COVER FEATURE

Simon D.
Haynes

John Stone
Sony Broadcast
& Professional
Europe

Peter Y.K.
Cheung
Wayne Luk
Imperial College,

University of
London

Video Image
Processing
with the Sonic
Architecture

Professional video image processing requires more computational power
and data throughput than most general-purpose computers can provide.
Sonic, a configurable computing system that performs real-time video
image processing, meets these needs by using plug-ins to accelerate

software applications.

urrent industrial videoprocessing systems
use a mixture of high-performance work-
stations and application-specific integrated
circuits. However, video image processing
in the professional broadcast environment
requires more computational power and data
throughput than most of today’s general-purpose
computers can provide. In addition, using ASICs for
video image processing is both inflexible and expen-
sive. For example, adding a new special effect can
require designing one or more new ASICs, a time-con-
suming process that increases development costs.

Configurable computing offers an appropriate alter-
native for broadcast video image editing and manipu-
lation. It combines the flexibility, programmability,
and economy of general-purpose processors with the
performance of dedicated ASICs.! An added advan-
tage is that designers don’t need to acquire major new
skills because ASICs and configurable computing
require nearly identical design knowledge and tech-
niques. In fact, designers often use configurable logic
to prototype ASICs before implementation.

Sonic is a commercially viable configurable com-
puting system that performs real-time video image pro-
cessing. This system can implement algorithms for
two-dimensional linear transforms, fractal image gen-
eration, filters, and other video effects. Sonic’s flexible
and scalable architecture contains configurable pro-
cessing elements that accelerate software applications
and support the use of plug-in software.

CONFIGURABLE VIDEOPROCESSING PLATFORMS
The successful development of a configurable com-

Computer

puter faces several challenges, including appropriate par-
titioning of algorithms between hardware and software,
exploiting spatial and temporal parallelism, integrating
the configurable computer into the software framework,
and selecting a suitable configuration strategy. The archi-
tecture can significantly affect the performance of con-
figurable computing systems in videoprocessing
applications because of the high data throughput and
processing requirements, as the ““Videoprocessing
System Requirements” sidebar indicates.

Hardware and software partitioning

In general, partitioning between hardware and soft-
ware can be either automatic or manual. While
researchers continue to explore automated partitioning
and compilation of high-level languages,*? developers
are using a manual approach for many videoprocess-
ing applications. Such an approach is attractive because
the partitioning for video processing is usually well
defined. In addition, hardware implementations are
already available for many videoprocessing algorithms,
and designers can easily transfer them directly to the
configurable computing platform.

The frequency of hardware reconfiguration has a
significant impact on the architecture. At one extreme
lies frequent or dynamic reconfiguration, which
exploits reconfigurability and allows reuse of hard-
ware resources at different times for different opera-
tions. For videoprocessing, this could mean that device
configuration occurs more than once per video frame.
However, using frequent reconfiguration can be diffi-
cult in practice because a frequently configured device
requires a high configuration bandwidth, and trans-

0018-9162/00/$10.00 © 2000 |IEEE

Videoprocessing System Requirements

A typical videoprocessing system per-
forms many functions, including sequence
editing, format conversion, chroma-key-
ing (which uses color to separate objects
from their background), linear effects
such as image rotation or resizing, and
nonlinear effects such as mapping video
to three-dimensional objects. Many
underlying low-level operations such as
antialias filtering, interpolation, and color
space conversion are common to these
types of functions.

The system needs to perform real-time
videoprocessing for live editing or as fast
as possible for offline editing. In some
cases, editing material at faster than real-
time speed is desirable. Table A demon-

tion, which consists of a high-quality
antialias filter followed by an address
remap and an interpolation filter, can
require processing rates of around 10" mul-
tiply-accumulate operations per second.
Image processing algorithms are highly
suitable for hardware acceleration because
they have spatial parallelism that makes it
possible to process different parts of the
image simultaneously. In addition, many
of the operations that these algorithms use
are simple. In many cases, exploiting tem-
poral parallelism is easier because it isn’t
necessary to handle problems associated
with segmenting an image. For example,

kernel filters require information at the
edges about parts of the image outside
their segment. In addition to parallel pro-
cessing, hardware pipelining is possible
with many algorithms, thus increasing
throughput.

Videoprocessing also requires an exter-
nal video interface for the hardware accel-
eration platform. The platform can use
this interface either for real-time video-
streaming or for capturing and playing
video sequences to the video server. In
general, a Serial Digital Interface is pre-
ferred as most professional broadcast
equipment supports it.

Table A. Throughput rates for real-time processing of video in different formats.

strates the enormous throughput that

real-time processing of video in different Image size Throughput
formats requires. Format (pixels) Frame rate (Hz) (Mpixels/sec)
With these throughput rates, even a rel- PAL 720 x 576 25.0 10.4
atively simple algorithm involves a large NTSC 720 x 480 29.97 10.4
number of operations per second. For HDTV (SMPTE 260M) 1,920 x 1,080 30.0 62.2

example, an HDTV video rotation opera-

ferring the configuration data can incur an unaccept-
able time penalty. At the other extreme, a statically
configured device simply performs an ASIC’s function,
wasting the flexibility that configurable devices offer.
A practical compromise will likely lie somewhere
between these two extremes: The configurable device
performs an entire task with each different configu-
ration, similar to using an ASIC, but reconfiguring the
device changes the task and functions much like
switching to a different ASIC.

Configurable versus custom designs

Designers must also decide whether to use an off-
the-shelf configurable device or design a custom con-
figurable one. Custom configurable devices have some
of the same design disadvantages as ASICs, including
long design times and high development costs. In con-
trast, the advantages of off-the-shelf devices include
their high density and low cost because of mass pro-
duction, the availability of a large set of mature design
tools, and the potential for using coreware.

Other research® suggests that the gate capacity of
current configurable devices can be a limitation.
Although this constraint is becoming less important
with the introduction of larger devices, using extra
gates for replicating processing units normally
improves videoprocessing algorithm performance.
Therefore, the architecture should maximize the avail-
able logic by supporting multiple configurable devices.

The architecture should provide more memory than
the inadequate amount that typical configurable
devices have; for example, the latest Xilinx part, the
XCV3200E, has only 106 Kbytes of BlockRAM.

Adequate memory is particularly important for video-
processing, which usually requires large frame stores.
For example, a two-frame buffer for HDTV images
requires 17 Mbytes of memory, assuming 4 bytes per
pixel.

Other design elements

The architecture should include external video
buses to overcome host bus limitations, which many
researchers have found to be the system bottleneck.
With a scalable architecture, different architecture
implementations can match different users’ require-
ments, and future expansion is possible. Finally, the
architecture should allow easy exploitation of the spa-
tial and temporal parallelism that is a common char-
acteristic of videoprocessing algorithms.

SONIC ARCHITECTURE

The Sonic architecture demonstrates the practical-
ity of using configurable computing to accelerate
offline and real-time video image processing. As Figure
1 shows, the design consists of plug-in processing ele-
ments (PIPEs) connected by the PIPE bus and
PIPEflow buses. Sonic’s architecture exploits the spa-
tial and temporal parallelism in video image process-
ing algorithms. It also enables design reuse and
supports the software plug-in methodology.

Bus architecture

Sonic’s bus architecture consists of a shared global
bus combined with a flexible pipeline bus. The archi-
tecture uses these buses to implement several differ-
ent computational schemes.

Al

pril 2000

Figure 1. Sonic
architecture. A
shared global bus
(PIPE bus) and flexi-
ble pipelined buses
(collectively called
PIPEflow buses) con-
nect the plug-in pro-
cessing elements
(PIPEs). PIPEflow
buses are shaded in
red.

t External video

buses

5 e

g Y fv 4y

?, PIPE 1»|PIPE 2»|PIPE 3>

>

0

gl 2 B I B PIPEflow A
- - / i ¥ PIPEflow B
Host bus

The synchronous, global PIPE bus’s bandwidth
matches the host bus’s bandwidth. The system uses
this bus for fast image transfer to the memory on the
PIPEs, PIPE parameter access (runtime data required
by the PIPEs), control of the PIPEflow bus routing
through the PIPEs, and configuration of the PIPEs.
Each PIPE has several unique signals that control
configuration, interrupt signaling, and device selec-
tion.

The Sonic architecture uses the PIPEflow buses to
implement pipelined operation. Data passes along the
pipeline using the PIPEflow buses that connect adja-
cent PIPEs. PIPEflow buses A and B can transfer
images from any PIPE or the local bus controller to
any number of other PIPEs or the local bus controller;
for example, PIPE 1 can use the PIPEflow A bus to
send image data to PIPEs 2, 3, 4, and 6. The system
uses a predefined raster-scan protocol to send data
over these buses. The PIPEflow bus bandwidth
matches the external video bus bandwidth.

PIPEs

The PIPEs are the most important part of Sonic’s
architecture because they perform the processing.
Figure 2 shows the three PIPE parts: the PIPE engine
(PE), PIPE memory (PM), and PIPE router (PR).

In Sonic, the PIPE engine handles computation and
the PIPE router handles image data movement and for-
matting. The user application controls the PIPE engine;
Sonic’s Application Programming Interface (API) library,
a set of well-defined functions, controls the PIPE router.

It is the PIPE router, and the way it is used, that
make Sonic unique. The PIPE router provides a flexi-
ble and scalable solution to routing and data format-
ting. It is responsible for

Computer

Configuration control, PIPE select, and interrupt signals

PIPE bus

P Y oty
cee — F;\:PE - T\iplE -»PIPE N
2 2 A

< generating the PIPEflow-in data for the PIPE
engine,

» allowing PIPE bus access to the PIPE memory,
and

< handling the PIPEflow-out PIPE engine data.

When the system uses the PIPE router to generate
PIPEflow-in data, the PIPE router performs three tasks
to ensure that the PIPE engine receives the data in a
format that it expects:

» Data formatting. The PIPE router ensures that the
data is in the correct format for PIPE engine com-
putation—packaged as part of a plug-in. For exam-
ple, if one computation involves operations—with
YCrCb components, an imaging format—and
another operates using RGB components, the PIPE
router pipelines the computations together, per-
forming the automatic conversion between these
two formats. The PIPE router also supports con-
versions between other formats.

e Data routing. The PIPE router routes data
between the various buses, the PIPE engine, and
the PIPE memory. This means that the PIPE
engine can perform the same computation with
different data flow. For example, an identical
computation can be used as a single entity or as
part of a larger chain of PIPEs, with the data com-
ing from either the host computer (via the PIPE
memory) or the external video buses.

« Data accessing. The PIPE router supplies the data
to the PIPE engine in a variety of ways. It can use
the normal horizontal raster-scan mode to carry
out simple operations, such as gamma correction.
Designers can use a combination of horizontal

and vertical raster-scan modes to implement two-
pass algorithms. A more complicated “stripped”
accessing greatly simplifies designing 2D filters
and block processing algorithms. All of these pro-
grammable options simplify the task of develop-
ing Sonic’s PIPE applications.

The PIPE engine processes the image. This is the
only part of the PIPE that a particular user applica-
tion directly configures. The user application contains
the PIPE engine configuration data, which defines the
configurable device’s function. Although the PIPE
engine typically uses the PIPEflow buses to get the data
via the PIPE router, the PIPE engine has direct access
to the PIPE memory. This is useful when the system
needs to access the image randomly, as in the imple-
mentation of explosion effects, where the image
appears to “shatter” as if blown apart.

The PIPE memory stores images. The design the PIPE
engine implements can access the PIPE memory explic-
itly or the Sonic API can access it implicitly. The actual
PIPE implementation can take many forms. Although
it conceptually consists of three parts—the PIPE router,
engine, and memory—the PIPE implementation could
consist of just one device or even many devices. The
original intention clearly is to use configurable logic,
but a DSP processor or a customized ASIC could imple-
ment the PIPE engine or PIPE router.

Exploiting parallelism

The Sonic architecture exploits the spatial and tem-
poral parallelism present in video image processing algo-
rithms. Sonic exploits spatial parallelism either within a
single hardware design or by configuring multiple PIPEs
with the same design and distributing parts of each
frame across multiple PIPEs. Of course, this can require
some subtle alterations to the individual designs,
depending on the precise function. Sonic exploits tem-
poral parallelism by configuring multiple PIPEs with an
identical design, and then distributing successive frames
across the PIPEs. This arrangement maximizes bus usage
to overcome potential I/0O bandwidth limitations. Sonic
uses these techniques to trade off resources for speed:
The more PIPEs available, the faster the operation.

Software plug-ins

Sonic’s design provides software acceleration for a
wide range of video applications, including those not
written specifically for a configurable computer.
Software plug-ins provide the necessary framework
to accomplish this acceleration.

A software plug-in is a piece of code that applica-
tion developers write to extend an application with-
out recompiling the original application. Plug-ins have
a well-defined interface that describes the function the
application performs and specifies how data passes

PM select
PIPE engine
PE select (PE)
) |
PIPE bus - > (Under plug-in
control)
PIPEflow PIPEflow
in out
i
\
i PIPE router
PM select (PR)
PE select =
N (Under Sonic
PIPEflow API control)
left
PIPEflow A PIPEflow B

PIPE
= memory
(PM)

PIPEflow
right

Figure 2. PIPE architecture. The PIPE engine implements the algorithm, the PIPE mem-

ory acts as an image store, and the PIPE router formats and moves data.

between the application and the plug-in. The appli-
cation can invoke plug-ins such as filters and trans-
forms as required. The application further benefits
from the plug-in architecture’s more structured code
development style.

For configurable computing, software plug-ins
allow applications to use hardware acceleration with-
out requiring the main application to support the
hardware. Indeed, developers can retrofit hardware
acceleration after they write the application. For
example, designers used configurable hardware and
software plug-ins to accelerate Adobe Photoshop.?
Software plug-ins also solve the problem of exploiting
the hardware’s configurable nature: The system can
reconfigure the same configurable hardware to imple-
ment different plug-ins at different times.

Figure 3 shows the steps required for processing an
image, what happens at each stage in Sonic, and where
the API sits. The software plug-in contains a pure soft-
ware implementation (used if Sonic is busy or not
present) and a file that encapsulates the plug-in’s hard-
ware description. A hardware description file contains
the configuration data for one or more field-
programmable gate arrays (FPGASs). The micro-
processor uses this software model to perform pro-
cessing while the hardware platform processes an
image. The software process goes through each step,

April 2000

Figure 3. Software

plug-in for video
image processing.
The plug-in contains
a pure software
implementation and
a file that encapsu-
lates the hardware
description. Software
carries out the steps
in the rounded boxes
on the left, and Sonic
carries out the rec-
tangular blocks in
hardware.

Plug-in — software

Y

4{ Hardware configuration J<—>
L]

Image transfer

)

L

A

Begin message to API J—»

v

[Software

Software processing

)

L

End message from API J<—

Image retrieval

(
(
implementation] (
(
(

J<_

B

Finished

)

v

calling the API where necessary. The API then causes
a corresponding action in Sonic. The software always
controls Sonic, but sometimes it must wait for Sonic
to finish processing an image. This well-defined par-
titioning of the task between software and hardware
enables the development of a highly efficient system
architecture combined with a simple API.

Figure 4 shows how Sonic supports our software
model. In this example, the Sonic platform contains
three plug-ins. PIPE 1 contains a filter plug-in, which
is currently unused (although PIPE 1 isn’t used, it still
remains configured; so if the API requires a filter plug-
in, it doesn’t need to reconfigure the PIPE). PIPE 2
implements a rotate plug-in for a paint application.
The rotate plug-in’s PE accesses the PIPE memory
directly. PIPE 3 implements another filter plug-in, but
this time it’s for a video application. Sonic can adopt
the same design for PIPE 1 and PIPE 3, potentially
using the design for different applications. PIPEs 4, 5,
and 6 show how multiple PIPEs can implement a
larger plug-in, in this instance using the PIPEflow
buses to pass the data. Designers can cascade smaller
plug-ins that use the PIPEflow buses to create more
complex plug-ins—an example of the Sonic architec-
ture’s design reuse capability. The remaining PIPEs
are free to implement other plug-ins.

Design ease and reuse

Sonic’s architecture emphasizes easy plug-in design
and design reuse. Having a clear plug-in definition
simplifies the process of designing new plug-ins. The
PIPE router and the associated Sonic API ensure that
the software plug-in and hardware correctly translate
the image format, and they provide a mechanism for
easily transferring images. This arrangement abstracts
much of the Sonic architecture’s detail from applica-
tion developers, improving both their productivity
and the portability of their designs.

The Sonic architecture accomplishes design reuse
in three ways:

Computer

Sonic platform — action

<—>| Hardware configuration |

—>| Image transfer to platform |

—>| Start processing |

| Processing |

4—{ End message from platform |

<—| Image transfer from platform |

Application Programming Interface

e Because the hardware has a rigid interface, plug-
ins can use the same hardware designs for differ-
ent applications. For example, the hardware for
rotating images can accelerate rotation for any
application.

e The PIPEflow processing model means that the
system can use a hardware design on its own or
as part of a larger design.

= Sonic can exploit temporal and spatial parallelism
by using the same design to configure more than
one PIPE.

ARCHITECTURE IMPLEMENTATION

Figure 5 shows Sonic-1, our current Sonic archi-
tecture implementation. We used daughterboard mod-
ules to implement PIPEs inserted into the 200-pin
DIMM sockets on the main board. Sonic-1 supports
eight PIPEs, the maximum we could physically fit on
the board. Sonic-1 has a PCI interface to the host PC
and an SDI interface for video equipment. The design’s
modularity offers several benefits:

» ease of development,

= improved device density on the board,

« ease of testing using a module with headers for a
logic analyzer that we can insert in place of a
PIPE, and

» potential for future expansion using different
configurable devices in the PIPEs.

PIPE implementation

Because we currently use Altera parts that cannot be
partially reconfigured, we placed the PIPE engine and
PIPE router in separate devices: a FLEX10K100 for
the PIPE engine and a FLEX10K50 for the PIPE
router. We can clock the PIPE engine at 33 MHz or
66 MHz.

The PIPE memory consists of 4 Mbytes of SRAM
arranged as 1M x 32 bits. The PIPE bandwidth mem-
ory is 132 Mbytes/sec, which matches that of the PIPE

. PIPE 1 PIPE 2 PIPE 3 PIPE 4 PIPE 5 PIPE 6 PIPE 7
o
2| o | E 7 -z 2| o
o
o PR PR Pl R PR PR
g T_u T_' T_u T_. T — T T_'
7 1
s]
—
Filter Rotate Filter 3D transform
plug-in plug-in plug-in plug-in
;;1 Paint Video Video
632 application application application

Figure 4. Sonic platform with three plug-ins. PIPEs 2 through 6 contain active plug-ins. Although PIPE 1 is not currently used, it is still configured so that

the API doesn’t have to reconfigure the PIPE if it needs a filter plug-in.

bus and PCI bus. We used SRAM as opposed to
SDRAM or DRAM to simplify the hardware design
process, especially for random memory accesses. We
chose the memory size to fit two PAL/NTSC frames.

Bus implementation

Sonic implements the PIPE bus as a 32-bit multi-
plexed address and data bus with four control sig-
nals. The PIPE bus can match the maximum PCI bus
bandwidth of 132 Mbytes/sec. The PIPEflow buses
are 19 bits in width—16-bit data plus three control
bits—and they operate at 66 Mbytes/sec. This band-
width is half the PIPE memory bandwidth, so Sonic
can read and store PIPEflow data to the same PIPE
memory. Pin availability on the PIPE and the PR lim-
its the bus size. Because it typically uses 8-bit RGBa
data, this bus is time-multiplexed between RG and
Ba components. The PIPEflow bus’s data rate is
above the rate that either PAL or NTSC real-time
video data requires.

Sonic-1 contains hardware dedicated to smoothly
interfacing the PIPEs to the Sonic API through the host
PCI bus. The main Sonic board has two elements:

e Local bus controller. Two Altera 10K50s and a
PLX 9080 implement the local bus controller
interface with the PCI bus. The PCI bus transfers
data between the host PC and Sonic-1. The PLX
9080 PCI interface chip gives a peak transfer
speed of 132 Mbytes/sec from the host PC to the
PIPE memory.

« Serial digital interface. The SDI input and output
allow real-time processing on Sonic-1. SDI is

LA I
PCl interface chip
reverse side

- Local bus controllers on

Figure 5. Sonic-1 platform. Four PIPES populate the eight PIPE slots.

widely used throughout the professional broad-
casting industry to transfer real-time video data,
bypassing the PCI bus.

COMPARISON WITH OTHER ARCHITECTURES

Our approach provides a competitive alternative to
general-purpose computing platforms.* We designed
the Sonic architecture to improve video image pro-
cessing performance and to simplify the hardware
design process. Table 1 provides a comparison with
two other configurable systems—WildfireS (Annapolis
Micro Systems) and Riley-2¢ (developed jointly by
Imperial College and Hewlett-Packard Labora-
tories)—that helps demonstrate some of Sonic’s
unique features. Wildfire is a commercially available
configurable computing architecture based on the ear-
lier Splash-2 image-processing platform.” In Wildfire,
the host processor configures FPGAs independently
of one another. The interconnection between FPGAS
can only have one of 16 selected configurations, which

Table 1. Comparison of the Sonic architecture with other configurable architectures.

Scalable Supports software plug-ins Data formatting
System Generality architecture in a multitasking environment and access mechanism
Sonic Mainly image Yes: Memory, routing, and Yes Yes
processing configurable hardware
Wildfire® High No: Crossbar limits scalability No: Requires API madification No: Must be “designed in”
Riley-26 High No No No

April 2000

Table 2. Results of Sonic-1 applications.

Task PIPEs used Speedup* PAL frame rate (Hz)
19-tap symmetrical, separable 2D filter plug-in for 1 515 0.5
Adobe Premiere (PCI)
3 x 3FIR filter (PCI) 1 5.0 12.0
3 x 3 FIR filter (PCI) 2 8.8 21.1
2D image transform (PCI) 3 34.2 211
Color corrector (PCI) 2 2.6 21.1
3 x 3 FIR filter + color corrector (PCI) 6(3x2) 13.9 21.1
Julia set generator (PCI) 8 9.9 36.5
Ripple effect generator** (PCI) 3 — 21.1
2D image transform, including antialias filtering (SDI) 5 — 25.0
Object tracker (SDI) 2 — 25.0

*Speedup data is based on a comparison of Sonic-1 and a pure software implementation on a PC containing dual 400-MHz Pentium Il processors

with MMX support.

**No optimized software version of the ripple effect has been written.

are set on power-up. Riley-2 is a configurable com-
puting system for research that consists of four
dynamically reconfigurable devices (Xilinx’s XC6216)
connected in a ring; each device has 512 Kbytes of
SRAM. An i960 that interfaces to the host processor
through a PCI bus controls the system.

Another approach to accelerating videoprocessing
is using a digital signal processor such as the TriMedia
from Philips or Texas Instruments’ TMS320. DSPs
have many attractive properties, such as software-
based algorithm development and simplified debug-
ging. Because DSPs and general-purpose processors
have a similar underlying architecture that executes a
sequence of instructions, algorithms that map well
onto one will probably map well onto the other. In
contrast, configurable logic allows a total shift in the
computational paradigm that performs significantly
better than a DSP or a general-purpose processor for
dataflow-dominant algorithms. For example,
although it requires a significant number of processor
cycles, configurable hardware can achieve a simple
byte-shuffle operation at almost no cost.

APPLICATION EXAMPLES

Table 2 shows the results using Sonic-1 to imple-
ment the sample algorithms. For each task, we used a
machine with dual 400-MHz Pentium Il processors
with MMX support to compare the Sonic-1 imple-
mentation against an equivalent software implemen-
tation, except for the real-time processing applications
and the ripple effect. We used a commercially avail-
able software implementation for the 3 x 3 FIR filter
and the 2D transform; otherwise, we coded the exam-
ples using C++ with no optimization: For example,
we didn’t use MMX instructions. We used PAL-size
images at 720 x 576 resolution.

Computer

We configured all the examples when we initiated
the plug-in. The figures don’t include the configura-
tion time of about 150 milliseconds because it is neg-
ligible for long frame sequences. Sonic-1’s processing
time includes the time it takes to transfer the images
to and from the platform over the PCI bus.

The results show that Sonic-1 provides marked
speedup compared with pure software implementa-
tions for a variety of examples. The examples also
demonstrate how easy it is to use more PIPEs to
exploit temporal parallelism and increase the speedup.
The currently available PCI bus bandwidth limits the
speedup. The 3 x 3 FIR filter and color corrector
examples show how the system can pipeline different
designs together to give compound functions. The
Adobe Premiere plug-in’s poor performance is due to
the time its software implementation takes to com-
press and uncompress each frame.

In addition to using Sonic-1 for software accelera-
tion, we have successfully used the SDI to perform
real-time processing. When we use Sonic-1 for real-
time operation, it processes PAL video at 25 frames
per second. We implement a 2D image transform for
operations such as rotation, scaling, and shearing. The
transform includes a nine-tap linear-phase antialias
filter. We also implemented an object tracker that uses
an 8 x 8-pixel search block area over a 63 x 23-pixel
search area.

SONIC-1 LIMITATIONS

Sonic-1’s ultimate performance as a software accel-
erator is currently limited by the PCI bus’s perfor-
mance. For example, with transfer rates of 132
Mbytes/sec—the maximum for a 32-bit 33-MHz PCI
bus—the 2D image transform performs at 21.1 frames
per second using three PIPEs. Without this limitation,

eight PIPEs would perform the same operation at 127
frames per second.

The memory size that we used limits us to process-
ing PAL or NTSC size images on a single PIPE. It is
possible to process larger image sizes if the algorithm
allows splitting across multiple PIPEs.

The PIPEflow bus bandwidth of 66 Mbytes/sec
also limits Sonic’s real-time performance. Although
this bandwidth is adequate for PAL/NTSC video, it
falls short of the bandwidth that HDTV video
requires for real-time processing.

ical debugging application, additional real-time

video applications, and PIPE designs using larger
configurable parts. We are also developing a Sonic
Simulink compiler that assembles signal flow graphs
into configurable hardware.

Possible future work includes developing a new
Sonic architecture implementation to take advantage
of the 66-MHz 64-bit PCI bus and extending
advanced compilation techniques to rapidly generate
efficient designs.® Sonic would be useful for applica-
tions involving both synthetic and real images.® As
system-on-a-chip technology matures, it can use Sonic
as a scalable architecture to integrate appropriate
parameterized cores for reconfigurable applications. [J

Current Sonic work in progress includes a graph-

Acknowledgments

We thank Sony Broadcast & Professional Europe
and the UK Engineering and Physical Sciences
Research Council for their support.

References
1. W.H. Mangione-Smith et al., “Seeking Solutions in Con-
figurable Computing,”” Computer, Dec. 1997, pp. 38-43.
2. M. Weinhardt and W. Luk, “Pipeline Vectorization for
Reconfigurable Systems,” Proc. 7th IEEE Symp. Field-
Programmable Custom Computing Machines (FCCM
99), IEEE CS Press, Los Alamitos, Calif., 1999, pp. 52-62.
3. S. Singh and R. Slous, “Accelerating Adobe Photoshop
with Reconfigurable Logic,” Proc. 6th IEEE Symp.
FPGAs for Custom Computing Machines (FCCM 98),
IEEE CS Press, Los Alamitos, Calif., 1998, pp. 236-244.
4. S. Guccione, “List of FPGA-Based Computing
Machines,” http://iww.io.com/~guccione/HW._list.html.
5. B.K. Fross, D.M. Hawver, and J.B. Peterson, “Wildfire
Heterogeneous Adaptive Parallel Processing Systems,”
Proc. 12th Int’l Parallel Processing Symp./9th Symp.
Parallel and Distributed Processing (IPPS 99/SPDP 99),
IEEE CS Press, Los Alamitos, Calif., 1998, pp. 611-615.
6. P.M. Mackinlay et al., “Riley-2: A Flexible Platform for
Codesign and Dynamic Reconfigurable Computing

Research,” LNCS 1304, Springer-Verlag, Berlin, 1997,
pp. 91-100.

7. P.M. Athanas and A.L. Abbott, “Real-Time Image Pro-
cessing on a Custom Computing Platform,” Computer,
Feb. 1995, pp. 16-24.

8. M.B. Gokhale and J.M. Stone, “NAPA C: Compiling for
aHybrid RISC/FPGA Architecture,” Proc. 6th IEEE Symp.
FPGAs for Custom Computing Machines (FCCM 98),
IEEE CS Press, Los Alamitos, Calif., 1998, pp. 126-135.

9. W. Luk et al., “Reconfigurable Computing for Aug-
mented Reality,” Proc. 7th IEEE Symp. Field-Pro-
grammable Custom Computing Machines (FCCM 99),
IEEE CS Press, Los Alamitos, Calif., 1999, pp. 136-145.

Simon D. Haynes is a research and development engi-
neer at Sony Broadcast & Professional Europe. His
research interests include algorithms and architectures
for image processing. He received an MEng and a
PhD in electronic and electrical engineering from
Imperial College. Contact him at simon.haynes@
adv.sonybpe.com.

John Stone is a research and development project
manager at Sony Broadcast & Professional Europe.
His research interests include algorithms and archi-
tectures for image processing and media creation. He
received an MSc in communications and signal pro-
cessing from Imperial College and a BSc in electrical
engineering from Wits University in South Africa.
Contact him at john.stone@adv.sonybpe.com.

Peter Y.K. Cheung is the deputy head of the Electrical
and Electronic Engineering Department at Imperial
College, University of London, where he is a reader in
Digital Systems. His research interests include VLSI
architectures for DSP and videoprocessing, reconfig-
urable computing, embedded systems, and high-level
synthesis and optimization of digital systems, particu-
larly those containing field-programmable gate arrays.
He received a BSc in electrical engineering from Impe-
rial College. Contact him at p.cheung@ ic.ac.uk.

Wayne Luk is a member of the academic staff in the
Department of Computing, Imperial College, Uni-
versity of London. His research interests include the-
ory and practice of customizing hardware and
software for specific application domains, such as
graphics and image processing, multimedia, and com-
munications. His current work involves high-level
compilation techniques and tools for parallel com-
puters and embedded systems, particularly those con-
taining reconfigurable devices such as field-
programmable gate arrays. He received an MA, an
MSc, and a DPhil in engineering and computing sci-
ence from the University of Oxford. Contact him at
wl@doc. ic.ac.uk.

April 2000

