quantitative analysis of design trade-offs in
performance and resource usage.

Current and future work includes generalizing
our analysis techniques to cover other applications
and devices. Our approach can also be extended
to exploit contextual information in domains such
as multimedia processing, and to take advantage
of various circuit optimisations such as on-line
arithmetic [8].

Acknowledgements

The authors are indebted to John Gray, Dou-
glas Grant, Hamish Fallside, Tom Kean, Steve
McKeever, Stuart Nisbet, Bill Wilkie and the

anonymous reviewers for their constructive com-
ments. The support of Xilinx Inc., the UK Over-
seas Research Student Award Scheme and UK En-
gineering and Physical Sciences Research Coun-
cil (Grant number GR/24366, GR/54356 and
GR/59658) is gratefully acknowledged.

References

1. D. Buell, J. Arnold and W. Kleinfelder, Splash 2, FP-
GAs in o Custom Computing Machine, IEEE Com-
puter Society Press, 1996.

2. S. Churcher, T. Kean and B. Wilkie, “The XC6200
FastMap processor interface,” in Field Programmable
Logic and Applications, W. Moore and W. Luk (eds.),
LNCS 975, Springer, 1995, pp. 36—43.

3. E. Lemoine and D. Merceron, “Run time reconfig-
uration of FPGAs for scanning genomic databases,”
Proc. IEEE Symposium on FPGAs for Custom Com-
puting Machines, IEEE Computer Society Press,
1995, pp. 90-98.

4. W. Luk, S. Guo, N. Shirazi and N. Zhuang, “A Frame-
work for developing parametrised FPGA libraries,” in
Field- Programmable Logic, Smart Applications, New
Paradigms and Compilers, LNCS 1142, Springer,
1996, pages 24-33.

5. W. Luk, N. Shirazi and P.Y.K. Cheung, “Mod-
elling and optimising run-time reconfigurable sys-
tems,” Proc. IEEE Symposium on FPGAs for Cus-
tom Computing Machines, IEEE Computer Society
Press, 1996, pp. 167-176.

6. W. Luk, N. Shirazi and P.Y.K. Cheung, “Com-
pilation tools for run-time reconfigurable designs,”
Proc. IEEE Symposium on FPGAs for Custom Com-
puting Machines, IEEE Computer Society Press,
1997.

7. W. Luk, N. Shirazi, S.R. Guo and P.Y.K. Che-
ung, “Pipeline morphing and virtual pipelines,”
Field Programmable Logic and Applications, W. Luk,
P.Y.K. Cheung and M. Glesner (eds.), LNCS 1304,
Springer, 1997, pp. 111-120.

8. E. Mosanya and E. Sanchez, “A FPGA-based hard-
ware implementation of generalized profile search
using online arithmetic,” Proc. ACM/SIGDA Int.
Symp. on FPGAs, ACM Press, 1999, pp. 101-111.

9. N. Shirazi, W. Luk and P.Y.K. Cheung, “Run-
time management of dynamically reconfigurable de-
signs,” Field Programmable Logic and Applications,
R. W. Hartenstein and A. Keevallik (eds.), LNCS
1482, Springer, 1998, pp. 59-68.

10. M.J. Wirthlin and B.L. Hutchings, “Improving func-
tional density through run-time constant propaga-
tion,” Proc. ACM Int. Symp. on FPGAs, ACM Press,
1997, pp. 86-92.

