
University of London

Imperial College of Science, Technology and Medicine

Department of Computing

Computer Vision and Machine Learning for
In-Play Tennis Analysis:

Framework, Algorithms and Implementation

Silvia Vinyes Mora

supervised by Prof. William Knottenbelt

Submitted in partial fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing of Imperial College London and

the Diploma of Imperial College London.
October, 2017.

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing of the University of London and

the Diploma of Imperial College,

Abstract

Statistical analysis has become an essential part of professional sports to the point that every

major professional team employs expert analysts. With the widespread availability of high

definition streaming data, increased processing power and algorithmic advances, statistical

models are undergoing an evolution from static coarse-grained pre-play models based on simple

statistical data to finer-grained dynamic in-play models that exploit spatio-temporal data and

event streams.

Our primary hypothesis is that Computer Vision (CV) and Machine Learning (ML) research

has opened up the opportunity to develop automated systems to collect the fine-grained data

needed to support these more sophisticated models. We have chosen tennis as our focus on

account of it being a highly structured sport which has enthusiastically embraced technology,

but our research is also applicable to other sports.

In this work, we propose a novel framework for the application of CV and ML techniques to

the in-play spatio-temporal analysis of tennis using commodity hardware with the ultimate

objective of obtaining insights related to players’ performance or prediction of future events.

Our framework consists of three-layers: Vision, Classification and Modelling, each of which

features various algorithmic innovations.

For the Vision Layer we propose a multi-camera system able to detect the player and ball

positions in real-time, at over 60 fps. Their 3D inferred location has an error lower than 10 cm

in 80% of the frames. The Classification Layer uses data from the previous layer to obtain high-

level information. Our contributions within this layer are two-fold: (1) insightful visualizations

of Vision Layer data and automatic extraction of high-level statistics (2) the first deep Neural

Network for fine-grained action recognition in tennis which yields highly competitive results:

88.16% one versus all accuracy for classifying backhands, forehands and serves and 47.22% in

classifying 12 finer-grained actions. The Modelling Layer incorporates the data obtained for

the previous two layers to gain insights about the game. For this layer, we survey and critically

examine different approaches of using tennis spatio-temporal data for prediction and analysis.

Our work opens the door to a deeper understanding of tennis and other sports leading to new

approaches to coaching, better analysis of rivals for developing strategies and in-play match

analysis to enhance spectators’ experience, amongst many other applications.

i

c©

The copyright of this thesis rests with the author and is made available under a Creative

Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy,

distribute or transmit the thesis on the condition that they attribute it, that they do not use it

for commercial purposes and that they do not alter, transform or build upon it. For any reuse

or redistribution, researchers must make clear to others the licence terms of this work.

ii

Acknowledgements

I would like to express gratitude to:

• My supervisor, Professor William Knottenbelt, for his enthusiastic endorsement and guid-

ance throughout the PhD. Will has been an excellent supervisor offering full support in my

personal and professional development. Will is very inspirational and passionate about

research, spreading these around him. I want to thank him for his invaluable trust and

support throughout the PhD.

• The tennis coaches Matt Willcocks, Richard Hawkes, Darren Emery and Oren Holtzman

for sharing their insights from years of coaching experience in tennis.

• My family and friends, whose love and support has been the force in overcoming the

difficult times of my PhD and the best possible company to celebrating my successes.

• My parents Jordi and Lola for giving me all their best for my success since I was born.

They have been an extraordinary source of love, motivation and support throughout my

PhD. I could not thank them enough for this. Their interest in knowledge, perseverance

and dedication has been the best example for me. Jordi, offering fascinating discussions

constantly and giving me feedback about my thesis. Lola, for her trust and being an

example of courage.

• My sister Marina for being my ally in sharing PhD experiences, discussing scientific

matters, and offering her trust and support all along the PhD.

• My closest friends and fellow researchers Carla Campos, Silvia Gimeno, Victor Estella,

Danielle Belgrave, Claudia Schultz, Cristian Florindo and Jean Kossaifi, for their friend-

ship. Thank you for making my days more fun, having fascinating discussions and your

unconditional support.

• All my friends who have constantly been there to provide their love and support, especially

Marta Caballero, Aisling McCabe, Gergana Ivanova and Sara Pagani.

• The Computing MSc students who have worked in projects under my supervision. It has

been a very enriching and rewarding experience.

iii

• Jordi Constans and Ramon Roman for their useful feedback on this thesis.

• Dr Amani El-Kholy, Mrs Ann Halford, Ms Teresa Ng and Mr Hassan Patel for their

constant support.

• The Engineering and Physical Sciences Research Council (EPSRC), for funding the Doc-

toral Training Award (DTA) that covered the tuition fees of this research.

• To my examiners Dr Gordon Hunter and Professor Yi-Ke Guo for their insightful discus-

sion and helpful feedback.

iv

Dedication

To my grand-father Pep Viñas, for being a source of inspiration.

And to my family, Jordi, Lola and Marina for their unconditional love and support.

v

‘Numbers have an important story to tell. They rely on you to give them a voice.’

Stephen Few

vi

Contents

Abstract i

Acknowledgements iii

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 12

1.3 Contributions . 13

1.3.1 Vision Layer . 15

1.3.2 Classification Layer . 16

1.3.3 Modelling Layer . 17

1.4 Declaration of Originality and Publications . 17

1.5 Thesis Outline . 18

2 Preparation for the Big Game: Background 20

2.1 The Tennis Game Explained . 20

2.2 Markov Chains . 22

2.3 Classical Tennis Models . 23

vii

viii CONTENTS

2.4 Evolution of Tennis Models . 28

2.5 Computer Vision . 30

2.5.1 Optical Flow . 33

2.5.2 Feature Extraction . 34

2.5.3 Hough Line Transform . 38

2.6 Machine Learning . 43

2.6.1 Artificial Neural Networks . 45

2.6.2 Random Forest Classifier . 52

2.6.3 K-means Clustering . 54

2.6.4 Support Vector Machine (SVM) . 55

2.6.5 Bayesian/Belief Networks (BN) . 56

2.6.6 Gaussian Mixture Model . 59

3 The Arrival of a New Player: Visual Data in Tennis Analysis 60

3.1 Why Use Visually Derived Spatio-Temporal Data? 61

3.2 Challenges . 61

3.3 Knowledge Discovery . 62

3.3.1 The Start . 63

3.3.2 Finding Patterns in Tennis . 64

3.3.3 Knowledge Discovery Until Now . 68

3.4 Prediction . 69

3.4.1 Predict the Type of the Next Shot . 70

3.4.2 Predict the Location of the Next Shot 71

CONTENTS ix

3.4.3 Predicting the style and point of impact of serves 73

3.4.4 Predicting the Outcome of a Shot . 75

3.5 Current Limitations . 78

4 Seeing Like a Coach: Real-Time Data Collection 81

4.1 System Requirements and Components . 82

4.2 System Components . 84

4.2.1 Hardware . 84

4.2.2 Software . 85

4.3 Court Detection . 86

4.3.1 Related Work . 87

4.3.2 Court Detection: Our Approach . 88

4.3.3 Results . 93

4.4 Player Detection . 94

4.4.1 Related Work . 95

4.4.2 Player Detection: Our Approach . 96

4.4.3 Results . 101

4.5 Ball Detection . 102

4.5.1 Related Work . 103

4.5.2 Ball Detection: Our Approach . 107

4.5.3 Results . 109

4.6 Triangulation . 110

4.6.1 Camera Model . 111

x CONTENTS

4.6.2 Calibration . 113

4.6.3 Triangulation . 114

4.6.4 3D data . 115

4.7 Processing Speed . 117

4.8 Conclusion . 118

5 Thinking Like a Coach: Data Analysis and Visualization 119

5.1 Tennis Data Visualisation . 120

5.2 State-Of-The-Art Tennis Data Visualisation . 120

5.3 Objectives and Contributions . 122

5.4 Data post-processing . 122

5.4.1 Remove Noise . 123

5.4.2 Interpolation of Missing Points . 123

5.5 Player and Ball Location Visualisation . 125

5.5.1 Player Position Profiles . 125

5.5.2 Tennis Ball Positions . 129

5.6 Visualising Players and Tennis Ball Combined 134

5.6.1 Detect Events . 134

5.6.2 Evaluation . 135

5.7 Extracting Player Spatio-Temporal Statistics . 135

5.8 Conclusions . 137

CONTENTS xi

6 Learning the Technique: Machine Learning for Action Recognition 140

6.1 Challenges . 141

6.2 Objectives . 142

6.3 Previous work . 143

6.3.1 Action Recognition in Sports . 143

6.3.2 Action Recognition in General . 144

6.4 Action Recognition in Tennis: Our Approach . 149

6.4.1 Feature Extraction . 150

6.4.2 Deep LSTM for Action Classification . 151

6.5 Experimental Setup . 153

6.5.1 Experimental Dataset: THETIS . 153

6.5.2 Evaluation . 155

6.6 Results . 155

6.6.1 Action Classification . 155

6.6.2 Expertise Detection . 157

6.6.3 From Fine-Grained Actions to Stroke Types 160

6.7 Applications Beyond Tennis . 161

6.7.1 HMDB Dataset . 161

6.7.2 Experiments . 162

6.7.3 Results . 162

6.8 Conclusion . 163

xii CONTENTS

7 Post-Match Conference: Conclusions and Future Work 165

7.1 Summary of Thesis Achievements . 165

7.1.1 Framework . 165

7.1.2 Vision Layer . 166

7.1.3 Classification Layer . 167

7.1.4 Modelling Layer . 168

7.2 Applications . 168

7.3 Current Limitations . 170

7.3.1 Benchmark Datasets . 170

7.3.2 Evaluation Protocols . 170

7.3.3 The Gap Between Research and Application 170

7.4 Future Work . 171

A ATP 58 Tennis Tactics Patterns 173

B Classification of Lines for Court Detection 177

C Merging Lines for Court Detection 180

D Background Generation Example 182

E Tennis Court Projection 183

F Tennis Court Configurations 185

G Kalman Filter 186

H Particle Filter 189

I Givens Rotations for QR Decomposition 190

Bibliography 191

xiii

xiv

List of Tables

4.1 Previous work in player detection. 97

4.2 Previous work on ball detection. 106

5.1 Percentage frequency of players’ occupation of each court zone from Figure 5.4. . 128

5.2 Percentage frequencies of ball landing position in court zones from Figure 5.7. . 132

5.3 Player 1 stroke detection for one rally. 136

5.4 Player 2 stroke detection for one rally. 136

5.5 General statistics for 10 videos. P1 is player 1 (the coach) and P2 is player 2

(the student). 138

6.1 Accuracy of classification. 159

6.2 Fine-grained actions grouped into stroke types. 162

6.3 Accuracy of classification. 162

6.4 HMDB-51 classification accuracy by state-of-the-art models. 163

xv

xvi

List of Figures

1.1 ‘Sports Analytics’ publications. 2

1.2 StackOverflow searches and GitHub stars for CV and ML open source libraries. 4

1.3 Field goals attempted by Kevin Durant on the 2016-17 Playoffs final 5

1.4 Evolution of shot attempts in the NBA league from 2009 to 2017 6

1.5 Benfica S. L. player tracking technology from Prozone 6

1.6 Cricket pitchmap by Hawk-Eye. 7

1.7 Golf trackman technology. 7

1.8 First electronic line judge. 8

1.9 3D reconstruction of a tennis shot by Hawk-Eye. 9

1.10 Slamtracker analysis for the Wimbledon 2013 final. 10

1.11 Framework overview. 14

2.1 Diagram of a tennis court with its associated nomenclature and dimensions. . . 21

2.2 Markov chain example. 22

2.3 Transition matrix. 22

2.4 Markov chain for a serve. 29

2.5 Markov chain of a rally. 29

xvii

xviii LIST OF FIGURES

2.6 Tuning curve for neuron in Visual Cortex. 31

2.7 Face keypoints and mesh for facial recognition applications. 31

2.8 Pose estimation . 32

2.9 Image captioning, . 33

2.10 Image optical flow. 34

2.11 Image gradients. 36

2.12 Diagram of the steps to construct a histogram of gradients. 36

2.13 5-level image pyramid diagram . 37

2.14 SIFT feature matching . 37

2.15 Point a in a polar and Cartesian coordinate system. 38

2.16 Mapping of a line to a point in the Hough space. 39

2.17 Mapping of all line through a point to the Hough space. 40

2.18 Mapping of all lines through two points to the Hough space. 40

2.19 2D matrix containing three points and the accumulator array used to find lines. 42

2.20 Style transfer. 45

2.21 Diagram of a perceptron. 47

2.22 Different activation functions . 47

2.23 Different activation functions for neural networks. 48

2.24 Loss function J with respect to parameters θ0 and θ1 and gradient descent steps. 49

2.25 Convolutional layer. 50

2.26 Max-pooling layer example. 50

2.27 LSTM cell architecture. 53

LIST OF FIGURES xix

2.28 Example of classification tree. 54

2.29 Diagram of a Support Vector Machine . 57

2.30 Simple Bayesian network with conditional probability tables. 58

2.31 Bayesian network with independent variables. 58

2.32 Dynamic Bayesian Network. 58

2.33 One dimensional Gaussian mixture distribution. 59

3.1 Timeline of advances in tennis knowledge discovery from spatio-temporal data. . 62

3.2 Visual Network for catch pass. 64

3.3 Ball landing positions clusters. 65

3.4 Ball trajectory clusters. 65

3.5 Examples of moving patterns for different tactics. 66

3.6 Successful service patterns from 2010 Australian Open semifinal. 68

3.7 Timeline of advances in tennis prediction using spatio-temporal data. 70

3.8 Prediction of shot locations based on zones and continuous regions. 72

3.9 Prediction of shot locations. 73

3.10 Representation of two shot trajectories with 3 points per trajectory. 74

3.11 Serve clusters for the advantage court. 75

3.12 Serve style histograms for Djokovic and Federer. 75

3.13 Style histogram for Nadal. 76

3.14 Point winning probability with style and context descriptors. 77

3.15 Data sources and limitations for state-of-the-art tennis spatio-temporal analysis. 80

4.1 Umpire errors of challenged line calls according to Hawk-Eye. 83

xx LIST OF FIGURES

4.2 Configuration of the detection system hardware. 84

4.3 Software components of our system. 85

4.4 Tennis court detection on different surfaces. 87

4.5 Schematic representation to detect whether a pixel belongs to a line. 89

4.6 Image resulting from court pixel extraction. 89

4.7 The two images necessary to measure the accuracy of the court projection. . . . 91

4.8 Court detection (in orange) from a partial view. 91

4.9 Display of the court projection and its accuracy. 94

4.10 Background generation example. Initially the background image is empty and it

progressively incorporates background blocks until a complete background image

is generated. 99

4.11 Player detection at the first iteration and at a later stage. 100

4.12 Accuracy of player detection. 102

4.13 Diagram of motion extraction for ball detection. 108

4.14 Accuracy of ball detection. 110

4.15 Diagram of a pinhole camera model. 111

4.16 Triangulation. 115

4.17 Accuracy of 3D ball detection in cm. 116

4.18 Accuracy of 3D player detection in cm. 117

5.1 LucentVision heatmap from score query, from [1]. 121

5.2 Cartesian heatmap of player position. 127

5.3 Zoned heatmap of player position. 127

5.4 Zoned heatmap of player position. 129

LIST OF FIGURES xxi

5.5 Cartesian heatmap of ball position. 130

5.6 Cartesian heatmap of ball landing positions. 130

5.7 Zoned heatmap of ball landing positions. G - Grind zone, T - Torment zone and

O - Obliterate zone. 132

5.8 Ball and player positions for the ball crossing the net in air zones. 133

5.9 Distance between the player and tennis ball, measured from player 2 (P2). . . . 135

5.10 Players’ trajectories during one rally of 16 shots. Player 1 is the coach and Player

2 the student. 137

6.1 Construction of the low-level features. 147

6.2 Action 8. 147

6.3 Action 9. 147

6.4 Frame-by-frame comparison of two actions using low level features from our own

experiments. 148

6.5 Feature extraction pipeline diagram. 151

6.6 Architecture of our classification neural network. 154

6.7 Samples from THETIS dataset. 155

6.8 Confusion matrix of our model applied to the THETIS dataset (all players). . . 156

6.9 Confusion matrix for amateur players. 157

6.10 Confusion matrix for professional players. 158

6.11 Confusion matrix for grouped classes. 161

B.1 Classification into vertical and horizontal lines. 178

B.2 Image resulting from lines extraction and classification into horizontal (magenta),

left-vertical (blue) and right-vertical (yellow) lines. 179

C.1 Schematic for the merging of horizontal lines . 180

C.2 Schematic for the merging of vertical lines. 181

C.3 Image resulting from lines detection, classification and merging. 181

D.1 Background generation example. Initially the background image is empty and it

progressively incorporates background blocks until a complete background image

is generated. Described in Section 4.4.2. 182

E.1 Court homography. 184

E.2 Court lines projected onto the video frame. 184

F.1 Court configurations. 185

xxii

Chapter 1

Introduction

“One absolutely cannot tell, by watching, the difference

between a .300 hitter and a .275 hitter. The difference is

one hit every two weeks.”

Michael Lewis

“Moneyball” [2]

1.1 Motivation

Sports analysis has always been of great interest, and for many years coaches have been trying

to design the best training programs and to implement the best strategies to win. For a long

time, the standard approach was to watch previous matches and analyse them using domain

knowledge. It is easy to realise that such ‘historical data’ is a small sample since the coach has

to physically watch each match and is also subject to bias.

In fact, “Moneyball”, a book by Michael Lewis published in 2004 [2], represented a breakthrough

in showing the power of statistical data in sports. The book relates the real story of how the

Oakland Athletics baseball team, which was at a clear disadvantage regarding budget, used

statistical data to find players of underestimated value in the market, and thus built a team

competitive with major teams. The term “Moneyball” has even become part of the standard

vocabulary to describe this statistically-driven approach to make technical decisions in baseball.

1

2 Chapter 1. Introduction

2010 2011 2012 2013 2014 2015 2016

2000

4000

6000

8000

Year

N
u
m

b
er

of
p
u
b
li
ca

ti
on

s

Figure 1.1: ‘Sports Analytics’ publications by year of publication, according to Google Scholar.

At that time, the data that was available to professional sports analysts was restricted to

manually annotated events such as the batting average (in baseball), number of first serves

in (in tennis), number of matches won by a particular team or goals scored by a given player

(in soccer). Therefore, most of the modelling and statistical techniques employed to analyse

and predict sports were built for the analysis of coarse-grained manually annotated data. It

is undeniable that such analysis has led to successful game analysis, as in the example of

“Moneyball”. Nonetheless, it has a number of disadvantages:

• The level of precision that can be possibly obtained is limited. For instance, it is im-

possible to detect the exact ball trajectory by simply watching a match. This leads to

coarse-grained data.

• Data collection can be subjective and inaccurate. The bias in the annotator and his/her

mental state can interfere with objectivity in the data. For instance, assessing the speed

of the ball (as fast or slow) can be subjective to prior knowledge on the player and

annotators can also miss shots or overlook important events.

• Collecting such data is tedious and requires hiring experts. There is a restricted number

of people with the necessary skills and willing to do the job. This leads to a corpus of

data which is sparse and limited.

1.1. Motivation 3

Since then, the interest in sports statistics has only grown, and this is reflected by the number of

publications on the subject, shown in Figure 1.1. The rise in sports analysis can be traced back

to a number of factors. Its growth is a result of the convergence of a number of technological

trends:

• The proliferation of the Internet in the late 1990s started the data revolution that we are

still experiencing today. It meant that statistical information about players and matches

in a significant number of sports were publicly available and with it came the possibility

of obtaining more substantial corpora of data per player and per team. The rise of online

streaming has also enabled real-time analysis and the replay of a larger amount of previous

matches leading to a better analysis of the opponents.

• The sheer increase in the processing capabilities of CPUs has been dramatic: while

1 GFLOP/s cost US$30 000 in 1997, today the figure is less than US$0.101. This is

before taking into account the emergence of general-purpose GPUs with thousands of

processor cores capable of yielding upwards of 6 000 GFLOPs with a power consumption

lower than 200W. This has enabled increases both in volumes of data that can be handled

and the sophistication of the algorithms that can be applied.

• Regarding the algorithms themselves, the number of open source projects has experienced

an exponential growth. Companies like Microsoft, Google and Facebook are now major

contributors to open source, with more than 10 000 employees contributing to open source

projects in GitHub (one of the major software development platforms). GitHub had 5.8M

active users and 91.4M active open source repositories in the past year and contributions

have increased more than 7 times in the last 3 years2. This has been especially notable in

the areas of Computer Vision and Machine Learning. Figure 1.2 shows the trends of the

interest in major Computer Vision and Machine Learning open source libraries (tensor-

flow, OpenCV, scikit-learn, theano and caffe) according to GitHub and Stack Overflow

(largest online community of developers) metrics.

1Source: https://en.wikipedia.org/wiki/FLOPS
2Source: https://octoverse.github.com/

https://en.wikipedia.org/wiki/FLOPS
https://octoverse.github.com/

4 Chapter 1. Introduction

(a) Evolution of StackOverflow Searches3.

(b) Evolution of GitHub Stars (attributed by other users to projects they like)4.

Figure 1.2: Evolution of StackOverflow searches and GitHub stars for popular Computer Vision
and Machine Learning open source libraries: • Tensorflow, • Theano, • scikit-learn,• Caffe,
• OpenCV.

3Graph rendered using http://www.timqian.com/star-history/ on the 6th of September 2017.
4Graph rendered using https://insights.stackoverflow.com/trends on the 6th of September 2017.

http://www.timqian.com/star-history/
https://insights.stackoverflow.com/trends

1.1. Motivation 5

Advances in sports analytics have made it an indispensable component of elite sports coaching

and sports broadcasting. As Leigh Steinberg puts it in Forbes: “Today, every major professional

sports team either has an analytics department or an analytics expert on staff” [3]. It is also

common for sports commentators to use historical information in their analysis to keep the

spectators interested. Also, it has represented new business opportunities in many directions,

for example providing consultancy services for the sports industry (e.g. ATASS, STATS) or

offering insights to traders in sports betting (e.g. Stratagem, SmartOdds).

Partnerships between sports clubs or sports competitions and statistical experts as well as the

integration of technology are revolutionising many sports. For example, in US Basketball, the

NBA has a partnership with STATS and SportsVU to expand statistical data and provide

advanced metrics to teams and fans. They provide data including speed and distance covered

by a player, rebounding opportunities, defensive impact or field goal attempts. Figure 1.3 shows

visualisations of the field goals attempted by Kevin Durant on the 2016-17 Playoffs Finals. One

of the biggest impacts of analysis in basketball has been the shift in reducing the number of

mid-range shot (two points) attempts in favour of three-point shots. This trend can be observed

in Figure 1.4 and has received the name of “MoreyBall”, as a combination of “Moneyball” and

Daryl Morey, analyst and Houston Rockets general manager.

(a) FGA Missed and Made.
(b) FGA by Shot Zone.

Figure 1.3: Field goals attempted by Kevin Durant on the 2016-17 Playoffs final5.

5Source: http://stats.nba.com/

http://stats.nba.com/

6 Chapter 1. Introduction

(a) Number of 3-point Attempts. (b) Number of Mid-Range Attempts.

Figure 1.4: Evolution of shot attempts in the NBA league from 2009 to 20176.

Another interesting example is the S. L. Benfica soccer club. They use over ten sensors per

player to gather data like player location (see Figure 1.5) or heart rate. They also have teams

of data scientists working with Microsoft Azure Cloud Platform to analyse the extracted data

and get insights into recovery times or stress levels of individual players to help in deciding who

should play in the next match or obtain personalised training programs to optimise performance

and reduce injuries. One of the greatest benefits from their analytic approach to coaching has

come from the financial side, and over the last six years player transfers have resulted in income

in excess of £270 million.

(a) Player Locations. (b) Player Trajectories.

Figure 1.5: Benfica S. L. player tracking technology from Prozone7.

6Source: https://bballbreakdown.com/2016/12/16/the-nba-3-point-revolution/
7Source: https://arstechnica.co.uk/science/2017/05/football-data-tech-best-players-in-the-world/

https://bballbreakdown.com/2016/12/16/the-nba-3-point-revolution/
https://arstechnica.co.uk/science/2017/05/football-data-tech-best-players-in-the-world/

1.1. Motivation 7

These are only two examples, but technology and statistical analysis are becoming increas-

ingly integrated into coaching, prediction, and broadcast for many other sports such as cricket

(Figure 1.6) or golf (Figure 1.7).

Figure 1.6: Cricket pitchmap by Hawk-Eye8.

Figure 1.7: Golf trackman technology for analysing shot trajectory9.

8Source: Sky sports Twitter account.
9Source: http://www.leechapmangolf.com/en/technology/trackman/

http://www.leechapmangolf.com/en/technology/trackman/

8 Chapter 1. Introduction

In this work, we decided to focus on the sport of tennis although our research is also applicable

to other sports. Tennis is a popular global sport – the Association of Tennis Professionals

(ATP) estimates that last year 4.3 million fans attended ATP events and the TV audience

reached more than 880 million spectators across the season. It is a highly exploited sport also

from the analysis point of view in that a large number of statistical models have been built for

the prediction of match outcomes. This has been possible due to the facility of access to a large

corpus of historical data such as the percentage of first or second serves in, the percentage of

points won in the first or se’cond serve and break points converted. Tennis is also particularly

suited to build mathematical models since the hierarchical scoring system restricts the possible

outcomes to a defined space (whereas the number of possibles scores in a football match can

significantly vary), as we will see in Section 2.1. Also, in “singles” tennis, there are only

two players on court who move in two distinct and defined spaces, reducing complexity when

compared to team sports, in which one has to distinguish players from one another and model

their interactions. Finally, tennis is a sport that has enthusiastically embraced technology, as

can be seen in the following timeline:

• 1974 – First electronic line judge invented by Geoffrey Grant (tennis player) and Robert

Nicks (electronics engineer). It was a system that processed data from pressure sensors

positioned under the court carpet and was able to discriminate between the pressure

exerted by the player or ball and determine its position, shown in Figure 1.8. It was used

in the Men’s World Championship in Dallas and the Ladies Virginia Slims in Los Angeles.

Figure 1.8: First electronic line judge10.

10Source: https://en.wikipedia.org/wiki/Electronic_line_judge

https://en.wikipedia.org/wiki/Electronic_line_judge

1.1. Motivation 9

• 1980 – “Cyclops” system introduced in Wimbledon. It was an electronic line judge

system used for serves only, based on the use of infra-red beams that produced an audio

signal if the beam signal was cut by the ball. The system was later introduced in the US

Open and the Australian Open.

• 1989 – Measurement of the serve speed using a radar gun. This system was originally

invented by Jon L. Barker Sr. and Ben Midlock for the military in World War II. The

radar gun sends a number of radar pulses and is also able to receive them when reflected

by the ball (or any object). By knowing the frequency of the sent and received pulses the

system can determine speed based on the Doppler effect.

• 2002 – Hawk-Eye introduced in Wimbledon. Hawk-Eye is a complex system comprising

up to ten high-speed cameras, able to track the ball with high accuracy, obtain its real-

world position and display a reconstruction of any bounce, see Figure 1.9

Figure 1.9: 3D reconstruction of tennis shot by Hawk-Eye11.

• 2006 – Challenges introduced in Wimbledon. Players can request a Hawk-Eye-mediated

line call if they do not agree with the decision of the umpire, with a maximum of 3

unsuccessful challenges allowed per set. In a tie-break the challenge counter is reset and

players are allowed a maximum of 3 unsuccessful challenges again, which is reset every

11Source:http://trolltennis.com/2016/11/19/saturday-school-10-technological-headways-of-tennis/

http://trolltennis.com/2016/11/19/saturday-school-10-technological-headways-of-tennis/

10 Chapter 1. Introduction

Figure 1.10: Slamtracker analysis for the Wimbledon 2013 final12.

12 games. Challenges were subsequently adopted by 80 other ATP/WTF tournaments

up to date.

• 2012 – Introduction of IBM Slamtracker, an application presenting real-time scores and

statistics (between 15 and 25 parameters for each point) to augment the experience of

fans, as shown in Figure 1.10.

• 2013 – Hawk-Eye starts tracking the players.

Unfortunately, not all of the collected data is publicly available, especially spatio-temporal

data. The state-of-the-art technology involved in officiating and collecting data in sports is

the Hawk-Eye system [4], mentioned above. This system is extremely accurate but also highly

sophisticated, comprising between 8 to 10 high-speed cameras (up to 1 000 fps) and an extremely

powerful computer. The fact that this technology is equipment-intensive, costly and requires

12Source: http://www.wimbledon.com/

http://www.wimbledon.com/

1.1. Motivation 11

expertise to install it on a court restricts its availability to the high profile venues of major

tournaments. In addition to this, the spatio-temporal data is of highly restricted access and

Hawk-Eye does not collect high-level data (e.g. type of shot played).

Another notable system for spatio-temporal data collection in tennis is the Playsight Smart-

Court [5], released around 2013. Similar to Hawk-Eye, it provides tracking of the players and

ball but also includes some additional analysis of the game. It is a less sophisticated version

of Hawk-Eye regarding equipment and, for instance, only uses five cameras. Different from

Hawk-Eye, it is fully automated and, once installed in a court, it does not require an expert

to be present. However, the system is not mobile and only accessible to players with access

to courts in which a Smart-Court system has been installed, making it an elitist system only

available to a small proportion of tennis players. This is illustrated by the fact that currently,

there are only 7 tennis Smart-Courts installed in the UK, 6 of which are in the Greater London

area.

Even though the availability of tennis spatio-temporal data is limited and there is a lack of

historical data, the potential for using spatio-temporal data to build intra-point tennis models

has been recently exposed [6]. The authors obtained promising results, but their rally models

do not incorporate the serve, lack historical reach because they have limited access to Hawk-Eye

mediated data and do not use high-level information like ‘type of shot’, since this is not cur-

rently extracted by Hawk-Eye. In 2009, G. Hunter and K. Zienowicz [7], succesfully developed

a Markov model to simulate tennis rallies based on the type of stroke. The data used in their

work were manually annotated types of stroke from videos, limiting the amount of data that

could be used in their models. Another contribution has come from D. Spanias [8] who pre-

sented low-level intra-point Markov chain models of rallies and serves based on spatio-temporal

information; however, the authors lacked sufficiently detailed data to apply this approach.

12 Chapter 1. Introduction

1.2 Objectives

To further develop fine-grained models in tennis, limitations in the availability of spatio-

temporal tennis data have to be overcome, and a fully automated and accessible system for

data collection is required. We believe that advances in Computer Vision and Machine Learning

have made it possible to obtain accurate spatio-temporal tennis data from commodity hardware

in an unobtrusive and affordable manner in real-time. However, for such a system to be useful

in the analysis and understanding of intra-point dynamics in tennis, it must be built within

a framework that connects raw visual data to tennis analysis. Such a framework can bring

new insights related to players’ strategies, their strengths, and weaknesses or the prediction of

future events, amongst other opportunities.

In this thesis, we investigate how this goal can be achieved within the context of tennis, which

entails the achievement of the following specific objectives:

• Design a framework for the application of Computer Vision and Machine Learning to

in-play tennis analysis using commodity hardware.

• Build a Vision system able to find the player and ball position in a tennis match or training

session with the constraints of being accurate, easy to install, unobtrusive, real-time and

affordable in terms of financial cost.

• Analyse spatio-temporal data to automatically obtain high-level statistics and offer in-

sightful visualisations.

• Classify fine-grained tennis actions from videos.

• Place the achieved work within the context of existing research in the area of spatio-

temporal data collection in tennis. This requires overcoming the challenge of comparing

different approaches to visual data collection in sports as no benchmarks exist for most

sports research.

1.3. Contributions 13

1.3 Contributions

The main contribution of our work is the design and implementation of the framework shown

in Figure 1.11 and the algorithmic innovation developed within this context. The framework

was designed for the application of Computer Vision and Machine Learning techniques to tennis

with the objective of enabling the fine-grained analysis of tennis, the prediction of future events

and the revealing of insights from an affordable, real-time (over 60 fps) and unobtrusive system.

In this thesis, we investigate how these goals can be achieved within the context of tennis, but

our research is also applicable to other sports. Our approach presents a three-layered framework

with a Vision Layer, a Classification Layer, and a Modelling Layer. They compose a hierarchical

structure in which each layer uses the information from the previous ones to reach a higher level

of abstraction. The basis of our model is the Vision Layer which retrieves the relevant spatio-

temporal information from tennis video feeds, mainly the ball trajectory and player position.

The output of the Vision Layer is fed to the Classification layer to obtain high-level information

including the number of shots in a rally, movement patterns and shot classification (backhand

return, smash, net approach etc.) Finally, the Modelling Layer incorporates the data obtained

in the previous two layers into a tennis model to understand players’ patterns and strategies

and predict future events. In this thesis, the Modelling Layer is presented as a review of work

done by other researchers and without analysing our own data. With this chapter we wanted

to show the potential of our framework and the data collected in it. We provide a critical

analysis of different state-of-the art techniques, and show how our framework addresses some

of its limitations.

Our objective is to show how such a framework can lead to the same quality of analysis, or

even higher level than that provided by highly sophisticated systems such as Hawk-Eye, but

using commodity hardware. For this, we also present algorithmic innovation within the context

of the individual layers by taking advantage of the advances in Computer Vision and Machine

Learning techniques.

14 Chapter 1. Introduction

MODELLING	LAYER

CLASSIFICATION	LAYER

VISION	LAYER

Court	detection

Ball	detection

Player	detection

3D	representation

Vision	Layer	data	visualization

Fine	grained	action	recognition

Obtain	
high-level	
statistics

Sec	4.2

Ch 3	

Ch 5		

Ch 6		

Ch 4	

Sec	4.3

Sec	4.4

Sec	4.5

Knowledge	discovery

Prediction

Sec	3.1

Sec	3.2

Figure 1.11: Framework overview.

1.3. Contributions 15

1.3.1 Vision Layer

We present a low-cost spatio-temporal data collection system for tennis using four cameras and

commodity hardware. It has the following capabilities:

• Court detection: We develop an algorithm for the automatic detection of the court lines.

The algorithm has three main steps: select court pixels using domain knowledge, fit lines

to court pixels with the Hough Transform algorithm and find correspondences between

these and specific court lines (e.g. the baseline). This last step is done by evaluating

the court fitting for different possible configurations and selecting the best one; we also

compute a level of confidence for each court detection.

• Player tracking: We perform player detection in two steps: (1) reconstruction of a back-

ground image by selecting the pixels that are most stable across a number of frames and

(2) selection of the largest object (i.e. the player) of moving pixels within an automat-

ically determined region of interest. The player position is represented in two ways: a

bounding box enclosing the whole player and the centre of mass of the area within the

contour of the player. In all the tested frames, the predicted centre of mass was inside

of the ground truth bounding box of the player and its distance from the centre of the

ground truth bounding box never exceeded 40 pixels (representing an error of 20% of the

bounding box in 80% of the frames).

• Ball tracking: For this, we select moving foreground pixels by frame differencing and

cluster them into ball candidates. Then the best candidate is selected using a random

forest approach based on shape (defined in terms of Hu moments [9]) and ball trajectory.

The ball position was detected with an error lower than 2 pixels for more than 75% of

the frames, and never exceeded 6 pixels; this was a very good result considering that the

ball has a size of up to just 10 pixels (depending on camera proximity).

• Infer the 3D player and ball coordinates relative to the court: Knowing the court lines

it is possible to estimate the position of each of the four cameras and obtain the 3D

coordinates of the objects of interest through triangulation. Both the ball and player

16 Chapter 1. Introduction

predicted locations had an error lower than 10cm for 80% of the frames. We consider

these results to be of good quality, especially considering the size of the player and ball,

i.e. approximately 50cm × 170cm × 20cm and 7cm of diameter respectively.

• Visualization: We replicate the results in a 3D virtual environment using Unity13 for

visualisation purposes.

1.3.2 Classification Layer

The work relating to this layer illustrates the kinds of higher-level analysis that can be enabled

by the data emerging from the Vision Layer. This includes the extraction and visualisation

of high-level tactical information as well as a component for fine-grained action recognition in

tennis.

High-Level Tactical Information

From the data extracted in the Vision Layer, we can obtain high-level information such as the

timing of the strokes of each of the players, number of shots in a rally, maximum ball speed or

area covered by each player. We can also show visualisations that provide insights by displaying

frequency maps of player movement, ball trajectory, and ball landing position.

Action Recognition

We develop and train a novel deep neural network for domain-specific action recognition in

tennis. We performed our research on a challenging and publicly-available dataset containing

RGB low-definition videos of fine-grained tennis actions, called THETIS [10]. The actions are:

• backhand (two handed)

• backhand

• backhand (slice)

• backhand (volley)

13https://unity3d.com/

https://unity3d.com/

1.4. Declaration of Originality and Publications 17

• forehand (flat)

• forehand (open stance)

• forehand (slice)

• forehand (volley)

• service (flat)

• service (kick)

• service (slice)

• smash

This is the first application of neural networks to fine-grained tennis action recognition, and

one of the few applications to fine-grained actions in general. Most of the available research

in the field of sports action recognition is performed on datasets that are not accessible to the

public, and with this work we also aim at encouraging other researchers to use publicly available

datasets so their work can be compared.

We obtain very promising results of 47.22% accuracy of one class against all others in classifying

the previously listed 12 fine-grained actions and 88.16% for classifying backhands, forehands and

serves. We also find some interesting results when applying the system to amateur, compared

with professional, players and show that our neural network can also be used in applications

beyond tennis.

1.3.3 Modelling Layer

To address the Modelling Layer, we survey different methods that incorporate visual informa-

tion for the analysis of tennis matches. We did not find a published account of the different

approaches that use spatio-temporal data to analyse tennis and considered that such a piece of

work was essential not only to bring together previous research but also to provide a sense of

the current developments in the field.

1.4 Declaration of Originality and Publications

I declare that I am the sole author of the work written in this thesis. Results from collaborations

are clearly indicated and ideas and results from other researchers are fully cited.

18 Chapter 1. Introduction

The following peer-reviewed publications emerged as part of the work in this PhD:

• S. Vinyes Mora, G. Barnett, C. da Costa-Luis, J. Garcia Maegli, M. Ingram, J. Neale,

and W. J. Knottenbelt, “A Low-Cost Spatiotemporal Data Collection System for Tennis,”

in Proceedings of the 5th Mathematics in Sport Conference, (Loughborough, UK), June

2015.

(Chapter 4)

• S. Vinyes Mora and W. J. Knottenbelt, “Spatio-Temporal Analysis of Tennis Matches,”

in Proceedings of the 3rd ACM KKD Workshop on Large Scale Sports Analytics, (San

Francisco, California, USA), August 2016.

(Chapter 5)

• S. Vinyes Mora and W. J. Knottenbelt, “Deep Learning for Domain-Specific Action Recog-

nition in Tennis,” in Proceedings of the 3rd IEEE International CVPR Workshop on Com-

puter Vision in Sports, (Honolulu, Hawaii), July 2017.

(Chapter 6)

1.5 Thesis Outline

This thesis is structured in the chronological order of our work rather than the order of layers

in Figure 1.11 as we believe it provides a better understanding of our research:

Chapter 2 describes the sport of tennis, providing information about its rules and scoring

system and reviews the evolution of modelling of the sport. Then an overview of the fields

of Computer Vision and Machine Learning is provided in conjunction with a description

of the most relevant techniques in each area.

Chapter 3 surveys the research that has been done in the analysis and prediction of tennis

using spatio-temporal data. Advantages and current limitations are reviewed to provide

not only the first survey in this area of research but also to motivate the work presented

in the rest of this thesis.

1.5. Thesis Outline 19

Chapter 4 presents our novel system for the real-time extraction of spatio-temporal data

in tennis using unobtrusive, portable and affordable technology. The proposed system

detects the 2D location of the tennis ball and players in videos fed by 4 cameras. Then,

their 3D location is obtained via triangulation. This chapter also presents a quantitative

evaluation of the detection accuracy, which is not common in the area of object detection

in sports.

Chapter 5 analyses the data extracted from the Vision Layer system, presented in the pre-

vious chapter, to automatically obtain higher level tactical information and show visual-

isations of the data.

Chapter 6 presents our application of deep learning to action recognition in tennis. We

present a robust algorithm able to classify fine-grained tennis actions directly from RGB

videos and with the ability to generalise to other domains.

Chapter 7 concludes the thesis by reviewing the most relevant points presented and discusses

limitations and future work.

Chapter 2

Preparation for the Big Game:

Background

This chapter provides a brief explanation of the game of tennis and reviews the evolution of

techniques for its analysis, from classical to contemporary approaches. Theoretical background

in the fields of Computer Vision and Machine Learning is provided, in conjunction with selected

algorithms in these areas that are pertinent to our work.

2.1 The Tennis Game Explained

Tennis is a racket sport that entails competition between two opponents, who can be individual

competitors or teams of two players. It is played on a court of standard dimensions; Figure 2.1

shows the court dimensions and nomenclature associated with it. The detailed rules of tennis

are publicly available from the International Tennis Federation (ITF) website1. Here we provide

an overview of the fundamentals of its scoring system. It has a hierarchical structure in which

winning points leads to winning games, winning games leads to winning sets, and finally winning

sets leads to winning the match. Playing a point starts with a service and for a service to be

valid, the serving player must serve from behind the baseline, and the ball must go over the

1Source: http://www.itftennis.com/officiating/rulebooks/rules-of-tennis.aspx

20

http://www.itftennis.com/officiating/rulebooks/rules-of-tennis.aspx

2.1. The Tennis Game Explained 21

Figure 2.1: Diagram of a tennis court with its associated nomenclature and dimensions.

net cleanly and land within the diagonally-opposite service box. When the ball correctly lands

within the diagonally-opposite service box having touched the net, it is called a “Net” or “Let”

and the serve is repeated without counting it as a fault. Otherwise, it counts as a fault. If the

latter occurs, the player who was serving can play a second serve. If the second serve is also

a fault, the opposing player wins the point. If the service is valid, a rally follows in which the

players return the ball back and forth. Each player must return the ball inside of the court and

before it bounces twice. Failing to do so results in ending the point, which is won by the last

player to have returned the ball within the regulations. The player serving changes at the end

of each game and players change ends after every odd game (1st, 3rd etc.) The server must

stand on the right side for his serve at the beginning of the game and alternate sides for every

point. In a standard game, each player earns points as follows: no points – “love”, first point –

15, second point – 30, third point – 40, fifth point – “Game”. If both players get three points

(score of 40 – 40), the score is “Deuce”, and new rules apply: the player winning the next

point has “Advantage”, and if he/she wins another point he/she wins the game. Otherwise

the score returns to “Deuce”. Therefore to win a game from “Deuce” a player must score two

consecutive points. The first player to win at least 6 games by a margin of at least two games

22 Chapter 2. Preparation for the Big Game: Background

with respect to the opponent’s score wins a set. If both players reach 6 games, different rules

can be used. The two most common are: 1) “Tie-break set”, where a tie-break game is played

in which points are scored 0, 1, 2 etc. and the first player to win 7 points, with a margin of at

least 2 points wins the set, and 2) “Advantage set”, where the set continues until a margin of

two games is reached. In general, women play matches to best of 3 sets matches at all levels

of competition, while men play best of 5 sets in certain major tournaments, and best of 3 sets

otherwise.

2.2 Markov Chains

Markov chains, named after the mathematician Andrey Andreyevich Markov, are stochastic

processes satisfying the Markov property of “no-memory” in which the evolution of a process

is conditional only on the current state at each stage. Changes of state are called transitions,

the probabilities associated with the transitions called transition probabilities and a transition

matrix is usually used to specify these variables. Figure 2.2 is a diagram representing a Markov

chain with three states: s1, s2 and s3, and its corresponding nine transition probabilities:

p11, p12, ..., p33, in which pxy is the probability associated with the transition from state x

to state y. Table 2.3 presents the transition matrix associated with this Markov chain. The

transition probabilities follow the property
∑

j pij = 1 for all states i, since for each state i,

the probabilities of moving to state j (where j could equal i) must sum to 1.

Figure 2.2: Markov chain example.

To state

F
ro

m
st

at
e s1 s2 s3

s1 p11 p12 p13
s2 p21 p22 p23
s3 p31 p32 p33

Figure 2.3: Transition matrix.

2.3. Classical Tennis Models 23

2.3 Classical Tennis Models

Most tennis prediction models belong to one of these classes: regression models, paired com-

parison, and point-based models. An overview and in-depth comparison between them has

recently been published by Kovalchik [14]. The first two directly predict the winner of a match

from statistical data, while the latter calculates the probability of winning a match from the

probability of winning a point on serve, better reflecting the dynamics of a tennis game.

In 1960, John G. Kemeny and James Laurie Snell presented one of the earliest applications of

Markov Chains to model tennis using the fixed probability of winning a point as its building

block [15]. This model represents the basis for most tennis point-based models. Using the

Barnett and Clarke formulation [16], the Markov Chain states are the game scores and the

probability P (a, b) of player A winning the game when the score is a, b2 is calculated based on

the probability p of player A winning a point:

P (a, b) = pP (a+ 1, b) + (1− p)P (a, b+ 1)3 (2.1)

Similarly, the probability of winning a set is calculated from the probability of winning a game

and the probability of winning a match from the probability of winning a set. Details of the

calculations can be found in [17].

Another commonly used formulation to predict the probability of winning a tennis match from

the probability of winning a point is that of O’Malley [18]:

M3(p, q) = S(p, q)2[1 + 2(1− S(q, p))] (2.2)

M5(p, q) = S(p, q)3[1 + 3(1− S(p, q)) + 6(1− S(p, q))2] (2.3)

2Using scoring 0, 1, 2, etc. rather than 0, 15, 30 etc.
3This is the original formula in the paper , but Dr Gordon Hunter notes the formula should be P(a, b) =

pP(a - 1, b) + (1- p)P(a, b - 1)

24 Chapter 2. Preparation for the Big Game: Background

M3(p, q) and M5(p, q) are the conditional probabilities of winning a best-of-three-sets and best-

of-five-sets matches respectively, based on the probability of winning a point on serve p and on

return q. S(p, q) is the probability of winning a tiebreaker set as a function of p and q, which

is calculated from the probability of winning a game and tie-break. Readers interested in the

detailed formulation are directed to [18].

All of the above models assume that tennis points are independent and identically distributed.

In 2001, Klaasen and Magnus made a significant contribution to the field by showing that the

assumption, even though not strictly true, is reasonable for forecasting applications [19].

The application of point-based models described above to forecasting requires knowing the

probability of winning a point. The estimation of this value is not straightforward and requires

taking into account the ability of both players in the match. For this reason, over the years,

effort has been put into refining the calculation of the probability of winning a point:

• In 2005, Barnett and Clarke estimated the probability of winning a point on serve and

return by taking into account the abilities of both players in the match [20]. Their model

also considers the effects of court surface by adapting to specific tournaments. They

estimate the percentage fij of points won by player i when serving against player j as

follows:

fij = ft + (fi − fav)− (gj − gav) (2.4)

Here ft represents the average fraction of points won on a serve in the current tournament.

The second term (fi−fav) reflects the ability of player i serving by calculating how much

the fraction fi of points won on serve by player i exceeds the average fraction fav of points

won on serve across professional players. The third term (gj − gav) represents the ability

of player j returning as the excess of the fraction gj of points won on return by player j,

compared to the average fraction gav of points won on return across professional players.

Similarly, the combined fraction gji of points won on return by player j when player i is

serving is estimated as:

gji = gt + (gj − gav)− (fi − fav) (2.5)

2.3. Classical Tennis Models 25

Assuming that the second serve is successful, the fraction of points won on serve and

return are estimated as follows:

fi = aibi + (1− ai)ci (2.6)

gi = aavdi + (1− aav)ei (2.7)

where ai is the probability of player i getting the first serve in, aav is the average probabil-

ity of successful first serves across professional players, bi is the proportion of points won

from successful first serves by player i, ci is the proportion of points won from successful

second serves by player i, di is the proportion of points won by player i when receiving a

first serve and ei is the proportion of second serve points won by player i when receiving.

This new definition of the probability of winning a tennis point is more accurate than

previous formulations, since it takes into account the skill of both players in the match.

However, the main drawback is that better players play amongst each other more often

than with weaker players and vice-versa. Therefore, in Equations (2.4) and (2.5) player j

might be stronger than player i, but fj might be lower than fi because player j generally

faces stronger opponents.

• In 2012, Knottenbelt, Spanias and Madurska refined further the formulation of the prob-

ability of winning a point and addressed the previously mentioned drawback [21]. They

introduced the concept of common opponents, who are players that have faced both play-

ers of the current match on a previous occasion. In the common opponent analysis model,

the data selected for predicting a match between two players A and B is of the matches in

which they played common opponents, since players A and B may have only faced each

other rarely, or not at all. The metric ∆AB
i is used to represent the advantage of player

A over player B with respect to a common opponent Ci:

∆AB
i = (spw(A,Ci)− (1− rpw(A,Ci)))− (spw(B,Ci)− (1− rpw(B,Ci))) (2.8)

26 Chapter 2. Preparation for the Big Game: Background

where spw(a, b) and rpw(a, b) are the proportions of service and return points won by a

against b respectively. Players A and B are the players of the match to be predicted, and

Ci is their ith common opponent.

This value can be used to influence the probability of player A and of player B winning

a game, set and match when they play each other in point-based models. For example,

applying it to O’Malley’s formula results in the following probability Pr(A beats B via Ci)

of player A winning a best-of-three-sets match against player B, when using the data

involving the common opponent i:

Pr(A beats B via Ci) ≈
M3(0.6 +4AB

i , (1− 0.6)) +M3(0.6, (1− (0.6−4AB
i)))

2
(2.9)

Equation (2.9) is calculated as the average of two match probabilities following O’Malley’s

formulation in Equation (2.2). The value 0.6 is chosen to represent the average probability

of a professional player winning a point on serve against another professional player. As

shown by O’Malley [18], the exact value of this parameter has negligible effect on the

match winning probability, since the primary determiner of the match winning probability

is the difference in serve winning probabilities.

In the first match probability, the probability of player A winning a point on serve is

the average probability of winning a point on serve plus 4AB
i , which is the advantage of

player A over player B with respect to the common opponent i. In the second match

probability, the probability of player A winning a point on return is 1 minus the probability

of B winning a point on serve. This last term corresponds to the average probability of

winning a point in serve minus 4AB
i , which is the advantage of player A over player

B with respect to the common opponent i. Then, this value can be averaged over N

common opponents to find the probability of A winning a match against B as follows:

PAB
avg =

∑N
i=1 Pr(A beats B via Ci)

N
(2.10)

2.3. Classical Tennis Models 27

This model has been shown to achieve an average match win prediction accuracy of 63.3%4

over the prediction of matches in the following tournaments: ATP 2014 – 64.9%, WTA

2014 – 61.2%, ATP 2015 – 66.2% and WTA 2015 – 61.0%. However, a major disadvantage

of this approach is that it uses a limited amount of the available statistical data, since it

ignores matches with players outside of the set of common opponents.

• In 2013, Goldsack and Knottenbelt developed the impact model to address the limitations

of the common opponent model [22]. Their approach for reflecting players’ skill is by

looking at their impact on the key dimensions of their opponents’ performance when

facing them in a match. This metric is calculated for impact on service and return

separately. The impact ∆pjs of player j serving is:

∆pjs =
1

Kj
Σ
Kj

k=1(p
ik
s − pis) (2.11)

where k = 1, ..., Kj are the matches played by j, piks is the probability of winning a point

on serve by player i in match k and their average performance is pi.

Historical data can be combined into the player’s impact to estimate the proportion of

service points won by player A against player B:

spw(A,B) = spwA + ∆pBs (2.12)

where ∆pbs is the serve impact of player b. This can also be done for returns points

won (rpw). Finally, match prediction is achieved using the O’Malley formula from Equa-

tion (2.2) and the estimated values for spw(a, b) and rpw(a, b), the proportion of service

and returning points won by a against b respectively. This model outperformed the

common-opponent model, obtaining an average match win prediction accuracy of 66.0%

over the prediction of matches in the following tournaments: ATP 2014 – 67.5%, WTA

2014 – 65.3%, ATP 2015 – 68.3% and WTA 2015 – 62.9%.

4Although [14] mentions that in 2014 ATP, “higher ranked players won 68% of matches”.

28 Chapter 2. Preparation for the Big Game: Background

As we have seen above, for models that reflect the dynamics within a tennis game, the standard

is to use Markov Chains based on the probability of winning a point and, for more than 50

years, research has focused on improving accuracy in predicting the probability of winning a

point. As discussed next, this trend has been broken in recent years.

2.4 Evolution of Tennis Models

In recent years, the field of tennis modelling has been evolving towards more sophisticated and

finer-grained models, interested in understanding what happens at the point level. This type

of model is also particularly suitable for in-play analysis, with the ability of updating winning

probabilities as the match progresses. In this direction, Spanias presented an extension of

classical tennis models with a Markov Model for a tennis service and rally using spatio-temporal

information [8]. Figure 2.4 shows a diagram for modelling the service using location information

(‘Positioning choice’) and higher-level tactical information (‘Serve speed’ and ‘Type of service’).

Similarly, the rally model in Figure 2.5 also uses spatio-temporal information to determine who

will win the rally, and therefore who will win the point. Unfortunately, the authors were

not able to test their approach because the data necessary for these models is lacking or of

highly restricted access. It is interesting to note that the data used in Figure 2.5 could also be

obtained from acoustic data, as has been shown in [23]. However, in this thesis we focus on

spatio-temporal information obtained from visual data.

Researchers from the Queensland University of Technology, Disney Research Pittsburgh and

the Australian Institute of Sport have had access to a selected amount of Hawk-Eye data and

have shown how it can be used to develop finer-grained models [6; 24–26]. Their research

has provided insightful analysis of a tennis match and will be reviewed in more detail in the

next chapter. However, their work is still limited by availability of data, and two of the main

drawbacks in their work comes from lack of historical data and high-level data such as the type

of shot executed.

2.4. Evolution of Tennis Models 29

Service	type	
choice

Positioning	
choice

Outcome

Flat Slice Twist
Topspin
-Slice Topspin

Box	Corner Box	Center Court	Center

Fault Rally Ace

Serve	speed

Fast	serve Slow	serve

Start	serving

Figure 2.4: Markov chain for a serve, based on [8].

Figure 2.5: Markov chain of a rally, based on [8].

30 Chapter 2. Preparation for the Big Game: Background

2.5 Computer Vision

Computer Vision as a field was born from the effort of making machines able to understand

visual information such as images or videos. For humans, processing such information seems

straightforward and feels effortless [27]. For example, it is easy for us to detect how many people

are in a photograph and recognise who they are, provided that we know them, understand 3D

shapes and textures from objects around us so that we can interact with them or identify

objects such as the table or chairs even when illumination changes.

Given this, one might wonder why it is such a difficult task for computers. First of all, even if

vision feels effortless to us, it is a very complex task for our nervous system [28; 29]. Research in

Neuroscience to understand the visual system has been of prime importance for many years and

we still do not entirely understand its functioning. In fact, Professor Mriganka Sur of MIT’s

Department of Brain and Cognitive Sciences said that “half of the human brain is devoted

directly or indirectly to vision”5. It is hard to estimate the exact percentage of the brain

dedicated to vision but is it widely accepted that the proportion is very high6. In addition to

this, being able to process visual information also requires knowledge about the world. For

instance, humans have the knowledge of what components constitute faces, animals or objects.

Hubel and Wiesel received a Nobel Prize for their research in the visual processing of the

brain. In 1962 they performed one of the experiments that have most influenced the fields of

Neuroscience and Computer Vision [30]. The study involved measuring the activity of neurons

from cats that were looking to a projection of images of light patterns in front of them. From

this, Hubel and Wiesel discovered that some neurons, which they named ‘simple cells’, were

responding only to edges with a precise orientation and in exact locations while others, that they

called ‘complex cells’, were activated by edges in any position and to specific motion patterns.

This work was the inspiration for SIFT feature extraction, a well-known feature extraction

algorithm in Computer Vision [31]. Figure 2.6 is a diagram showing the specific response of a

‘simple cell’ to the orientation of the stimulus.

5Source: http://news.mit.edu/1996/visualprocessing
6http://channel.nationalgeographic.com/brain-games/articles/brain-games-watch-this-

perception-facts

http://news.mit.edu/1996/visualprocessing
http://channel.nationalgeographic.com/brain-games/articles/brain-games-watch-this-
perception-facts

2.5. Computer Vision 31

Figure 2.6: Tuning curve for neuron in Visual Cortex7.

Figure 2.7: Face keypoints and mesh for facial recognition applications8.

Computer Vision has been evolving in a great number of directions such as object recognition,

face recognition (Figure 2.7), pose estimation (Figure 2.8) or image captioning (Figure 2.9). As

a result of the advances in the field, we can see many applications of computer vision in our

everyday lives. Some examples of these are:

• Postal Service: Postal automation involves automatically reading addresses, most of which

are handwritten and therefore require Computer Vision techniques able to process this

data.

• ePassport gates: Many airports have electronic gates able to automatically read the rel-

evant information from biometric passports, scan the photograph and recognize whether

the person standing in front of the machine is the same as in the photograph.

7Source: http://www.cns.nyu.edu/~david/courses/perception/lecturenotes/V1/lgn-V1.html
8Source: https://petapixel.com/2016/06/30/snapchats-powerful-facial-recognition-technology-works/

http://www.cns.nyu.edu/~david/courses/perception/lecturenotes/V1/lgn-V1.html
https://petapixel.com/2016/06/30/snapchats-powerful-facial-recognition-technology-works/

32 Chapter 2. Preparation for the Big Game: Background

Figure 2.8: Pose estimation, from [32].

• Autonomous cars: self-driving cars have already been commercialized (e.g. by Tesla) and

they require an understanding of their surroundings including road signs, moving objects

and people around them, which is achieved using advanced Computer Vision techniques.

• Augmented reality: in the context of vision, this technology integrates computer-generated

images with real-world ones. This requires recognising objects in the environment so that

the computer-generated images can be superimposed in a coherent way. It has been in-

tegrated into games (e.g. Pokemon Go), messaging applications (e.g. Snapchat) and has

potential in many other areas such as retail.

For a more thorough account of the field of Computer Vision, interested readers are invited to

refer to [34].

2.5. Computer Vision 33

Figure 2.9: Image captioning, from [33].

2.5.1 Optical Flow

Optical flow is used to represent the apparent motion of an image. James J. Gibson, an

American psychologist pioneer in visual perception, was working in preparing training films for

pilots in World War II when he developed his optical flow theory [35]. He proposed that when

moving directly towards a target, that target seems to be motionless and the surroundings seem

to go in the opposite direction with nearer objects moving faster, as shown in Figure 2.10. In

Computer Vision, optical flow represents the apparent movement of objects between consecutive

frames and works under the assumption that the object itself does not change colour over

the frames and illumination remains uniform. Based on this assumption, if the pixel with

coordinates (x, y) at time t moves by a distance dx and dy in the x and y directions respectively

during the time interval dt:

I(x, y, t) = I(x+ dx, y + dy, t+ dt) (2.13)

34 Chapter 2. Preparation for the Big Game: Background

where I(x, y, t) represents the intensity of the pixel with coordinates (x, y) at time t. From

this, the following optical flow equation can be obtained by Taylor series approximation:

δI

δx
u+

δI

δy
v +

δI

δt
= 0 (2.14)

where u and v are the optical flow components in the x and y direction and δI
δx

, δI
δy

and δI
δt

are

the derivatives of the image with respect to x, y and t. The optical flow vector is [u, v] and

different techniques exist to calculate it from the above equations; in our work, we used the

Lucas–Kanade Method [36].

Figure 2.10: The idea of optical flow (shown by the arrows) was hypothesised by Gibson9.

2.5.2 Feature Extraction

For many computer vision applications such as image classification or object detection, instead

of processing the raw image as a matrix of colour values, a feature representation is used because

it is supposed to meaningfully represent the image in a lower dimensional space. The choice

of features is crucial to the success of the classifier (or any other algorithm) that will be used

to complete the computer vision task (e.g. image classification, object detection, etc.) A large

range of feature extraction algorithms exist: SIFT [31], Harris [37], HOG [38], etc. Here we

will describe HOG and SIFT since they are standard feature representations used in action

recognition. [39] is a survey of action recognition, revising the most popular feature extraction

techniques for this application.

9http://www.users.totalise.co.uk/~kbroom/Lectures/gibson.htm

http://www.users.totalise.co.uk/~kbroom/Lectures/gibson.htm

2.5. Computer Vision 35

Histogram of Oriented Gradients (HOG)

HOG was initially designed for pedestrian detection [38], and it consists of four main steps:

1. Divide the image into patches of 8× 8 pixels10.

2. Calculate the gradients for each pixel: In image processing, the gradient ∇I of an image

I measures its change in intensity (colour value), as illustrated in Figure 2.11. As a more

formal definition, it corresponds to the partial derivative of the image value I with respect

to the x and y directions:

∇I =
[δI
δx
,
δI

δy

]
(2.15)

A commonly used technique to perform such operation in images is to apply the
[
−1, 0, 1

]
filter kernel to the image in the x and y directions separately.

3. Calculate a 9-bin11 histogram per patch: The application of the previous step results in a

gradient vector (with magnitude and direction) for each pixel in the 8× 8 patch. A 9-bin

histogram is created to represent the collection vectors of all pixels in the 8 × 8 patch.

Each bin in the histogram corresponds to an angle range, representing the direction of

the vector and the height of each bar is calculated by adding up the magnitude of vectors

with the corresponding angle, as shown in Figure 2.12.

4. The resulting feature vector is a normalisation and concatenation of the histograms for

every patch.

Scale Invariant Feature Transform (SIFT)

SIFT is a feature extraction algorithm that detects local keypoints and descriptors invariant to

scaling and rotation, published by David Lowe in 1999 [31]. Therefore, SIFT features can be

used to represent a given object and recognise it in images where the angle of view or scale is

different.

108× 8 are the dimensions originally used in [38], although other sizes can be used
119 bins performed best for the human detection experiments of [38]
12Source: https://en.wikipedia.org/wiki/Image_gradient

https://en.wikipedia.org/wiki/Image_gradient

36 Chapter 2. Preparation for the Big Game: Background

Figure 2.11: Image gradients vectors represented by blue arrows12.

Figure 2.12: Diagram of the steps to construct a histogram of gradients, adapted from [40].

The first step in the SIFT algorithm is finding key points in the image. One of the most

common approaches to find key points is the application of the Differences of Gaussians (DoG)

function to the image at various scales. The first step in this process requires the application of a

Gaussian kernel to the image. A 1-dimensional Gaussian distribution with mean µ and standard

deviation σ2 can be formalized as Equation (2.16) and as Equation (2.17) for D-dimensions,

with µ the D-dimensional mean vector and Σ the D ×D covariance matrix [41].

N (x|µ, σ2) =
1√

2πσ2
e−

1
2σ2

(x−µ)2

(2.16)

N (x|µ,Σ) =
1

(2π)D/2
1

|Σ|1/2
e−

1
2
(x−µ)TΣ−1(x−µ)

(2.17)

Applying a Gaussian kernel to an image results in blurring it and the value of σ determines the

level of blurring. Taking the difference between images with different blurs is like performing

2.5. Computer Vision 37

a band-pass filter operation, selecting only a range of spatial frequencies. This is performed at

various scales of the image. This process is shown in Figure 2.13 and has the name of Gaussian

pyramid. Salient points are detected by selecting pixels which represent local extrema in the

space and scale dimension. Selected points are refined by discarding points belonging to an edge

or with little contrast. Each key point is assigned a dominant orientation based on gradients, as

described above and for each key, a descriptor is generated as a histogram of gradients for the

key point and its neighbouring pixels. For more details about this process, the reader is directed

to [31]. The main difference between SIFT and HOG is that the first is a local descriptor and

the latter provides features for the entire image. SIFT is used to recognise objects by matching

key points with corresponding characteristics, as illustrated in Figure 2.14.

Figure 2.13: 5-level image pyramid diagram13. Figure 2.14: SIFT feature matching14.

7Source: https://en.wikipedia.org/wiki/Pyramid_(image_processing)
8Source: http://www.robots.ox.ac.uk/~vgg/share/SearchPractical2012.html

https://en.wikipedia.org/wiki/Pyramid_(image_processing)
http://www.robots.ox.ac.uk/~vgg/share/SearchPractical2012.html

38 Chapter 2. Preparation for the Big Game: Background

2.5.3 Hough Line Transform

Cartesian vs Polar Coordinates

The Cartesian coordinate system specifies each point in the plane by a pair of coordinates x0

and y0 along the x and y orthogonal axes, as shown in Figure 2.15. The polar coordinate system

is also two-dimensional, determined by a point (the origin) and a polar axis. These are shown

as the point O and x axis in Figure 2.15, respectively. A point a in the polar coordinate system

is defined by the distance ρ from the origin to the point and the angle θ between the polar

axis and the line passing through O and a. In this section, polar coordinates are expressed as

(θ, ρ)P and Cartesian coordinates as (x, y)C .

Figure 2.15: Point a in a polar and Cartesian coordinate system.

Line Definition

In a Cartesian coordinate system, a line can be defined by the y = ax+b, equation where a and

b are the slope and the y-intercept, respectively. However, vertical lines cannot be represented

in this form because they do not intersect with the y axis and this is why, here, we describe

lines in the polar coordinate system. In the latter system, a line can be defined by the following

equation:

ρ = x cos θ + y sin θ (2.18)

2.5. Computer Vision 39

where θ and ρ are the polar coordinates (defined above) of the point of intersection between

the line and its normal through the origin. The set of all lines passing through a given point

with coordinates (x, y)C are all pairs of ρ and θ values satisfying Equation (2.18).

Hough Space

Lines can be represented in the Hough space by its two parameters θ and ρ. Therefore a line

can be mapped to the θ and ρ point in the Hough space. The mapping of a line to a point in

the Hough space is shown in Figure 2.16.

Figure 2.16: Mapping of a line to a point in the Hough space, adapted from [42].

Hough Transform for Line Detection

We have just seen that a line can be mapped to a point in the Hough space. Mapping all

possible lines through a given point to the Hough space results in a sinusoidal curve, as shown

in Figure 2.17. Given two distinct points, the mapping of all possible lines through each of

them will results in two distinct sinusoidal curves, shown in Figure 2.18. Their intersection is a

point in the Hough space, which represents a line (cf. Figure 2.16) passing through both points.

Hough Transform Algorithm

The Hough Transform algorithm can detect lines even in the presence of noise. It has to be

performed on binary images that contain the edges of the source image only. The algorithm

40 Chapter 2. Preparation for the Big Game: Background

Figure 2.17: Mapping of all line through a point to the Hough space.

Figure 2.18: Mapping of all lines through point a and all lines through point b to the Hough
space. The mapping back of their intersection defines the line crossing points a and b.

works by finding all lines that can cross each of the edge points; then the possible lines that

are common to a higher number of points are selected.

As an example, Figure 2.19a presents a source image as a 100 × 100 matrix containing three

edge points a = (0, 0)C , b = (100, 0)C and c = (0, 100)C . For each of these points, we ought to

find all possible lines that cross it, which can be achieved by solving Equation (2.18). Plotting

all pairs of θ and ρ values that satisfy the previous equation for a given point (x, y)C in a 2D

Cartesian coordinate system with θ and ρ in the x and y axes respectively results in a sinusoid.

Plotting the solutions to Equation (2.18) for each point a, b and c of our example results in the

blue, red and green curves of Figure 2.19b15.

15ρmin and ρmax are determined by calculating the length of the diagonal of the image

2.5. Computer Vision 41

Based on the above, an accumulator array with a discrete set of bins representing pairs of (θ,ρ=

values is calculated, as shown in Figure 2.19b. Each edge point is said to “vote” for the bins

of θ and ρ pairs defining lines that cross it, according to Equation (2.18). For example the bin

corresponding to the intersection of the green and red curves in Figure 2.19b are the θ and ρ

values defining a line (according to Equation (2.18)) that passes through the points b and c,

and thus has 2 votes.

In our example, Figure 2.19b has three bins with two votes each, shown by the circles, at the

bins with values (0, 0)P , (−90◦, 0)P and (−45◦, 72)P . Therefore the lines defined by these values

according to Equation (2.18) are said to have 2 votes each. Since these are the most voted lines,

they are selected as the lines detected in our example of Figure 2.19a and are plotted in magenta

in Figure 2.19a. Indeed, each of these three lines passes through two points in Figure 2.19a

(a & b, a & c and b & c). Our example consists of three non-aligned points. Thus the maximum

number of points that a line can cross is two. Accordingly, there are no bins with more than

two votes in Figure 2.19b. However, using this algorithm with a higher number of points (e.g.

the edges of an image) results in an accumulator array with a higher number of votes per bin

than in our example. In such case, a threshold on the minimum number of votes required to

select a line of interest must be determined.

Probabilistic Hough Transform

In this project, we have used the probabilistic Hough transform algorithm that is implemented

in OpenCV [43] that is based on [44]. The aim of probabilistic Hough transform is to reduce

the number of edge points that are evaluated but still maintain accuracy, improving the time

complexity over its non-probabilistic version. In this particular version of the probabilistic

Hough transform, only a random subset of points is considered for line detection. Accordingly,

the threshold on the minimum number of votes required to select a line must be adjusted to

the reduced number of points used in line detection.

42 Chapter 2. Preparation for the Big Game: Background

(a) 2D image with three points a, b and c and the lines that connect them (magenta).

(b) Hough transform accumulator array of (a).

Figure 2.19: 2D matrix containing three points and the accumulator array used to find lines.

2.6. Machine Learning 43

2.6 Machine Learning

In 1959, Arthur Samuel first introduced the term “Machine Learning” as the “field of study that

gives computers the ability to learn without being explicitly programmed”16. He is the author

of what is thought to be the first program with the capacity to learn: a checkers program [45].

In 1997, Mitchell proposed the following definition: “A computer program is said to learn

from experience E with respect to some class of tasks T and performance measure P , if its

performance at tasks in T , as measured by P , improves with experience E” [46]. Amongst the

many possibilities, tasks T can refer to classification or regression, E to the training dataset,

which contains examples, and P can refer to the accuracy or error rate of the model [47].

The field of Machine Learning is vast, and its applications encompass a wide variety of problems

such as classification, regression, clustering or dimensionality reduction. However, Machine

Learning algorithms can be divided into three broad categories according to the type of data

they learn from [48]:

• Supervised learning: This class of Machine Learning algorithms learn from data labelled

with a class or value, and the objective is to find patterns in the data in order to predict

these labels for unseen data. An example of this can be handwritten digit recognition.

In this case, the Machine Learning algorithm receives as input many examples of digits

written by different people and each example is labelled with the correct digit. The

objective is to associate one of the ten possible digits to new unseen examples by finding

patterns in the previous data.

• Unsupervised learning: The algorithm is input data without specific labels associated

with it. The objective is to find patterns and structures to, for example, cluster data into

meaningful groups. For example, customers can be grouped according to their behaviour

to make recommendations.

16Originates from “Programming computers to learn from experience should eventually eliminate the need
for much of this detailed programming effort” in [45]

44 Chapter 2. Preparation for the Big Game: Background

• Reinforcement learning [49]: In this type of learning an agent takes actions that modify

the state of its environment and leads to some rewards. The objective of the agent is to

select the actions that will maximise its reward. This type of learning is very suitable for

automated playing of Atari games, in which the reward can be the score [50].

One of the biggest challenges in machine learning is overfitting, which occurs when the model

fits the training data too closely and loses the capacity of generalisation. This occurs when

a model is too complex for the amount of data used in training. The model is said to be

memorising the data. It learns noise and details irrelevant to the task and fails to generalise to

new data [48]. Many machine learning algorithms consist of three main steps: learning from the

data, tuning the parameters and testing. To avoid overfitting, it is usual to divide the data into

three groups: training, validation and test, corresponding to the previously mentioned steps.

Machine learning techniques are used in a wide range of applications and many multimedia

applications also involve Machine Learning:

• Speech recognition: this corresponds to translating spoken language into text. Machine

Learning algorithms are trained with audio clips, labelled with the corresponding written

text and can be fine-tuned using voices from particular users. In 2016, researchers at

Microsoft presented a Neural Network for speech recognition that achieved results on par

with human performance [51]. Applications of speech recognition are part of our everyday

lives with Siri17, Google Home [52] and Amazon Alexa18.

• Recommender systems: such algorithms have the objective of finding patterns in what

people are interested in (products purchased, movies, music or restaurants) and recom-

mend new products [53; 54]. One approach to recommender systems for online sales is to

group people by their purchase behaviour and recommend products bought by individuals

in the same group.

• Computational Creativity: this term has been defined as “The study and support, through

computational means and methods, of behaviour exhibited by natural and artificial sys-

17https://machinelearning.apple.com/2017/10/01/hey-siri.html
18https://developer.amazon.com/docs/alexa-voice-service/api-overview.html

https://machinelearning.apple.com/2017/10/01/hey-siri.html
https://developer.amazon.com/docs/alexa-voice-service/api-overview.html

2.6. Machine Learning 45

tems, which would be deemed creative if exhibited by humans.” by Wiggins [55]. In

recent years, deep neural networks have been able to generate novel images [56] or trans-

fer style [57], as shown in Figure 2.20. The fact that the algorithm picks up style but

keeps the coherent structures in the images (the same objects appear in the modified

image) is remarkable.

Figure 2.20: Style transfer to image A, from [57].

A more detailed account of Machine Learning foundations can be found in [41].

2.6.1 Artificial Neural Networks

Artificial Neural Networks are computer systems inspired by the functioning of the nervous

system [58; 59]. The biological brain has neurons that are interconnected and in a highly

structured way in order to process information [60]. Neural networks also have processing units

called ‘neurons’ which are based on models of their biological counterparts. The simplest neural

network, presented in 1958 by the American psychologist Frank Rosenblatt, consists of a single

18Source: https://deepdreamgenerator.com/

https://deepdreamgenerator.com/

46 Chapter 2. Preparation for the Big Game: Background

layer and is called perceptron [61]. Figure 2.21 is a diagram of a perceptron with only one

neuron, two inputs x1 and x2, which correspond to the features of instance x, and output y.

This simple model is a linear binary classifier in which the output is calculated as:

y =

 1 if
∑n

i=1wixi + b > 0

0 otherwise
(2.19)

with n the number of inputs to the neuron (2 in our example), wi the weight for input xi and

b is the bias, this value is a constant used to shift the decision boundary to 0.

Training consists in using labelled examples to find the optimal weight values for the correct

prediction of labels in unseen examples. The first step in the training process is the random

initialization of weights. Then they are updated using labelled examples through the iteration

of the two steps below applied to the complete set of examples available for training:

1. Calculate the output yk(t) from current weights w(t) for a given example k, using Equa-

tion (2.19). This is the predicted label for k at time t.

2. Update the weights as follows:

wi(t+ 1) = wi(t) + (jk − yk(t))xk,i (2.20)

with wi(t+1) the updated ith weight at time t+1, jk the correct label of example k, yk(t)

its predicted label based on the weights w(t) at time t and xk,i the ith feature (input) of

the kth example.

As such, neural networks learn by example, adjusting their weights to optimize their perfor-

mance to a specific task. The end of the learning process can be determined in a number of

ways [47]:

• Convergence: all samples are classified correctly.

• Number of iterations: a pre-determined number of iterations is reached.

2.6. Machine Learning 47

• Inadequate progress: weight change is below a chosen threshold, and the network is

assumed to not be‘learning’ any more.

Figure 2.21: Diagram of a perceptron19.

Based on the simple model presented above, more complex neural networks can be built, such

as the one shown in Figure 2.22 with 2 hidden layers, and some neural networks have even more

than 40 layers of neurons, hence the name of “deep” neural networks [47]. Each layer takes

as input the output of the previous layer and the last one outputs the result. Each layer of a

deep neural network has the same principles as the perceptron: they also have an activation

function to calculate the output, given the inputs and their weights (cf. Equation (2.19)) and a

weight update function (cf. Equation (2.20)). In theory, neural networks with more layers can

model data with more complex structures [47]. The formulation of their activation function

and weight update is described below.

Figure 2.22: Neural network with 2 hidden layers20.

Activation Functions: They are used to calculate the output of a neural network layer given

its inputs and weights, as Equation (2.19) does for the perceptron. The most common activation

functions, some of which shown in Figure 2.23, are [47]:

19Source: https://glowingpython.blogspot.co.uk/2011/10/perceptron.html
20Source: http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe/

https://glowingpython.blogspot.co.uk/2011/10/perceptron.html
http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe/

48 Chapter 2. Preparation for the Big Game: Background

• Linear: this activation is proportional to the input and therefore is not suitable to model

data with complex (non-linear) patterns. Another drawback of this is that values can

blow-up in large networks.

• Sigmoid: it is non-linear, differentiable and within the [0,1] range. y values tend to

concentrate at the extremes 0 and 1, which makes it suitable for classification tasks.

However, this also leads to the problem of “vanishing gradients” as extreme x values

cause only very small changes in y and learning may stall.

• Tanh (hyperbolic tangent): it is similar to the sigmoid activation but within the range

[-1,1] and with steeper gradients.

• ReLU (Rectified Linear Unit): it is also non-linear but within the [0, ∞) range. For all

negative values, neurons have a 0 activation which can cause “dying” neurons, as neurons

can have a 0 gradient and stop responding to the input. This is not a problem because the

activations are more sparse, but the network also has the possibility to stop responding

if too many neurons die.

Currently, the default recommendation is to use ReLU activation [47; 62].

Figure 2.23: Different activation functions for neural networks21.

Weight updates: In Equation (2.20) we showed how weights are updated based on the pre-

dicted and correct labels. For deep neural networks, a different method must be used to take

into account the contribution of each neuron to the output and adjust each of their weights

21Source: http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe/

http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe/

2.6. Machine Learning 49

accordingly. This calculation is called backpropagation and requires the definition of a loss func-

tion to quantify the prediction error. For example, the Euclidean distance between predicted

outputs and data labels can be used. A common technique for backpropagation is gradient

descent. It consists in moving towards local minima in the error function by calculating the

gradient of the loss function with respect to the parameters of the network (e.g. weights). Fig-

ure 2.24 is a plot of a sample loss function with respect to parameters θ0 and θ1 and by following

the gradient descent steps in black, parameters θ0 and θ1 yielding local minima can be found.

It is important to be aware of the possibility of getting trapped in sub-optimal local minima.

Figure 2.24: Loss function J with respect to parameters θ0 and θ1 and gradient descent steps
shown in black22.

Deep neural networks have been demonstrated to be incredibly powerful in the context of com-

puter vision in tasks such as face recognition, object detection and object recognition [63].

Convolutional neural networks are a type of deep neural network that have consistently won

object recognition competitions since 2012 [64; 65]. Convolutional neural networks use a com-

bination of the following types of layers [47]:

• Fully connected layer: every neuron of layer (l−1) has a connection to every single neuron

in layer l.

• Convolutional layer: a filter is applied to patches of neurons from the previous layer

in a sliding manner, by calculating their dot product, until the previous layer has been

22Source: https://www.analyticsvidhya.com/blog/2017/03/

https://www.analyticsvidhya.com/blog/2017/03/

50 Chapter 2. Preparation for the Big Game: Background

processed entirely. For example, if layer l − 1 is the input layer consisting of a 96 × 96

image and we decide the filter to be of size 8 × 8, each neuron in layer l will have 64

neurons as an input (8 × 8) and the resulting convolved layer will have 96 × 96 neurons

(if padding is used, for example adding zeros around the border). This type of layer is

suitable for images by finding local features while keeping spatial relationships. This is

illustrated in Figure 2.25, with an 8× 8 input, a 3× 3 filter and no padding.

Figure 2.25: Convolutional layer using a 3 × 3 filter. In this case, since no padding was used,
the convolved layer is 6× 6.

• Pooling layer: this layer is generally used after a convolutional layer to reduce the dimen-

sionaly of the features. For each m×n region of the image, the max or mean feature value

from the convolutional layer is calculated (called max-pooling and mean-pooling layer re-

spectively) resulting in a more compact and generalizable feature representation of the

image, as shown in Figure 2.26. This is supposed to lead to better image classification as

features are less location dependent and are more robust against small translations [63].

Figure 2.26: Max-pooling layer example.

2.6. Machine Learning 51

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) [66–68] are a type of neural network with the ability to

learn time dependencies, making them very suitable to process sequences. At time t, the output

ht of the RNN is calculated by taking as inputs its previous output ht−1 and the current element

of the sequence xt as follows:

ht = f(Wxh × xt +Whh × ht−1 + b) (2.21)

where Wxh and Whh are weight matrices, b the bias and f is the output activation function [69].

LSTMs

RNNs are suitable for learning time dependencies but, when applied to long sequences, the

gradient of the loss function (cf. Figure 2.24) is likely to vanish [70]. This is because gradients

at each time-step are calculated using the chain rule for backpropagation and therefore the

first layers of the recurrent network (earlier time steps) can end up with a very small gradient.

In 1997, a type of RNN called LSTM was introduced to overcome this issue [71]. LSTMs are

particularly suited to learn long-term dependencies in sequences, such as in video classification

or speech processing. They are composed of memory cells which contain a memory state c that

is updated with the new inputs, but controlled by gates determining which information to keep

and what to forget.

The cell state ct is updated by “forgetting” some information through the multiplication of the

previous cell state ct−1 and the forget gate ft and by adding new information, controlled by

the input gate it. Finally, the output gate ot, controls the output of the cell ht. The LSTM

implementation that we used is based on [69; 72] (see Figure 2.27) and the calculations of the

activations are as follows:

Input gate

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (2.22)

52 Chapter 2. Preparation for the Big Game: Background

Forget gate

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf) (2.23)

Memory cell state

ct = ftct−1 + it tanh(Wxcxt +Whcht−1 + bc) (2.24)

Output gate

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo) (2.25)

Hidden state

ht = ot tanh(ct) (2.26)

2.6.2 Random Forest Classifier

A random forest is an ensemble learning method, introduced by Breiman and Cutler that can

be used for regression and classification [73; 74]. It builds a number of decision trees, each of

which outputs a class number and the mode of these classifications is taken as the final result.

Decision Trees are a learning method that can be used for regression and classification [75]

(called regression and classification trees respectively). In a simple classification tree, one of

the features of the input data is handled at each node, and the data space split accordingly.

For instance, let us define a dataset with N examples that we want to classify into two classes

A and B and each example is characterised by three features [x1, x2, x3]. Figure 2.28 shows how

data is divided according to each feature relative to a particular threshold for each of them. At

the end are the leaf nodes containing the class name.

In our work, we used random forests for classification, based on the work of Breiman in 1999 [73;

74]. Here, each tree is trained with a sub-sample of all the data and sub-samples are not

mutually exclusive. At each level, a random subset of features is used to split the data space

(instead of just one feature as in Figure 2.28) and the tree is grown to a maximum size without

pruning. This leads to trees with a large set of terminal nodes, which are likely to overfit the

data [76]. However, even though individual trees might be overfitting, their combination in a

random forest is much less prone to this effect, as shown by Breiman in [73].

2.6. Machine Learning 53

Figure 2.27: LSTM cell architecture. The memory of the LSTM cell is stored in c. Through
time and as new inputs are fed in, the memory state is updated controlled by the forget and
input gates. Both have as input: (1) the previous memory state ct−1, (2) the previous output
ht−1 and (3) the current input xt; their activation is calculated as described in Equations (2.22)
and (2.23). The cell state is modified by multiplying the old memory ct−1 by the forget gate,
which will determine how much of the old memory to keep. Then, new memories (input
activation) are added, controlled by the input gate. The output, which is then fed back to
the network, is calculated as in Equation (2.25). σ represents the sigmoid function, Diagram
inspired by [69].

In the random forest implementation that we have used (from [43]), each tree is trained with the

same parameters and using
√
n features (with n the total number of potential features) at each

node and 2/3 of the examples in the dataset, as recommended in [77]. Random forests do not

need cross-validation, and the error is calculated by making predictions for each example using

only the trees that were trained without using that particular example; these are called “out

of bag” (oob) examples [73]. The error is calculated as the ratio of oob misclassified examples

over N observations.

54 Chapter 2. Preparation for the Big Game: Background

Figure 2.28: Example of classification tree.

2.6.3 K-means Clustering

The k-means algorithm is a non-probabilistic clustering technique introduced in 1982 by S.

Lloyd [78]. It consists in partitioning N observations into K clusters with centres µk (mean of

the cluster k observations). These are randomly initialized and determined by the algorithm.

If we define our observations as D-dimensional in a Euclidean space, an observation xn is a

D-dimensional vector of the features of example n. According to the k-means algorithm, xn will

belong the cluster j if its Euclidean distance23 to µj is the smallest amongst all K clusters. The

matrix r is a two dimensional bit array used to indicate to which cluster an example belongs

to, if xn belongs to cluster j, rnj will be 1 and rnk for any other cluster k will be 0. The

aim is to choose cluster centres that minimise the distance between intra-cluster observations

and maximise inter-cluster distances, which using the notation in [41] can be formalised as

minimising J with respect to rnk and µk:

J(r, µ1, . . . , µK) =
N∑
n=1

K∑
k=1

rnk||xn − µk||2 (2.27)

23Other distance metrics can also be used.

2.6. Machine Learning 55

To find the best r and µk values, iterations of a two-step process are usually used:

• Expectation: µk is fixed (random initialization) and J minimized with respect to rnk. We

assign each sample to a cluster.

• Maximization: minimize J with respect to µk with rnk fixed. We update the centres of

the clusters.

and this is called the Expectation Maximisation (EM) algorithm [79]. The algorithm can give

different results for different initializations.

2.6.4 Support Vector Machine (SVM)

An SVM is a machine learning model most commonly used in supervised learning for classi-

fication [80]. Given a set of labelled observations (x1, y1), (x2, y2), , (xt, yt) with yi = +/ − 1

(belonging to two classes), the SVM will find the hyperplane best-separating the examples from

the two classes, ensuring that the distance from the hyperplane to the closest observation from

each class is maximised, as illustrated in Figure 2.29. The hyperplane is defined as:

wTx + b = 0 (2.28)

where w and b are the parameters of the hyperplane. The positive support vector is the data

point, denoted x+, that lies closest the hyperplane defined by:

wTx+ + b = 1 (2.29)

Equivalently, the negative support vector is denoted x− and defined by:

wTx− + b = −1 (2.30)

From this, the distance between the positive support vector to the hyperplane of Equation (2.28)

is:

|wx + b|/||w|| = 1

||w||
(2.31)

56 Chapter 2. Preparation for the Big Game: Background

and similarly for the negative support vector, resulting in a margin (see Figure 2.29) of 2
||w|| .

Maximising this margin can be achieved by solving the following minimization problem:

ŵ = arg min
w
||w||2 (2.32)

subject to

yi(w
Txi + b) > 1 for i = 1...N and yi = −1, 1 (2.33)

with yi the class. This is a quadratic convex optimization problem, and therefore it has a

unique minimum.

If the data is not linearly separable, the “kernel trick” can be used [81]. This consists in

mapping the data points to another space where the data is linearly separable by applying a

transformation function (e.g. polynomial, radial basis, sigmoid etc.) It is called a trick because

instead of applying the transformation function to the data and optimizing Equation (2.32),

kernels can be directly used in Equation (2.32).

In cases of noisy data, a soft margin can be used, which allows misclassifications by adding

a penalty proportional to the distance between the outlier and the correct side of the hyper-

plane [82; 83].

Applications to regression problems [80; 84] or multi-class classification [85; 86] have been

developed, but these will not be discussed here as they are not used in this thesis.

2.6.5 Bayesian/Belief Networks (BN)

Bayesian Networks, also called belief networks, are probabilistic graphical models that use a

directed acyclic graph with edges representing probabilistic relationships between random vari-

ables, called nodes. In such networks, each node has a conditional probability table determined

by its parents in which a node x with parent a has a probability distribution defined as follows:

p(x) = p(x | a)p(a) (2.34)

2.6. Machine Learning 57

Figure 2.29: Diagram of a Support Vector Machine.

Figure 2.30 represents a simple BN with three random variables (s1, s2, s3) and the prob-

abilities associated with it such that pij = p(sj|si) [41]. In the figure, s3 influences s1 and

s2, and s2 influences s1, with the corresponding conditional probability tables reflecting these

dependencies. Figure 2.31 is a diagram representing the same network but with an additional

node s4. The only difference with respect to the previous BN is that s1 is also influenced by

s4. In this diagram s4 and s3 are conditionally independent since there are no arcs connecting

them (s4 and s2 are also independent); this means that the probabilities of s3 and s2 are not

affected by s4. Equations (2.35) and (2.36) relate to Figure 2.30 and Equations (2.37) and (2.38)

to Figure 2.31.

Dynamic Bayesian Network

BNs can be also used to model sequences [87], this type of BN is called Dynamic BN (DBN) [41].

In DBNs the probability of a node at time t might be dependent on its probability at t− 1, as

shown in Figure 2.32. Therefore:

p(xt) = p(xt | a, xt−1)p(a, xt−1) (2.39)

58 Chapter 2. Preparation for the Big Game: Background

Figure 2.30: Simple Bayesian network with con-
ditional probability tables.

Figure 2.31: Bayesian network with indepen-
dent variables.

p(s1) = p(s1 | s2, s3)p(s2, s3) (2.35)

p(s2) = p(s2 | s3)p(s3) (2.36)

p(s1) = p(s1 | s2, s3, s4)p(s2, s3, s4) (2.37)

p(s2) = p(s2 | s3)p(s3) (2.38)

Figure 2.32: Dynamic Bayesian Network.

DBNs can be used to represent different models [88] such as Kalman Filters [89] and Hidden

Markov models [90].

2.6. Machine Learning 59

2.6.6 Gaussian Mixture Model

A Gaussian mixture model (GMM) assumes that data points are generated from a linear su-

perposition of Gaussian distributions [91], as illustrated in Figure 2.33. Using the formulation

of [41], a Gaussian distribution for a D dimensional vector x is specified as:

N (x | µ,Σ) =
1

(2π)D/2
1

|Σ|1/2
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
(2.40)

where µ is the D-dimensional mean vector, Σ is a D × D covariance matrix, and |Σ| is the

determinant of Σ. From this, the GMM is given as:

p(x) =
K∑
k=1

πkN (x | µk,Σk) (2.41)

with K Gaussian distributions N (x | µk,Σk), each of which is a component of the GMM

with its individual mean µk and covariance Σk. Each πk takes a real value and is the mixing

coefficient, representing the contribution of component k to the GMM.

In the work that will be described later, GMM will be used to model the probability distribution

of ball impact locations in the continuous space of the tennis court.

Figure 2.33: One dimensional Gaussian mixture distribution (red) with three components
(blue), from [41].

Chapter 3

The Arrival of a New Player: Visual

Data in Tennis Analysis

In the previous chapter, we have reviewed classical approaches for modelling tennis (Section 2.3)

and we have also seen how interest in using spatio-temporal information for this task is rising.

This chapter focuses on critically reviewing current research in this direction, and our contri-

bution is two-fold. First, we address the lack of comprehensive surveys that include different

approaches to incorporating spatio-temporal data in the analysis of tennis. Second, we discuss

the limitations of present work to motivate the need for a framework like the one proposed in

this thesis. This chapter relates to the Modelling Layer of our framework (cf. Figure 1.11).

We review research in spatio-temporal-based tennis analysis from two different perspectives:

knowledge discovery and prediction. By knowledge discovery, we refer to finding patterns and

depicting tactics and strategies, while prediction is about estimating future events such as the

location or type of a serve or the next shot and even who will win the match. The aim of

this chapter is to show the motivation to our the research and applicability of our framework

in addressing current limitations of state-of-the-art tennis analysis. This is why this chapter

focuses on reviewing methods of current analysis rather than applying the reviewed techniques

to our own data.

60

3.1. Why Use Visually Derived Spatio-Temporal Data? 61

3.1 Why Use Visually Derived Spatio-Temporal Data?

Professional tennis players are able to quickly assess a situation and make decisions based on

their domain knowledge and current environment. In receiving from a serve at 200km/h, the

opponent has 500ms [92] to predict the ball trajectory, position himself/herself and execute a

stroke. It has been shown that professional tennis players have enhanced anticipation skills in

predicting the ball landing location of incoming shots [93] and higher visual perception abilities,

with respect to for example speed discrimination [94]. Therefore, to understand and predict

tennis players’ decisions, it seems natural to analyse the visual cues available to them.

When using coarse-grained event statistics, as shown in Section 2.3, one can predict the outcome

of a match by building a model that uses the probability of winning a point as its building block.

However, using visually derived spatio-temporal data can enable us to understand what happens

at a finer-grained level and develop models for in-play analysis and prediction. From this, new

insights into players’ strengths, weaknesses and strategies can be obtained. Prediction models

can start from predicting the type and location of the next shot and estimate the probability of

winning a point, revealing how it evolves as the point progresses. This can help in understanding

the contribution of each shot to winning a point. Finally, it can also lead to an in-play prediction

of the probability of winning the set, game and finally the match.

3.2 Challenges

Incorporating spatio-temporal data to the modelling of tennis has many advantages but also

poses significant challenges:

• Spatio-temporal data such as ball trajectory or player position are continuous in time and

space. It is challenging to manipulate and extract salient features from this continuous

data.

• The player and ball positions have to be merged with other data such as score or type of

shot, and ways in which to combine this multi-modal information have to be investigated.

62 Chapter 3. The Arrival of a New Player: Visual Data in Tennis Analysis

• The availability of spatio-temporal data in tennis is of more restricted access than that

of coarse-grained statistics, which are publicly available on the Internet. When available,

the amount of spatio-temporal data per player, surface or tournament is highly limited.

• The accuracy of spatio-temporal data is harder to assess. Hawk-Eye is considered ex-

tremely accurate but still has its detractors [95; 96], and it is risky to trust other sources

of manually annotated data (due to the reasons exposed in Section 1.1) or from data

collection systems that do not provide quantitative evaluations (cf. Chapter 4).

3.3 Knowledge Discovery

One of the primary goals in tennis analysis is finding patterns to reveal strategies and discover

the strengths and weaknesses of players. In 1996, the United States Tennis Association pub-

lished a book listing 58 tennis tactics patterns [97], listed in Appendix A. These were found

empirically by professionals in the field. Spatio-temporal data is a great asset to uncover these

patterns automatically and even find new ones. Such data is very rich but also hard to handle,

due to the factors listed above, and this is where knowledge discovery comes to the fore. Find-

ing ways in which to cluster or represent this data is crucial, and this section outlines the most

relevant approaches that have been proposed. An overview of the timeline of advances in tennis

knowledge discovery from spatio-temporal data is shown in Figure 3.1, including a reference to

the work of Intille and Bobick in American football [98; 99], from which subsequently presented

approaches to spatio-temporal tennis data analysis originate.

Figure 3.1: Timeline of advances in tennis knowledge discovery from spatio-temporal data.

3.3. Knowledge Discovery 63

3.3.1 The Start

One of the earliest work using spatio-temporal data in sports analysis dates back to 1998.

At that time, Intille and Bobick [98; 99] presented work to recognize complex multi-agent

actions in American Football from visual data. Their work was inspired by advances in object

recognition in computer-vision. In 1990, Grimson proposed a model for object recognition

consisting of using image features to search a tree, where nodes represented object edges and

leaf-nodes represented the objects themselves [100]. A major drawback of this approach is

that its complexity makes exhaustive search intractable. To approach this issue, Grimson

and Lozano–Perez developed the idea that ‘massive low order consistency typically implies

correctness’ [101] and this is exploited in Intille and Bobick’s approach for complex action

recognition. They represent each complex multi-agent action (e.g. curl or catch pass1) with a

temporal graph that is pre-defined using domain knowledge, as shown in Figure 3.2. The main

building blocks for this graph are:

• Belief nodes: these are Bayesian Networks, explained in Section 2.6.5, for predicting

single-agent goals from visual data, such as a pass thrown from a given player. The visual

data used is based on player location and includes velocity, position relative to other

players or to meaningful court landmarks. These are denoted by a B in Figure 3.2 and

G is the main belief node.

• Evidence nodes: these are directly evaluated from the data and describe temporal, spatial

and logical relationships between agents and objects. In Figure 3.2 they are denoted by

E.

With this approach, the authors correctly recognise 21 out of 25 plays evaluated from manually

annotated visual data of player positions. In contrast to tennis, this work was done in a team

sport in which player interactions are more complex, and their formation is a substantial factor

into understanding strategies. Nonetheless, as we will see, using a Bayesian Network from

visual information to uncover patterns of play can also be successfully applied to tennis.

1American Football patterns.

64 Chapter 3. The Arrival of a New Player: Visual Data in Tennis Analysis

Figure 3.2: Visual Network for catch pass, from [99]. B stands for Belief node, G for the main
Belief node (Goal) and E for Evidence nodes.

3.3.2 Finding Patterns in Tennis

Strategy is defined as ‘A plan of action designed to achieve a long-term or overall aim’ [102].

According to a publication from the International Tennis Federation, strategy in tennis can be

defined as ‘the overall game plan for a certain match’ [103] and ‘the practical application of

the strategy during the match’ is referred as tactics. A good tennis strategy will use a game

plan that takes advantage of the player’s own strengths and the opponent’s weaknesses [104].

Tactics used to achieve a particular strategy are achieved through patterns of play [97]. There-

fore, understanding and dissecting tennis tactics corresponds to finding patterns of play and

analysing them taking into consideration whether they led to losing or winning a point. These

patterns are the repetition of a particular sequence of tennis shots and finding them is what we

address in this section.

In 2005, Wang and Parameswaran [105] used ball information alone to classify tennis shots into

the 58 official patterns mentioned earlier, and listed in Appendix A. In their approach, two

separate Bayesian Networks (BNs) were used to cluster:

• Ball landing positions into 9 areas, as shown in Figure 3.3.

• Trajectories into 10 clusters: 5 for forward plays and 5 for backward plays, as shown

in Figure 3.4.

3.3. Knowledge Discovery 65

Figure 3.3: Ball landing positions clusters,
from [105].

Figure 3.4: Ball trajectory clusters,
from [105].

Interestingly, an additional BN is used at a higher-level and incorporates both ball landing

position and trajectories, since the two are correlated, and this BN works in tandem with the

low-level ones to cluster ball landing position and trajectories. Using this technique, each of

the 58 pre-defined tennis rally patterns can be formulated as a sequence of trajectories and

ball landing positions, represented by their cluster numbers. The authors provide an empirical

evaluation of two patterns tested and classified correctly.

Later on, in 2010, Wei-Ta Chu and Wen-Ho Tsai [106] used player position to find patterns

without incorporating the ball position, contrasting with the previous work from [105]. The

authors argued that such data is easier to extract from videos and sufficient for the task.

Also different from the previously described work that aimed at recognising pre-defined tennis

patterns, the authors in this paper [106] are interested in discovering tactics in addition to

identifying patterns of play. The tactics targeted in their work are: passing ball, moon ball,

drop shot, volley and unforced error.

66 Chapter 3. The Arrival of a New Player: Visual Data in Tennis Analysis

A two-level framework is developed to accomplish this objective: first, pattern detection and

second, tactics analysis. In this framework, a symbolic representation is defined for the last

5-second segment of play, noting player positions every 10 frames. This symbolic represen-

tation corresponds to the concatenation of the following attributes, for each player and each

consecutive pair of frames:

• Location at frames t− 1 and t.

• The direction of movement of each player, with the discrete values ‘left’, ‘right’ or ‘still’

for horizontal movement and ‘up’, ‘down’ or ‘still’ for vertical movement (towards or away

from the net).

• The speed of movement of each player in the horizontal and vertical directions split into

three categories: ‘fast’, ‘medium’ or ‘still’.

Figure 3.5: Examples of moving patterns for different tactics, from [106]. F: fast, M: medium,
A: player A and B: player B.

3.3. Knowledge Discovery 67

At the second-level representation, each pair of possible combinations of attributes in the sym-

bolic representation is assigned a meta-symbol, to represent the attributes of both players

involved.

Once this framework is set, the next step consists in learning the association between sequences

of meta-symbols and pre-determined tactics: passing ball, moon ball, drop shot, volley and

unforced error; Figure 3.5 illustrates examples of moving patterns for these techniques. With

that objective in mind, 30 example plays are manually retrieved for each tactic and trans-

formed into meta-symbol sequences; these are used to represent a tree for each tactic. This

representation allows selecting which meta-symbols occur frequently enough to be considered

characteristic of a given tactic. After this step, each tactic has some ‘template’ sequences of

movement associated with it, and new patterns are recognized using a dynamic programming

approach to find the Largest Common Subsequence [107].

The evaluation was performed over 10 tennis matches comprising 7 distinct tactics and an

F-measure2 of 0.74 was obtained. These results are not straightforward to analyse since the

authors present a full pipeline from player detection in a video to pattern matching, and errors

in player detection may cause errors in tactic analysis. In fact, the authors mention that pattern

matching on clay-courts led to poorer results probably because court-line detection is harder

on this surface [106]. In general, the framework proposed is interesting and could be highly

valuable as it would be possible to analyse which tactics lead to winning a point, game, set or

match. Regarding the game analysis produced in this paper, however, the main insight is that

‘The player who issued fewer unforced errors won the game’. This is widely accepted as being

true for tennis.

Also in 2010, Terroba et al. proposed a framework for pattern discovery in tennis [108–110].

In contrast to [105], the authors try to discover patterns through data mining rather than

classifying pre-determined patterns. In their papers a rally is formalized as a sequence of

events (single strokes) defined by 7 attributes: identity of player (1 or 2) hitting the ball, stroke

type (10 different stroke types), positions of each player (as a pair of integer coordinates) and

2A combined measure of precision and recall; the highest possible score is 1.

68 Chapter 3. The Arrival of a New Player: Visual Data in Tennis Analysis

ball speed after the stroke (as ‘normal’, ‘slow’ or ‘fast’). A similarity measure between events is

introduced to handle such multi-modal data, and the similarity between two events is defined

as the sum of the similarity functions applied to each attribute of the event (e.g. the similarity

function for the player position between two events is their Euclidean distance). This results

in a similarity score that is used to solve the pattern mining problem.

Once this framework is set, the aim of the paper is to identify the most frequent sequences

in general and for a particular player. The authors calculate the support for a given template

sequence in a match by looking at how many sequences in that match are similar to it. A

minimum support threshold is established to determine the support required by a template

sequence for it to be considered ‘frequent’. By tuning the different thresholds, the user can

decide how general the frequent patterns can be. Using this method, the authors analyse 7 hours

of video containing around 3 000 events and find interesting common tennis patterns. Figure 3.6

shows service patterns mined from the match between Na Li and Serena Williams at the 2010

Australian Open semifinal [109].

Figure 3.6: Successful service patterns from 2010 Australian Open semifinal, from [109]. Black
dots are the player positions when hitting the ball and yellow dots are ball bounce positions.

3.3.3 Knowledge Discovery Until Now

The work that we presented shows that a common approach is to discretize data such as

ball speed into ‘slow’, ‘medium’ or ‘fast’, or player position into court areas. By discretizing

3.4. Prediction 69

continuous data, the search space becomes tractable but some information is lost. This opens

the question on which data should and which should not be discretized. The experiments

discussed in this section are not sufficient to determine this and further research should be

completed to answer that question. Also, if discrete information is sufficient to understand the

strategies of players, this implies that any spatio-temporal data could contain a small error

without interfering with the final classification result in most cases.

Another interesting line of future investigation arises from the knowledge discovery studies

discussed here: in order to evaluate a player’s strategy and performance, is it better to use pre-

defined patterns, find them automatically or investigate how to combine the two? As above,

further experiments are required to compare these different strategies.

3.4 Prediction

As mentioned in Section 3.3.1, Initille and Bobick presented in 1998 what is considered by

many to be the seminal work in spatio-temporal based sports analysis [98; 99]. However, it

was not until 2013 that spatio-temporal based prediction in tennis really took off. That year,

the first paper that analysed Tennis Hawk-Eye data appeared, from the collaboration between

researchers at the Queensland University of Technology, Disney Research and the Australian

Institute of Sport [111]. More publications by the same authors followed in the following

years up to this day. They represented a breakthrough in the prediction of tennis events, and

while investigating prediction, knowledge discovery also emerged. This series of papers will be

reviewed in this section. They all use data collected by Hawk-Eye from the 2012 Australian

Open Men’s draw (2012 – 2014 for [24]) and their main achievements, shown in the timeline

of Figure 3.7, are:

• Predict the type of the next shot – Section 3.4.1

• Predict the location of the next shot – Section 3.4.2

• Predict the style and point of impact of serves – Section 3.4.3

• Predict the outcome of a shot – Section 3.4.4

70 Chapter 3. The Arrival of a New Player: Visual Data in Tennis Analysis

Figure 3.7: Timeline of advances in tennis prediction using spatio-temporal data.

3.4.1 Predict the Type of the Next Shot

In 2013, a Dynamic Bayesian Network (DBN, explained in Section 2.6.5) was used to model

the sequence of events in a tennis point3 and predict the type of the next shot (returning shot,

winner or error) [111]. In such a model the probability of the next shot zt at time t of being of

a certain type given the type and Hawk-Eye obtained characteristics of the previous shot (zt−1

and xt−1 respectively) can be obtained through Bayes’ rule for a sequence of states:

P (zt | zt−1,xt) =
P (xt | zt)P (zt | zt−1)

P (xt | zt−1)
(3.1)

However, we know that the previous state zt−1 can only be a returning shot. Otherwise, the

point is over and zt would not even exist. Since the previous state is always the same (a

returning shot), the next state is not conditioned on it. Therefore, the DBN can be simplified

into a Bayesian Network (BN), and the previous formulation becomes:

P (zt | xt) =
P (xt | zt)P (zt)

P (xt)
(3.2)

This is calculated for each possible state zt (ztreturn , ztwinner and zterror), and the one with highest

probability is selected as the predicted state.

3Excluding the serve.

3.4. Prediction 71

The authors experimented with different subsets of Hawk-Eye features to find out which char-

acteristics are best predictors of the next shot. According to their results, the combination

of speed, impact location of the shot and the location of the players’ feet leads to the best

prediction: 68.52% AUC4 for winners and 76.09% for errors. Including the number of shots in

a rally worsens performance and authors believe that this is due to the high variance of this

parameter. Another possible explanation is that for longer rallies, the outcome of each shot is

less predictable as the influence of the serve diminishes, as shown in [7].

To further increase the prediction accuracy, the authors explore adaptive model techniques that

take into account the opponent’s behaviour. They withhold data from a single given opponent,

and the model trained in two phases: first using non-withheld data and then refined with the

withheld data. The withheld data does not contain feet locations, so it must be compared to

the non-adaptive model that also excludes feet location. When doing that, using speed and

impact location, accuracy improves from 63.62% to 77.28% for the prediction of winners and

from 61.12% to 71.85% for errors prediction. We can expect that prediction including players’

feet location will behave similarly and improve with the adaptive model.

3.4.2 Predict the Location of the Next Shot

After that, the authors predict the next shot location using the type of the previous shot and

its speed, location and angle [6; 26]. This is considerably more challenging than predicting the

next type of shot because the output space for shot type is small and discrete while locations

are continuous.

This is achieved using a local clustering method to select historical shots that were preceded

by shots with similar speed, location and angle to the incoming shot and their impact position

represented in a 2D GMM5 as shown in Figure 3.8b. Separately, each half-court is divided into

4 areas (plus an area outside this region), and a Dynamic Bayesian Network (DBN) is used to

find the probabilities of the shot falling in each of these discrete areas as shown in Figure 3.8a.

4Represented as the area under the curve plotting correct classification rate against false positives rate, with
the perfect score being 1.

5Gaussian Mixture Model, explained in Section 2.6.6

72 Chapter 3. The Arrival of a New Player: Visual Data in Tennis Analysis

Figure 3.8: Prediction of shot locations based on zones (a) and continuous regions (b), from [6].

The weights of the GMM are adjusted with these calculated probabilities and an example the

results is shown in Figure 3.9. Finally, two adaptive model techniques are used to improve

accuracy: (1) pre-game adaptation is used in the same manner as described in Section 3.4.1

and (2) on-line adaptation is implemented by including data from shots of the current match.

Regarding results, the model without adaptation performed best when using speed, start loca-

tion and player position – as for the prediction of shot type – reaching an average 74% AUC

over the five zones. Using pre-game adaptation increased the results by 3% – 7.4% (except for

one of the zones, for which prediction success stayed the same). As expected, the performance

of the on-line adaptation model increased with time, the AUC going from an average of 68.52%

in set 1 up to 82% average in set 5. The continuous-output predictions without adaptation had

an error of 1.7m for two of the players and 2.3m for the other one on average.

3.4. Prediction 73

Figure 3.9: Prediction of shot locations, from [6].

3.4.3 Predicting the style and point of impact of serves

The work presented so far is only concerned for predictions in the rally and excluding the serve.

However, the importance of the service for winning a tennis match is widely acknowledged [112]

and it is the focus of the next piece of work in the series of papers using Hawk-Eye data presented

here [24]. The main contribution of that paper is the discovery of players’ serve styles and,

based on this, the prediction of a service type and location dependent on the current match

context.

Serve Styles

First, each service is classified using manually defined classes based on whether the service

was valid and the direction of the service, to advantage or deuce court. Then, serves within

each category are clustered into 7 groups using the unsupervised k-means clustering technique,

described in Section 2.6.3. For this, each service is divided into two trajectories – before and

after bouncing – and each trajectory is represented as the ball’s locations and dynamics at 100

positions along the trajectory. This is illustrated in Figure 3.10 but showing only 3 points per

trajectory instead of 100 for clarity purposes. The distance between two serves is calculated as

74 Chapter 3. The Arrival of a New Player: Visual Data in Tennis Analysis

the mean of the pairwise Euclidean distance amongst the 200 points representing each serve,

100 for the serve trajectory before bouncing and 100 for the trajectory after the bounce. From

this, 7 styles of serve were uncovered on each side of the court, 14 in total, Figure 3.11 shows

clusters for serve trajectories on one-half of the court. Once clusters of serve trajectories are

established, the authors define a player’s serving style in terms of a normalised histogram of

each of the 14 types of services, as shown in Figure 3.12.

Figure 3.10: Representation of two serve trajectories with 3 points per trajectory, from [24].

Serve Prediction

Prediction is performed as a classification task in which the objective is to predict the cluster to

which the next serve will belong, amongst the 7 possibilities for either ad or deuce court. This

is performed with a random forest classifier (see Section 2.6.2). The best results are achieved

using feature vectors that capture the match score, and the serve styles of the player who is

serving and that of his/her opponent. This technique achieves 27.8% accuracy with respect to

predicting the cluster to which the next serve will belong.

The authors provide examples of the insights obtained from their work, and this is an excerpt

to illustrate it: ‘For Nadal, in normal situations his main serve tends to be down the line. In

break-point situations, however, almost half the time (48%) he serves wide of the court which

is totally different. Djokovic, on the other hand, does the opposite, in normal points he tends

to serve wide, but in break-points, he goes down the middle’ [24].

3.4. Prediction 75

Figure 3.11: Serve clusters for the advantage court, from [24].

Figure 3.12: Serve style histogram for Djokovic and Federer, from [24].

3.4.4 Predicting the Outcome of a Shot

In 2016 a method to predict the outcome of a point using player’s style and match context

was presented [25]. Predicting the outcome of a point is achieved by predicting whether the

next type of shot will be a winner or an error, which corresponds to a shot type classification

task. This is performed using a random decision forest classifier (see Section 2.6.2). The shot

features used by the classifier are:

• Angle, maximum height, average speed and instantaneous speed of the shot.

• Location of each player at the start and end of each stroke.

• Ground Stroke Speed Ratio: ratio between the ball speed of successive shots.

• Ground Stroke Weight Ratio: the ratio between the distance of the player making the

76 Chapter 3. The Arrival of a New Player: Visual Data in Tennis Analysis

current shot to the baseline and that of the opponent on the previous stroke.

• Lateral Player Movement Ratio: ratio of lateral distance covered by a player between

successive strokes.

Figure 3.13: Style histogram for Nadal, from [25].

Then, this simple model is enhanced using player style and context. A player’s style (style priors)

is defined using a histogram of single shots and shot combinations, and the context corresponds

to specific characteristics of the game such as score, court surface and other external factors

such as temperature.

The players’ style is defined similarly to the previously described work on serve style [24]. A

shot is characterised by sampling a number of points along its trajectory, and a dictionary is

learnt by clustering these using a K-means approach. Building the shot dictionary is based on:

3.4. Prediction 77

• Using assignment of single shots/shot combinations into items of the dictionary and min-

imising their reconstruction error.

• Minimising classification error when predicting the winner of a point using dictionary

words.

As in the previous section [24], once clusters of shots were established, the authors defined

a player’s style as a normalised histogram for each type of shot and shot combination, as

illustrated in Figure 3.13.

The authors evaluate their method in a test set of 9 349 shots and assess the performance of

their prediction of who will win a point using only shot features and also using style and/or

context. Incorporating style and context features yielded the best results, for which they

achieved a 0.38 Root Mean Squared Error6 when including shot index, set score and point

score information. Figure 3.14 illustrates how the point winning probability evolves as the

point progresses.

Figure 3.14: Point winning probability with style and context descriptors, from [25]. Rally
index is the shot index (first, second etc.) in the rally excluding the serve.

6This is calculated as
√
p(1− p), with p the confidence in the prediction that the player who won the points

would do so and p(1-p) the variance for a binomial distribution.

78 Chapter 3. The Arrival of a New Player: Visual Data in Tennis Analysis

3.5 Current Limitations

The work discussed in this chapter provides ways to find tennis patterns from spatio-temporal

data obtained from videos, whether the patterns be new ones or pre-defined. We also have seen

how spatio-temporal data can be used to represent a player’s style and make predictions at the

shot level. Previous work into the analysis of tennis from spatio-temporal data is promising

but also has some limitations:

1. Methods using manually annotated data, such as [105], cannot be widely applied. Firstly,

as we mentioned in Section 1.1, there is a limitation in the precision of data that can be

extracted manually, as the human visual system cannot record the exact bounce location

at the mm level. Secondly, the data so obtained can be biased by the annotators’ mental

state or their previous knowledge of the players. Finally, annotators must have expertise

in the field to produce accurate results. The availability of qualified people and the cost

associated with it limits the number of matches that can be realistically analysed.

2. Methods that implement automatic data collection evaluate their results in different ways,

most of the time in a qualitative manner (explained in Chapter 4). The lack of benchmark

datasets and evaluation protocols impedes the comparison between techniques and the

assessment of their accuracy.

3. The prediction work that we presented in Section 3.4 is based on Hawk-Eye data. Hawk-

Eye is currently only installed for major tournaments, and only researchers at Australian

research institutions have access to data collected at the Australian Open. Prediction

models adapted to the opponent need data from the two specific players, further reducing

the amount of data available. Therefore, the models presented here that adapt to the

opponent can only be applied to players that competed in most matches in the tournament

(Djokovic, Federer and Nadal) and can only be adapted using data from that tournament,

since no other Hawk-Eye data is available to the researchers [6; 24–26; 111]. In addition

to this, researchers using Hawk-Eye data have access to the information collected by

the system but have no control for obtaining additional data. For example, Hawk-Eye

3.5. Current Limitations 79

does not currently perform action recognition, and this is not used in models that use

Hawk-Eye data, but researchers have no way to implement action recognition for this

data.

4. The lack of a unified framework for knowledge discovery and prediction hampers the

comparison of results obtained from different techniques. Because different researchers

use different data extraction techniques, different sources of data (different tournaments,

for example), different data analysis techniques (shots belonging to clusters, exact impact

location of a shot or play patterns defined differently) it becomes challenging to compare

performance between different approaches. In our opinion, this reflects how the field is

still in an exploratory phase.

5. This chapter has shown promising directions of research for knowledge discovery and

prediction in tennis using spatio-temporal data. However, there is still need for research

in understanding how to translate these results into the real-world and have an impact

on changing play and training strategies for tennis players.

Figure 3.15 shows how the limitations described above fit in the context of spatio-temporal

analysis of tennis, incorporating the research described in this chapter. As can be seen, limita-

tions 1, 2, 3 and 4 can be addressed by a unified framework for the automatic extraction and

analysis of spatio-temporal tennis data, and this is our focus in the remainder of this thesis.

80 Chapter 3. The Arrival of a New Player: Visual Data in Tennis Analysis

Recognise
pre-defined tennis

tactics from
 player location

Chu &
 Tsai, 2010
[99]

Uncover new
 tennis patterns

using player and ball location
Terroba

et al., 2010
[101-103]

Recognise
pre-defined tennis

patterns from
 ball location

W
ang &

 Param
esw

aran, 2005
[98]

Prediction
W

ei et al., 2013 –
2016

[6, 23-25, 104]
Haw

k-Eye

M
anual annotation

SOURCES OF DATA
STATE-OF-THE ART

? ?

Im
pacton tennis

training and play
strategies (5)

Low
-cost autom

atic data collection system
 w

ith
quantitative evaluation for ball and player

location and high-level events

-
Reduced num

ber of
m

atches and players (3)
-

No high-level data (3)

-
Lacking precision (1)

-
Subjective (1)

-
Possible inaccuracies (1)

-
Requires at least one expert
per m

atch (1)

Autom
atic detection

LIM
ITATIONS

FUTURE
W

ORK
LIM

ITATIONS

Lack of a
unified

fram
ew

ork (4)

A unified fram
ew

ork for spatio-
tem

poral tennis analysis

-
No possible com

parison
am

ongst techniques due to
the lack benchm

ark
datasets and evaluation
protocols (2)

F
igu

re
3.15:

D
ata

sou
rces

an
d

lim
itation

s
for

state-of-th
e-art

ten
n
is

sp
atio-tem

p
oral

an
aly

sis.
In

b
lu

e,
state-of-th

e-art
research

p
ap

ers
an

d
th

e
d
ata

sou
rces

u
sed

in
th

em
.

In
red

,
cu

rren
t

lim
itation

s
an

d
w

ork
th

at
is

yet
to

b
e

d
evelop

ed
,

w
ith

an
in

d
ex

relatin
g

to
th

e
p
rev

iou
s

lim
itation

s
list.

In
green

,
ou

r
con

trib
u
tion

an
d

its
eff

ect
w

ith
in

th
is

con
tex

t.
‘?’

is
u
sed

b
ecau

se
th

e
w

ork
referen

ced
m

en
tion

s
th

e
u
se

of
‘lab

elled
v
id

eos’
w

ith
ou

t
sp

ecify
in

g
h
ow

th
ey

w
ere

lab
elled

.

Chapter 4

Seeing Like a Coach: Real-Time Data

Collection

In the previous chapter, we have seen how the analysis of spatio-temporal data can lead to

useful in-play prediction at the shot level and bring insights into players’ tactics and style.

We have also observed that most limitations for research in this area originate from a lack of

widely available data. With the objective to overcome such a challenge, we have developed a

low-cost system for collecting spatio-temporal tennis data in real-time. This chapter focuses

on the hardware and software components of our system, the algorithms developed for our

technology and the analysis of their performance. It is based on a paper that was presented

at the Mathsports International Conference in Loughborough in 2015 [11]. I supervised the

implementation of this work as postgraduate student group project by George Barnett, Casper

da Costa-Luis, Jose Garcia Maegli, Martin Ingram and James Neale. It was heavily based on

my first year PhD research in monocular tennis video analysis.

The main contribution from this chapter is our low-cost spatio-temporal tennis data collec-

tion system, with its novel design and implementation. In addition to this, we also provide

an overview and comparison of existing tennis ball and player detection algorithms, which is

currently missing in the literature. This chapter addresses the Vision Layer of our framework

shown in Figure 1.11.

81

82 Chapter 4. Seeing Like a Coach: Real-Time Data Collection

4.1 System Requirements and Components

In this chapter we present our novel low-cost spatio-temporal tennis data collection system

to obtain the player and ball locations relative to the court in real-time. In Section 1.1 we

showed that some highly complex spatio-temporal tennis data collection systems already exist.

However, their cost and complexity limits the use of these technologies to professional players

and elite venues. This is why we developed a system more accessible to the general public.

Taking this into account, the principal requirements of our technology are:

• Accurate: the accurate localisation of the ball and player location is essential for our

system. Previous work in spatio-temporal tennis analysis described in Chapter 3 use

clustering techniques or space discretisation that leaves space for a margin of error with-

out loss of performance. We determine the acceptable error threshold based on expert

umpires’ performance. Figure 4.1 shows the umpire errors of challenged line calls ac-

cording to Hawk-Eye data from 1 473 challenges during 15 tournaments between 2006

and 2007. The maximum error is 10cm. It is important to note that umpires at major

tournaments (where Hawk-Eye is available) are highly qualified and exact ball location

is easier to determine when bouncing next to the line, compared to bounces occurring at

locations without nearby landmarks. Therefore we expect the error in the ball and player

localisation from less expert manual annotators to be even higher in the general case.

• Real-time: many applications of this system would notably benefit from collecting and

processing the information in real-time. For example, using it for line calling or providing

feedback to players during training.

• Unobtrusive: after discussing with tennis coaches, we concluded that most tennis players

prefer unobtrusive systems that will not interfere with their performance. This rules out

the possibility of using wearable devices and racket sensors in our work.

• Portable: for our system to be accessible to the general public it must be able to be

transported to and installed in any court quickly and easily.

4.1. System Requirements and Components 83

• Low cost: existing technologies like Hawk-Eye and Playsight Smart-Court (see Sec-

tion 1.1) are limited to major tournaments or a small number of exclusive tennis clubs

due to their cost. We want to build a system which is more affordable and accessible to

the general public.

Figure 4.1: Umpire errors of challenged line calls according to Hawk-Eye [113]. Filled circles
represent the proportion of challenges at each ball position and open circles are the proportion
of line judge errors.

Decisions over the hardware used, software components and the development of algorithms

for the different components of our detection system are framed by these constraints and the

trade-offs between them. The rest of the chapter focuses on the main components of our system:

1. Hardware and Software Components – Section 4.2

2. Court Detection – Section 4.3.

3. 2D Player Detection – Section 4.4.

4. 2D Ball Detection – Section 4.5.

5. 3D Ball and Player Position (from 2D Data) – Section 4.6

84 Chapter 4. Seeing Like a Coach: Real-Time Data Collection

4.2 System Components

4.2.1 Hardware

A clear image of the ball from at least two cameras is required at all times in order to accurately

infer its 3D position. To guarantee this, we decided that the minimum number of cameras

required is four, one at each corner of the court, as shown in Figure 4.2. The systems also

requires a computer connected to the cameras to process the frames in real-time and store the

recordings for subsequent analysis. Finally, a mechanism to synchronise frame capture from

the four cameras is also necessary to ensure the accuracy of the 3D location calculation.

Figure 4.2: Configuration of the detection system hardware.

More specifically, the characteristics of the equipment used for our data collection system pre-

sented in this thesis are as follows. The camera model chosen is the Basler Ace acA 1300-60gm,

a high-resolution (1280× 1024 pixels) and high frame rate (60 fps) monochrome camera. High-

resolution and frame rate are important to minimise motion blur, and we chose monochrome

cameras to increase computational speed, considering that colour is not an essential attribute

for object detection in our setting. We have complemented the cameras with low distortion

Kowa LMVZ4411 lenses. The cameras are connected to a four-port Gigabit Ethernet card

through Gigabit Ethernet cables that have a dual function: to deliver the camera capture at

high speed to the computer and provide Power over Ethernet to the cameras, reducing cabling

requirements. The computer used for processing is an HP Z620 Desktop Workstation with a

4 core processor1, a fast 400GB PCI-E SSD and a GTX 980 NVIDIA graphics card. The system

is low-cost, unobtrusive and portable, fulfilling three of the system constraints listed earlier.

1Intel Xeon(R) CPU E5-1630 v3 at 3.70GHz.

4.2. System Components 85

4.2.2 Software

Our software is composed of three layers as shown in Figure 4.3: frame capture, frame processing

and display.

Frame Capture The Pylon Camera Software Suite was used to interface with the cameras

and set properties such as exposure. An external 60 Hz signal generator was built to produce

synchronised frame capture signals for the four cameras.

Frame Processing The computer vision part of the project is implemented in C++ using the

OpenCV library [43] with an object-oriented design so that the system can easily be extended

for new features. It is organised as a multi-threaded application in which player and ball are

detected independently and in parallel for each frame (Sections 4.4 and 4.5 respectively) before

the information is combined to obtain their 3D positions (Section 4.6). By processing the

frames using eight parallel threads, the processing speed increases, and we are able to run our

detection algorithms in real-time.

Figure 4.3: Software components of our system.

86 Chapter 4. Seeing Like a Coach: Real-Time Data Collection

Display The data obtained from the frame processing module is fed into the data display

module, which presents a 3D virtual environment where the court, player and ball positions are

shown. It is a user-friendly display (screen-shot shown at the bottom of Figure 4.3) designed

in Unity, which facilitates cross-platform portability.

4.3 Court Detection

Detecting the court lines is a necessary step for our system in order to represent the position of

the players and ball within a meaningful coordinate system. Also, since the dimensions of the

court in the real-world are known, as shown in Figure 2.1, identifying the court on the frame

allows finding the extrinsic camera parameters (explained in Section 4.6.1) and the mapping

of frame coordinates to real-world coordinates, as will be described in Section 4.6. Therefore,

court detection is a crucial step for the vision system presented here, since any error translates

to errors in the real-world coordinates of the player and ball. The main difficulties in detecting

the court are:

• Lines can be blurry, especially on grass or clay surfaces.

• Lines can be partially occluded, generally by players.

• Non-court lines can be detected, for example when there are grandstands.

• The court may be only partially visible, with part of it out of the frame.

• When some court lines are not detected, or extra lines are detected, finding the corre-

spondences between lines on the frame and specific court lines (e.g. baseline) is difficult.

Our work on court detection was first developed for tennis broadcast videos, which are monoc-

ular, RGB and non-static. In this setting, all of the challenges mentioned above occur, and we

developed an algorithm able to address them.

4.3. Court Detection 87

4.3.1 Related Work

Previous work on court detection and tracking has proven successful. In 2003, an algorithm

robust against occlusions, shadows and partial views of the court was developed [114], shown

in Figure 4.4. In 2010, another piece of work was presented achieving success in court detection

in videos from the Australian Open (10 135 frames), French Open (5 026 frames), Wimbledon

(7 667 frames) and US Open (8 327 frames), with an accuracy of 99%, 98%, 96% and 99%

respectively [115]. The approach used by both studies is based on three main steps:

1. Extract white pixels.

2. Detect lines, using RANSAC2 [115; 116] or Hough Transform [114].

3. Find correspondences between lines in the image and specific court lines, e.g. baseline.

(a) Partial view of the court. (b) Partial view of the court.

(c) Scene with strong shadow. (d) Scene with large occlusion.

Figure 4.4: Tennis court detection on different surfaces, from [114].

2Random sample consensus.

88 Chapter 4. Seeing Like a Coach: Real-Time Data Collection

4.3.2 Court Detection: Our Approach

Following the three steps listed above, this section describes our implementation of court de-

tection. We also include two additional components relative to existing work: net detection

and a court detection confidence computation.

Extract Court Pixels

This is the first step in detecting the tennis court. It is fundamental to find the correct lines and

to reduce the search space for line fitting algorithms, which are more computationally expensive

than pixel selection. There is a trade-off between being too restrictive and omitting court pixels

or being too permissive and including pixels belonging to the players, net or background. Court

pixels are selected based on these two characteristics:

• Colour: We know that the lines of tennis courts are always white. However, because of

illumination, video bandwidth and other factors, what we perceive as white in the videos

is not pure white. For this reason, pixels with an intensity value higher than 200 in a

monochrome image of the court (the maximum pixel intensity value that can be reached

is 255) are selected.

• Belong to a line: For each pixel selected based on colour, we verify that its neighbouring

pixels, within a certain distance τ either vertically or horizontally, have a considerably

darker colour. τ is determined based on the approximate width of the tennis court lines

and a threshold th for the intensity difference is selected. As shown in Figure 4.5a, if

Mij (pixel in the ith column and jth row in image M) belongs to a vertical line, then

Mij −M(i+τ)j > th and Mij −M(i−τ)j > th. However, this is not the case in Figure 4.5b.

The same approach is used for horizontal lines, withMij−Mi(j+τ) > th andMij−Mi(j−τ) >

th.

Each element of the source image is analysed based on these features, and court pixels are set

to white, as illustrated in the image of Figure 4.6.

4.3. Court Detection 89

(a) The pixel belongs to a line. (b) The pixel does not belong to a line.

Figure 4.5: Schematic representation to detect whether a pixel belongs to a line, with τ = 3.

Figure 4.6: Image resulting from court pixel extraction.

90 Chapter 4. Seeing Like a Coach: Real-Time Data Collection

Court Lines

Once the court pixels are extracted, lines are detected through the following steps:

1. Line detection: This is achieved by applying the probabilistic Hough Transform algorithm

(explained in Section 2.5.3) to the court pixels image, like the one shown in Figure 4.6.

2. Selected lines classification: The lines that have been detected are classified into horizontal

and vertical lines on the left and right-hand-side of the image separately. Next, the lines

are sorted within each of the categories: horizontal lines are ordered by y-coordinate from

top to bottom (left to right if the y coordinate is the same), left vertical lines are ordered

by x-coordinate from right to left, and right vertical lines from left to right (from top to

bottom if the x-coordinate is the same). A more detailed description of this process is

provided in Appendix B.

3. Merging of selected lines: For each group of lines, the ones that are considered to be du-

plicates are merged. Appendix C contains a comprehensive explanation of the technique.

Court Correspondences

Now that a number of line candidates have been obtained, the next step consists in finding

correspondences between lines in the image and specific court lines, e.g. the baseline.

For each possible combination of a pair of horizontal lines and a pair of vertical lines, we

calculate the four intersections between horizontal and vertical lines3. Then, we try to find

the correspondences between these four points and four points of court line intersections for

eleven different court configurations, shown in Appendix F. For example, for configuration 1

in Appendix F, we will assume that the four points found on the frame are the four outermost

corners of the court. Based on that, we will infer where the rest of the court lines are in the

frame and calculate how accurate this hypothesis is. In this way the accuracy of each of the 11

court configurations is calculated.

3The middle line of the court is excluded in finding court correspondences as it is generally not a white line,
since the net is used to mark the middle of the court.

4.3. Court Detection 91

Court Accuracy

To measure how accurately a possible court configuration matches the court in the current

frame, an image is generated where all court lines are projected onto a frame based on the

current hypothesis (which contains only four lines), as shown in Figure 4.7b and explained in

detail in Appendix E. Then we perform a bitwise AND operation between the projected court

(Figure 4.7b) and the court pixels (Figure 4.7a). The accuracy is obtained by applying the

following criteria to the resulting frame:


+1 For each pixel of the projected court that matches a court pixel of the frame.

−0.5 For each pixel of the projected court that does not match a court pixel of the frame.

0 For each pixel of the projected court that lies outside of the frame.

Finally, the hypothesis with highest accuracy (amongst the 11 court configurations) is selected.

This approach allows detecting the court event from a partial view, as shown in Figure 4.8.

(a) Frame court pixels. (b) Court model after transformation.

Figure 4.7: The two images necessary to measure the accuracy of the court projection.

Figure 4.8: Court detection (in orange) from a partial view.

92 Chapter 4. Seeing Like a Coach: Real-Time Data Collection

Court tracking

If the court was found in the previous frame, rather than repeating the protocol for court

detection, the court is tracked based on its previous location. Court tracking consists in finding

the new position of the four corners found when searching for the court, and this is done

by separately tracking the four court lines that intersect at these corners. The algorithm for

tracking a line consists of selecting 100 points4 equally spaced along the line and finding the

neighbouring pixel in any direction in the new frame with the highest intensity, provided it is

above the intensity threshold used in court detection. If more than 50 points are found (half of

the sampled points), the new court line is the one resulting to fitting them via a least-squares

method. Otherwise, the court is searched again.

Location of the Net

The court dimensions and location of the centre line of the court are known from the court

detection. The frame is scanned bottom to top from this line for a certain distance, set to the

10% of the court length5. Similar to the tracking algorithm, 100 points in the middle line are

selected. For each of them, the pixel with the highest intensity among the 100 pixels above it is

selected and the line best fitting these points is taken as the net, displayed in blue in Figure 4.9.

Evaluation

Finally, we devised an evaluation step in the court detection and tracking algorithms. This

step consists in subtracting the source image (real image of the court) from the projected

court. The projected court is a binary image which has only white (on the court) and black

(background) pixels, with values 1 and 0 respectively. Therefore: WhitePixel − BlackPixel =

WhitePixel , WhitePixel − WhitePixel = BlackPixel , and black pixels are always left un-

changed since their value is 0 already, meaning that BlackPixel − BlackPixel = BlackPixel

4Adding more points would also work but would slow down the algorithm.
5Calculated using the perspective transformation of the court lines.

4.3. Court Detection 93

and BlackPixel −WhitePixel = BlackPixel . In the resulting frame, pixels with value 1 cor-

respond to matching pixels (in the projected and detected court) and 0 pixels correspond to

non-matching ones. The subtraction will lead to an empty matrix (all pixels black) if all the

pixels of the source image that are in the same position as the projected court are white, re-

sulting in the highest accuracy score. The accuracy score has a maximum value of 100 and

is calculated as 100 minus the percentage of non-zero pixels in the subtracted image over the

total number of pixels in the projected court image. Accordingly, a higher number of white

pixels in the subtracted image will lead to lower accuracy score.

However, as previously mentioned the pixels in the source image should be pure white, and

this differs from what we perceive as white in the image. In addition to this, the width of the

lines of the projected and the real court are different. To overcome these limitations, we added

a preprocessing stage to the source image and generated a new image by applying a modified

thresholding operation. For every pixel in a monochrome representation of the image of origin

that has an intensity value above 200 (out of a maximum value of 255), the pixel at the same

location in the new image (initially all black) and its neighbours within a radius of 5 pixels

are set to white, to account for court line thickness. After this preprocessing of the source

image, the subtraction to the projected court is performed. Figure 4.9 shows examples of court

projections and their accuracy bar. It can be seen that the bar truly represents the accuracy

of the court fitting.

4.3.3 Results

Court detection was evaluated using our own metric, the accuracy score explained in Sec-

tion 4.3.2, due to the lack of a unified protocol for the evaluation of this task. Our court

detection algorithm had an accuracy score higher than 70% in 12 out of the 15 tested cases

which included low-resolution and high-definition images of courts with occlusions or partial

view in all kinds of surfaces (grass, clay and hard). The three cases where the algorithm failed

corresponded to grass surfaces with the marked lines worn out, but it was successful in another

3 grass surfaces. For the isolated cases in which the court detection had an accuracy score

94 Chapter 4. Seeing Like a Coach: Real-Time Data Collection

(a) Accurate court projection (68%) on grass
surface.

(b) Inaccurate court projection (11%) on grass
surface.

(c) Accurate court projection (86%) on hard
surface.

(d) Accurate court projection (86%) on hard
surface.

Figure 4.9: Display of the court projection and its accuracy.

lower than 70%, the use of an accuracy threshold allowed to reject that fit as too poor and not

continue on to player and ball detection for those cases until a good fit was found.

4.4 Player Detection

A broad range of techniques have been studied to solve this task. They will be reviewed in

the next section, but it is important to note that the characteristics of the video are crucial

to select the approach that is best suited. As mentioned above, our previous work addressed

player detection in monocular RGB videos, where the camera was moving [117]. This was

developed with the idea of using it with broadcast videos. However, inferring the 3D location

of objects from monocular videos is extremely challenging and an ongoing area of research.

For this reason, we decided to build our system with four cameras as shown in Figure 4.2 and,

in this setting, our objective is to detect only one player per camera – the one closest to it

4.4. Player Detection 95

– resulting in a two-to-one camera to player ratio. The biggest challenges in detecting tennis

players in real-time from monochrome fixed cameras are:

• Moving objects in the background (e.g. people playing on an adjacent court or spectators).

• Missing colour information, as our cameras are monochrome.

• Player representation: it is often hard to detect specific landmarks (e.g. players’ feet),

but specific coordinates are needed to synchronise player detections from different views.

In other situations, additional challenges include:

• Moving camera: this causes movements in the background which makes it more difficult

to detect moving objects such as the ball or players and track them.

• Use of broadcast videos: they often contain additional information such as score displays,

and the player and court might not be present in some frames (e.g. footage of spectators,

player close-ups).

4.4.1 Related Work

Table 4.1 summarises the most relevant work in tennis player detection over recent years by

showing the approach used and the characteristics of the footage analysed. The techniques

referred in the table are summarised below:

• Dominant Colour Detection (DCD): the application of this technique to player de-

tection was introduced in [118]. It consists in calculating the mean value µ and variance

σ2 for each RGB channel (e.g. µr and σ2
r are the mean and variance of the red channel)

in the area inside of the court and the area immediately outside of it (“background”).

Players (“foreground”) are detected by selecting the pixels that are very different from

these values. For example, a given pixel p with value r in its red channel is considered to

be in the background if |r − µr| < 3σ2
r , or if the same condition is satisfied for the other

colour channels.

96 Chapter 4. Seeing Like a Coach: Real-Time Data Collection

• Frame difference (FD): In [119] players are detected by detecting salient/foreground

objects through the subtraction of consecutive frames. Camera movement is compensated

by using the court lines as reference. This approach has the drawback that if the player

is not moving much, his/her contour might not be accurately detected.

The results from the pieces of research presented in Table 4.1 are promising but cannot be

directly applied to our setting in which we do not have RGB information and need to coordinate

views from multiple cameras. In addition to this, most publications only present a qualitative

analysis of the results and do not provide information on the running time of their algorithms.

This makes it difficult to make decisions about algorithm design, and it is also problematic

for comparing them to our work. Nonetheless, and as will be shown in the next section, our

approach not only uses knowledge uncovered by this previous work but also includes some new

ideas to improve accuracy and execution speed in our setting.

4.4.2 Player Detection: Our Approach

Our design choices are motivated by two constraints: accuracy and processing speed, since we

want our system to be real-time. Based on these constraints and the existing literature described

above, we decided to use a combination of background subtraction and frame differencing for

the player detection. Our approach consists of two main steps: background reconstruction and

player detection itself.

Background reconstruction: generating the background image

We describe the background image of a video as the features that do not move or change over

time (or do so very slowly) and the intuition is to select the pixels that are stable through

time as the background. The background image is initialized to 0 (black image), as shown in

6Only the most challenging videos were tested for these results and details on testing methodology are absent.
7Player location defined as the player’s bounding box, and considered correct if at least 70% of the player’s

body is actually in the bounding box.
8In [120] the authors combine DCD with ED, for which they use the Sobel operator [122].

4.4. Player Detection 97

Paper
Multiple Cameras

RGB
Detection

RT Acc

camera movement method

Vinyes et al., 2015 [11] - - BS –

Vinyes, 2013 [117] - FD Q

Dang et al., 2010 [115] - FD 86.6%6

Jiang et al., 2008 [120] - DCD + ED N/A Q

Han et al., 2007 [118] - DCD N/A 95%7

Miyamori and Iisaku,
2000 [121]

- FD N/A –

Sudhir et al., 1998 [119] - FD N/A Q

Table 4.1: Previous work in player detection. Detection methods are: BS – Background subtrac-
tion (described in the next section), DCD – Dominant Colour Detection, ED – Edge Detection8,
FD – Frame difference, RT – Real Time, Acc – Accuracy, Q – only qualitative results provided.

Figure 4.10. Then, each frame is divided into a grid of 8 pixels × 64 pixels blocks, because

people are usually taller than they are wide. Then, blocks at the same position are compared

between consecutive frames. The similarity between two blocks is estimated by calculating

their pixel-wise intensity difference. If 98% of pixels have an absolute intensity difference lower

than 3, the block is considered stable and incorporated into the background image. Otherwise,

the block is not included in the background. This process is iteratively applied to new frames

until all blocks in the background image are filled, meaning that a complete background image

has been obtained. The process is applied to each camera separately, leading to one complete

background image per camera.

During this process, player detection is not performed, but the process is fast enough (in the

order of ms) for the delay to be negligible (we expect that at the beginning of a match/training

98 Chapter 4. Seeing Like a Coach: Real-Time Data Collection

session players are still getting into position). Selected steps from this process are shown

in Figure 4.10, and it can be seen how the initially empty background image progressively

incorporates background blocks until a complete background image is generated. A complete

version is shown in Appendix D. After the background is generated, it gets updated with

every new frame captured to incorporate changes to the background (e.g. illumination); this

is done through a weighted sum of the current background image with a 0.99 weight and the

incoming frame with a 0.01 weight. The incoming frame has a very low weight in order to avoid

incorporating non-background changes (e.g. a player moving) and to include changes that are

more stable over time (e.g. changes in illumination).

Player detection

Once the background image is generated, player detection can be achieved as illustrated in Fig-

ure 4.11. First, foreground pixels in the current frame are detected by calculating the absolute

difference with the background image. Then, noise is removed by applying a binary threshold-

ing operation, from which pixels with very low intensity (lower than 10) are discarded. Once

this is complete, player detection takes place by selecting the foreground pixels within a region

of interest (ROI), corresponding to the area in which the player can be located. For the frames

in which the prior player position is unknown, the ROI for each player corresponds to their half

court and detection is performed in this area. For the frames in which the prior positions are

known, detection is carried out only in areas within a given distance d of the player, with d

defined according to the maximum speed of a player’s movement. The average size of a player

in our videos is 50 pixels × 200 pixels. Our estimated maximum distance covered by a player

between two consecutive frames in the x direction (generally corresponding to movement to the

left or right) is 35 pixels, 70% of the player’s width. In the y direction (generally corresponding

to movement up and down or forward and backwards), we estimate that the maximum distance

a player can move between two consecutive frames is 60 pixels, which represents 30% of the

player’s height, since lateral movements are generally of wider range than vertical movements

and forward/backwards movements appear smaller than lateral movements due to the perspec-

4.4. Player Detection 99

Figure 4.10: Background generation example. Initially the background image is empty and it
progressively incorporates background blocks until a complete background image is generated.

100 Chapter 4. Seeing Like a Coach: Real-Time Data Collection

(a) Frame (b) ROI (c) Background (d) Foreground

(e) Frame (f) ROI (g) Background (h) Foreground

Figure 4.11: Player detection at the first iteration (a to d) and at a later stage (e to h). ROI
is Region of Interest.

tive. Once the collection of foreground pixels within the appropriate ROI is obtained, contours9

are extracted using the OpenCV implementation findContours based on [123] and the contour

with the largest area is selected. The precise location of the player is represented as the centre

of mass (x̄, ȳ) of the area within the selected contour and is calculated as follows:

x̄ =
m10

m00

, ȳ =
m01

m00

(4.1)

where m are the spatial moments:

mpq =
∑
x,y

Ix,y × xp × yq (4.2)

and Ix,y is the intensity of the pixel with coordinates x and y in the input image.

9Collection of foreground pixels that represent the boundary of an object.

4.4. Player Detection 101

4.4.3 Results

The player detection results are 2D coordinates that represent the estimated centre of mass

of the area within the selected player contour on the frame. The ground truth player data is

manually labelled and stored as the coordinates defining a rectangle surrounding the player.

The results presented in this chapter (also for the ball and inferred 3D locations) are the

analysis of 5 342 frames from 12 videos in 3 different scenarios (4 videos for each scenario, one

per camera). Videos can be accessed at: https://www.doc.ic.ac.uk/sv212-tennis/.

The automatically detected centre of mass is within the ground truth bounding box in all of

the analysed frames. However, to further evaluate our results we also calculated the detection

error as the Euclidean distance between the centre of the ground truth bounding box and the

detected centre of mass. Figure 4.12a shows that the errors never exceed 40 pixels.

Considering that the bounding box of the player contour in our videos is up to 50 pixels width

by 200 pixels height and that we are comparing centre of mass (in experiments) to the centre of

the bounding box (in ground truth) we consider our results to be of good quality. In addition

to this, we decided to also represent the error as a relative measure with respect to the size

of the bounding box. We noticed that a given error distance of x pixels represents a larger

mistake if the bounding box of the player is smaller. To reflect this, the error was re-scaled

according to the size of the ground-truth bounding box by taking its ratio in the height and

width dimensions. Figure 4.12b shows these results for each camera, and we can see that for

80% of the frames the error is less than 20% of the bounding box, and the error never exceeds

30%. It is also interesting to note that the results are more stable between the different cameras

in Figure 4.12b than in Figure 4.12a. This is because the player is closer to some of the cameras

than others. For example, camera 1 has a bigger error in terms of pixels than the other cameras.

This is probably because the player is very close to it, causing the distance between the detected

centre of mass and the manually labelled centre of the bounding box to be larger in absolute

terms, but when the error is scaled to the player size, it seems to be closer to the results from

the other cameras.

https://www.doc.ic.ac.uk/sv212-tennis/

102 Chapter 4. Seeing Like a Coach: Real-Time Data Collection

(a) As a number of pixels.

(b) As a percentage of its bounding box.

Figure 4.12: Accuracy of player detection.

4.5 Ball Detection

After having discussed our player detection algorithm, this section focuses on tennis ball de-

tection. Our objective is to detect the ball from at least two cameras at any point in time in

order to be able to infer its 3D location. Our system was designed with four cameras so that

when the ball is very far away from a camera or occluded by a player, it will still be visible by

at least two other cameras. The main challenges in this task are the following:

4.5. Ball Detection 103

• Ball size: the ball is very small compared to the court and players dimensions. This

makes it harder to detect. For example, noise pixels in the frame differencing (as used to

detect players) might form structures of similar size to the ball.

• Ball speed: even if the ball shape is a sphere, its appearance may be that of an ellipse

with variable parameters when travelling at high speed (this effect is called motion blur).

• Occlusions: the ball might be occluded by a player, and its image may also merge with

that of the racket when it is being hit.

Tracking a player only differed from detecting a player by reducing the region of the image

that was processed. We knew that the player should be close to its previous location but

the direction in which she/he was moving was not deterministic (i.e. a player might decide to

change direction at any time). By contrast, the tennis ball follows the laws of physics and

some trajectories are not possible (e.g. the ball will not change trajectory without impacting

with another object). This has a strong effect on the tracking algorithms as we will see later.

Additional challenges coming from the settings of our system are the same as in Section 4.4

(i.e. moving objects in the background and lack of colour information since we use monochrome

cameras).

4.5.1 Related Work

Table 4.2 summarises previous work on ball detection. Most successful approaches start with

the extraction of foreground pixels and their clustering into entities, by pixel proximity. This

results in a number of ball candidates since, as we just mentioned, the small dimensions of

the ball mean that they may get confused with noise. The most complicated part in the ball

detection comes at this stage when candidates must be classified and the best one selected –

this is where approaches differ. As can be seen in Table 4.2, some algorithms focus on selecting

the best candidate based on the ball features alone [124; 125], while others also look at possible

ball trajectories [126–128], taking advantage of the fact that ball trajectory can be modelled

using the laws of physics.

104 Chapter 4. Seeing Like a Coach: Real-Time Data Collection

Ball features

Selecting the best ball candidate can be done using different features. Colour, size and shape

are the most common and Table 4.2 reveals which features are used for each of the algorithms

presented. In [124], the best candidate is selected solely on colour, which might lead to inaccu-

racies as the colour of the tennis ball in an image can be affected by the colour of neighbouring

pixels due to the camera resolution. This is why also looking at shape similarity seems a good

idea. Finding which ball candidate has a shape most similar to a tennis ball can be approached

in many different ways. In [126; 128] the authors only look at the height to width ratio, and

it seems to give good results in their work. [127] takes a more sophisticated approach. First,

an ellipse is fitted to each blob of pixels with the potential to be the tennis ball using the least

squares criterion. Then, an SVM is used to classify them as tennis ball shape or other shape

based on the following features of the fitted ellipse: (1) Ellipse centre coordinates, (2) Major

and minor axes of the ellipse, (3) Mean of HSV10 channels within the ellipse and (4) Gradient

vectors11 from a number of points in the ellipse contour.

Ball trajectory

In 2004, Yu et al. incorporated a new dimension into ball detection [128]. Besides looking at

whether a candidate looked like a ball, they also took into account whether its motion was con-

sistent with the trajectory of a ball. They used a Kalman Filter (more detail in Appendix G)

to model tennis ball trajectories and found out which candidates contributed to plausible tra-

jectories. On the same lines, a new approach was presented in [127], this time using a particle

filter. This is a methodology that is used to solve problems in signal processing and Bayesian

inference. The system state is defined as the ball position and velocity, and state transitions are

modelled from the laws of physics with added noise. A more detailed description of the method

is given in Appendix H. Most recently, a new approach was presented where the authors worked

with the following constraint: the ball should follow a semi-linear trajectory12 at a speed within

10Hue, Saturation, Value colour space
11Directional change of pixel intensity
12Piecewise linear trajectory.

4.5. Ball Detection 105

some specified boundaries [126]. Instead of modelling entire ball trajectories, a ball candidate

is added to a trajectory, if it follows a locally linear path. This assumes a non-spinning ball,

and to model spin a more complex model would be needed.

Comparison

It is hard to compare the different techniques shown in Table 4.2 for two main reasons. First,

there is no benchmark dataset or standardised method to calculate tracking accuracy in this

domain, and each paper presents their results differently:

• In [124] the authors only provide qualitative results through visual inspection.

• In [128] results are presented as a percentage of the frames in which the ball was detected

or tracked (average of 77%), but they do not offer a quantitative measure of the error

distance in ball tracking.

• In [127] the authors analyse their results through visual inspection only, and qualify their

results as ‘excellent’ for 69 out of 70 shots.

Second, some of the work presented has a goal that requires ball tracking but is different from

it (e.g. detecting high-level events), and their results are only analysed for the final task [125;

126]. However, based on our visual examination of the images shown in the above-mentioned

publications, we consider that all the algorithms that we have discussed produced qualitatively

acceptable results.

Applicability to our setting

To see which of the above-presented techniques could be used in our work there is a major issue:

the cited work does not provide information on running time, and it is crucial that our system

runs in real-time. However, amongst the work shown in Table 4.2, we consider [125; 126]

to be closer to our problem because they do not use colour information and our videos are

106 Chapter 4. Seeing Like a Coach: Real-Time Data Collection

P
ap

er
B

all
featu

res
T

ra
jectory

R
esu

lts

C
olou

r
S
ize

S
h
ap

e
E

x
tra

P
in

gali
et

al.,
1998

[124]
-

-
-

N
/A

V
isu

al
in

sp
ection

,
q
u
alitative

an
aly

sis.

Y
u

et
al.,

2004
[128]

-
K

alm
an

F
ilter

R
esu

lts
p
resen

ted
as

th
e

n
u
m

b
er

of
fram

es
in

w
h
ich

th
e

b
all

w
as

d
etected

.

Y
an

et
al.,

2005
[127]

-
-

P
article

F
ilter

O
n
ly

q
u
alitative

resu
lts

th
rou

gh
v
isu

al
in

sp
ection

.

O
’C

on
aire

et
al.,

2009
[126]

-
B

all
can

d
id

ate
is

far
aw

ay
from

th
e

oth
er

can
d
id

ates

S
em

i-lin
ear

p
ath

an
d

sp
eed

con
-

strain
t

T
h
e

ob
jective

is
to

d
etect

even
ts

an
d

resu
lts

on
ly

p
rov

id
ed

for
th

is
task

.

T
each

ab
arik

iti
et

al.,
2010

[125]
-

-
L

o
cation

N
/A

T
h
e

ob
jective

is
to

d
etect

even
ts

an
d

resu
lts

on
ly

p
rov

id
ed

for
th

is
task

.

T
ab

le
4.2:

P
rev

iou
s

w
ork

in
b
all

d
etection

.
[128]

an
d

[126]
u
se

th
e

w
id

th
/h

eigh
t

ratio
to

classify
th

e
sh

ap
e

an
d

[129]
u
ses

ellip
se

fi
ttin

g
ch

aracteristics.

4.5. Ball Detection 107

monochrome. In addition to this, it has been recently shown that tracking using Kalman

Filters, Particle Filters and Random Forests perform similarly, and Random Forests perform

better for high noise measurements [130], which is our case. For these reasons, our approach

involves using Random Forests to detect the tennis ball based on ball appearance and trajectory,

as will be described in more detail in the next section.

4.5.2 Ball Detection: Our Approach

Our approach to ball detection is presented here, and it can be seen to have some common

features with previous work and also contribute new ideas. First, we describe in more detail

how foreground pixels are detected and clustered into ball candidates. Then we propose a novel

approach for selecting the best candidate. We employ Random Forests to learn to identify ball

shape (using the seven Hu moments, described later) and ball trajectory.

Extract foreground pixels

The aim of this stage is to extract the pixels that have changed from the previous frame: these

pixels are intended to represent motion. Given a frame at time t, the pixels representing motion

are stored in a matrix that will be referred to as motion matrix. As illustrated in Figure 4.13,

it is computed through the following steps:

1. first motion: Calculate the absolute pixel intensity difference between frames t − 1 and

frame t and threshold the image, in order to keep only the pixels in the highest decile of

intensity change. This frame will contain the moving objects which include the current

ball position at time t and the ball position at t− 1.

2. second motion: Similar to the previous step, calculate the absolute pixel intensity differ-

ence between frames t + 1 and frame t − 1. In this case the frame will contain the ball

position at t+ 1 and at t− 1.

108 Chapter 4. Seeing Like a Coach: Real-Time Data Collection

3. In the motion matrix, set the pixels as in first motion and then set to 0 those pixels which

are non-zero pixels in second motion.

Figure 4.13: Diagram of motion extraction for ball detection, inspired by [131].

Finding and selecting candidates

Next, contours of ball candidates are detected on the motion matrix using the OpenCV im-

plementation findContours, based on [123]. Then the best candidate is selected by assigning

a score to each potential ball contour using two Random Forest classifiers, explained in Sec-

tion 2.6.2. Each of the Random Forests has a maximum number of 500 trees with a maximum

depth of 15 nodes and were trained using six videos each.

The first classifier is trained to recognise a ball contour shape based on the contours’ Hu

moments and the contour area, using 26 530 candidates. The seven Hu moments of a contour

are descriptors invariant to image scale and rotation. Following from Equations (4.1) and (4.2)

4.5. Ball Detection 109

and using the same notation, the seven Hu moments are calculated as follows (from [9]):

hu[0] = η20 + η02

hu[1] = (η20 − η02)2 + 4η211

hu[2] = (η30 − 3η12)
2 + (3η21 − η03)2

hu[3] = (η30 + η12)
2 + (η21 + η03)

2

hu[4] = (η30 − 3η12)(η30 + η12) + [(η30 + η12)
2 − 3(η21 + η03)

2]

+ (3η21 − η03)(η21 + η03)[3(η30 + η12)
2 − (η21 + η03)

2]

hu[5] = (η20 − η02)[(η30 + η12)
2 − (η21 + η03)

2] + 4η11(η30 + η12)(η21 + η03)

hu[6] = (3η21 − η03)(η21 + η03) + [3(η30 + η12)
2 − (η21 + η03)

2]

− (η30 − η12)(η21 + η03)[3(η30 + η12)
2 − (η21 + η03)

2]

(4.3)

where η are the normalised central moments:

ηji =
µji

m
(i+j)/2+1
00

(4.4)

m00 is defined in Equation (4.2) and µi,j are the central moments:

µij =
∑
x,y

Ix,y × (x− x̄)i × (y − ȳ)j (4.5)

The second classifier is trained on the ball trajectory, using 1 863 trajectories from 6 videos.

The trajectory is defined by the quadratic function that is fitted to the x and y coordinates

and the features used for training are the average error of the fit to the trajectory, the ball

candidates’ average score (based on their shape) and standard deviation (based on their shape)

and the number of previous candidates fitting that trajectory.

4.5.3 Results

The ball detection generates a set of 2D coordinates which are compared to the 5 342 manually

annotated frames from 12 videos (as in Section 4.4.3), labelled with the coordinates of the

110 Chapter 4. Seeing Like a Coach: Real-Time Data Collection

centre of the tennis ball. Figure 4.14 shows the error in ball detection as the Euclidean distance

between the detected point and the ground truth for every frame in which a ball candidate

was obtained. Each curve in Figure 4.14 represents frames captured by a different camera. It

can be observed that for each camera the error is less than 2 pixels for more than 75% of the

frames and less than 6 pixels for almost all frames (Camera 1 does not even converge at 6 pixels

because it has an outlier, which is at a distance of 51 pixels). Considering that the ball has a

diameter of up to 10 pixels depending on its proximity to the camera, we find these results to

be highly satisfactory.

Figure 4.14: Accuracy of ball detection.

4.6 Triangulation

Ball and player detection in 2D are performed in parallel for the four cameras, and these results

must be integrated in order to obtain the 3D location of ball and player relative to the court.

This process is called triangulation and corresponds to mapping 2D frame coordinates to 3D

coordinates in the real world. To address this, we first need to be able to build a camera model

describing the mapping from any 3D point in the real world to 2D frame coordinates. This

4.6. Triangulation 111

section will start reviewing some theory for building a camera model in Section 4.6.1 and doing

the necessary camera calibration in Section 4.6.2. From these, our approach to triangulation

is explained in Section 4.6.3. Finally, Section 4.6.4 will discuss the results obtained and reveal

how small inaccuracies in 2D detection translate to 3D space. We note that there is a need to

synchronise the cameras with respect to a common clock so that triangulation is performed on

time-synchronised frame data.

4.6.1 Camera Model

Figure 4.15: Diagram of a pinhole camera model.

The simplest camera model is that of a pinhole camera. As shown in Figure 4.15, the camera has

a small aperture that allows only a few rays to reach the image plane. The distance between the

pinhole and the image plane is the focal length f . The 3D coordinates of the object in the real

world are labelled X, Y and Z (object height, width and distance from camera, respectively)

and the 2D corresponding location in the image plane are u and v (image height and width,

respectively). With this and by the property of similar triangles (shown in Figure 4.15 for f ,

u, Z and X), we have:

f

Z
=

u

X
=

v

Y
(4.6)

112 Chapter 4. Seeing Like a Coach: Real-Time Data Collection

and therefore

u =
fX

Z
and v =

fY

Z
(4.7)

which can be written as


u′

v′

w′

 = Mint


X

Y

Z

 where Mint =


f 0 0

0 f 0

0 0 1

 (4.8)

by using the homogeneous coordinates (u′, v′, w′) for (u, v) for which u = u′

w′
and v = v′

w′
. If

the intersection of the Z axis and image frame does not correspond to the origin of the image

coordinate system, a translation should be incorporated to Mint, giving:

Mint =


f 0 cu

0 f cv

0 0 1

 (4.9)

where cu and cv are the 2D translation parameters in the u and v axis directions respectively.

Mint is known as the intrinsic camera matrix expressing the camera intrinsic parameters [34].

The above camera model in Equation (4.8) assumes that the camera is located at the origin

in the real-world and that it is pointing in the exact direction of the Z axis, but that is not

generally the case. The location of the camera in the real-world is defined by the extrinsic

camera parameters Mext, whose values are its rotation R and 3D translation t relative to the

origin:

Mext =


r11 r12 r13 t1

r21 r22 r33 t2

r31 r32 r33 t3

 where R =


r11 r12 r13

r21 r22 r33

r31 r32 r33

 and t =


t1

t2

t3

 (4.10)

4.6. Triangulation 113

By knowing these intrinsic and extrinsic camera parameters, it is possible to model the mapping

from any point in the real-world to frame coordinates through the following equation:


u

v

1

 = Mint Mext



X

Y

Z

1


(4.11)

where X, Y, Z are the 3D coordinates of a point in the real world, u, v, are its coordinates

in the frame in pixels and Mint and Mext are the camera intrinsic and extrinsic parameters

respectively [34].

4.6.2 Calibration

Finding the intrinsic and/or extrinsic camera parameters is performed through the process of

camera calibration.

Intrinsic camera parameters

Intrinsic camera parameters can be estimated by varying Mext (i.e. moving the camera) and

knowing the correspondences of 3D coordinates in the real-world and 2D coordinates in the

image frame. In this situation, Mint can be inferred as it is the only constant parameter

in Equation (4.11). The same task can be achieved by taking multiple views of a planar surface.

A common approach is to use a 2D chessboard image, where the dimensions of squares and

their corner positions in the real-world are known, and their 2D location in the frame can easily

be detected automatically because of the structure of the pattern. This is the approach that

we adopted in our project, using the OpenCV implementation based on [132; 133]. Intrinsic

parameters only need to be calculated once, before using the system for the first time, since

they are inherent to the camera and do not change. This can be done off-line and does not

represent any real-time overhead for our system.

114 Chapter 4. Seeing Like a Coach: Real-Time Data Collection

Extrinsic camera parameters

Once the intrinsic camera parameters, Mint are known, Mext can be calculated by using Equa-

tion (4.11) again, provided that correspondences between points in the frame and points in the

real world are known. In our setting, the tennis court dimensions are known (see Section 2.1).

We define the real-world coordinate system with the origin at the centre of the court and express

intersections of the court lines in this newly defined coordinate system. When the cameras are

installed in the court, Mext is found by minimising the sum of squared distances between the

coordinates of twelve points (court line intersections) in the frame and the projected points.

Calculating Mext needs to be done only once every time the cameras are installed in the court.

It can be done before starting the match or training session without adding any overhead to

the system when in-play.

4.6.3 Triangulation

Now that the camera’s intrinsic and extrinsic parameters are known, triangulation can be per-

formed. Triangulation is referred to the process of finding the 3D coordinates of a point, given

its known position in images taken from at least two different views. As shown in Figure 4.16,

a given point a in a 2D image corresponds to a ray Ra in 3D space. This ray can be defined

using the camera parameters Mint and Mext from Equation (4.10). Ra is a vector relative to an

origin t (from Mext) and defined as:

Ra = (Mint R)−1


ax

ay

1

 (4.12)

where R is the rotation matrix shown in Equation (4.10). Therefore, if we only have one view

of an object (only one 2D image), we know that the object lies on that 3D ray in the real-world,

but we lack sufficient information to know its exact location. However, if we know the location

of an object in two 2D images taken from different angles (a and a′ in Figure 4.16) it is possible

4.6. Triangulation 115

Figure 4.16: Triangulation.

to find the 3D coordinates of that point by calculating the intersection of their rays (Ra and

Ra′ in Figure 4.16). Unfortunately, the rays (Rb and Rb′) might not intersect due to noise in the

camera calibration stage or in detecting the 2D coordinates (e.g. if we detect b and b′ instead

of a and a′). Finding the correct 3D coordinates thus becomes a challenging problem for which

different techniques can be applied (direct linear transformation [134], polynomial [135] etc.) We

have employed the mid-point method [136] because of its efficiency and the speed requirement

of this project (otherwise, more sophisticated methods such as polynomial triangulation could

be used). The mid-point method is simple and the 3D point A is the best fit solution to:

min[d(Rb, A)2 + d(Rb′ , A)2] (4.13)

where d(R,A) is the Euclidean distance between R and A.

4.6.4 3D data

The results for the 2D ball and player detection experiments can be accurately analysed because

ground truth data was manually annotated in the videos. However, this is not the case for 3D

116 Chapter 4. Seeing Like a Coach: Real-Time Data Collection

data as this requires additional equipment that was not available to us (e.g. RFID sensors or

lasers). To assess the accuracy of the 3D ball location inferred by our system, we analysed our

results in two ways: qualitatively and quantitatively. First, we projected the detected 3D ball

locations onto a 3D viewer (as shown in Figure 4.3) and replayed the recorded sequences. We

visually inspected our 3D reconstruction and ensured that it was consistent with the recorded

video sequences. To assess our results also quantitatively, we calculated the 3D location of the

ball from the annotated 2D ground truth data and compared it to our inferred 3D locations,

calculated from the automatically detected 2D ball coordinates. Figure 4.17 shows these results

with the error defined as the Euclidean distance between the 3D locations calculated from the

ground truth and our automatically calculated 3D locations. As can be seen in Figure 4.17,

80% of the 5 342 frames (mentioned in Section 4.4.3) had an error smaller than 10cm. It is

important to note that even though the 2D ball location might not be obtained for each camera

for every frame, 3D data is still produced for every single frame as it integrates data from all

cameras and estimates the values for frames in which the ball was not detected.

Figure 4.17: Accuracy of 3D ball detection in cm.

The same analysis was run for the player 3D location, and the error is always less than 25cm

and less than 6cm for over 80% of the frames, as shown in Figure 4.18. It is interesting to note

how Player 1 is detected with higher accuracy than Player 2. A posterior review of the videos

revealed that there was a small focus error in one of the cameras, which was closer to Player 2.

4.7. Processing Speed 117

Keeping in mind that the player dimensions are typically approximately 50cm ×170cm ×20cm

and the ball diameter is in the order of 7cm, we consider our results to be of good quality.

Figure 4.18: Accuracy of 3D player detection in cm.

4.7 Processing Speed

From the beginning of this chapter we emphasised the importance of our system to run in real-

time. This means that the video processing time should be shorter than the video duration.

Our cameras are 60fps, and our processing rate should be faster than 240fps as the system is

comprised of 4 cameras. We randomly selected six videos and ran our system four times for

each video. The average frame processing rate of the algorithm was 244.27±6.28fps13 in total,

when using the hardware described in Section 4.2.1. The speed of our system greatly benefits

from the thread parallelism explained in Section 4.2.2; it runs more than three times faster

than when the system is run in serial mode (72fps).

13Mean ± one standard deviation.

118 Chapter 4. Seeing Like a Coach: Real-Time Data Collection

4.8 Conclusion

The main contribution of the work presented in this chapter is the design and implementation

of a system able to collect 3D spatio-temporal data from a tennis match or training session

in real-time from affordable commodity hardware, fulfilling the criteria listed in Section 4.1.

We combined an adaptive background generation for detecting the players through background

subtraction with Machine Learning techniques for the ball detection. Ball candidates were

obtained through frame differencing and finding contours. Then, Random Forest classifiers

were used to select the best candidates based on ball shape and trajectory. Finally, a mid-point

triangulation method was used to calculate the 3D coordinates of the player and ball from their

2D locations in the frame.

We were able to locate the tennis ball with an error lower than 2 pixels for over 75% of the

frames and not exceeding 6 pixels for most frames. The centre of mass of the player is always

detected within its ground-truth bounding box and a maximum displacement error of 20% of

the bounding box size for most frames. In 3D, both the ball and player were detected within an

error of up to 10cm for most frames. In addition to this, the design of the system is modular,

with the capability of incorporating improvements both in terms of speed and accuracy.

Another contribution from this chapter is the survey of related work and comparison of state-

of-the-art research in ball and player detection, which has proven to be challenging due to the

lack of benchmark datasets and standardised accuracy measures. We also placed our results

within this context. Finally, with this present work, we also offered a quantitative analysis

of our results. We introduced novel metrics for the objective quantitative evaluation of court,

ball and player detection in tennis. We hope this will motivate other researchers in the area

of extracting spatio-temporal sports data from videos to use similar objective quantitative

metrics.

Chapter 5

Thinking Like a Coach: Data Analysis

and Visualization

In Chapter 3 we have seen how spatio-temporal data analysis can ultimately lead to gaining

new insights in sports analysis and prediction, addressing the Modelling Layer of our framework

from Figure 1.11. Then, Chapter 4 focused on the Vision Layer and presented a new unobtrusive

and portable system able to collect spatio-temporal tennis data in real-time using commodity

hardware. The data that we collected are the positions of the centre of mass of the players

and that of the ball during training sessions where the two players are a coach and a student.

In this and the next chapter, we will concentrate on the Classification Layer, which lies in

between the other two and deals with obtaining higher level tactical information. In this layer,

we want to go a step further and not only extract the information that has been shown to be

valuable in Chapter 3, such as ball landing positions, but obtain additional information that

we believe to be relevant in analysing the play patterns, strengths and weaknesses of players,

such as shot height and timing, or the type of action being played. Specifically, the aim of this

chapter is to show that data collected from our affordable, accessible technology can also lead

to an interesting analysis of the game, even if the data contains some noise, and to provide

visualisations of this analysis since these are essential to have a real impact in sports. This

chapter is based on our paper published at the Large Scale Sports Analytics workshop of the

ACM SIGKDD conference in 2016 [12].

119

120 Chapter 5. Thinking Like a Coach: Data Analysis and Visualization

5.1 Tennis Data Visualisation

Good data visualisation can often make the important features of data stand out and lead to an

improved analysis of the data [137]. Investigating different ways in which to present the data

goes hand in hand with a deeper analysis of it and may require inferring additional information,

for example, calculating player movement speed from player location sampled at two different

time points. Sports is highly suitable for producing visualisations because the relevant objects

are known (generally the players and ball) and it is easy to define the boundaries of the space

in which they appear, i.e. courts with standard dimensions. The visualisation and analysis of

spatio-temporal data in sports has three primary attributes, reviewed in [138]:

• Responsive: the user makes queries for specific game events or statistics.

• Exploratory: data is displayed to help the viewer get insights into the game.

• Informative: data is presented to enhance spectators’ experience.

In this work, we focus on the exploratory aspect of analysis and visualisation, where the chal-

lenge resides in clearly presenting the data in a manner that contributes to the final purpose,

in our case understanding players’ strategies, strengths and weaknesses.

5.2 State-Of-The-Art Tennis Data Visualisation

State-of-the-art tennis visualisations include Hawk-Eye [139] and LucentVision [1; 140]. Hawk-

Eye displays trajectories of the player and ball, as well as ball landing positions. In LucentVi-

sion, users can make queries that are based on:

• Score: display data in relation to the score. For example, show winning shots for points

that have been won by a given player.

• Statistics: display information about specific statistics of the game. For example, present

the fastest serves or shots.

5.2. State-Of-The-Art Tennis Data Visualisation 121

• Space: show events relative to some spatial constraints. For example, display the ball

landing positions from net approach shots.

The visualisations resulting from the queries are 3D visualisations (e.g. reconstruction of ball

trajectories) or court maps (e.g. heatmaps of player position), as shown in Figure 5.1.

Figure 5.1: LucentVision heatmap from score query, from [1].

Besides these commercial products, another interesting tennis visualisation was presented by

Damien Demaj [141]. With his background in cartography, he applied geospatial data analysis

techniques to spatio-temporal tennis data. For example, his paper offers visualisations with

feature overlay showing simultaneously serve impact locations, how important the serve was

(according to the current score) and its success. In this paper, this visualisation is applied to

the London Olympics Gold Medal match where Andy Murray defeated Roger Federer, leading

to the conclusion that “Federer served with more spatial variation during the match. Murray,

however, served with greater spatial variation at key points during the match”.

122 Chapter 5. Thinking Like a Coach: Data Analysis and Visualization

5.3 Objectives and Contributions

This chapter has three main objectives. First, provide a visualisation of our results to reflect

the ball trajectories and player movement profiles using novel forms of presenting the data in

addition to traditional ones; this is shown in Section 5.5. Secondly, combine ball and player in-

formation to detect when the ball is being hit by each of the players, as discussed in Section 5.6.

Thirdly, automatically generate an overview of a match/training session with information in-

ferred from the previously collected data, as described in Section 5.7. To better accomplish

our objectives and overcome noisy and missing ball data, we incorporated a post-processing

step in our data collection system to refine the automatically extracted ball trajectories, which

will be described first, in Section 5.4. Interestingly, the analysis and visualisations shown in

this chapter are applied to data extracted from our own data collection system presented in

Chapter 4.

5.4 Data post-processing

For this chapter, the data from 55 videos of length between 100 and 1 600 frames each obtained

using the system presented in Chapter 4 is analysed. It is important to note that the 2D and

3D data obtained from these videos contain some noise due to inaccuracies in the detection or

phenomena such as occlusions. As previously mentioned, an objective of this work is to show

how this can be overcome to achieve a useful analysis, even when data is collected from an

affordable system.

Each element in the ball data corpus contains the 3D coordinates of the detected ball position

and its associated frame number. To reduce noise and fill-in missing ball trajectory data, a

post-processing step had to be added to our system. It consists of two stages: first, outliers are

removed, and then missing points are filled in by interpolation.

5.4. Data post-processing 123

5.4.1 Remove Noise

From the spatial distance between two consecutive 3D ball coordinates and their time difference

(from the frame number), outliers are detected and removed. These correspond to objects

moving unrealistically fast, at a speed that is above a threshold based on the maximal velocity

that is realistically achievable by the tennis ball during a tennis match, i.e. 270km/h1.

5.4.2 Interpolation of Missing Points

After outliers have been eliminated, the next step is to interpolate missing points using the law

of physics applied to ball trajectory. Interpolation is a mathematical method for generating

new data points based on a discrete set of known data points. The known data points are used

to find the interpolation function p and this function is used to generate the new data points.

Finding the interpolation function p for our data is achieved by modelling the ball trajectory.

Assuming that the tennis ball is not spinning, its trajectory during a match is composed of one

or more consecutive parabolas, each of which starts when the ball bounces or is hit by a player.

This applies to data in the x, y and z dimension separately across time (frame number). To

interpolate missing values in the ball trajectory, mostly due to the removed outliers, we need to

identify the frame number of data points representing the beginning or end of a parabola and

calculate the parabola parameters. A data point from the ball trajectory data is considered to

be at the beginning/end of a parabola if:

• It has the minimal height above the ground relative to the two previous and two following

ball positions.

• It has the minimal/maximal y coordinate (along the length of the court) relative to the

two previous and two following ball positions.

• It is at the beginning or end of the data stream.

1From https://en.wikipedia.org/wiki/Fastest_recorded_tennis_serves

https://en.wikipedia.org/wiki/Fastest_recorded_tennis_serves

124 Chapter 5. Thinking Like a Coach: Data Analysis and Visualization

• It has a gap of more than 4 frames or 0.5m in the height dimension with respect to the

next ball trajectory data point.

Once the limits of the parabolas are known, a least squares polynomial fit is calculated for each

parabola to obtain p. A polynomial fitting of degree 2 (quadratic fitting) can be expressed as

follows:

p(xi) = a2x
2
i + a1xi + a0 (5.1)

where an is the coefficient of the nth degree term and xi are the data points. From Equa-

tion (5.1), we can obtain the following system of linear equations for n points:



x20 x0 1

x21 x1 1

...
...

...

x2n xn 1




a2

a1

a0

 =



z0

z1
...

zn


(5.2)

In our case, we know X and z and want to find the a coefficients. This corresponds to solving a

linear system in which X and z are constant and a is the variable. For clarity of our description,

the coefficients X and z are renamed to A and b respectively and the variable a to x. With this,

the equation Xa = z from Equation (5.2) becomes the classical expression of a linear system:

Ax = b (5.3)

A linear least square fitting to Equation (5.3) is solved using the QR decomposition method,

obtained with Givens rotations. This is described in detail in Appendix I. Once the coeffi-

cients A of the distinct parabolas are known, existing points are adjusted using the parabola

coefficients. Finally, cubic spline interpolation is used to estimate missing values.

5.5. Player and Ball Location Visualisation 125

5.5 Player and Ball Location Visualisation

After eliminating outliers and interpolating missing values from the 3D ball positions, these

and the 3D player positions having been extracted previously (cf. Chapter 4), the next step is

analysing the data. The rest of the chapter deals with our approach for analysing and visually

representing this data. This section approaches this objective by using a visual representation

of the data to reveal important information about the locations of relevant objects. Heatmaps

are a graphical representation particularly suited to represent location data. They can be used

to visualise the frequency of occurence of a player or ball being in a particular area of the

tennis court. This is done by creating a matrix with the scaled court dimensions (in discrete

form) and using colour to represent the frequency of an object being in a particular area. The

heatmaps that we present are in matrix form, and there are a number of different ways in which

the tennis court can be divided. [142] discusses three ways in which a basketball court can be

divided, and two of these can also be applied to tennis:

• Cartesian: the court is divided into equally-sized squares.

• Zoned: the court is divided into strategically significant areas.

Once the court is divided into smaller areas, we represent the time spent by the player or ball

in that area through a colour reflecting its normalised frequency.

5.5.1 Player Position Profiles

Heatmaps to visualise movement patterns of tennis players can be used to assess their perfor-

mance and compare patterns of movement between them, as shown in [143]. In this section,

we visualise player positions and discuss their interpretation with regard to players’ style and

performance. Our analysis is restricted to the players in our videos, but we believe that the

work presented in this section can be extended to a larger corpus of data to allow comparison

between more players.

126 Chapter 5. Thinking Like a Coach: Data Analysis and Visualization

Cartesian View

Figure 5.2 is a heatmap of the player’s positions across all the videos analysed for a Cartesian

division of the court. The court and its immediate surrounding area are divided into a grid of

equally sized squares of size corresponding to 20 cm ×20 cm and the percentage of time spent

by the players in each of these squares is shown. The figure shows that players spend most of

their time in the centre behind the baseline, occasionally coming closer to the net. This pattern

is in accordance to what we observed in the videos and what could be expected to be the most

common areas for a tennis player to be in a training scenario and for the serve.

Zoned Heatmap View

There are a number of ways in which the tennis court can be divided to reflect strategically

important locations, and in our work, we look at two different zone divisions. The first is

described in [144] (shown in Figure 5.3) and each half of the court is divided into three zones:

• Defensive zone: this is the zone furthest away from the net.

• Neutral zone: this is the middle zone, and it is sometimes called the transition zone.

• Offensive zone: this is the zone closest to the net.

The pattern in Figure 5.3 shows that players spend most of their time in the defensive zone

(98.92% for the player on the left and 74.97% for the one on the right), as would be expected

in a training session where offensive shots are less likely. We can also see that the player on the

right, who was the one being coached, spent some time in the offensive zone (17.57%), while

the coach did less (5.02%).

The second court division is described by Ron Waite, a professional tennis coach, in his column

on Tennisserver [145]. The different areas, starting from the zone furthest away from the net

and moving towards to middle of the court are:

5.5. Player and Ball Location Visualisation 127

Figure 5.2: Cartesian heatmap of player position.

Figure 5.3: Zoned heatmap of player position, using the zones described in [144]. D - Defensive
zone, N - Neutral zone and O - Offensive zone.

• Defensive zone: here the player is far behind the baseline and is mainly trying to hit the

ball back without aspiring to win the point.

• Rally zone: this is where most groundstrokes are hit.

128 Chapter 5. Thinking Like a Coach: Data Analysis and Visualization

• Offensive zone: stepping closer to the net puts players in an offensive position where the

range of trajectories that can be produced is larger, and the opponent has less time to

react than for shots from the two previously mentioned zones.

• No man’s land: this is the zone between the service line and baseline. This zone is where

players are generally thought to be most vulnerable.

• Put away zone: this is the area from which put-aways (to win the rally) are most likely

to occur. A put-away is a skilful shot that ends the point because the opponent cannot

reach the ball.

• Volley zone: this zone is the closest to the net, optimal for playing volleys.

Figure 5.4 shows the players’ patterns of position in the newly defined court zones and the

specific values are reported in Table 5.1. As expected in a training session, both players spend

most of their time in the rally zone and the next most visited zone is the offensive zone. As

above, we can see the player on the right (the student) spends more time in offensive areas such

as the putaway zone and volley area.

Area Occupation % left player Occupation % right player

(coach) (student)

Defensive zone 1.18 1.83

Rally zone 69.14 51.40

Offensive zone 22.77 25.02

No man’s land 2.60 1.95

Put away zone 2.38 13.33

Volley zone 1.93 6.46

Table 5.1: Percentage frequency of players’ occupation of each court zone from Figure 5.4.

5.5. Player and Ball Location Visualisation 129

Figure 5.4: Zoned heatmap of player position, using the zones defined in [145]. D - Defensive
zone, R - Rally zone, O - Offensive zone, N - No man’s land, P - Put away zone and V - Volley
zone.

5.5.2 Tennis Ball Positions

In regards to the visualisation of tennis ball locations, we have also represented it in the two

different ways introduced in Section 5.5: Cartesian view and zoned heatmap view.

Cartesian View

The heatmaps to represent ball locations in a Cartesian view are designed as for the players

(Section 5.5.1). Ball location is represented in two different ways as the frequency of:

• Ball position: Figure 5.5 is a heatmap of the areas traversed by the tennis ball.

• Ball landing positions: the visualisation presented in Figure 5.6 takes into account the

height dimension of the ball location, and the frequency map represents the positions in

which the height is approximately 0, being the locations where the ball hits the court.

130 Chapter 5. Thinking Like a Coach: Data Analysis and Visualization

Figure 5.5: Cartesian heatmap of ball position.

Figure 5.6: Cartesian heatmap of ball landing positions.

Figure 5.5 shows that the most common position of the ball is near the centre of the court. As

seen in the videos, the ball travels at different angles but crosses the net close to the middle in

most cases and diverges to a less localised area when getting further away from the net.

The first observation from Figure 5.6 is that the player on the right is making more errors

5.5. Player and Ball Location Visualisation 131

(hitting the ball outside of the court) and the landing points of his shots are more spread out.

In contrast to this, the player on the left is hitting more precise deep shots, generally to the

centre of the court. This pattern fits the observations from the recordings in which the player

on the left is coaching the one on the right.

Zoned Heatmap View

The court zones that are used to analyse the tennis ball landing positions are different from the

ones used for the players’ positions. For instance, it is common for a player to stand behind the

baseline, but a ball landing in that area is an error. The court zones for ball landing positions,

as described in [144], are as follows:

• Grind zone: This starts at the baseline and extends for 3.9 m towards the net. When a

ball lands in this zone, the most effective return shot is a deep return.

• Torment zone: This is the middle zone that is at a distance of 3.9 m from the net and

from the baseline. The shots in response to landings in this zone can be building shots2

or attacks3.

• Obliterate zone: This zone goes from the end of the torment zone up to the net. An

offensive response, such as a volley, is generally expected as a return from these shots.

Figure 5.7 shows the ball landing positions in relation to the zones defined above and Table 5.2

shows the same results in more detail. Both players send most shots to the grind zone, as

would be expected for non-competitive rallies, which was generally the case in the videos that

we recorded. Aligned with this, both players also send the least number of shots to the obliterate

zone, which corresponds to the most offensive actions. Finally, this diagram (Figure 5.7) also

shows more clearly what was observed in Figure 5.6: the player on the right is committing

more errors than the one on the left.

2Shots that create chances for a player to attack.
3Shots that create chances for a player to win the point.

132 Chapter 5. Thinking Like a Coach: Data Analysis and Visualization

Figure 5.7: Zoned heatmap of ball landing positions. G - Grind zone, T - Torment zone and O
- Obliterate zone.

Area Left player shot Right player shot

Grind zone 48.48 41.14

Torment zone 24.24 20.25

Obliterate zone 2.53 1.90

Out 27.27 34.18

Table 5.2: Percentage frequencies of ball landing position in court zones, the columns represent
shots initiated by each player, from Figure 5.7.

Air Zones

The air zones of a shot reflect the height of the tennis ball as it passes the net and different

air zones should be aimed for by a player depending on his/her current position. As a general

rule of thumb, the player making the stroke should aim at a shot with a height above the net

of 0.6m–0.9m when inside of the court, 0.9m–1.5m if near the baseline and 2.4m–3.0m if the

player is positioned behind the baseline [144].

5.5. Player and Ball Location Visualisation 133

Figure 5.8: Ball and player positions for the ball crossing the net in air zones 1, 2 and 3, from
top to bottom. Coach in orange, student in green.

134 Chapter 5. Thinking Like a Coach: Data Analysis and Visualization

Figure 5.8 shows three diagrams, one for each air zone, with the location of the players and the

ball when the latter is crossing the net. According to the description given above, the players

should be inside the court, near the baseline and behind the baseline for air zones 1, 2, and 3

respectively (from top to bottom in the figure). We can see that the player in orange follows

this trend and, as the ball goes to higher air zones, he moves further away from the middle of

the court, but this is less clear for the green player. Interestingly, the player in orange, who

follows closer the theory of court zones, is the coach, probably because he is more experienced

than the one in green (the student). From this, we see that visualisations of the kind shown

in Figure 5.8 can be an indicator of the expertise of a player.

5.6 Visualising Players and Tennis Ball Combined

So far, we have looked at general location patterns for the ball and players. In this section, the

data from the players is combined with that of the tennis ball in order to take the analysis a

step further and detect stroke events.

5.6.1 Detect Events

To find out when the ball is hit by a player we calculate the distance between that player and

the ball. This is calculated as their 3D Euclidean distance such that the distance between two

points a and b, such that a = (ax, ay, az)
T and b = (bx, by, bz)

T , is:

√
(ax − bx)2 + (ay − by)2 + (az − bz)2 (5.4)

When plotting the Euclidean 3D distance between the ball and a player over time, values close

to zero in the y component correspond to the ball being close to the current player, and they can

be interpreted as the frames in which he/she is attempting to hit the ball. Similarly, maximal

y values can be seen as the ball being hit by the other player. Figure 5.9 is a scatter plot of the

player–ball 3D distance over time for one of the players using our automatic video detection

5.7. Extracting Player Spatio-Temporal Statistics 135

from Chapter 4. This figure shows the results for one of the videos, but other videos gave a

similar output. Once we know the player–ball 3D distance, stroke events are found by selecting

the local maxima and minima from this data. These are shown in Figure 5.9 with red and green

circles for the two players respectively and the frame number at which they occur is shown in

the horizontal coordinate.

Figure 5.9: Distance between the player and tennis ball, measured from player 2 (P2).

5.6.2 Evaluation

To evaluate these results, we manually recorded the frame numbers at which the ball is hit by

each of the players for one rally; these are represented by the vertical lines in Figure 5.9. Ta-

bles 5.3 and 5.4 show the comparison between the ground truth data and our automatic action

detection(based on maxima and minima in the distance) for each player. We can see that in

the current example, the error in the time at which an action occurs is between 0 and 5 frames,

corresponding to a maximal error of 83ms in real time, with an average error of 53ms.

5.7 Extracting Player Spatio-Temporal Statistics

Finally, we have computed a number of player statistics to describe a training session or match

and enable the comparison between players’ performance. This collection of statistical data can

be obtained automatically in our system and is very valuable for understanding the players’

136 Chapter 5. Thinking Like a Coach: Data Analysis and Visualization

Stroke number 1st 2nd 3rd 4th 5th

Measured time (in frames) 95 268 442 609 776

Real time (in frames) 98 272 444 613 781

Error (in frames) 3 4 2 5 5

Error (in ms) 50 66 33 83 83

Table 5.3: Player 1 stroke detection for one rally.

Stroke number 1st 2nd 3rd 4th 5th

Measured time (in frames) 188 361 525 705 875

Real time (in frames) 187 363 530 705 880

Error (in frames) 1 2 5 0 5

Error (in ms) 16 33 83 0 83

Table 5.4: Player 2 stroke detection for one rally.

trends, strengths and weaknesses and comparing them with other players. Table 5.5 presents

this information for a sample of 10 of the videos analysed and shows:

• The average player speed when moving on the tennis court. This is calculated by dividing

the total distance travelled by that player during the training session (including the time

during which the player was stationary) by its total duration. The distance travelled by

the players is calculated as the 2D Euclidean distance where the distance between two

points a and b is: √
(ax − bx)2 + (ay − by)2 (5.5)

• The percentage of court surface covered by each player. To represent the area covered by

a player, we divide the court and its immediate surrounding area into a grid of equally

sized squares of size corresponding to 40 cm × 40 cm on the court (similar to Figure 5.2)

5.8. Conclusions 137

Figure 5.10: Players’ trajectories during one rally of 16 shots. Player 1 is the coach and Player
2 the student.

and calculate the percentage of squares in the grid where the player has been at least

once.

• The average speed of the strokes initiated by each player, which is calculated as for the

player speed, as the total distance over the total duration. Our experiments did not

include serves.

As an example of the information provided by Table 5.5 we can see that in video 77, even though

both players have a similar average speed, Player 2 (the student) covers twice as much court

area as Player 1 (the coach). This is illustrated in Figure 5.10, which shows the trajectories

produced by each player in that video, and where we can see that Player 2 covered a larger

court area by entering the service box.

5.8 Conclusions

This work, in conjunction with our system, presented in Chapter 4, presents an end-to-end

pipeline for the spatio-temporal analysis of a tennis match/training session using a low-cost

data collection system. The first contribution of this chapter is the pre-processing of tennis

ball location data. The affordability of our technology from Chapter 4 has the disadvantage of

138 Chapter 5. Thinking Like a Coach: Data Analysis and Visualization

V
id

eo
A

verage
sp

eed
A

rea
coverage

a
S
troke

average
sp

eed
V

id
eo

N
u
m

b
er

of

n
u
m

b
er

P
1

P
2

P
1

P
2

P
1

P
2

len
gth

strokes

(in
m

etres/s)
(in

m
etres/s)

(in
%

)
(in

%
)

(in
m

etres/s)
(in

m
etres/s)

(in
s)

25
0.8

1.7
1.1

1.4
21.1

17.4
14.2

10
b

27
1.1

1.7
1.2

1.6
30.5

29.2
8.2

8

36
11.5

1.2
6.0

1.1
16.8

33.0
14.2

12

40
24.2

0.9
6.6

0.8
31.2

29.8
11.2

10

44
0.9

1.0
1.6

1.5
21.6

22.7
13.7

5
c

53
0.7

0.4
0.4

0.2
30.3

40.9
6.6

3

64
1.1

3.0
2.7

7.4
39.5

31.7
21.7

14

68
0.8

1.3
1.8

2.2
25.6

30.0
19.4

12

70
2.1

0.9
5.1

2.4
29.3

31.3
23.5

15

77
1.7

1.9
5.8

10.8
28.2

25.3
28.4

16

T
ab

le
5.5:

G
en

eral
statistics

for
10

v
id

eos.
P

1
is

p
layer

1
(th

e
coach

)
an

d
P

2
is

p
layer

2
(th

e
stu

d
en

t).

ai.e.
P

ro
p

ortio
n

of
co

u
rt

su
rfa

ce.
b2

rallies
c3

rallies

5.8. Conclusions 139

including more outliers or missing data, when compared to highly sophisticated systems such as

Hawk-Eye. To overcome this limitation, a method for removing outliers and filling in missing

data is presented, which involves quadratic curve fitting and value interpolation.

Another contribution of this chapter is to show that the data that has been collected with

a low-cost system can be used to gain insights into a match/training session and provide

feedback to the players, coaches or audience through statistical information and an appealing

and informative visualisation. More specifically, the contributions of the work presented here

are the visualisation and analysis of:

• The player position heatmap in both a Cartesian view and in terms of tactically significant

areas.

• The ball locations heatmap in both a Cartesian view and in terms of tactically significant

areas, both in the flat 2D representation of the court and air zones separately.

• The extraction of high-level information such as the timing of the strokes of each of the

players, the number of shots in a rally, the average ball speed or area covered by each

player.

This is a contribution to the field in the sense that we present the data in novel ways with

both the different court zones and aerial zones, reflecting strategically significant areas. It is

accompanied by an analysis showing the insights that can be derived from the visualisations,

which include an indication of the performance level of each player. For instance, in our analysis

we are able to detect differences between the performance of the coach and the student.

Chapter 6

Learning the Technique: Machine

Learning for Action Recognition

We started in Chapter 3 by showing different approaches to exploiting spatio-temporal tennis

data to gain insights into patterns of tennis play and strategies and to predict future events,

targeting the Modelling Layer of our framework in Figure 1.11. We then presented a system able

to extract spatio-temporal tennis data in real-time in Chapter 4, addressing the Vision Layer

of Figure 1.11. This was followed by Chapter 5, which focused on the Classification Layer, and

showed how this data could be analysed and visualised to bring insights into a game/training

session, generate high-level data and detect events such as the exact timing of a shot being

played. The current chapter also concentrates on the Classification Layer of our framework,

and the objective is to recognise the action being played from video data. We believe that

recognizing which type of shot is being played and the quality of that shot would enhance the

prediction and analysis capability of state-of-the-art modelling approaches. Another benefit

can come from providing players with feedback on their strongest and weakest shots to guide

them to where to put more effort while training. This chapter is based on our paper presented

in 2017 at the CVPR Workshop on Computer Vision in Sports [13].

140

6.1. Challenges 141

6.1 Challenges

The primary objective of this chapter is to be able to recognise the action being played from

low-definition RGB videos. The first challenge that arises is defining what an action is and

define the list of possible actions in the tennis domain. When we started this project, our plan

was to use our own recorded videos and manually select and label clips of actions1. Creating

our own dataset brought up a number of issues, revealing challenges in defining an action:

• Action delimitation: It is complicated to determine the exact moment at which an action

starts or ends.

• Granularity: tennis shots can be classified into ‘serve’, ‘backhand return’, etc. but they

can each also be further divided into four phases: ‘preparation’, ‘swing’, ‘impact’ and

‘balance and recovery’ 2. Decisions have to be made about the granularity of the classes.

• Area selection: In a real-world environment, the player might be moving while performing

an action. From this, two options are possible: always select an area of the same size with

the player in the middle (i.e. a moving window in which the background will be changing)

or select a larger area and keep it stable throughout the action, but the player will not

always be at the centre of that area.

Beyond these, action recognition, in general, is a highly researched area [39; 146–148] in which

some of the main challenges are [149; 150]:

• Environment: people wearing loose clothes, occlusions or changes in the environment

such as lighting conditions, challenge action recognition. Also, the same action seen from

different angles can have a very different appearance.

• Action definition: human actions are very diverse and include simple actions like walking

or more complex action involving interactions with other people or objects. Even defining

1We later decided to use a publicly available dataset for the reasons explained in Section 6.3.1
2From Tennis Australia at https://www.tennis.com.au/wp-content/uploads/2010/08/

Stroke-and-Tactical-Fundamentals.pdf , although other phases can be defined.

https://www.tennis.com.au/wp-content/uploads/2010/08/Stroke-and-Tactical-Fundamentals.pdf
https://www.tennis.com.au/wp-content/uploads/2010/08/Stroke-and-Tactical-Fundamentals.pdf

142 Chapter 6. Learning the Technique: Machine Learning for Action Recognition

an action and determining its exact starting and end point is challenging, as highlighted

above.

• Variability: the same action can be performed in different ways: slow or fast, long or

short, in a large or short range (e.g. taking bigger steps whilst walking). Generalising

action recognition is challenging.

6.2 Objectives

The objectives of this chapter are to achieve the following goals within the context of tennis:

• Recognize fine grained actions. Most sports action recognition tasks are based on de-

tecting which sport is being played. However, we think that in order for action labels

to be useful in more nuanced applications like professional training, these must be of

fine-grained actions, rather than just a coarse-grained classification.

• Find a dataset appropriate for investigating the previous objective. We believe that it is

very important to present the results of our work in the context of a publicly available

dataset in order to enable future research to be compared to our method.

• Perform the action recognition directly from low-resolution RGB videos of actions played

in-the-wild3. For our approach to be useful within the context of the framework presented

in Figure 1.11 we need our system to be unobtrusive and affordable. This rules out the

possibility of detecting actions from different types of data such as special depth cameras

or wearable sensors.

• Develop a technique that is generalizable and can be applied to action recognition in

contexts beyond tennis.

Section 6.3 will review previous work in the area of action recognition, firstly in the context

of sports and secondly in more general contexts, revealing challenges of the previously listed

3Non-controlled environment, with moving background and/or changes in illumination.

6.3. Previous work 143

objectives. Our approach will be explained in Section 6.4. The experiments will be presented

next by introducing the dataset that we have selected for our experiments in Section 6.5 and

then discussing the results in Section 6.6.

6.3 Previous work

6.3.1 Action Recognition in Sports

Even though vision-based action recognition is a highly researched area, its application to

sports is still limited, mirroring the lack of benchmark datasets for this problem. Some of the

most popular sports action datasets include UCF-Sport [151; 152] or more recently the Sports-

1M dataset [148]. These datasets contain videos from many different sports, and their labels

describe which sport is being played. In contrast to these, we are interested in detecting finer-

grained actions, such as specific tennis shots (e.g. serve, backhand and forehand) or even the

stroke sub-type (e.g. flat serve). This task accentuates the imbalance between a high intra-class

variability and a low inter-class variability, bringing an additional challenge when compared to

coarser action recognition.

Some research has been done in the area of tennis action recognition. In [153; 154] the authors

present a video descriptor based on optical flow and classify actions into ‘left-swing’ and ‘right-

swing’ with a support vector machine. In [155] tennis actions are classified into ‘non-hit’, ‘hit’

and ‘serve’. Unfortunately, the videos used in these experiments are not publicly available,

([155] uses the ACASVA Actions Dataset [156] which provides features and labels, but not the

RGB videos). For our work, we wanted to evaluate our methods using a publicly available

dataset so that future research can be compared to our methods.

Amongst the many existing datasets for action recognition, we found one that conveniently

suited our objective of fine-grained action recognition in tennis: THETIS [10]. Presented in

2013, THETIS is a complete dataset of fine-grained tennis actions comprising footage from 55

different subjects performing 12 distinct tennis shots (listed in Section 6.5.1) multiple times.

144 Chapter 6. Learning the Technique: Machine Learning for Action Recognition

The videos are RGB, low-definition, monocular and shot in-the-wild, with dynamic backgrounds

and occlusions. Our objective is to build a model able to classify actions in the videos into

the 12 fine-grained action classes from raw footage, without the need for pre-processing (e.g.

silhouette detection) and with the ability to generalise to other tasks. For this reason, we are

interested in exploring deep learning techniques instead of more traditional approaches based

on hand-crafted features.

6.3.2 Action Recognition in General

Given the limited work in the area of fine-grained action recognition for sports, we extended

our review of the literature into existing approaches for action recognition in general with the

expectation that the ideas from these could also be relevant to our problem domain. This section

will present the most relevant state-of-the-art approaches to video-based action recognition.

Action recognition is a very large area of research, and it encompasses problems from a broad

range of scenarios. Their characteristics affect dramatically the choice of technique that is best

suited to solve the problem. These are some of the variations that may occur:

• Action type: coarse or fine-grained (e.g. ‘person playing tennis’ vs ‘person doing flat

service in tennis’).

• Scene setting: actions recorded in an experimental setting or in-the-wild. The latter may

contain changes in illumination, occlusions or a moving background.

• Video properties: monocular or multi-view, static or moving camera, image resolution.

Amongst the approaches to video-based action recognition, two main categories can be drawn:

classifiers based on hand-crafted features and deep neural networks.

Approaches Based on Hand-Crafted Features

Classifiers based on hand-crafted features are the most well-established approach. They gen-

erally involve two main steps: feature extraction and classification. Extraction of hand-crafted

6.3. Previous work 145

features is based on domain-knowledge and some of the most popular techniques include His-

togram of Oriented Gradients (HOG) [38], Harris detector [146], Motion Boundary Histograms

(MBH) [157] or Cuboid detector [158]. There are a number of approaches that use these hand-

crafted features to build feature vectors that are suitable for action recognition [159–162]. We

have investigated two of them in more in depth.

First, in [159], mid-level motion features are obtained as follows:

• Calculate the optical flow, shown in Figure 6.1c and explained in Section 2.5.1.

• Split the optical flow into 4 components: vertical and horizontal components and positive

and negative values.

• Apply a Gaussian blur (low-pass filter) and normalize the result for each optical flow

component previously split (Figures 6.1d to 6.1g). This last step is performed to reduce

noise and position differences between two different clips of players performing the same

action.

Actions are compared via a frame-by-frame cross-correlation technique resulting in a correlation

matrix between actions. Action recognition is obtained via a nearest neighbour approach. We

preformed a test of this technique by comparing the actions shown in Figures 6.2 and 6.3. The

result of the comparison is shown in Figure 6.4b (Figure 6.4a shown as a baseline) and the

algorithm is finding it difficult to generalize, i.e. Figure 6.4b compares two backhand actions,

but the correlation matrix shown no similarity except for the first three frames.

Second, we also looked at kinematic features as in [160] which are also based on optical flow

and include:

• Divergence: a local measure of the optical flow direction reflecting whether it is more

directed outwards or inwards. This corresponds to whether the arrows in Figure 6.1c are

predominantly pointing towards the center of the image or towards its boundaries. Using

the formulas from [160], the divergence f 1(x, ti) of the pixel at location x at frame ti can

146 Chapter 6. Learning the Technique: Machine Learning for Action Recognition

be formalised as:

f 1(x, ti) =
δu(x, ti)

δx
+
δv(x, ti)

δy
(6.1)

where δu(x,ti)
δx

and δv(x,ti)
δy

are the partial derivatives of the u and v components of the

optical flow in the x and y directions at time ti.

• Vorticity: describes the local “spinning” motion near some point. Using the notation

from above, the vorticity f 2(x, ti) is calculated as:

f 2(x, ti) =
δv(x, ti)

δx
− δu(x, ti)

δy
(6.2)

• The symmetry (f 3(ti) and f 4(ti)) and asymmetry (f 5(ti) and f 6(ti)) in the image, which

are calculated as follows.

f 3(ti) = u(ti) + u(ti)
T (6.3)

f 4(ti) = v(ti) + v(ti)
T (6.4)

f 5(ti) = u(ti)− u(ti)
T (6.5)

f 6(ti) = v(ti)− v(ti)
T (6.6)

where u(ti) and v(ti) are the u and v components of the optical flow at time ti.

Similar to the previous technique, using kinematic features for fine-grained tennis action recog-

nition proved ineffective.

Literature in the field shows that these classifiers built on top of hand-crafted features have

achieved impressive results [161; 163–166], making their success undeniable. However the ma-

jor drawback in using them is that their selection can be problem-dependent and difficult to

generalize. Therefore, even if these techniques are very effective for some problems, their per-

formance might decrease seriously for other problems, as we have just seen to be the case for

fine-grained tennis actions.

6.3. Previous work 147

(a) Previous frame. (b) Current frame. (c) Optical flow.

(d) Fx− (e) Fx+ (f) Fy− (g) Fy+

Figure 6.1: Construction of the low-level features.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 6.2: Action 8.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 6.3: Action 9.

148 Chapter 6. Learning the Technique: Machine Learning for Action Recognition

(a) Action 8 vs itself (b) Action 8 vs 9

Figure 6.4: Frame-by-frame comparison of two actions using low level features from our own
experiments.

Deep Architectures

Learned features are obtained through the performance of a machine learning task. For exam-

ple, a neural network that learns to classify labeled images will contain in its hidden layers a

representation of the input data that can be used as features to represent such data. These

learned features have the potential of detecting structures that are more semantically meaning-

ful and of being more generalizable than hand-crafted features [167]. In recent years, learned

features have gained popularity and they have been shown to be extremely powerful in the

field of still image understanding. In particular, Cpnvolutional Neural Networks (CNNs) have

exceeded any other state-of-the-art method in the domain of image classification and have

consistently won object recognition competitions since 2012 [64; 65; 168].

Driven by these achievements, attention has been brought to the application of deep neural

networks to video classification. Unfortunately, their application to video processing has been

proven to be more challenging and their success in this task cannot yet be compared to that for

still images. This can be attributed to two main limitations. First, video data is more complex

than still images because of the temporal dependencies, requiring models to learn more complex

structures [148]. Second, the availability of substantial datasets is lower in comparison to those

for still images. For instance, video classification benchmark datasets – such as KTH [149],

Weizmann [169; 170], UCF Sports Action [151; 152], UCF-50 [171], HMDB-51 [172] – contain

a smaller number of classes.

6.4. Action Recognition in Tennis: Our Approach 149

Some progress has been made in overcoming these issues and applying deep networks to action

recognition. In 2011, one of the first succesful extensions of CNNs to video sequences was

presented [173]. The authors extend a traditional 2D CNN to 3D, incorporating the time do-

main, to learn features, and then use long short-term memory units (LSTMs) for classification

(cf. Section 6.4.2). Their results improve upon other deep learning approaches and their per-

formance is competitive with hand-crafted based classifiers. Their experiments also show the

benefits of using LSTMs in comparison to traditional Recurrent Neural Networks (RNNs, cf.

Section 6.4.2). In [148], an end-to-end CNN video classifier is presented and evaluated in the

Sports-1M dataset. They investigated different approaches to incorporating the time dimension,

by fusing the information across the time domain earlier or later in the network. Interestingly,

their best model performs similarly to their single-frame model, opening the question of whether

these features are capturing any motion information at all for the classification task. In [174]

a two-stream CNN is presented, with a spatial stream that works on single frames and a tem-

poral stream that utilizes optical flow. Their results outperform these presented in [148] and

are competitive with state-of-the-art hand-crafted models. All of these models bring insights to

the application of deep learning to videos but also highlight the difficulty of transferring their

potential from still images to video sequences.

6.4 Action Recognition in Tennis: Our Approach

Being aware of the challenges and advances in the field of action recogntion, this section presents

our approach. It is a novel approach, and to our knowledge, it represents the first application

of deep neural networks for the action recognition of fine grained sports actions (tennis in our

case). The proposed algorithm extracts features from each frame individually by using the

well-known convolutional neural network (CNN) named Inception [168; 175], pre-trained on an

independent general image dataset and without fine-tuning. The resulting sequences of features

are then fed to a deep neural network consisting of three stacked long short-term memory units

(LSTMs) [69], a particular type of recurrent neural network (RNN). Our action classification

algorithm is composed of two main steps: first, feature extraction using the Inception neural

150 Chapter 6. Learning the Technique: Machine Learning for Action Recognition

network (see Section 6.4.1) and second, classification through a deep LSTM network (see

Section 6.4.2).

6.4.1 Feature Extraction

Inception is a well-known deep CNN architecture from [168; 175]. It was first introduced in

2015, obtaining the best results in the ImageNet Large-Scale Visual Recognition Challenge

2014 (ILSVRC ’14) – an image classification challenge of 1 000 categories containing about

1.2 million images for training. Inception is a network 22 layers deep consisting of traditional

convolutional layers stacked in the lower layers and ‘Inception modules’ stacked in higher layers.

Every ‘Inception module’ concatenates the output of the following operations performed on its

inputs (which are the results from the previous layers): 1 × 1 convolution, 1 × 1 convolution

followed by 3× 3 convolution, 1× 1 convolution followed by 5× 5 convolution and 3× 3 max

pooling followed by a 1× 1 convolution.

Motivated by its performance in general image classification tasks, we chose Inception as our

feature extraction algorithm. In ILSVRC ’14, the network was able to attach coarse-grained

labels to still images such as ‘person playing tennis’, but we wondered whether the features in

the later layers also carried information about a person’s posture or features discriminative for

action recognition in videos. Interestingly, the Inception architecture was designed to optimize

computational resources so that inference can be done in settings such as a mobile phone. We

find this to be critically important for many action recognition applications.

In our work, Inception is used for feature extraction as shown in Figure 6.5. Each video

clip, whose duration ranges from 90 to 150 frames, is cropped to the first 100 frames4 due to

memory constrains and to ensure all videos are of same length (alternate frames for HMDB5,

where videos are longer). At each frame, the previously mentioned network is applied to make

predictions and the 2 048 features resulting from the previous-to-last layer are stacked into a

2 048 × 100 representation of the video. For videos shorter than 100 frames, we employ zero-

4Which corresponds to about 2 seconds, a reasonable duration for a tennis stroke action.
5HMDB: a large human motion database, described in Section 6.7.1 [172].

6.4. Action Recognition in Tennis: Our Approach 151

padding (i.e. adding zeros in the final frames). These are then presented to our classification

network to learn to label them with the appropriate tennis shot type.

Different to many applications in which the last layer is retrained for the specific problem, we

decided not to retrain the network using THETIS. First, we wanted to see how applicable the

features learned from ImageNet were in a different context. Second, given the small size of the

THETIS dataset compared to the datasets normally used in deep architectures, we wanted as

far as possible to avoid over-fitting by fine-tuning the network to this particular dataset.

Figure 6.5: Feature extraction pipeline diagram.

6.4.2 Deep LSTM for Action Classification

Video-based action recognition requires the modelling of long-term time dependencies on highly

complex data (images). We have seen that LSTMs are very suitable to learn these long-term

dependencies (cf. Section 2.6.1). By stacking LSTMs on top of each other, it becomes possible

to learn high-level structures in high-dimensional data such as images. Each layer uses as

input the output of the previous layer, creating a hierarchical representation of the input data,

152 Chapter 6. Learning the Technique: Machine Learning for Action Recognition

where higher layers feature more abstract and complex representations of the data. In [69], the

authors showed that deep LSTMs greatly improved performance in speech recognition compared

to one-layer LSTMs. For these reasons we decided to use a deep LSTM network.

The detailed architecture of our network is shown in Figure 6.6. It has three stacked LSTM

layers, empirically found to give best results, with the constrain of trying to minimize the

number of layers to prevent overfitting. Each of these LSTMs layers has 90 hidden units and

a softmax function is applied to the last layer to obtain the predicted classification output. In

learning, our implementation has the following characteristics:

• Cost function: we employ the cross-entropy cost function E(w) as a function of the

weights w calculated as the average of all cross-entropies in the sample [41]:

E(w) = − 1

N

K∑
k=1

M∑
m=1

{jm,klog(ym,k)} (6.7)

with K is the number of classes (k is the class), Mk number of examples for class k (M for

all classes add up to N , the total number of samples), j is a binary indicator of whether

the example was correctly classfied as k and y is the predicted probability of label k. This

cost function is the one most commonly used in deep neural networks [47].

• Parameter regularization: L2 regularization is applied to reduce overfitting. It is the most

commonly used [47] and corresponds to adding a regularizer term to the cross-entropy

function resulting in:

E(w) = − 1

N

K∑
k=1

M∑
m=1

{jm,klog(ym,k)}+
λ

2

∑
w

||w||2 (6.8)

In our implementation, L2 is scaled by a λ value of 0.003, which was found empirically

after trying a range of values between 0.001 to 0.005.

• Optimization algorithm: the Adam gradient-based optimization algorithm is used to

perform gradient descent [176] and optimize the network. This algorithm is efficient([176;

177]) and robust to the value of hyperparameters (e.g. λ in Equation (6.8)).

6.5. Experimental Setup 153

We employ exponential decay of the learning rate, with a starting learning rate of 0.001 (0.005

for HMDB6) and decaying with a base of 0.96 every 100 000 steps. During training, the accu-

racy of prediction for the validation set is calculated every 10 steps to select the best model

and the parameters for the best results stored. We manually tuned the hyperparameters of our

network, which is common practice in deep learning [47] and we used Tensorflow for our imple-

mentation [178]. The code is available on: https://github.com/silviav12/LSTM_action_

recognition.

6.5 Experimental Setup

6.5.1 Experimental Dataset: THETIS

Our experiments were conducted on the THETIS dataset [10]. It contains 1 980 monocular

RGB videos of 12 tennis actions performed three times by 55 different players (31 amateurs

and 24 experienced). Actions are performed using a tennis racket but there is no tennis ball in

the videos. The 12 actions are:

• backhand (two hands)

• backhand

• backhand (slice)

• backhand (volley)

• forehand (flat)

• forehand (open stance)

• forehand (slice)

• forehand (volley)

• service (flat)

• service (kick)

• service (slice)

• smash

We only used the RGB videos from the dataset7. Videos of this dataset contain moving back-

ground and the video sequences vary in length. Figure 6.7 shows a sample of frames from the

dataset. To our knowledge, only two publications make use of THETIS in action recognition ex-

periments and there are no published results on the RGB videos alone. [10] presents the dataset

and experiments accompanying it. They perform action recognition using state-of-the-art al-

gorithms applied to 2D and 3D skeleton data. They achieve a one-vs-all average classification

6HMDB: a large human motion database, described in Section 6.7.1 [172].
7That is, not including data such as depth, skeleton 2D and 3D and silhouettes, which were are also provided.

https://github.com/silviav12/LSTM_action_recognition
https://github.com/silviav12/LSTM_action_recognition

154 Chapter 6. Learning the Technique: Machine Learning for Action Recognition

2048 features

LSTM

t0

softmax
label

LSTM
LSTM

LSTM
LSTM
LSTM

LSTM
LSTM
LSTM

...

...

...

LSTM
LSTM
LSTM

time

layers

t100
Figure 6.6: Architecture of our classification neural network. At the bottom is the input to the
network, a sequence of 2 048 features per frame for 100 frames. This is the unrolled version of
the recurrent network with time going from left to right, and input is processed in this direction.
The input is also processed through 3 LSTMs layers, upwards, with 90 hidden units at each
layer. At the end, input is processed through a softmax layer to obtain the predicted label.

6.6. Results 155

accuracy of 60.23% and 54.40% respectively, compared to a 92.99% accuracy when applied to

the well-known KTH dataset [149], showing how challenging the THETIS dataset is. In [179],

experiments are performed using silhouette data achieving an accuracy of 86%.

Figure 6.7: Samples from THETIS dataset.

6.5.2 Evaluation

As recommended by the authors of the dataset [10], we performed a leave-one-out cross-

validation procedure. For each experiment, all the videos from a specific subject are selected

as the test set, videos from five other subjects (randomly selected) are kept as validation set

and the rest are used to train the network. This procedure is repeated three times for each

experiment. For the evaluation, we show a normalized confusion matrix of the results aver-

aged between all subjects and across the three repetitions of the experiment and provide the

accuracy and F1 scores8, to assess the precision and recall.

6.6 Results

6.6.1 Action Classification

The first experiment consists of classifying the videos into the correct class, amongst the 12

actions from the THETIS dataset. Figure 6.8 shows the confusion matrix of this experiment.

The average prediction accuracy is 47.22%, with an F1 score of 47.05%. Figure 6.8 shows that

8F1 = 2×(precision ∗recall)/(precision+recall), in our experiments, F1 score is represented as a percentage,
and the highest possible score is 100.

156 Chapter 6. Learning the Technique: Machine Learning for Action Recognition

for each of the 12 actions, most videos are labeled with the correct shot type and some actions,

such as backhand with two hands and backhand have an accuracy over 60%. By looking at

the results in more detail, one can realize that most errors are interpretable. For instance, the

network makes errors in discriminating between the different types of serve or smash. Videos in

the THETIS dataset do not contain the tennis ball, and this could explain why smash and serve

are often confused. Another source of confusion are slices and volleys, both in backhand and

forehand; these two actions are also similar for a human observer. Again, one main difference

between volley and slice is that in the former the ball is hit before bouncing. In [10], the authors

perform similar experiments but use depth videos and 3D skeletons rather than raw image and

obtain 60% and 54.4% accuracy, respectively. It is reasonable to assume that classifying raw

footage brings additional challenges and we consider that our results are satisfactory.

Figure 6.8: Confusion matrix of our model applied to the THETIS dataset (all players).

6.6. Results 157

6.6.2 Expertise Detection

As described in Section 6.5.1, the THETIS dataset contains shots performed by 31 amateur

and 24 experienced players. To assess how our network’s classification accuracy was affected

by the expertise of a player, we performed two different experiments. First, we calculated the

prediction accuracy for each group of players separately, when trained on the entire dataset

(with the same leave-one out cross validation procedure). Interestingly, the accuracy of our

model is higher for professional players (54.09%) than amateurs (41.90%). Figures 6.9 and 6.10

show these results in detail for amateur and professional players respectively. One possible

explanation is that professionals have a better technique making their shots more distinct and

the biggest difference, as can be seen in the figures, is within the different types of serve.

Figure 6.9: Confusion matrix of our model applied to the THETIS dataset (amateur players).

158 Chapter 6. Learning the Technique: Machine Learning for Action Recognition

Figure 6.10: Confusion matrix of our model applied to the THETIS dataset (professionals).

To further investigate how the network was affected by the players’ expertise, we compared the

network’s performance when trained using only amateur players, only professionals and on a

mixed set of players. In order for the results to be comparable, the number of examples used

for training should be similar. For this reason, we could not use previous results for the mixed

set of players since they are calculated using twice the amount of data compared to the data

that can be used when training on only amateurs or experts. To solve the issue, we re-ran

the experiments selecting the test and validation sets as before but randomly selecting only 25

examples for training. Taking into account that, we used videos from 5 players for validation

and 1 for testing in all experiments, the final training sets contain videos from 25 players for

the amateurs and mixed groups and 18 for professionals.

6.6. Results 159

Players Players
Accuracy

in training set in test set

mixed mixed 39.65% (47.22%)

mixed amateur 37.02% (41.90%)

mixed professional 43.06% (54.09%)

amateur amateur 37.70%

professional professional 45.00%

Table 6.1: Accuracy of classification when training with amateurs, professionals or a mixed
population, using a training set of 25 players for amateurs and mixed population and 18 players
for professionals. This was done to balance the number of examples in training sets of all
populations. In brackets, results of training with 49 players are shown.

Results are summarized in Table 6.1. As expected, the first observation is that when training

with a mixed group of players but using only 25 players for training, the classification accuracy

for all groups of players is lower than when using the entire dataset (training with 49 players).

When training with a reduced number of examples the accuracy is 39.65%, 37.02% and 43.06%

for mixed players, amateurs and professionals respectively versus 47.22% , 41.90% and 54.09%.

These results are consistent with previous experiments since classification of videos of profes-

sional players achieves the highest accuracy. Interestingly, this is further increased when only

professionals are used for training – accuracy increases from 43.06% to 45.00%. Classification of

videos from amateur players also benefits marginally from training with only amateur players,

increasing the classification accuracy from 37.02% to 37.70%. These results suggest that the

network could be learning different features depending on the level of expertise of the players.

It may be that features that help to best discriminate between different actions in amateur

players are different to those helpful in identifying different shots played by professionals. An-

other interesting observation from these experiments is that the quality of the training data is

important, but in our particular example, size of the training set is even more important as

best results are achieved when using the entire dataset.

160 Chapter 6. Learning the Technique: Machine Learning for Action Recognition

6.6.3 From Fine-Grained Actions to Stroke Types

Observing the results from Figure 6.8, we noticed that our learning algorithm was not only able

to identify the 12 fine-grained actions from the THETIS dataset but, when making mistakes,

these were generally between actions that can be grouped into the same type of tennis stroke.

For instance, even though a slice service is confused with a flat or kick service, the network is

still recognizing that it is a serve. For this reason, we looked at the accuracy of the prediction

when grouping classes into more general stroke types, as shown in Table 6.2. We still consider

these actions to be fine-grained as they are within the domain of tennis actions and fine-grained

when compared to general action recognition (e.g. detecting which sport is being played).

For this, we used the results from the first experiments of action classification and grouped the

labels into the 4 main action types in Table 6.2: backhand, forehand, service and smash. The

results from this are shown in Figure 6.11. In this setting, the action classification accuracy

reaches 76.92% with and F1 score of 76.90%. As can be seen from the Figure 6.8, the mean

accuracy is brought down by the smash detection. In fact, most errors come from a confusion

between smash and serve. These are quite similar in terms of body movement and the main

differences are the state of the game (serve is played at the beginning of a point), player

position in the court and ball trajectory before hitting the ball. THETIS videos do not contain

the tennis ball, which could help in discriminating between the two actions. Also, in real-world

applications we might expect to know the players position or state of the game, helping to

further discriminate between the two actions.

Having obtained these results, we wondered how predictions would compare if we trained on the

main stroke types directly. For this, we grouped smash and serves into the same category as they

are very similar in terms of body movement and it helps balancing the classes. Table 6.3 shows

the results by category, and we can see that training for the specific task, which is detecting

one of the three main strokes in this case, produces better classification results than training

for finer-grained actions and then regrouping the actions into their more general categories.

The classification accuracy improves from 84.10% to 88.16% for players of mixed abilities, from

6.7. Applications Beyond Tennis 161

Figure 6.11: Confusion matrix of our model on the THETIS dataset, grouped classes.

81.23% to 84.33% for amateurs and from 87.82% to 89.42% for professionals, when trained

using the entire dataset.

Two main observations can be derived from this. First, the network performs best when trained

for the specific task on which it is evaluated and, second, the features relevant to discriminate

between stroke type and between finer-grained actions might be different.

6.7 Applications Beyond Tennis

6.7.1 HMDB Dataset

To show the applicability of the implemented LSTM Neural Network (NN) to general ac-

tion recognition tasks, we also show the results of experiments performed on the HMDB

162 Chapter 6. Learning the Technique: Machine Learning for Action Recognition

Action group Actions

Backhand

backhand (with two hands)

backhand

backhand (slice)

backhand (volley)

Forehand

forehand (flat)

forehand (open stance)

forehand (slice)

forehand (volley)

Service

service (flat)

service (kick)

service (slice)

Smash smash

Table 6.2: Fine-grained actions grouped into
stroke types.

Players Trained Accuracy

tested actions

all all 84.10%

all 3 88.16%

amateur all 81.23%

amateur 3 84.33%

professional all 87.82%

professional 3 89.42%

Table 6.3: Accuracy of classification when
training with fine-grained actions and then re-
grouping vs training directly with the three
main stroke classes.

dataset [172]. This contains 6 849 videos from 51 actions that range from facial actions such as

smiling to body movements like climbing, horse riding or hand shaking. Videos are extracted

mostly from movies, but also from other datasets, and they can be considered in-the-wild.

6.7.2 Experiments

In our experiments we use the three different splits of the data (into training and testing sets) as

provided by the original authors [172]. For each split, the training set contain 3 570 examples,

which we randomly divide into training and validation sets with 70% and 30% of the data

respectively.

6.7.3 Results

To investigate the ability of generalization of our network, we evaluated it on the 51-calss

HMDB dataset. We achieved an accuracy of 43.19% in terms of identifying the correct action

6.8. Conclusion 163

class and an F1 score of 42.48%. In Table 6.4, our performance in HMDB is compared to

existing models that, like ourselves, use RGB data exclusively. For instance, we do not include:

the two-stream ConvNet of [174] (59.4%) which uses optical flow information, models in [180]

that use Fisher Vectors (53.3%) and a combination of HOG, HOF and MBH (60.1%). The

results presented here show that our network has the potential to be applied to other tasks,

further supporting that it could be applicable to other sports.

Model HMDB-51 accuracy

Spatial stream ConvNet [174] 40.5%

Soft attention model [181] 41.3%

Vinyes et al. [13] 43.2%

Composite LSTM [182] 44.1%

Table 6.4: HMDB-51 classification accuracy by state-of-the-art models from RGB data alone.

6.8 Conclusion

In this work we have presented a 3-layered LSTM network able to classify fine-grained tennis

actions. It uncovered a number of interesting points. First, our network achieved good results

by using features extracted through the application of the Inception neural network, trained

on an independent dataset and without the need of fine-tuning. This suggests that the hidden

layers of Inception are a robust data representation with the potential to be transferable to

multiple tasks and domains. Second, the network’s classification errors were interpretable, sug-

gesting it was learning semantically meaningful information. Endorsing this idea, the network

performed better when trained with only amateur or only professional players rather than a

mixed population. It is possible that it learned different features when looking at amateurs and

professional players and it would be interesting to investigate this further. Third, the network

performed better for professional players than amateurs, when trained on a mixed population.

A possible cause is that professionals have a better technique that makes their strokes more

distinct. In the future, we would like to consider whether this can be exploited to assess a

164 Chapter 6. Learning the Technique: Machine Learning for Action Recognition

player’s expertise. Fourth, the same network architecture was able to classify the three main

stroke types with an 88.16% accuracy, and it performed better than when an indirect inference

was made from finer-grained actions. This further supports the robustness and transferability

of the Inceptionfeatures. Finally, we also showed how the proposed approach can be applied

to general action recognition tasks, by evaluating it on the HMDB dataset. With this work we

also wish to motivate the exploration of applying deep neural networks in the sports domain

and the use and production of benchmark datasets in sports action recognition.

Our main contribution is the presentation of the first deep Neural Network for fine-grained

action recognition in tennis, and one of the first ones for fine-grained action recognition in

general. Our approach achieves 88.16% accuracy for classifying backhands, forehands and

serves and 47.22% accuracy in classifying 12 finer-grained actions. We also show that the

network is learning semantically meaningful information as most errors are interpretable and

its performance is different for expert and amateur players.

Chapter 7

Post-Match Conference: Conclusions

and Future Work

7.1 Summary of Thesis Achievements

7.1.1 Framework

We have presented a three-layered framework for the spatio-temporal analysis of tennis (cf.

Figure 1.11) consisting of a Vision, Classification and Modelling Layer with algorithmic in-

novation and implementation in the vision and classification layers. Within this context, we

have shown that innovation in the areas Computer Vision and Machine Learning has enabled

the development of an affordable, real-time and unobtrusive system for spatio-temporal data

collection in tennis and its subsequent analysis.

A principal benefit of our framework is that even though our layers are interconnected, their

implementations are independent of each other. As a consequence, each layer can be modified

and enhanced without the need to adapt the other layers. For instance, the design of our

framework takes into account the rapid development of technology, and as video capturing

devices improve, accuracy within the Vision Layer will also improve, enhancing the performance

of the framework as a whole. In this direction, we will start a project using a mobile phone in

the Vision Layer instead of the technology based on four cameras described in this thesis.

165

166 Chapter 7. Post-Match Conference: Conclusions and Future Work

7.1.2 Vision Layer

The development of techniques for spatio-temporal data collection in tennis from videos or

film dates back more than 50 years. The work that we presented for the Vision Layer of our

framework is a low-cost, portable and unobtrusive data collection system for tennis. We also

provide qualitative and quantitative analysis of the results in terms of novel error metrics. We

combined Computer Vision and Machine Learning techniques for the player and ball detection

by the generation of an adaptive background image and selection of ball candidates based on

shape and trajectory using random forest classifiers.

The proposed spatio-temporal data collection system uses four cameras and commodity hard-

ware to detect the court lines, track the players and tennis ball on the frame and obtain their

3D position in the real world. The ball and player inferred 3D locations had an error lower

than 10 cm and 6 cm respectively for 80% of the frames. We consider these results to be of

good quality, especially considering the size of the player and ball, 50 cm ×170 cm ×20 cm and

7 cm respectively, and the human error rate for estimating the ball position, which goes up to

10 cm even for experts at major tournaments (approximately the tennis ball diameter).

The work on the Vision Layer included graphs showing the detection error at the pixel level for

2D data and at the cm level for 3D. We also presented results for the player as the percentage

of his/her size to normalise the error and reflect its significance with respect to the players’

dimensions in the frame. This accuracy presentation is novel in the sports domain, and we

believe that encouraging other researchers to present results in a similar manner would enhance

the ability to compare different techniques.

The lack of a unified evaluation system complicates the comparison of different approaches.

We approached this challenge by presenting tables comparing different techniques for ball and

player detection and show what, to our knowledge, is the first attempt to compare different

Computer Vision enabled systems for tennis spatio-temporal data extraction.

7.1. Summary of Thesis Achievements 167

7.1.3 Classification Layer

Data Analysis

We presented visualisations of the data obtained from the Vision Layer as both a Cartesian and

a zoned heatmap, accompanied by an analysis of the visualised data. We also automatically

extracted high-level information such as stroke timing and area covered by each player. Accom-

plishing a full pipeline from data collection to visualisation showed the level of analysis that

can be obtained from the system introduced in the Vision Layer. We also presented a method

for pre-processing tennis ball trajectory data using quadratic fitting and value interpolation.

Action Recognition

We developed and trained a novel deep neural network for domain-specific action recognition,

specifically in tennis. We proposed a 3-layered LSTM network trained on features extracted

from videos exploiting well-known Inception neural network trained on an independent dataset

and without fine-tuning. To our knowledge, this is the first application of neural networks to

the problem of fine-grained tennis action recognition, and one of the first applications to fine-

grained action recognition in general. We evaluated our approach on the challenging THETIS

dataset, which contains low-definition RGB videos of fine-grained tennis actions, and obtained

promising results of 47.22% accuracy in one against all classification of 12 fine-grained actions

and 88.16% accuracy for classifying backhands, forehands and serves.

With our work, which is applied to a publicly available dataset, we aim at encouraging other

researchers to use publicly available datasets, facilitating the comparison of different approaches.

We believe that this would represent a step forward from current work in sports fine-grained

action recognition, which is performed on datasets that are not normally accessible to the

public.

In addition to this, we showed that the neural network can be fine-tuned to professional or

amateur players, reflecting that it is learning features differentiating how the two different

168 Chapter 7. Post-Match Conference: Conclusions and Future Work

groups play. Finally, we also showed that our neural network can be used in applications

beyond tennis.

7.1.4 Modelling Layer

In the Modelling Layer, we surveyed different methods that incorporate visual information for

the analysis and prediction of tennis matches. We did not find published records of compre-

hensive reviews encompassing the different approaches that use spatio-temporal data for the

analysis of tennis. Considering that such a piece of work is essential to take the field forward, we

critically reviewed current research and provided a sense of the evolution in the field. Following

this, we also evaluated the limitations of state-of-the-art approaches in spatio-temporal tennis

analysis, pointed out the main causes for these limitations and motivated how the work of this

thesis addresses them.

7.2 Applications

Applications in Tennis

The work presented in this thesis can be applied to tennis in multiple directions:

• Enhancing Training: Understanding the characteristics of shots, movement patterns of

players and the type of action being played enables an in-depth personalised analysis of

player performance and tactics. Access to personalised feedback can help in designing

training sessions and tracking the progress of players. For example, it is possible to assess

which type of shot a player must invest more training effort into. The support in the

form of data visualisations reinforces the validity and trust of a player in this advice. The

feedback can be in real-time, having an immediate impact on the learning process of the

player.

7.2. Applications 169

• In-Play Analysis and Prediction: In-Play analysis (compared to aggregated analysis) en-

ables players and coaches to better assess the performance of tennis players and their

opponents on the day and assess which tactics are working best. Prediction that in-

corporates spatio-temporal data can evolve as the match progresses and help players in

adjusting their tactics during a match.

• Line Call System: The framework proposed can be used as an automated referee for line

calls.

• Access to a Professional Experience: Combining the applications mentioned above in

an integrated training, in-play analysis and line call system opens up the possibility for

amateur players to have an experience similar to that of professional players in major

tournaments, where Hawk-Eye is available, but with additional feedback, for example, by

taking into account the type of shot being played.

• Augment Spectators’ Experience: The automatic extraction of high-level information

such as the area covered by a player or type of shot and its visualisation can significantly

benefit broadcast by providing additional information to the spectators. Augmenting the

spectator’s experience is crucial to keep fans engaged and to attract a new generation of

fans to the sport.

Appplications to Other Sports

This framework can also be applied to other sports. The application to other racket sports such

as badminton or table tennis requires modifications to the Vision Layer and adjustments in the

Classification Layer, for example, to define the types of shot for these sports. The application

of our framework can also be extended to team sports by incorporating multi-player tracking

in the Vision Layer and including a module to analyse interactions between players.

170 Chapter 7. Post-Match Conference: Conclusions and Future Work

7.3 Current Limitations

7.3.1 Benchmark Datasets

A major challenge that we encountered during our research was the lack of benchmark datasets.

Other domains such as face recognition, image captioning or speech understanding have bench-

mark datasets that allow researchers to compare their work, find out which techniques work

best and, in this way, advance the field. The reader might have noticed – especially in Chap-

ters 4 and 6 – how difficult it is to compare existing work in problems such as tennis ball and

player detection or fine-grained action recognition. With our work, we wanted to point out this

issue and encourage the development and use of benchmark datasets in the field of sports.

7.3.2 Evaluation Protocols

The difficulty in comparing existing work in object tracking and action recognition in tennis

has been highlighted above. Besides the lack of benchmark datasets, another major contributor

to this challenge is the absence of unified evaluation protocols. As we have seen in Chapters 4

and 6, many researchers present only a qualitative evaluation and, when quantitative results are

presented, they describe the percentage of frames in which the detection was ‘correct’. However,

the exact definition of ‘correct’ is rarely provided. We believe in the need for developing

objective quantitative evaluations of algorithms for visual data extraction in sports.

7.3.3 The Gap Between Research and Application

Progress is being made in the application of technology to tennis, becoming an integral part of

major tournaments with the Hawk-Eye line call system. However, the integration of technology

in training and amateur tournaments is still lacking. From our experience, there is a need for

enhancing communication between professionals in sports and Computer Science researchers.

Tennis coaches have the domain knowledge necessary to develop training programs from our

7.4. Future Work 171

data analysis. During our project we have had discussions with a number of professional tennis

coaches, which has greatly helped in refining our approach to data analysis and visualisation.

7.4 Future Work

Player detection

It would be extremely beneficial to detect specific landmarks in players’ bodies such as their feet

from visual data to have a more accurate representation of their position, trajectory and allow

the possibility of counting the number of steps. Recognizing different parts of the human body

in the player from visual data, as detecting the joints could lead to a biomechanical analysis

and provide feedback about their technique.

Analysis of Results

We would also like to further improve the quantitative analysis of our results by measuring the

real-world 3D position of the ball and players. This could be done with additional equipment

such as sensors. In the same direction, research in the field would significantly improve if a

benchmark dataset with ground truth was published.

Data Analysis

The data analysis presented by our Classification Layer could be improved by including more

data from a higher number of different players and full tennis matches, rather than training

sessions. By including more players, we would be able to perform the same analysis in a player-

specific manner and be able to compare different players’ patterns to gain insights into their

strengths and weaknesses. By analysing data from a match, it would be possible to investigate

tactics, and find patterns from an event-specific perspective (e.g. patterns in the first or second

serve) and analyse their effects on the likelihood of winning a point.

172 Chapter 7. Post-Match Conference: Conclusions and Future Work

General Framework

Future work in extending our framework includes:

• The application to other sports, which would require additional modules for interaction

between players in team sports.

• The incorporation of additional types of multimedia data, such as audio signals, which

have been shown to be very powerful in detecting different types of stroke in tennis [23;

183].

• The extension of data visualisations by applying approaches used in other domains, as

shown in [141; 184] and making the system interactive (e.g. allowing the user to select

different views or levels of granularity).

Appendix A

ATP 58 Tennis Tactics Patterns

In 1996, the United States Tennis Association published 58 tennis tactics patterns [97] (AC =

advantage court, DC = deuce court, CC = crosscourt, T = zone of the court formed by the

intersection of the service line and centre service line):

Net play (8 patterns):

• volley to opponent’s weakness (if ball is

above the net)

• volley deep down the line (if ball is below

the net)

• volley deep CC (after your approach, if

ball is above the net)

• serve wide and volley to the open court

• serve to the “T” and volley behind oppo-

nent or to a weakness

• angle your overhead away (if lob is short)

• aim your overhead CC (if lob is deep)

• let ball bounce and aim CC (high lobs)

Groundstroke (8 patterns):

• attack a short ball down the line (rally

CC)

• attach a short ball CC (rally CC)

• hit a severe angle (rally CC to get short,

wide ball)

• drive inside-out through the court (from

a ball down the middle)

• drive inside-out off the court (from a ball

in left half of the court)

• hit looping drives to opponent’s back-

hand (when driven deep)

• attach a short ball (exchange sliced back-

173

174 Appendix A. ATP 58 Tennis Tactics Patterns

hands)

• high and deep down the middle (against

deep shots in the middle)

Serve & return (18 patterns):

• serve wide to open the court (DC)

• serve wide to open the court (AC)

• serve to the “T” to reduce the angles

(DC)

• serve to the “T” to reduce the angles

(AC)

• serve at the body to jam the receiver

• return deep CC (DC against a wide

serve)

• return deep CC (AC against a wide

serve)

• return deep down the line (DC against

an extreme wide serve)

• return deep down the line (AC against

an extreme wide serve)

• return deep down the middle (DC

against a serve to the “T”)

• return deep down the middle (AC against

a serve to the “T”)

• return deep down the line (DC against a

serve to the “T”)

• return deep down the line (AC against a

serve to the “T”)

• hit a forcing shot down the line (against

a short, weak serve)

• hit a forcing shot CC (against a short,

weak serve)

• chip or drive down the line and come to

the net (against a short, weak serve)

• return low at the servers feet against a

serve-and-volleyer

• return down the line (against a serve-

and-volleyer)

Midcourt (8 patterns):

• drive hard and flat down the line (if ball

is above the net)

• drive cross court for a winner (if ball is

above the net)

• slice down the line (if ball is below the

net)

• drop shot down the line (if ball is below

the net)

• approach down the middle (from a ball

in the middle)

• use an inside-out forehand approach

(from a ball in the middle)

175

• use a looping topspin approach (from a

deep, high bouncing shot)

• move in and hit an approach volley (from

a looped shot)

176 Appendix A. ATP 58 Tennis Tactics Patterns

Defensive play (16 patterns):

• Pass down the line (against a deep CC

approach)

• Pass CC (against a deep CC approach)

• pass CC (against a moderate down-the-

line approach)

• use a two-shot pass (against a moderate

down the line approach)

• use a two-shot pass (against an approach

up the middle)

• use a two-shot pass inside out (against

an approach up the middle)

• overpower your opponent (against a

weak approach up the middle)

• use two shots to pass, first CC, then

down the line (against a deep sliced ap-

proach to backhand)

• use two shots to pass, first down the line,

then down the opposite line (against a

deep sliced approach to backhand)

• use two shots to pass (against a deep

sliced approach to forehand)

• use two shots to pass, first down the line,

then down the opposite line (against a

deep sliced approach to forehand)

• use a two-shot pass (against a short,

sliced approach)

• drive at opponents right hip (against a

short, weak volley)

• drive and then lob (against an approach

to your backhand)

• drive and then lob CC (against an ap-

proach to your backhand)

• hit a high defensive lob (against a deep

approach shot)

Appendix B

Classification of Lines for Court

Detection

As described in Section 4.3.2, the lines detected in the image are classified into horizontal and

vertical lines on the left and right-hand-side of the image separately to perform court detection.

The algorithm used to detect lines defines them in terms of the coordinates of two points on

the line. A line is considered horizontal if the absolute difference dy in the y axis coordinates of

the two points that define it is lower than their absolute difference dx in the x axis, as shown

177

178 Appendix B. Classification of Lines for Court Detection

in Figure B.1. The rest of lines are considered to be vertical.

Figure B.1: Classification into vertical and horizontal lines.

Vertical lines are further classified into left-vertical and right-vertical lines with the aim to

separate the lines that could be the right and left lines of the court. To achieve this, a margin

of 1/3rd of the frame width is selected relative to its centre, as shown in green in Figure B.2,

and lines within this margin are ignored. If the court occupies less than a 3rd of the frame, it

is safe to assume that action is not taking place, because broadcasts provide closer views of the

court when in-play. If only a partial view of the court is available, all lines will be classified into

the same group, as the partial view implies that only vertical lines on either side (left or right)

are visible, with the exception of the centre service line that will be classified as being on the

other side. Figure B.2 illustrates an example of line classification with horizontal, left-vertical

and right-vertical shown in magenta, blue and yellow respectively.

179

Figure B.2: Image resulting from lines extraction and classification into horizontal (magenta),
left-vertical (blue) and right-vertical (yellow) lines.

Appendix C

Merging Lines for Court Detection

As described in Section 4.3.2, lines that are considered to be duplicated within each group of

lines (classified into horizontal and vertical lines as explained in Appendix B) are merged. The

merging step iterates through the sorted lines and, if appropriate, merges them resulting in a

vector of merged lines.

As shown in Figure C.1, for a pair of horizontal lines L and R, we first check which of the two

is the leftmost (L in this example). Then we calculate the difference d in the y-coordinates of

the rightmost point of L (Lr) and the leftmost point of R (Rl). If d is below the threshold of

10 pixels (corresponding to twice the court line width), the lines are merged. The new line M

is defined by the leftmost point of L (Ll) and the rightmost point of R (Rr).

Figure C.1: Schematic for the merging of horizontal lines

As shown in Figure C.2, for a pair of vertical lines T and B, their slope and the distance d

between the x-coordinates at their intersection with a fixed horizontal line y is compared. As

above, if d is below the threshold of 10 pixels, lines are merged. The new line M is defined by

points with highest and lowest y-coordinate of both lines (Tt and Bb respectively).

180

181

TB

T t

T bBb

Btx
x

x
x

d
y

M

Figure C.2: Schematic for the merging of vertical lines.

The merging of horizontal lines has an additional step. Based on our empirical observations,

the vertical lines are very well detected, and it is not common to have outliers. However, many

horizontal lines are detected in addition to the court lines, but most of them are located outside

of the court. Thus, horizontal lines are considered for merging if they fall within the highest

and lowest y-coordinates reached by any of the vertical lines (we call the distance between these

two y coordinates h), with a certain margin of error, shown by the green lines in Figure C.3.

The error margin in the area below the court is set to 1/15th of h and to 2/15th of h in the area

above it, because detection in the top part of the frame is more challenging as objects appear

smaller and court lines thinner. After selection and merging of the lines found (Figure B.2), the

result is Figure C.3. Note that even if it is not visible in the figure, many lines are duplicated

in Figure B.2.

Figure C.3: Image resulting from lines detection, classification and merging.

Appendix D

Background Generation Example

Figure D.1: Background generation example. Initially the background image is empty and it
progressively incorporates background blocks until a complete background image is generated.
Described in Section 4.4.2.

182

Appendix E

Tennis Court Projection

Section 4.3.2 and Figure 4.7 show how a model of the court lines is projected onto a frame

based on a hypothesis of four point correspondences. This is achieved by creating a binary

image (black and white) to model a tennis court with its standardised dimensions, shown

in Figure 2.1, and with court lines in white. It is shown in black in Figure E.1 for clarity

but white is used to simulate the real colour, which will be useful for calculating the court

projection accuracy Section 4.3.2. As shown in the example of Figure E.1, the homography

matrix H is calculated via the perspective transformation1 of points a, b, c and d in the model

and the corresponding a′, b′, c′ and d′ in the image. Then, the projection of the court lines onto

the image is a simple warp of the tennis court model using H and resulting in Figure E.2).

1Using the OpenCV implementation [43].

183

184 Appendix E. Tennis Court Projection

Figure E.1: Court homography.

Figure E.2: Court lines projected onto the video frame.

Appendix F

Tennis Court Configurations

This figure shows eleven diagrams of a tennis court. In Section 4.3.2 we explained how different

correspondences between 4 points of the court in the frame and a model of the court are tested.

For each configuration, the four points in the frame are associated with the four red circles.

Figure F.1: Court configurations.

185

Appendix G

Kalman Filter

Named after Rudolf Emil Kálmán, this iterative algorithm is based on Bayesian inference and

estimates unknown variables from a set of observations, which are assumed to contain Gaussian

noise [89]. It performs two steps at each iteration:

• Prediction: estimate the state of the system x̂t|t−1 at time t.

• Update: upon getting the observation at time t the best state estimate x̂t|t is calculated

by multiplying the probability density function (pdf) of the prediction estimate and of the

current observation. Both of these are Gaussian distributions and therefore, the resulting

pdf of the best estimate x̂t|t is also a Gaussian distribution. The relative weight of the

prediction estimate and current observation depends on their uncertainty and is controlled

by a variable called the Kalman Gain, Equation (G.3).

We will use a simple example to explain Kalman filters: a tennis ball trajectory and its obser-

vation using a computer vision application to detect its pixel coordinates in video frames. The

system state xt at time t will be the 3D coordinates of the ball position in the real world and

its velocity. The estimate of the state at time t will be called x̂t and the observed ball position

with noise zt (e.g. if it was obtained through a computer vision algorithm that is not perfect).

The covariance matrices associated with the observation noise and the prediction x̂t|t−1 of an

186

187

unknown true state xt are Rt and Pt respectively. Using this notation the prediction step is

calculated as follows [185]:

x̂t|t−1 = Ftx̂t−1|t−1 + Btut (G.1)

where F is the state transition matrix for the modelled system (ball trajectory), B is the control

input matrix (to model the effect of u) and u is the vector of control input parameters (e.g.

car motion affected by the brake) and:

Pt|t−1 = FtPt|t−1F
T
t + Qt (G.2)

where Q is the noise covariance matrix of the control inputs.

The Kalman Gain Kt used in the update stage is calculated as follows:

Kt = Pt|t−1H
T
t (HtPt|t−1H

T
t + Rt)

−1 (G.3)

where H is the transformation matrix, which maps the state vector parameters to the observa-

tion domain (e.g. real-world 3D position and velocity to pixel coordinates on the frame).

A high value for K means that state measurements are more accurate and the estimations

more unstable. Therefore, new estimates will be more influenced by the measurements than by

the previous estimates. This is easy to see in the following equation for calculating the state

estimation in the update step [185]:

x̂t|t = x̂t|t−1 + Kt(zt −Htx̂t|t−1) (G.4)

Finally, when the new estimation is obtained, its error is estimated as follows:

Pt = Pt|t−1 −KtHtPt|t−1 (G.5)

A major advantage of this algorithm is that it does not need to have all the observations in order

to calculate an estimate of the real value. This makes it very suitable for on-line applications,

188 Appendix G. Kalman Filter

such a ball tracking. At each iteration, a new data point is fed in, and the estimation gets

closer to the real value.

In practice, the Kalman filter is particularly suited to object tracking in videos [186]. As

described in Section 4.5.1, the Kalman filter can be used in tennis ball tracking by defining the

search window for the next ball candidate centered at x̂t|t−1. When the next ball candidate is

detected, the Kalman filter is updated with this observation, as shown in Equation (G.4). If the

next ball candidate is not found (e.g. due to occlusion) the predicted state is used to continue

with the tracking. More details about the use of Kalman filter in sports for ball tracking can

be found in [187–191].

Appendix H

Particle Filter

A Particle Filter is a sampling method used to solve problems in signal processing and to perform

tractable Bayesian inference [192; 193]. The latter is the case in ball tracking algorithms, as

mentioned in Section 4.5.1.

The Particle Filter sampling method sequentially estimates states given observations as follows:

1. A set of particles represents the posterior distribution of a stochastic process given noisy

or partial observations. Particles have weights according to their likelihood.

2. Re-sampling is performed based on the particles’ weights, but new samples are given equal

weights.

3. New particles are generated with weights based on the posterior distribution of a stochas-

tic process given the particles from the previous step.

4. Start the process again.

[128] describes in more detail how this is applied to ball tracking.

189

Appendix I

Givens Rotations for QR

Decomposition

In Section 5.4.2 we mention that Givens rotations are used for the calculation of the QR

decomposition to solve Equation (5.3): Ax = b.

The QR decomposition of A can be used to solve the previous equation. This means that

A = QR (I.1)

with the constraints that Q is an orthogonal matrix and R is an upper triangular matrix1.

From this:

QRx = b (I.2)

therefore:

QTQRx = QT b (I.3)

and

Rx = QT b (I.4)

because Q is an orthogonal matrix, which means that QTQ = I. Equation (I.4) is straight-

forward to solve by back substitution since R is an upper triangular matrix. This is the reason

for using QR decomposition of A to solve Equation (5.3).

1Upper triangular matrix: every element below the diagonal is zero.

190

191

The QR decomposition of A is obtained through Givens rotations, which can be used to zero

out isolated elements of any matrix. A Givens rotation G(i, j, θ) can be represented as a matrix

where:

gkk = 1 for k 6= i, j, gkk = c for k = i, j, gji = −gji = s (I.5)

c = cos θ and s = sin θ for a rotation of θ radians in the (i, j) plane.

To calculate the QR decomposition of a matrix A, R can be obtained by applying Givens

rotations that will zero out each element below the diagonal in turn. To zero out the element

Ai,j, a Givens rotation matrix G1(i, j, θ) defined as in Equation (I.5) with:

c = a/r and s = −b/r (I.6)

with

r =
√
a2 + b2 given a = Ai−1,j and b = Ai,j (I.7)

The multiplication of G1(i, j, θ) by A (with A on the right) results in A2, with the element at

the position (i, j) set to zero. The same process is applied to A2 by applying a Givens rotation

matrix G2(i, j, θ) to zero out one element from A2 . This process is repeated until all elements

below the diagonal are zero. At this point, A is the R matrix, and Q corresponds to the product

of Givens rotations matrices (G1, G2 etc.). More formally:

If A = QR then QTA = QTQR = R (I.8)

then QTA = Gm . . . G3G2G1A (I.9)

so Q = (Gm . . . G3G2G1)
T = GT

1G
T
2G

T
3 . . . G

T
m (I.10)

Bibliography

[1] G. Pingali, Y. Jean, A. Opalach, and I. Carlbom, “LucentVision: Converting Real World

Events into Multimedia Experiences,” in IEEE International Conference on Multimedia

and Expo, vol. 3, pp. 1433–1436, IEEE, 2000.

[2] M. Lewis, Moneyball: The Art of Winning an Unfair Game. WW Norton & Company,

2004.

[3] L. Steinberg, “Changing The Game: The Rise of Sports Analytics,” in Forbes, April 2015.

[4] Y. Baodong, “Hawk-Eye Technology using Tennis Match,” Computer Modelling and New

Technologies, vol. 18, no. 12C, pp. 400–402, 2014.

[5] C. Shachar, E. Khazanov, and B. Yoram, “Smart Court System,” 2014.

[6] X. Wei, P. Lucey, S. Morgan, and S. Sridharan, “Predicting Shot Locations in Tennis

Using Spatiotemporal Data,” (Hobart, Tasmania, Australia), pp. 1–8, IEEE, November

2013.

[7] G. Hunter and K. Zienowicz, “Can Markov Models Accurately Simulate Lawn Tennis

Rallies ?,” in 2nd I.M.A. International Conference on Mathematics in Sport, IEEE, 2009.

[8] D. Spanias, Professional Tennis: Quantitative Models and Ranking Algorithms. PhD

thesis, Imperial College London, London, UK, 2015.

[9] M.-K. Hu, “Visual Pattern Recognition by Moment Invariants,” IRE Transactions on

Information Theory, vol. 8, no. 2, pp. 179–187, 1962.

192

BIBLIOGRAPHY 193

[10] S. Gourgari, G. Goudelis, K. Karpouzis, and S. Kollias, “THETIS: Three Dimensional

Tennis Shots a Human Action Dataset,” in Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (Workshops), pp. 676–681, IEEE, 2013.

[11] S. Vinyes Mora, G. Barnett, C. da Costa-Luis, J. Garcia Maegli, M. Ingram, J. Neale,

and W. J. Knottenbelt, “A Low-Cost Spatiotemporal Data Collection System for Tennis,”

in Proceedings of the 5th Mathematics in Sport Conference, (Loughborough, UK), June

2015.

[12] S. Vinyes Mora and W. J. Knottenbelt, “Spatio-Temporal Analysis of Tennis Matches,”

in Proceedings of the 3rd ACM KKD Workshop on Large Scale Sports Analytics, (San

Francisco, California, USA), August 2016.

[13] S. Vinyes Mora and W. J. Knottenbelt, “Deep Learning for Domain-Specific Action

Recognition in Tennis,” in Proceedings of the 3rd IEEE International CVPR Workshop

on Computer Vision in Sports, (Honolulu, Hawaii), July 2017.

[14] S. A. Kovalchik, “Searching for the GOAT of Tennis Win Prediction,” Journal of Quan-

titative Analysis in Sports, vol. 12, no. 3, pp. 127–138, 2016.

[15] J. G. Kemeny and J. L. Snell, Finite Markov Chains. van Nostrand Princeton, NJ, 1960.

[16] T. J. Barnett and S. R. Clarke, “Using Microsoft Excel to Model a Tennis Match,” in

6th Conference on Mathematics and Computers in Sport, pp. 63–68, Bond University,

Queensland, Australia, 2002.

[17] T. Barnett, A. Brown, and S. Clarke, “Developing a Model that Reflects Outcomes of

Tennis Matches,” in Proceedings of the 8th Australasian Conference on Mathematics and

Computers in Sport, Coolangatta, Queensland, pp. 178–188, 2006.

[18] A. J. O’Malley, “Probability Formulas and Statistical Analysis in Tennis,” Journal of

Quantitative Analysis in Sports, vol. 4, no. 2, p. 15, 2008.

194 BIBLIOGRAPHY

[19] F. J. G. M. Klaassen and J. R. Magnus, “Are Points in Tennis Independent and Identi-

cally Distributed? Evidence from a Dynamic Binary Panel Data Model,” Journal of the

American Statistical Association, vol. 96, no. 454, pp. 500–509, 2001.

[20] T. Barnett and S. R. Clarke, “Combining Player Statistics to Predict Outcomes of Tennis

Matches,” IMA Journal of Management Mathematics, vol. 16, no. 2, pp. 113–120, 2005.

[21] W. J. Knottenbelt, D. Spanias, and A. M. Madurska, “A Common-Opponent Stochas-

tic Model for Predicting the Outcome of Professional Tennis Matches,” Computers &

Mathematics with Applications, vol. 64, no. 12, pp. 3820–3827, 2012.

[22] B. Goldsack, A Novel Impact-Based Model for Predicting the Outcome of Professional

Singles Tennis Matches. MSc Thesis, Imperial College London, 2013.

[23] G. Hunter, A. Shihab, and K. Zienowicz, “Modelling Tennis Rallies using Information

From Both Video and Audio Signals,” in International Conference on Mathematics in

Sport, 2007.

[24] X. Wei, P. Lucey, S. Morgan, P. Carr, M. Reid, and S. Sridharan, “Predicting Serves

in Tennis using Style Priors,” in Proceedings of the 21th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pp. 2207–2215, ACM, 2015.

[25] X. Wei, P. Lucey, S. Morgan, M. Reid, and S. Sridharan, ““The Thin Edge of the Wedge”:

Accurately Predicting Shot Outcomes in Tennis using Style and Context Priors,” Pro-

ceedings of the MIT Sloan Sports Analytics Conference, 2016.

[26] X. Wei, P. Lucey, S. Morgan, and S. Sridharan, “Forecasting the Next Shot Location

in Tennis Using Fine-Grained Spatio-Temporal Tracking Data,” IEEE Transactions on

Knowledge and Data Engineering, vol. 28, no. 11, pp. 2988–2997, 2016.

[27] I. Biederman, “Recognition-by-Components: A Theory of Human Image Understanding,”

Psychological R eview, vol. 94, no. 2, p. 115, 1987.

[28] D. H. Ballard, G. E. Hinton, T. J. Sejnowski, et al., “Parallel Visual Computation,”

Nature, vol. 306, no. 5938, pp. 21–26, 1983.

BIBLIOGRAPHY 195

[29] J. J. DiCarlo, D. Zoccolan, and N. C. Rust, “How Does the Brain Solve Visual Object

Recognition?,” Neuron, vol. 73, no. 3, pp. 415–434, 2012.

[30] D. H. Hubel and T. N. Wiesel, “Receptive Fields, Binocular Interaction and Functional

Architecture in the Cat’s Visual Cortex,” The Journal of Physiology, vol. 160, no. 1,

pp. 106–154, 1962.

[31] D. G. Lowe, “Object Recognition from Local Scale-Invariant Features,” in The Proceed-

ings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–

1157, IEEE, 1999.

[32] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime Multi-Person 2D Pose Estimation

Using Part Affinity Fields,” arXiv preprint arXiv:1611.08050, 2016.

[33] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and Tell: A Neural Image

Caption Generator,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pp. 3156–3164, 2015.

[34] R. Szeliski, Computer Vision: Algorithms and Applications. Springer Science & Business

Media, 2010.

[35] J. Herault, Biologically Inspired Computer Vision: Fundamentals and Applications. John

Wiley & Sons, 2015.

[36] B. D. Lucas and T. Kanade, “An Iterative Image Registration Technique with an Applica-

tion to Stereo Vision,” in Proceedings of the International Joint Conference on Artificial

Intelligence, Vancouver, BC, Canada, 1981.

[37] C. Harris and M. Stephens, “A Combined Corner and Edge Detector,” in Alvey Vision

Conference, vol. 15, pp. 10–5244, Manchester, UK, 1988.

[38] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human Detection,” in

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1,

pp. 886–893, IEEE, 2005.

196 BIBLIOGRAPHY

[39] R. Poppe, “A Survey on Vision-Based Human Action Recognition,” Image and Vision

Computing, vol. 28, no. 6, pp. 976–990, 2010.

[40] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” International

Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

[41] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[42] F. Masci, “Line Detection by Hough Transformation.” Available at http://web.ipac.

caltech.edu/staff/fmasci/home/astro_refs/HoughTrans_lines_09.pdf, 2009.

[43] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.

[44] J. Matas, C. Galambos, and J. Kittler, “Robust Detection of Lines Using the Progressive

Probabilistic Hough Transform,” Computer Vision and Image Understanding, vol. 78,

no. 1, pp. 119–137, 2000.

[45] A. L. Samuel, “Some Studies in Machine Learning Using the Game of Checkers,” IBM

Journal of Research and Development, vol. 3, pp. 210–229, July 1959.

[46] T. M. Mitchell, Machine Learning. McGraw-Hill, Boston, MA, 1997.

[47] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT press, 2016.

[48] E. Alpaydin, Introduction to Machine Learning. MIT press, 2014.

[49] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, vol. 1. MIT

Press, Cambridge, MA, USA, 1998.

[50] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The Arcade Learning Envi-

ronment: An Evaluation Platform for General Agents,” Journal of Artificial Intelligence

Research, vol. 47, pp. 253–279, 2013.

[51] W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke, D. Yu, and

G. Zweig, “Achieving Human Parity in Conversational Speech Recognition,” arXiv

preprint arXiv:1610.05256, 2016.

http://web.ipac.caltech.edu/staff/fmasci/home/astro_refs/HoughTrans_lines_09.pdf
http://web.ipac.caltech.edu/staff/fmasci/home/astro_refs/HoughTrans_lines_09.pdf

BIBLIOGRAPHY 197

[52] B. Li, T. Sainath, A. Narayanan, J. Caroselli, M. Bacchiani, A. Misra, I. Shafran, H. Sak,

G. Pundak, K. Chin, et al., “Acoustic Modeling for Google Home,” Proceddings of Inter-

speech, 2017.

[53] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, “Using Collaborative Filtering to

Weave an Information Tapestry,” Communications of the ACM, vol. 35, no. 12, pp. 61–

70, 1992.

[54] P. Resnick and H. R. Varian, “Recommender Systems,” Communications of the ACM,

vol. 40, no. 3, pp. 56–58, 1997.

[55] G. A. Wiggins, “Searching for Computational Creativity,” New Generation Computing,

vol. 24, no. 3, pp. 209–222, 2006.

[56] A. Elgammal, B. Liu, M. Elhoseiny, and M. Mazzone, “CAN: Creative Adversarial Net-

works, Generating “Art” by Learning About Styles and Deviating from Style Norms,”

arXiv preprint arXiv:1706.07068, 2017.

[57] L. A. Gatys, A. S. Ecker, and M. Bethge, “A Neural Algorithm of Artistic Style,” arXiv

preprint arXiv:1508.06576, 2015.

[58] F. Rosenblatt, “Principles of Neurodynamics. Perceptrons and the Theory of Brain Mech-

anisms,” tech. rep., Cornell Aeronautical Lab Inc Buffalo, NY, 1961.

[59] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Parallel distributed processing:

Explorations in the microstructure of cognition, vol. 1,” ch. Learning Internal Represen-

tations by Error Propagation, pp. 318–362, Cambridge, MA, USA: MIT Press, 1986.

[60] E. R. Kandel, J. H. Schwartz, T. M. Jessell, S. A. Siegelbaum, A. J. Hudspeth, et al.,

Principles of Neural Science, vol. 4. McGraw-Hill, New York, 2000.

[61] F. Rosenblatt, “The Perceptron: A Probabilistic Model for Information Storage and

Organization in the Brain,” Psychological Review, vol. 65, no. 6, p. 386, 1958.

198 BIBLIOGRAPHY

[62] X. Glorot, A. Bordes, and Y. Bengio, “Deep Sparse Rectifier Neural Networks,” in Pro-

ceedings of the 14th International Conference on Artificial Intelligence and Statistics,

pp. 315–323, 2011.

[63] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature, vol. 521, no. 7553,

pp. 436–444, 2015.

[64] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet Classification with Deep Con-

volutional Neural Networks,” in Advances in Neural Information Processing Systems,

pp. 1097–1105, 2012.

[65] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, et al., “Imagenet

Large Scale Visual Recognition Challenge,” International Journal of Computer Vision,

vol. 115, no. 3, pp. 211–252, 2015.

[66] J. J. Hopfield, “Neural Networks and Physical Systems with Emergent Collective Com-

putational Abilities,” Proceedings of the national academy of sciences, vol. 79, no. 8,

pp. 2554–2558, 1982.

[67] J. L. Elman, “Finding Structure in Time,” Cognitive science, vol. 14, no. 2, pp. 179–211,

1990.

[68] A. Graves et al., Supervised Sequence Labelling with Recurrent Neural Networks, vol. 385

of Studies in Computational Intelligence. Springer, 2012.

[69] A. Graves, A.-R. Mohamed, and G. Hinton, “Speech Recognition with Deep Recurrent

Neural Networks,” in Proceedings of the IEEE Conference on Acoustics, Speech and Signal

Processing, pp. 6645–6649, IEEE, 2013.

[70] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gradient

descent is difficult,” IEEE transactions on neural networks, vol. 5, no. 2, pp. 157–166,

1994.

[71] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation,

vol. 9, no. 8, pp. 1735–1780, 1997.

BIBLIOGRAPHY 199

[72] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent Neural Network Regularization,”

arXiv preprint arXiv:1409.2329, 2014.

[73] L. Breiman, “Random Forests,” UC Berkeley TR567, 1999.

[74] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001.

[75] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and Regression

Trees. CRC press, 1984.

[76] Louppe, Gilles, Understanding Random Forests. PhD Thesis, University of Liege, 2014.

[77] L. Breiman, “Manual on Setting up, Using and Understanding Random Forest,” V4. 0,

University of California Berkeley, Statistics Department, Berkeley, 2003.

[78] S. Lloyd, “Least Squares Quantization in PCM,” IEEE Transactions on Information

Theory, vol. 28, no. 2, pp. 129–137, 1982.

[79] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum Likelihood from Incomplete

Data Via the EM Algorithm,” Journal of the Royal Statistical Society. Series B (method-

ological), pp. 1–38, 1977.

[80] V. Vapnik, The Nature of Statistical Learning Theory. Springer Science & Business Media,

1995.

[81] C. E. Rasmussen and C. K. Williams, Gaussian Processes for Machine Learning, vol. 1.

MIT Press, Cambridge, MA, USA, 2006.

[82] K. P. Bennett and O. L. Mangasarian, “Robust Linear Programming Discrimination

of Two Linearly Inseparable Sets,” Optimization Methods and Software, vol. 1, no. 1,

pp. 23–34, 1992.

[83] C. Cortes and V. Vapnik, “Support-Vector Networks,” Machine Learning, vol. 20, no. 3,

pp. 273–297, 1995.

200 BIBLIOGRAPHY

[84] H. Drucker, C. J. C. Burges, L. Kaufman, A. J. Smola, and V. Vapnik, “Support Vector

Regression Machines,” in Advances in Neural Information Processing Systems, pp. 155–

161, 1997.

[85] V. N. Vapnik and V. Vapnik, Statistical Learning Theory, vol. 1. Wiley New York, 1998.

[86] C.-W. Hsu and C.-J. Lin, “A Comparison of Methods for Multiclass Support Vector

Machines,” IEEE Transactions on Neural Networks, vol. 13, no. 2, pp. 415–425, 2002.

[87] T. Dean and K. Kanazawa, “A Model for Reasoning about Persistence and Causation,”

Computational intelligence, vol. 5, no. 2, pp. 142–150, 1989.

[88] K. P. Murphy, Dynamic Bayesian Networks: Representation, Inference and Learning.

PhD Thesis, University of California, Berkeley, 2002.

[89] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,” Journal

of Basic Engineering, vol. 82, no. 1, pp. 35–45, 1960.

[90] R. J. Elliott, L. Aggoun, and J. B. Moore, Hidden Markov Models: Estimation and

Control. Springer Science & Business Media, 2008.

[91] G. J. McLachlan and K. E. Basford, Mixture Models: Inference and Applications to

Clustering, vol. 84. Marcel Dekker, 1988.

[92] C. Aviles, N. Benguigui, E. Beaudoin, and F. Godart, “Developing Early Perception

and Getting Ready for Action on the Return of Serve,” International Tennis Federation

Coaching & Sport Science Review, vol. 28, no. 6, p. 8, 2002.

[93] R. N. Singer, J. H. Cauraugh, D. Chen, G. M. Steinberg, and S. G. Frehlich, “Visual

Search, Anticipation, and Reactive Comparisons Between Highly-Skilled and Beginning

Tennis Players,” Journal of Applied Sport Psychology, vol. 8, no. 1, pp. 9–26, 1996.

[94] L. S. Overney, O. Blanke, and M. H. Herzog, “Enhanced Temporal but not Attentional

Processing in Expert Tennis Players,” PLoS One, vol. 3, no. 6, p. e2380, 2008.

BIBLIOGRAPHY 201

[95] H. Collins and R. Evans, “You Cannot Be Serious! Public Understanding of Technology

with Special Reference to Hawk-Eye,” Public Understanding of Science, vol. 17, no. 3,

pp. 283–308, 2008.

[96] B. Dyer, “The Controversy of Sports Technology: a Systematic Review,” SpringerPlus,

vol. 4, no. 1, p. 524, 2015.

[97] United States Tennis Association, Tennis Tactics: Winning Patterns of Play. Human

Kinetics, 1996.

[98] S. Intille and A. Bobick, “Representation and Visual Recognition of Complex, Multi-

Agent Actions using Belief Networks,” Proceedings of the CVPR Workshop on Interpre-

tation of Visual Motion, 1998.

[99] S. S. Intille and A. F. Bobick, “A Framework for Recognizing Multi-Agent Action from

Visual Evidence,” in Proceedings of the Innovative Applications of Artificial Intelligence

Conference, pp. 518–525, American Association for Artificial Intelligence, 1999.

[100] W. E. L. Grimson, D. P. Huttenlocher, et al., Object Recognition by Computer: the Role

of Geometric Constraints. MIT Press, 1990.

[101] W. E. L. Grimson and T. Lozano-Perez, “Localizing Overlapping Parts by Searching the

Interpretation Tree,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. PAMI-9, no. 4, pp. 469–482, 1987.

[102] A. Stevenson, Oxford Dictionary of English. Oxford University Press, 2010.

[103] M. Crespo and M. Reid, Coaching Beginner and Intermediate Tennis Players: A Manual

of the ITF Coaching Programme. International Tennis Federation, 2009.

[104] M. Crespo and M. Reid, What Research Tells Us About Strategy and Tactics. International

Tennis Federation, 2001.

[105] J. R. Wang and N. Parameswaran, “Analyzing Tennis Tactics from Broadcasting Tennis

Video Clips,” in International Multimedia Modelling Conference, pp. 102–106, IEEE,

2005.

202 BIBLIOGRAPHY

[106] W.-T. Chu and W.-H. Tsai, “Modeling Spatio-Temporal Relationships Between Moving

Objects for Event Tactics Analysis in Tennis Videos,” Multimedia Tools and Applications,

vol. 50, no. 1, pp. 149–171, 2010.

[107] L. Bergroth, H. Hakonen, and T. Raita, “A Survey of Longest Common Subsequence

Algorithms,” in Seventh International Symposium on String Processing and Information

Retrieval, pp. 39–48, IEEE, 2000.

[108] A. Terroba, W. Kosters, J. Varona, and C. S. Manresa-Yee, “Finding Optimal Strate-

gies in Tennis from Video Sequences,” International Journal of Pattern Recognition and

Artificial Intelligence, vol. 27, no. 06, 2013.

[109] A. Terroba, W. A. Kosters, and J. K. Vis, “Tactical Analysis Modeling through Data

Mining,” in Proceedings of the International Conference on Knowledge Discovery and

Information Retrieval, pp. 176–181, 2010.

[110] J. K. Vis, W. A. Kosters, and A. Terroba, “Tennis Patterns: Player, Match and Beyond,”

in 22nd Benelux Conference on Artificial Intelligence, Luxembourg, pp. 25–26, 2010.

[111] X. Wei, P. Lucey, S. Morgan, and S. Sridharan, “Sweet-Spot: Using Spatiotemporal Data

to Discover and Predict Shots in Tennis,” in MIT Sloan Sports Analytics Conference, 2013.

[112] P. G. O’Donoghue and E. Brown, “The Importance of Service in Grand Slam Singles

Tennis,” International Journal of Performance Analysis in Sport, vol. 8, no. 3, pp. 70–

78, 2008.

[113] G. Mather, “Perceptual Uncertainty and Line-Call Challenges in Professional Tennis,”

Proceedings of the Royal Society of London B: Biological Sciences, vol. 275, no. 1643,

pp. 1645–1651, 2008.

[114] D. Farin, S. Krabbe, and W. Effelsberg, “Robust Camera Calibration for Sport Videos

Using Court Models,” Proceedings of SPIE, vol. 5307, pp. 80–91, 2003.

BIBLIOGRAPHY 203

[115] B. Dang, A. Tran, T. Dinh, and T. Dinh, “A Real Time Player Tracking System for Broad-

cast Tennis Video,” Intelligent Information and Database Systems, vol. 5991, pp. 105–113,

2010.

[116] O. Chum, T. Werner, and J. Matas, “Epipolar Geometry Estimation via RANSAC Ben-

efits from the Oriented Epipolar Constraint,” in Proceedings of the International Confer-

ence on Pattern Recognition, vol. 1, pp. 112—-115 Vol.1, 2004.

[117] S. Vinyes Mora, Video-Based Analysis of Professional Tennis Matches. MSc Thesis,

Imperial College London, 2013.

[118] J. Han, D. Farin, et al., “Generic 3D Modeling for Content Analysis of Court-Net Sports

Sequences,” in Proceedings of the 13th International Conference on Multimedia Modeling,

pp. 279–288, Springer, 2007.

[119] G. Sudhir, J. C.-M. Lee, and A. K. Jain, “Automatic Classification of Tennis Video for

High-Level Content-Based Retrieval,” in Proceedings of the IEEE International Workshop

on Content-Based Access of Image and Video Database, pp. 81—-90, 1998.

[120] Y.-C. Jiang, K.-T. Lai, C.-H. Hsieh, and M.-F. Lai, “Player Detection and Tracking in

Broadcast Tennis Video,” in Proceedings of the 3rd Pacific Rim Symposium on Advances

in Image and Video Technology, pp. 759–770, Springer-Verlag, 2008.

[121] H. Miyamori and S.-I. Iisaku, “Video Annotation for Content-Based Retrieval Using

Human Behavior Analysis and Domain Knowledge,” IEEE International Conference on

Automatic Face and Gesture Recognition, pp. 320–325, 2000.

[122] R. C. Gonzalez and R. E. Woods, Digital Image Processing (2nd Ed). Prentice Hall, 2002.

[123] S. Suzuki, “Topological Structural Analysis of Digitized Binary Images by Border Fol-

lowing,” Computer Vision, Graphics, and Image Processing, vol. 30, no. 1, pp. 32–46,

1985.

204 BIBLIOGRAPHY

[124] G. S. Pingali, Y. Jean, and I. Carlbom, “Real Time Tracking for Enhanced Tennis Broad-

casts,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, pp. 260–265, 1998.

[125] K. Teachabarikiti, T. H. Chalidabhongse, and A. Thammano, “Players Tracking and Ball

Detection for an Automatic Tennis Video Annotation,” in 11th International Conference

on Control Automation Robotics Vision, (Singapore), pp. 2461–2494, 2010.

[126] C. O’Conaire, P. Kelly, D. Connaghan, and N. E. O’Connor, “Tennissense: A Platform

for Extracting Semantic Information from Multi-Camera Tennis Data,” in Proceedings of

the 16th International Conference on Digital Signal Processing, pp. 1–6, IEEE, 2009.

[127] F. Yan, W. Christmas, and J. Kittler, “A Tennis Ball Tracking Algorithm for Automatic

Annotation of Tennis Match,” Procedings of the British Machine Vision Conference 2005,

pp. 67.1–67.10, 2005.

[128] X. Yu, C.-H. Sim, J. R. Wang, and L. F. Cheong, “A Trajectory-Based Ball Detection and

Tracking Algorithm in Broadcast Tennis Video,” in International Conference on Image

Processing, vol. 2, pp. 1049–1052, IEEE, 2004.

[129] F. Yan, A. Kostin, W. Christmas, and J. Kittler, “A Novel Data Association Algorithm

for Object Tracking in Clutter with Application to Tennis Video Analysis,” in IEEE Com-

puter Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 634–

641, IEEE, 2006.

[130] K. Thormann, F. Sigges, and M. Baum, “Learning an object tracker with a random forest

and simulated measurements,” in Information Fusion (Fusion), 2017 20th International

Conference on, pp. 1–4, IEEE, 2017.

[131] George Barnett, Casper da Costa-Luis, Jose Garcia Maegli, Martin Ingram, James Neale,

The Intelligent Tennis Court. MSc Group Project, Imperial College London, 2013.

[132] J.-Y. Bouguet, “Complete camera calibration toolbox for matlab (1999).” Available at

http://www.vision.caltech.edu/bouguetj.

http://www. vision. caltech. edu/bouguetj

BIBLIOGRAPHY 205

[133] Z. Zhang, “A Flexible New Technique for Camera Calibration,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 22, no. 11, pp. 1330–1334, 2000.

[134] Y. Abdel-Aziz, “Direct Linear Transformation from Comparator Coordinates in Close-

Range Photogrammetry,” in ASP Symposium on Close Range Photogrammetry., pp. 1–19,

Falls Church (VA). American Society of Photogrammetry, 1971.

[135] R. I. Hartley and P. Sturm, “Triangulation,” Computer Vision and Image Understanding,

vol. 68, no. 2, pp. 146–157, 1997.

[136] P. A. Beardsley, A. Zisserman, and D. W. Murray, “Navigation Using Affine Structure

from Motion,” in European Conference on Computer Vision, pp. 85–96, Springer, 1994.

[137] J. Bertin, “Semiology of Graphics: Diagrams, Networks, Maps,” Madison, WI: The Uni-

versity of Wisconsin Press, 1983.

[138] X. Yu and D. Farin, “Current and Emerging Topics in Sports Video Processing,” in IEEE

International Conference on Multimedia and Expo, pp. 526–529, IEEE, 2005.

[139] N. Owens, C. Harris, and C. Stennett, “Hawk-Eye Tennis System,” in International

Conference on Visual Information Engineering, pp. 182–185, Institution of Electrical

Engineers, 2003.

[140] G. Pingali, A. Opalach, Y. Jean, and I. Carlbom, “Visualization of Sports Using Motion

Trajectories: Providing Insights into Performance, Style, and Strategy,” in Proceedings

of the Conference on Visualization, pp. 75–82, IEEE Computer Society, 2001.

[141] D. Demaj, “Geovisualizing Spatio-Temporal Patterns in Tennis: An Alternative Ap-

proach to Post-Match Analysis.” Available at http://gamesetmap.com/, 2013.

[142] J. Gudmundsson and M. Horton, “Spatio-Temporal Analysis of Team Sports,” ACM

Computing Surveys, vol. 50, no. 2, p. 22, 2017.

[143] G. McGhee, “Using Maps and Data Vis to Understand Tennis.” National Geographic

Data Points Series. Available at http://news.nationalgeographic.com/2015/09/

150906-data-points-tennis-tracking/, 2016.

http://gamesetmap.com/
http://news.nationalgeographic.com/2015/09/150906-data-points-tennis-tracking/
http://news.nationalgeographic.com/2015/09/150906-data-points-tennis-tracking/

206 BIBLIOGRAPHY

[144] F. Giampaolo and J. Levey, Championship Tennis. Human Kinetics, 2013.

[145] R. Waite, “Playing in the Zones.” Available at http://www.tennisserver.com/, 2015.

[146] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld, “Learning Realistic Human Ac-

tions from Movies,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pp. 3222–3229, IEEE, 2008.

[147] H. Wang and C. Schmid, “Action Recognition with Improved Trajectories,” in Proceedings

of the IEEE International Conference on Computer Vision, pp. 3551–3558, 2013.

[148] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei, “Large-

Scale Video Classification with Convolutional Neural Networks,” in Proceedings of the

IEEE conference on Computer Vision and Pattern Recognition, pp. 1725–1732, IEEE,

2014.

[149] C. Schuldt, I. Laptev, and B. Caputo, “Recognizing Human Actions: A Local SVM

Approach,” in Proceedings of the 17th International Conference on Pattern Recognition,

vol. 3, pp. 32–36, IEEE, 2004.

[150] X. Baró, J. Gonzalez, J. Fabian, M. A. Bautista, M. Oliu, H. Jair Escalante, I. Guyon, and

S. Escalera, “Chalearn Looking at People 2015 Challenges: Action Spotting and Cultural

Event Recognition,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (Workshops), pp. 1–9, 2015.

[151] M. D. Rodriguez, J. Ahmed, and M. Shah, “Action MACH: A Spatio-Temporal Maxi-

mum Average Correlation Height Filter for Action Recognition,” in IEEE Conference on

Computer Vision and Pattern Recognition, pp. 3001–3008, IEEE, 2008.

[152] K. Soomro and A. R. Zamir, “Action Recognition in Realistic Sports Videos,” in Com-

puter Vision in Sports, pp. 181–208, Springer, 2014.

[153] G. Zhu, C. Xu, W. Gao, and Q. Huang, “Action Recognition in Broadcast Tennis Video

Using Optical Flow and Support Vector Machine,” in European Conference on Computer

Vision, pp. 89–98, Springer, 2006.

http://www.tennisserver.com/

BIBLIOGRAPHY 207

[154] G. Zhu, C. Xu, Q. Huang, W. Gao, and L. Xing, “Player Action Recognition in Broadcast

Tennis Video with Applications to Semantic Analysis of Sports Game,” in Proceedings of

the 14th ACM International Conference on Multimedia, pp. 431–440, ACM, 2006.

[155] N. FarajiDavar, T. De Campos, J. Kittler, and F. Yan, “Transductive Transfer Learning

for Action Recognition in Tennis Games,” in IEEE International Conference on Computer

Vision (Workshops), pp. 1548–1553, IEEE, 2011.

[156] T. De Campos, M. Barnard, K. Mikolajczyk, J. Kittler, F. Yan, W. Christmas, and

D. Windridge, “An Evaluation of Bags-of-Words and Spatio-Temporal Shapes for Action

Recognition,” in IEEE Workshop on Applications of Computer Vision (WACV), pp. 344–

351, IEEE, 2011.

[157] N. Dalal, B. Triggs, and C. Schmid, “Human Detection Using Oriented Histograms

of Flow and Appearance,” in European Conference on Computer Vision, pp. 428–441,

Springer, 2006.

[158] P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie, “Behavior Recognition via Sparse

Spatio-Temporal Features,” in 2nd Joint IEEE International Workshop on Visual Surveil-

lance and Performance Evaluation of Tracking and Surveillance, pp. 65–72, IEEE, 2005.

[159] A. A. Efros, A. C. Berg, G. Mori, and J. Malik, “Recognizing Action at a Distance,”

in Proceeding of the IEEE International Conference on Computer Vision., pp. 726–733,

2003.

[160] S. Ali and M. Shah, “Human Action Recognition in Videos using Kinematic Features

and Multiple Instance Learning,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 32, no. 2, pp. 288–303, 2010.

[161] H. Wang, A. Klaser, C. Schmid, and C.-L. Liu, “Action Recognition by Dense Trajecto-

ries,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion, pp. 3169–3176, IEEE, 2011.

[162] X. Peng, L. Wang, X. Wang, and Y. Qiao, “Bag of Visual Words and Fusion Methods for

208 BIBLIOGRAPHY

Action Recognition: Comprehensive Study and Good Practice,” Computer Vision and

Image Understanding, vol. 150, pp. 109–125, 2016.

[163] P. Matikainen, M. Hebert, and R. Sukthankar, “Trajectons: Action Recognition Through

the Motion Analysis of Tracked Features,” in Computer Vision Workshops (ICCV Work-

shops), 2009 IEEE 12th International Conference on, pp. 514–521, IEEE, 2009.

[164] R. Messing, C. Pal, and H. Kautz, “Activity Recognition Using the Velocity Histories of

Tracked keypoints,” in Computer Vision, 2009 IEEE 12th International Conference on,

pp. 104–111, IEEE, 2009.

[165] J. Sun, X. Wu, S. Yan, L.-F. Cheong, T.-S. Chua, and J. Li, “Hierarchical Spatio-

Temporal Context Modeling for Action Recognition,” in Computer Vision and Pattern

Recognition, 2009. CVPR 2009. IEEE Conference on, pp. 2004–2011, IEEE, 2009.

[166] X. Xiao, D. Xu, and W. Wan, “Overview: Video Recognition from Handcrafted Method

to Deep Learning Method,” in International Conference on Audio, Language and Image

Processing (ICALIP), pp. 646–651, IEEE, 2016.

[167] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell, “Decaf: A

Deep Convolutional Activation Feature for Generic Visual Recognition,” in International

Conference on Machine Learning, pp. 647–655, 2014.

[168] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,

and A. Rabinovich, “Going Deeper with Convolutions,” in Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pp. 1–9, IEEE, 2015.

[169] M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Basri, “Actions as Space-Time

Shapes,” in IEEE International Conference on Computer Vision, vol. 2, pp. 1395–1402,

IEEE, 2005.

[170] L. Gorelick, M. Blank, E. Shechtman, M. Irani, and R. Basri, “Actions as Space-Time

Shapes,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29,

no. 12, pp. 2247–2253, 2007.

BIBLIOGRAPHY 209

[171] K. K. Reddy and M. Shah, “Recognizing 50 Human Action Categories of Web Videos,”

Machine Vision and Applications, vol. 24, no. 5, pp. 971–981, 2013.

[172] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, “HMDB: A Large Video

Database for Human Motion Recognition,” in Proceedings of the IEEE Conference on

Computer Vision, pp. 2556–2563, IEEE, 2011.

[173] M. Baccouche, F. Mamalet, C. Wolf, C. Garcia, and A. Baskurt, “Sequential Deep Learn-

ing for Human Action Recognition,” in International Workshop on Human Behavior

Understanding, vol. 7065 of Lecture Notes in Computer Science, (Berlin, Heidelberg),

pp. 29–39, Springer, 2011.

[174] K. Simonyan and A. Zisserman, “Two-Stream Convolutional Networks for Action Recog-

nition in Videos,” in Advances in Neural Information Processing Systems, pp. 568–576,

2014.

[175] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the Inception

Architecture for Computer Vision,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 2818–2826, 2016.

[176] D. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” arXiv preprint

arXiv:1412.6980, 2014.

[177] S. Ruder, “An Overview of Gradient Descent Optimization Algorithms,” arXiv preprint

arXiv:1609.04747, 2016.

[178] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, et al.,

“TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.” Software avail-

able from tensorflow.org, 2015.

[179] J. Vainstein, J. F. Manera, P. Negri, C. Delrieux, and A. Maguitman, “Modeling Video

Activity with Dynamic Phrases and its Application to Action Recognition in Tennis

Videos,” in Iberoamerican Congress on Pattern Recognition, pp. 909–916, Springer, 2014.

210 BIBLIOGRAPHY

[180] H. Wang, D. Oneata, J. Verbeek, and C. Schmid, “A Robust and Efficient Video Repre-

sentation for Action Recognition,” International Journal of Computer Vision, vol. 119,

no. 3, pp. 219–238, 2016.

[181] S. Sharma, R. Kiros, and R. Salakhutdinov, “Action Recognition using Visual Attention,”

arXiv preprint arXiv:1511.04119, 2015.

[182] N. Srivastava, E. Mansimov, and R. Salakhutdinov, “Unsupervised Learning of Video

Representations using LSTMs.,” in International Conference on Machine Learning,

pp. 843–852, 2015.

[183] K. Zienowicz, G. Hunter, and A. Shihab, “The Use of Spectrographic Template Matching

to Identify and Classify Salient Sound Events in Tennis Matches,” Proceedings of the

Institute of Acoustics (UK), vol. 30, no. 2, pp. 171–179, 2008.

[184] Y. Du, C. Ma, C. Wu, X. Xu, Y. Guo, Y. Zhou, and J. Li, “A Visual Analytics Approach

for Station-Based Air Quality Data,” Sensors, vol. 17, no. 1, p. 30, 2016.

[185] R. Faragher, “Understanding the Basis of the Kalman Filter via a Simple and Intuitive

Derivation [lecture notes],” IEEE Signal processing magazine, vol. 29, no. 5, pp. 128–132,

2012.

[186] E. V. Cuevas, D. Zaldivar, and R. Rojas, “Kalman Filter for Vision Tracking.”

Available at http://www.diss.fu-berlin.de/docs/servlets/MCRFileNodeServlet/

FUDOCS_derivate_000000000473/2005_12.pdf, 2005.

[187] X. Yu, H. W. Leong, C. Xu, and Q. Tian, “Trajectory-Based Ball Detection and Tracking

in Broadcast Soccer Video,” IEEE Transactions on Multimedia, vol. 8, no. 6, pp. 1164–

1178, 2006.

[188] X. Yu, Q. Tian, and K. W. Wan, “A Novel Ball Detection Framework for Real Soccer

Video,” in Proceedings of the IEEE International Conference on Multimedia and Expo,

vol. 2, pp. 265–268, 2003.

http://www.diss.fu-berlin.de/docs/servlets/MCRFileNodeServlet/FUDOCS_derivate_000000000473/2005_12.pdf
http://www.diss.fu-berlin.de/docs/servlets/MCRFileNodeServlet/FUDOCS_derivate_000000000473/2005_12.pdf

BIBLIOGRAPHY 211

[189] X. Yu, C. Xu, Q. Tian, and H. W. Leong, “A Ball Tracking Framework for Broadcast

Soccer Video,” in Proceedings of the IEEE International Conference on Multimedia and

Expo, vol. 2, pp. 273–276, 2003.

[190] X. Yu, C. Xu, H. W. Leong, Q. Tian, Q. Tang, and K. W. Wan, “Trajectory-Based

Ball Detection and Tracking with Applications to Semantic Analysis of Broadcast Soccer

Video,” Proceedings of the 11th ACM international conference on Multimedia, p. 11, 2003.

[191] X. Yu, N. Jiang, and A. E. Luang, “Trajectory-Based Ball Detection and Tracking in

Broadcast Soccer Video with the Aid of Camera Motion Recovery,” IEEE International

Conference on Multimedia and Expo, pp. 1543–1546, 2007.

[192] N. J. Gordon, D. J. Salmond, and A. F. Smith, “Novel Approach to Nonlinear/Non-

Gaussian Bayesian State Estimation,” IEE Proceedings F (Radar and Signal Processing),

vol. 140, no. 2, pp. 107–113, 1993.

[193] P. Del Moral, “Non-Linear Filtering: Interacting Particle Resolution,” Markov Processes

and Related Fields, vol. 2, no. 4, pp. 555–581, 1996.

	Abstract
	Acknowledgements
	Introduction
	Motivation
	Objectives
	Contributions
	Vision Layer
	Classification Layer
	Modelling Layer

	Declaration of Originality and Publications
	Thesis Outline

	Preparation for the Big Game: Background
	The Tennis Game Explained
	Markov Chains
	Classical Tennis Models
	Evolution of Tennis Models
	Computer Vision
	Optical Flow
	Feature Extraction
	Hough Line Transform

	Machine Learning
	Artificial Neural Networks
	Random Forest Classifier
	K-means Clustering
	Support Vector Machine (SVM)
	Bayesian/Belief Networks (BN)
	Gaussian Mixture Model

	The Arrival of a New Player: Visual Data in Tennis Analysis
	Why Use Visually Derived Spatio-Temporal Data?
	Challenges
	Knowledge Discovery
	The Start
	Finding Patterns in Tennis
	Knowledge Discovery Until Now

	Prediction
	Predict the Type of the Next Shot
	Predict the Location of the Next Shot
	Predicting the style and point of impact of serves
	Predicting the Outcome of a Shot

	Current Limitations

	Seeing Like a Coach: Real-Time Data Collection
	System Requirements and Components
	System Components
	Hardware
	Software

	Court Detection
	Related Work
	Court Detection: Our Approach
	Results

	Player Detection
	Related Work
	Player Detection: Our Approach
	Results

	Ball Detection
	Related Work
	Ball Detection: Our Approach
	Results

	Triangulation
	Camera Model
	Calibration
	Triangulation
	3D data

	Processing Speed
	Conclusion

	Thinking Like a Coach: Data Analysis and Visualization
	Tennis Data Visualisation
	State-Of-The-Art Tennis Data Visualisation
	Objectives and Contributions
	Data post-processing
	Remove Noise
	Interpolation of Missing Points

	Player and Ball Location Visualisation
	Player Position Profiles
	Tennis Ball Positions

	Visualising Players and Tennis Ball Combined
	Detect Events
	Evaluation

	Extracting Player Spatio-Temporal Statistics
	Conclusions

	Learning the Technique: Machine Learning for Action Recognition
	Challenges
	Objectives
	Previous work
	Action Recognition in Sports
	Action Recognition in General

	Action Recognition in Tennis: Our Approach
	Feature Extraction
	Deep LSTM for Action Classification

	Experimental Setup
	Experimental Dataset: THETIS
	Evaluation

	Results
	Action Classification
	Expertise Detection
	From Fine-Grained Actions to Stroke Types

	Applications Beyond Tennis
	HMDB Dataset
	Experiments
	Results

	Conclusion

	Post-Match Conference: Conclusions and Future Work
	Summary of Thesis Achievements
	Framework
	Vision Layer
	Classification Layer
	Modelling Layer

	Applications
	Current Limitations
	Benchmark Datasets
	Evaluation Protocols
	The Gap Between Research and Application

	Future Work

	ATP 58 Tennis Tactics Patterns
	Classification of Lines for Court Detection
	Merging Lines for Court Detection
	Background Generation Example
	Tennis Court Projection
	Tennis Court Configurations
	Kalman Filter
	Particle Filter
	Givens Rotations for QR Decomposition
	Bibliography

