
Imperial College London
Department of Computing

Reducing Subtask Dispersion

in Parallel Queueing Systems

Iryna Tsimashenka

Supervised by Dr William J. Knottenbelt

Submitted in part ful�lment of the requirements for the degree of
Doctor of Philosophy in Computing of Imperial College London

and the Diploma of Imperial College

Abstract

In various real-world parallel processing systems, incoming tasks divide into several subtasks

that are processed independently by parallel servers. Queueing networks are a natural way to

represent the �ow and processing of tasks and subtasks in such systems. Two useful classes of

queueing network representations are split-merge and fork-join systems. There are two main

metrics of interest in these systems: task response time and subtask dispersion. These metrics

are in tension with each other: when one is reduced, it tends to lead to an increase in the other.

Generally, using the fork-join paradigm leads to low task response times but high subtask

dispersion, while using the split-merge paradigm leads to low subtask dispersion but moderate

to high task response times.

This thesis introduces methods for controlling subtask dispersion as well as for the trading o�

of subtask dispersion and task response time in parallel queueing systems.

In the context of split-merge systems with generally distributed service times, we show how

to control mean subtask dispersion by the application of judiciously-chosen delays to subtask

processing and extend it to control percentiles of the distribution of subtask dispersion. Our

analysis is based on extensions to the theory of heterogeneous order statistics. While solely

focusing on the reduction of subtask dispersion leads to a large increase in task response time,

together with a corresponding decrease in maximum sustainable system throughput, aiming to

reduce a product of mean subtask dispersion and mean task response time leads to a marginal

increase in task response time while dramatically improving mean subtask dispersion. Fork-join

systems are widely deployed in the real world, but are notoriously more di�cult to analyse. In

the context of fork-join systems with heterogeneous exponentially distributed service times, we

present an on-line technique which improves on both the mean task response time and mean

subtask dispersion achievable in an equivalent split-merge system. For split-merge systems we

validate our results analytically, while for fork-join systems we validate the solutions against

simulations.

We present case studies of di�erent parts of our methodology in split-merge and fork-join sys-

tems with and without applications of the delays. These show the ability to reduce subtask

dispersion while providing increasingly-sophisticated means to simultaneously control task re-

sponse time.

Copyright

The copyright of this thesis rests with the author and is made available under a Creative

Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy,

distribute or transmit the thesis on the condition that they attribute it, that they do not use it

for commercial purposes and that they do not alter, transform or build upon it. For any reuse

or redistribution, researchers must make clear to others the licence terms of this work.

Acknowledgements

I would like to thank:

• My supervisor, Dr. William Knottenbelt for guiding and motivating me and being able

always to �nd time for the discussions.

• My second supervisor Prof. Peter Harrison for his help with technical aspects and sharing

his expertise.

• Dr. Richard Hayden for insightful discussions.

• My parents for their support, love and encouragement.

• My friends, you know who you are :)

To my parents.

Moim roditel�m posv�waets�.

Contents

1 Introduction 21

1.1 Motivation . 21

1.1.1 Performance Metrics in Parallel Queueing Systems 22

1.1.2 Real-World Examples . 23

1.2 Objectives . 29

1.3 Contributions . 30

1.3.1 Theory of Heterogeneous Order Statistics 31

1.3.2 Reducing Subtask Dispersion in Split-Merge Queueing Systems 31

1.3.3 Trading o� Mean Subtask Dispersion and Mean Task Response Time . . 31

1.3.4 Reducing Mean Subtask Dispersion in Fork-Join Queueing Systems . . . 32

1.4 Thesis Outline . 32

1.5 Publications and Statement of Originality . 34

2 Background Theory 37

2.1 Introduction . 37

2.2 Random Variables . 37

2.2.1 Expectations of Random Variables . 39

11

12 CONTENTS

2.2.2 Variance . 40

2.3 Stochastic Processes . 43

2.3.1 Markov Processes . 43

2.3.2 Discrete Time Markov Chain . 43

2.3.3 Continuous Time Markov Chain . 44

2.3.4 Poisson Processes . 44

2.4 Queueing Theory . 44

2.4.1 M/M/1 queue . 45

2.4.2 M/G/1 queue . 45

2.5 Performance Metrics for Queues . 46

2.5.1 Multi-class Queues . 47

2.5.2 Queues with Priorities . 47

2.5.3 Queueing Networks . 48

2.5.4 Open, Closed, Mixed Queueing Networks 49

2.6 Parallel Processing Systems . 49

2.6.1 Split-Merge Queueing System . 50

2.6.2 Fork-Join Queueing System . 51

2.6.3 Performance Metrics for Parallel Queueing Systems 52

2.7 Theory of Order Statistics . 53

2.8 Numerical Optimisation Algorithms . 56

2.8.1 Newton's Method . 57

2.8.2 Wolfe Conditions . 58

CONTENTS 13

2.8.3 Nelder-Mead Method . 59

2.9 Related Work in Parallel Queueing Systems . 60

2.9.1 Performance Analysis of Parallel Systems 60

3 Reducing Subtask Dispersion in Split-Merge Systems 64

3.1 Theory of Heterogeneous Order Statistics . 65

3.1.1 Mean of the Range of Heterogeneous Order Statistics 66

3.1.2 Joint Density of Two Heterogeneous Order Statistics 68

3.1.3 Distribution of the Range for Heterogeneous Order Statistics 69

3.2 Reducing Mean Subtask Dispersion . 70

3.2.1 Incorporation of Deterministic Delays . 71

3.2.2 Optimisation Procedure of Mean Subtask Dispersion 72

3.2.3 Analytical Solution for Mean Number of Subtasks in Output Bu�er . . . 73

3.2.4 Impact of Applied Delays on System Performance 74

3.3 Numerical Results . 76

3.3.1 Split-Merge Simulation . 76

3.3.2 Case Study . 78

3.4 Reducing Percentiles of the Distribution of the Range of Subtask Dispersion . . 81

3.4.1 Optimisation Procedure of the Distribution of Subtask Dispersion 83

3.4.2 Numerical Results . 84

3.5 Summary . 92

14 CONTENTS

4 Trading o� Subtask Dispersion and Task Response Time in Split-Merge Sys-

tems 94

4.1 Introduction . 94

4.2 Application of heterogeneous order statistics to split-merge systems 96

4.3 An objective function for the subtask dispersion�response time trade-o� 97

4.4 Optimisation Procedure of a Product of Subtask Dispersion and Task Response

Time . 98

4.5 Numerical Results . 99

4.5.1 Implementation . 99

4.5.2 Case Study . 100

4.6 Summary . 106

5 Reducing Mean Subtask Dispersion in Fork-Join Systems 107

5.1 Introduction . 107

5.2 Dynamic Online Algorithm for Reduction of Subtask Dispersion 109

5.3 Complexity . 112

5.4 Numerical Results . 112

5.4.1 Fork-Join Simulation . 112

5.4.2 Case Study . 114

5.5 Summary . 121

6 Conclusion 123

6.1 Summary of Achievements . 123

6.2 Applications . 124

6.3 Future Work . 126

6.3.1 Split-Merge Queueing System . 126

6.3.2 Fork-Join Queueing System . 126

6.3.3 Directed Acyclic Graph Work-�ows . 127

Appendices 139

A Proof of the Mean of Range of Heterogeneous Order Statistics Convexity 139

15

16

List of Figures

1.1 Structure of passengers and baggage processing in aircraft as an example of a

two phase split-merge processing. 24

1.2 A pit stop in Formula 1 is an example of a split-merge queueing system, where

a car can leave the pit stop only when all maintenance activities have been

completed. Credit: Fabio Alessandro Locati. 27

1.3 Orders sent to number of exchanges. How high-frequency trading can preempt

orders. Credit: Quartz. Ritchie King. 27

1.4 Example of a customer review and complaint about a restaurant related to poor

subtask dispersion and poor task response time. URL: http://www.tripadvisor.

co.uk/ShowUserReviews-g186337-d1986650-r122991388-JR_s_Bar-Liverpool_

Merseyside_England.html . 28

1.5 Structure of RAID-5. Credit: Colin M.L. Burnett. 29

1.6 Thesis chapters in the context of our two target performance metrics. 33

2.1 Example of a queueing network [57]. 48

2.2 Split�Merge queueing model. 50

2.3 Fork�Join queueing model. 51

3.1 UML class diagram for simulator of an elementary split-merge queueing network. 77

3.2 Surface plot of mean subtask dispersion against delays. 80

17

http://www.tripadvisor.co.uk/ShowUserReviews-g186337-d1986650-r122991388-JR_s_Bar-Liverpool_Merseyside_England.html
http://www.tripadvisor.co.uk/ShowUserReviews-g186337-d1986650-r122991388-JR_s_Bar-Liverpool_Merseyside_England.html
http://www.tripadvisor.co.uk/ShowUserReviews-g186337-d1986650-r122991388-JR_s_Bar-Liverpool_Merseyside_England.html

18 LIST OF FIGURES

3.3 Distributions of subtask dispersion in split-merge queueing system with and with-

out delays optimised for mean subtask dispersion (E[Dd]). λ = 1.0 (task/unit

time). 80

3.4 Distributions of task response time in split-merge queueing system with and with-

out delays optimised for mean subtask dispersion (E[Dd]). λ = 1.0 (task/unit

time). 81

3.5 Expected response time of case study split-merge queueing system for various

customer arrival rates without any delays (red line), with delays optimised for

mean subtask dispersion (E[Dd]) (black line). 82

3.6 Surface plot of the 50th percentile of subtask dispersion of split-merge queueing

system for various deterministic processing delays. The optimal delay vector is

d0.5 = (0.533, 3.50, 0.0). 85

3.7 Surface plot of the 90th percentile of subtask dispersion of split-merge queueing

system for various deterministic processing delays. The optimal delay vector is

d0.9 = (0.0, 2.82, 1.16). 86

3.8 Distributions of subtask dispersion of split-merge queueing system without any

delays (blue line), with delays optimised under α = 0.5 (black line) and delays

optimised under α = 0.9 (blue line). 87

3.9 Distributions of task response time of split-merge queueing system given λ = 0.1,

without any delays (red line), with delays optimised under α = 0.5 (black line)

and delays optimised under α = 0.9 (blue line). 87

3.10 Expected response time of split-merge queueing system for various customer

arrival rates without any delays (red line), with delays optimised under α = 0.5

(green line) and delays optimised under α = 0.9 (blue line). 88

3.11 Distributions of subtask dispersion of split-merge queueing system without any

delays (red line), with delays optimised under α = 0.5 (black line) and delays

optimised under α = 0.9 (blue line). 91

LIST OF FIGURES 19

3.12 Distributions of task response time of split-merge queueing system given λ = 0.1

without any delays (red line), with delays optimised under α = 0.5 (black line)

and delays optimised under α = 0.9 (blue line). 91

3.13 Expected response time of split-merge queueing system for various customer

arrival rates without any delays (red line), with delays optimised under α = 0.5

(green line) and delays optimised under α = 0.9 (blue line). 92

4.1 Surface plot of mean subtask dispersion of split-merge queueing system against

subtask delays using our previous methodology from Chapter 3. 101

4.2 Surface plot of subtask dispersion�response time trade-o� objective function of

split-merge queueing system against subtask delays for λ = 0.01 (tasks/time unit).102

4.3 Surface plot of subtask dispersion�response time trade-o� objective function of

split-merge queueing system against subtask delays for λ = 0.15 (tasks/ time

unit). 102

4.4 Distributions of subtask dispersion of split-merge queueing system with λ =

0.15 (tasks/time unit) without any delays (red line) with delays optimised for

T (d, 0.15) (green line) and for E[Dd] (blue line). 103

4.5 Distributions of task response time of split-merge queueing system given λ =

0.15 (tasks/time unit), without any delays (red line), with delays optimised for

T (d, 0.15) (green line) and delays optimised for E[Dd] (blue line). 104

4.6 Expected response time of split-merge queueing system for various customer

arrival rates without any delays (red line), with delays optimised for subtask

dispersion�task response time trade-o� (green line), and with delays optimised

for mean subtask dispersion alone (blue line). Subtask delay vectors are also

shown for the subtask dispersion�task response time trade-o�. 105

5.1 How a fork-join queueing system can be viewed as a split-merge queueing system

from the point of view of a subtask and its siblings at time instant t. 110

5.2 UML class diagram for simulator of elementary fork-join queueing network. . . . 114

5.3 Distributions of subtask dispersion in fork-join and split-merge queues with the

same con�gurations but di�erent mean arrival rates. 115

5.4 Distributions of task response time for fork-join queueing systems and split-merge

queueing systems with the same con�gurations but di�erent mean arrival rates. 115

5.5 Distributions of subtask dispersion in fork-join queueing systems and split-merge

queueing systems with and without optimised subtask delays. λ = 0.78 (task/u-

nit time). 118

5.6 Distributions of task response time for fork-join queueing systems and split-

merge queueing systems with and without optimised subtask delays. λ = 0.78

(task/unit time). 119

5.7 Expected response time of fork-join queueing systems and split-merge queueing

systems for various customer arrival rates. 120

20

Chapter 1

Introduction

1.1 Motivation

In recent decades, sequential systems have increasingly been superseded by parallel ones. This

applies as much to computer systems (e.g. processors and storage devices) as it does to physical

systems which process customers and tasks (e.g the automated warehouses of online retailers).

In many instances, incoming tasks are divided into subtasks which are concurrently processed

by a set of parallel servers. Completed subtasks are held in an output bu�er. When all subtasks

have completed service, the task is complete and exits the system.

We term such systems parallel processing systems. System designers need rigorous mathematical

formalisms and tools to tackle problems that relate to the performance optimisation and analysis

of such systems.

Queueing systems have been one of the most widely adopted formalisms because they are a

natural way to represent the �ow and processing of tasks and resources in parallel processing

systems. One of the most well-known queueing systems in a real world are fork-join systems,

they are noted for their asynchronous operation and consequent low task response time and

high maximum sustainable throughput. This operation is achieved because this kind of system

supports several parallel queueing servers and each task forks into subtasks that go directly to

21

22 Chapter 1. Introduction

the parallel servers at the instant of arrival. The drawback of these systems is that it is very

hard to analyse them; indeed there are no closed form analytical solutions for computing their

associated performance metrics.

A more synchronised counterpart of the fork-join queueing system is a split-merge queueing

system which are analytically tractable and, as we shall see, elements of their analysis may

be extended to fork-join queueing systems. Both split-merge queueing systems and fork-join

queueing systems are important queueing systems and have many applications in real world.

This thesis is restricted and scoped to the analysis and optimisation of elementary parallel

queueing systems in which there is only one level of subtask processing.

1.1.1 Performance Metrics in Parallel Queueing Systems

As more parallel queueing systems have been applied in real-life applications, the more they

have gained scienti�c attention with respect to the analysis and optimisation of their associated

performance metrics.

There are two important performance metrics in split-merge and fork-join queueing systems:

• Task response time, that is the time taken from the entry of a task into the system until

its exit. This has been the primary focus of research e�ort over many decades (see e.g.

[50, 37, 36, 75, 55]). The vast majority of this work targets the mean, and rarely higher

moments and high/low bounds, of task response time, and/or the stationary distribution

of the number of subtasks queued at parallel servers.

• Subtask Dispersion, that is the di�erence in time between the service completions of

the �rst and last subtask of any given task to complete service. As discussed below, many

applications require the times of arrival of a subtask and its siblings to be clustered as

close together as possible. Research interest in this metric is relatively recent and has been

mostly driven by publications associated with this dissertation, see e.g. [97, 99, 96, 98].

1.1. Motivation 23

These metrics are in tension in the sense that taking action to reduce one usually results in an

increase in the other (at least in the absence of structural recon�guration or reparametrisation

of the system); this is especially the case for high-intensity workloads. In this thesis we assume

that structural recon�guration or reparametrisation of the system is not possible. Classical

fork-join queueing systems yield low task response times (and therefore higher maximum sus-

tainable system throughput), but subtask dispersion is high under load. Conversely, split-merge

queueing systems are characterised by low to moderate subtask dispersion, but can su�er from

higher task response times (and therefore reduced maximum sustainable system throughput)

under load. In this thesis we investigate minimisation of subtask dispersion and its impact on

task response time.

1.1.2 Real-World Examples

There are enormous number of applications of fork-join and split-merge queueing systems in

industry. Here we discuss only a few of them.

Examples of Split-Merge Queueing Systems

Air travel has provided a fertile ground for the application of queueing analysis ever since mass

air transit became practical and a�ordable in 1950s [66]. As shown in Fig 1.1, air travellers and

their hold baggage undergo two phases of split-merge processing. In the �rst phase passengers

enter the departure hall with their hold baggage and join the queue for check-in. At check-in

passengers and their hold baggage are separated (split). Passengers proceed through security

and documentation checks while the baggage is securely screened and sorted. Passengers and

their hold baggage are reunited (merged) aboard the aircraft, albeit the passengers sit in the

seats above the �oor level while their baggage is stored in unit load devices below �oor level,

as shown in Fig 1.1. Upon arrival on the destination airport the second phase of split-merge

processing begins. Passengers undergo immigration checks while their baggage is o�oaded and

delivered to the baggage claim area. Once passengers pick up their baggage they can exit

24 Chapter 1. Introduction

Figure 1.1: Structure of passengers and baggage processing in aircraft as an example of a two
phase split-merge processing.

into the arrival hall via customs. If any part of this split-merge processing operation does

not complete as it is anticipated there are large �nancial consequences for the airline: if the

passengers are not on board when the aircraft has to depart then the whole plane is delayed; or

if the passengers arrive and their luggage is not delivered then the airlines has to hire a courier

company to deliver a luggage to the destination.

Another example of split-merge processing comes from Formula 1, when racing cars come in for

pit stops (see Fig. 1.2). There are many di�erent procedures that start at the instant the car

is raised onto a jack, with di�erent mechanics responsible for di�erent tasks: replacing tires,

refuelling, doing repairs and mechanical adjustments etc. All these tasks start at the same

instant. A car leaves the pit stop only when all procedures have been completed.

1.1. Motivation 25

While task response time is clearly the most important metric in the latter example, we now

present an example from a completely di�erent and very recent domain in which subtask dis-

persion plays a crucial role. The domain is a speci�c �nancial one, and relates to the placing of

large orders across multiple exchanges which support High Frequency Trading (HFT). HFT is

a relatively recent automated trading phenomenon which combines super fast networks, rapid

analysis algorithms and high speed order placing. Every conceivable technology is exploited in

the quest to reduce latency, for example the recent adoption of microwave rather then optic

�bre to transmit data (since electromagnetic radiation travels 50% faster through air than light

travels in the clearest glass) and the use of custom ASICs featuring so-called �tick-to-trade�

times of less than 740 ns. Suppose a trader is in a market to buy a large amount of a given

stock and simultaneously issues orders to the major exchanges to buy all shares of that stock

available at or below some target price. The orders will not, however, arrive at the exchanges

simultaneously, as shown on the left of the Fig 1.3, since geographical distance is a key de-

termine factor in order arrival time [38]. HFT algorithms that detect the buying activity on

the geographically nearest exchange can then �front run� the trade on the other exchanges by

quickly buying any shares available below the target price and o�ering them for sale at the

target price. (Another riskier but more pro�table strategy is to buy up all shares available at

or below the target price and o�er them for sale at a price slightly above the target price.) In

this case the orders set by the trader to the geographically more distant exchanges are returned

un�lled and the trader must issue buy shares at the higher price to complete her purchase.

What we see as to increasing subtask dispersion leads to increased latency-based information

leakage with consequent lower pro�tability and lower �ll rates for the trader. To counter this,

the Royal Bank of Canada has developed a system called THOR for which a patent was �led

at October 2011 [1]. This order routing system adds some heuristic delays to orders so that

they arrive at the entire set of target exchanges nearly simultaneously. The authors claim that

the resulting improvement in the execution quality is striking: they say that the �ll rates are

near 100% rather then 60% for conventional execution orders experience far fewer adverse ticks

than average. It is intriguing that adding delays has become an important weapon in the battle

to compete against the super fast high performance hardware and trading algorithms of HFT

26 Chapter 1. Introduction

systems. Therefore, the authors of THOR also exploit the notion that adding delays can have

very bene�cial impact on subtask dispersion.

Examples of Fork-Join Queueing Systems

Consider by way of example the processing of customer orders in an automated warehouse.

Incoming orders (tasks) are made up of several items (subtasks), each of which must be retrieved

from a di�erent part of the warehouse. Partially completed orders must be held in an output

bu�er, and each order can only be released from the output bu�er and dispatched to the

customer when all items making up the order have been retrieved. The output bu�er space is

often limited and di�cult to manage on account of its high utilisation, so it is important to

keep subtask dispersion low. At the same time keeping task response time low (i.e. increasing

system throughput) is an important concern.

Another example is a restaurant in which customer orders (tasks) consisting of di�erent menu

items (subtasks) must be concurrently prepared such that all dishes for a particular table of

customers are ready at roughly the same time. In the mean time, partially completed orders

for tables are held on a service counter (the output bu�er), which should not be overburdened.

Simultaneously a good standard of customer service dictates that customers should receive their

orders in reasonable time. A real example showing how a restaurant customer complains about

poor task response time and poor subtask dispersion is shown in Fig 1.4. In this review the

customer complains that the food has arrived after a long wait (high task response time) and

at di�erent times (high subtask dispersion). Consequently the customer was unsatis�ed with

the service and will not come to this restaurant again.

Search engines use fork-join processing to answer queries with low response time [42], which

in turn drives user satisfaction and revenues. Incoming queries are split into parallel subtasks,

some of which relate to searching chunks of index data and some of which relate to preparing

revenue generating content such as advertisement. Only when all of these subtasks have com-

pleted can the results page be generated and returned to the user. Users are very sensitive to

even slight increases in delay [24].

1.1. Motivation 27

Figure 1.2: A pit stop in Formula 1 is an example of a split-merge queueing system, where a
car can leave the pit stop only when all maintenance activities have been completed. Credit:
Fabio Alessandro Locati.

Figure 1.3: Orders sent to number of exchanges. How high-frequency trading can preempt
orders. Credit: Quartz. Ritchie King.

28 Chapter 1. Introduction

Figure 1.4: Example of a customer review and complaint about a restaurant re-
lated to poor subtask dispersion and poor task response time. URL: http:

//www.tripadvisor.co.uk/ShowUserReviews-g186337-d1986650-r122991388-JR_s_Bar-

Liverpool_Merseyside_England.html

A fork-join queueing policy applies in RAID systems. A RAID system is a Redundant Array of

Independent Disks which are used to boost capacity, performance and reliability depending on

the con�guration of RAID level selected. For example, Fig. 1.5 shows RAID-5 set-up, which

has n disks with the all information spread out on them, so that every stripe contains n − 1

blocks of information and a parity block. When one of the disks fails, the information on it can

be recovered by XORing the data on the remaining n− 1 disks.

In general RAID, incoming I/O requests split in smaller sub-requests which are served by n disk,

when all requests completed than the logical I/O request is completed; this policy corresponds

to a fork-join processing policy across disks [27, 64]. There are some examples of applications

http://www.tripadvisor.co.uk/ShowUserReviews-g186337-d1986650-r122991388-JR_s_Bar-Liverpool_Merseyside_England.html
http://www.tripadvisor.co.uk/ShowUserReviews-g186337-d1986650-r122991388-JR_s_Bar-Liverpool_Merseyside_England.html
http://www.tripadvisor.co.uk/ShowUserReviews-g186337-d1986650-r122991388-JR_s_Bar-Liverpool_Merseyside_England.html

1.2. Objectives 29

of split-merge queueing policy synchronisation in case of updating a replicated data, which

includes updating mirrored disks [93], or replicated data bases in general [74].

RAID 5

Dp

C1
B1
A1

Disk 0

D1
Cp

B2
A2

Disk 1

D2
C2
Bp

A3

Disk 2

D3
C3
B3
Ap

Disk 3

Figure 1.5: Structure of RAID-5. Credit: Colin M.L. Burnett.

1.2 Objectives

The primary hypothesis of this thesis is that it is possible to control the injection of subtasks

into parallel queueing systems in such a way that subtask dispersion is reduced while impact on

task response time can be quanti�ed and ideally controlled. We do this by applying judiciously-

chosen deterministic delays to the processing of subtasks. In order to achieve this, the following

objectives must be ful�lled:

• Develop the theory of heterogeneous order statistics, particularly deriving the mean and

the distribution of the range of heterogeneous order statistics, which will allow us to

subsequently characterise the mean of the subtask dispersion and the distribution of

subtask dispersion in elementary split-merge systems.

• Create a methodology for minimising mean subtask dispersion in elementary split-merge

queueing systems with heterogeneous general service time distributions. This is based on

applying judiciously-chosen deterministic delays to processing of the subtasks.

30 Chapter 1. Introduction

• Create an analogous methodology for reducing any given percentile of the distribution of

subtask dispersion in elementary split-merge queueing systems with heterogeneous general

service time distributions.

• Derive an analytical solution for the mean number of subtasks held in the output bu�er

of an elementary split-merge queueing systems, with and without subtask delays.

• Characterise the impact on task response time and maximum sustainable system through-

put of our methodology of applying deterministic subtask delays optimised only for sub-

task dispersion.

• In order to control the adverse impact of applying delays to the processing of subtasks on

task response time, develop a method for reducing the product of mean subtask dispersion

and mean task response time in elementary split-merge queueing systems.

• Extend our methodology of reducing mean subtask dispersion in split-merge queueing

systems to their asynchronous counterparts � fork-join queueing systems. We restrict

our attention to fork-join queueing systems with heterogeneous exponential service time

distributions and create a dynamic online algorithm for reducing mean subtask dispersion.

• Implement simulators for elementary split-merge and fork-join queueing networks in order

to achieve mutual validation between methodologies presented in this thesis and the

simulations.

1.3 Contributions

This dissertation presents a methodology for reducing subtask dispersion in parallel queueing

systems, speci�cally elementary split-merge queueing systems and fork-join queueing systems

by applying optimal deterministic delays to the processing of subtasks.

Our main contributions are fourfold, as detailed below.

1.3. Contributions 31

1.3.1 Theory of Heterogeneous Order Statistics

We extend the classical theory of homogeneous order statistics to heterogeneous order statistics.

Firstly, we de�ne the mean of the range of heterogeneous order statistics. Secondly we derive

the distribution of the range of heterogeneous order statistics. These formulae correspond

to the mean and distribution of the subtask dispersion in elementary split-merge queueing

systems. These analytical solutions form the foundations of our methodology for reducing

subtask dispersion in parallel queueing systems in general.

1.3.2 Reducing Subtask Dispersion in Split-Merge Queueing Systems

We develop a methodology for reducing the mean or a given percentile subtask dispersion

in split-merge queueing systems by applying judiciously-chosen deterministic delays to the

processing of subtasks. We consider Poisson arrivals and heterogeneous general service time

distributions. The methodology builds on the theory of heterogeneous order statistics developed

above. We present numerical optimisation procedures for minimising mean subtask dispersion

or any given percentile of distribution of subtask dispersion. We implement a split-merge

queueing system simulator to validate the results. We derive an analytical solution for the

mean number of subtasks present in the output bu�er based on Little's law. We quantify the

impact of applying delays to the processing of subtasks on task response time and maximum

sustainable system throughput.

1.3.3 Trading o� Mean Subtask Dispersion and Mean Task Response

Time

We extend our methodology for reducing subtask dispersion alone to reducing a product of mean

subtask dispersion and mean task response time. This trading o� of two major performance

metrics gives us means to control subtask dispersion while task response time is only marginally

a�ected. We consider an elementary split-merge queueing system with Poisson arrivals and

32 Chapter 1. Introduction

general heterogeneous service time distributions. We also dramatically improve the run time

of our previous optimisation methodology by applying Brent's method and a memoisation

technique.

1.3.4 Reducing Mean Subtask Dispersion in Fork-Join Queueing Sys-

tems

Our �nal contribution relates to analytically intractable and asynchronous fork-join queueing

systems. Since these systems are more di�cult to analyse, we explore them under simpli�ed

assumptions of heterogeneous exponential service time distributions and Poisson arrivals. We

create a dynamic online algorithm for reducing mean subtask dispersion in such systems. By

exploiting the memoryless property of the exponential distribution, we are able to show an

equivalence between the state of a fork-join queueing system at a certain time points and a

split-merge queueing system of a particular state-dependent con�guration from the perspective

of selected subtasks. This allows us to exploit some of our previous results. We implement a

fork-join queueing system simulator to validate our methodology.

1.4 Thesis Outline

Figure 1.6 shows the context of the chapters of this thesis.

The remainder of this dissertation is organised as follows:

• Chapter 2 describes the background theory that relates to the present research. Some

elementary probability theory is presented followed by the basics of the queueing theory

and the theory of homogeneous order statistics, which is needed for the study of parallel

processing queueing networks. Lastly, a literature survey about related work on parallel

queueing networks is presented.

1.4. Thesis Outline 33

Low Med High
Subtask Dispersion

Low

Med

High

T
as
k
R
es
p
on

se
T
im

e

sFork-Join with dispersion-optimised delays (Chapter 5) sFork-Join

sSplit-Merge

sSplit-Merge with trade-o�-optimised delays (Chapter 4)

sSplit-Merge with dispersion-optimised delays (Chapter 3)

Figure 1.6: Thesis chapters in the context of our two target performance metrics.

34 Chapter 1. Introduction

• Chapter 3 develops the theory of heterogeneous order statistics � an extension of classical

homogeneous order statistics. We use this theory as a foundation of our methodology for

reducing mean and percentiles of distribution of the subtask dispersion in elementary

split-merge queueing systems. We provide three case studies to show the applications

of the methodology and validate our results with simulations. We present an analytical

solution for computing the mean number of subtasks present in the output bu�er using

Little's law. We show how to quantify the inevitable impact of the applied delays on task

response time and maximum sustainable system throughput.

• Chapter 4 extends our technique of solely reducing subtask dispersion to a methodology

based on trading o� mean subtask dispersion and mean task response time. This extension

was done to mitigate the adverse e�ects of applying delays to the processing of subtasks

on task response time and maximum sustainable system throughput. We de�ne a new

objective function � a product of mean subtask dispersion and mean task response time.

We demonstrate of our introduced methodology in the context of a case study.

• Chapter 5 explores ways to reduce mean subtask dispersion in elementary fork-join

queueing networks. We present a dynamic online algorithm for reduction of mean subtask

dispersion and show a case study. This analysis uses elements of the work from previous

chapters but only to instantaneously analyse particular states of the system from the

perspective of a particular subtask.

• Chapter 6 concludes the dissertation by outlining and evaluating the research achieve-

ments and describing possible avenues for future work.

1.5 Publications and Statement of Originality

I declare that this thesis was composed by myself, and that the work it presents is my own,

unless stated otherwise.

The following publications arose from work performed during the course of this PhD:

1.5. Publications and Statement of Originality 35

• 1st Imperial College Computing Student Workshop (ICCSW) 2011 [97] presents

a technique for reducing mean subtask dispersion in split-merge systems with Poisson task

arrivals and heterogeneous general service time distributions. We derive an expression

for the mean of the range of heterogeneous order statistics based on random variables

that arise from a certain service time distributions. We control subtask dispersion by

introducing a vector speci�es the deterministic delay applied to the processing of subtasks

before service at a given parallel server. We update the formula of mean subtask dispersion

to cater for an arbitrary delay vector. We describe a numerical optimisation procedure

for �nding that delay vector which gives the minimum mean subtask dispersion for given

service time distributions and Poisson task arrivals. We present a case study of this

technique based on an elementary split-merge queueing system with 3 parallel servers.

The work in Section 3.2 is based on this paper.

• 19th International Conference on Analytical and Stochastic Modelling Tech-

niques and Applications (ASMTA) 2012 [99] presents a technique for reducing a

given percentile of the range of subtask dispersion in split-merge queueing systems with

Poisson task arrivals and heterogeneous general service time distributions. We charac-

terise the full distribution of the range of subtask dispersion by deriving the distribution

of the range of heterogeneous order statistics. We introduce a vector of delays into the

system, where each element of the vector is applied to the processing of subtasks by a

particular parallel server. We update the formula of the distribution of subtask disper-

sion to support an arbitrary vector of delays. We use inversion on a given percentile

of a distribution function to �nd an appropriate vector of applied delays. We present a

case study of this technique based on an elementary split-merge queueing system with 3

parallel servers. The work in Section 3.4 is based on this paper.

• Trends in Parallel, Distributed, Grid and Cloud Computing for Engineer-

ing (PARENG) 2013 [58] gives additional examples of the real-world context of our

work, and summarises techniques for reducing subtask dispersion in split-merge systems

from [97, 99] with quanti�cation of adverse impact of applying deterministic delays to

the processing of subtasks. It also includes some speculative and preliminary ideas for

36 Chapter 1. Introduction

extending the approach to fork-join queueing systems. The work in Chapter 3 is based

on this book chapter.

• 20th International Conference on Analytical and Stochastic Modelling Tech-

niques and Applications (ASMTA) 2013 [96] presents a technique for trading o� a

mean task response time and mean subtask dispersion in split-merge queueing systems

with Poisson task arrivals and heterogeneous general service time distributions. The ob-

jective function is a product of mean subtask dispersion (de�ned using heterogeneous

order statistics) and mean task response time (computed using the Pollaczek-Khinchine

formula). The work in Chapter 4 is based on this paper.

• 10th European Workshop on Performance Engineering (EPEW) 2013 presents

a dynamic online algorithm for reducing mean subtask dispersion in fork-join queueing

systems with Poisson task arrivals and heterogeneous exponential service time distribu-

tions. In this algorithm we repeatedly compute and adjust the delays on processing of

subtasks according to the current state of the fork-join queueing system. In order to do

this we construct an equivalent split-merge queueing system that represents the view of

certain set of subtasks at certain time instants. The work in Chapter 5 is based on this

paper.

• Annals of Operations Research 2014 [100] presents the extended version of paper [96]

- a technique for trading o� a mean task response time and mean subtask dispersion in

split-merge queueing systems with Poisson task arrivals and heterogeneous general service

time distributions. The objective function is a product of mean subtask dispersion (de-

�ned using heterogeneous order statistics) and mean task response time (computed using

the Pollaczek�Khinchine formula). We show the impact of applying the optimal delays

on system stability and task response time. Two case studies illustrate the applicability

of our approach. The work in Section 3.2.4 and results of 3.4.2 based on this paper.

Chapter 2

Background Theory

2.1 Introduction

In this section we present background theory relevant to the research area of this thesis. This

chapter contains two parts. In the �rst part we present selected theoretical topics; these include

the application of random variables, stochastic processes, queueing networks, parallel processing

systems, performance metrics, theory of order statistics and optimisation algorithms. The

second part presents a review of related work in the area of performance analysis of parallel

queueing systems, where the major focus is on approximations of bounds on task response

time, scheduling algorithms for reducing response time and analysis of work-�ows with directed

acyclic graph structure.

2.2 Random Variables

A random variable X is a numerical variable whose value depends on a result of a random

experiment [101]. A random variable X is a function whose domain is a sample space, that is a

set of all mutually exclusive possible outcomes of a random experiment. The range of a random

variable is a real line � it is often a natural way to represent discrete points into integers in a

37

38 Chapter 2. Background Theory

real life [48, 101]. If a random variable X takes only discrete values then it is called a discrete

random variable. If a random variable that takes on values real interval, X ∈ [a, b] where

−∞ ≤ a ≤ X ≤ b ≤ ∞, then the random variable is called a continuous random variable [77].

A discrete random variable can be described by its probability mass function (pmf). The

probability that a discrete random variable takes on a particular value can be computed by:

pX(x) = P[X = x] = P(x).

The function is called probability mass function if it satis�es the following conditions:

• pX(x) is de�ned for all values of x, but pX(x) 6= 0 only at a �nite set of points.

• 0 ≤ pX(x) ≤ 1 means that all values of pX(x) lie within interval [0, 1].

•
∑
pX(x) = 1 where sum is taken across all values of x.

A continuous random variable X can be described by its cumulative distribution function (or

cdf, or distribution function):

FX(x) = P(X ≤ x)

This re�ects that the probability that a sample from continuous random variable X is less

than or equal to a particular value x [19]. If this distribution function is di�erentiable, then a

probability density function can be derived by di�erentiating FX :

fX(x) =
∂FX(x)

∂x

where the density function has to satisfy the following conditions:

• f(x) is de�ned for all values of x.

• 0 ≤ f(x) <∞, that is all values of f(x) lie in the interval [0,∞).

• P[a ≤ X ≤ b] =
b∫
a

fX(x)dx

2.2. Random Variables 39

•
∞∫
−∞

fX(x)dx = 1, that is the area under the curve of the density function is one.

2.2.1 Expectations of Random Variables

The expected value or mean of a discrete random variable X, is a weighted average of all

possible values it can take on [84]:

X = E[X] =
∞∑
k=0

kP(X = k)

The expectation value of a continuous random variable X, if its probability density function is

known, is given by:

E[X] =

∞∫
−∞

xf(x)dx

If random variable X takes only positive values, then applying integration by parts we have

E[X] =

∞∫
0

(−x)(−fX(x))dx = [−x(1− F (x))]∞0 +

∞∫
0

(1− F (x))dx

this yields:

E[X] =

∞∫
0

1− F (x)dx (2.1)

Linearity Property of Expectation Operator

The expectation of the di�erence between two (possibly dependent) random variables X, Y is

given by [45, 71]:

E[X − Y] = E[X]− E[Y] (2.2)

which means that the dependence between random variables is irrelevant when considering

mean values due to the linearity property of expectation operator.

40 Chapter 2. Background Theory

Monotonicity Property of Expectation Operator

For two (possibly dependent) random variables X and Y , a random variable X is less than a

random variable Y (or X � Y) in the usual stochastic order if P(X > x) ≤ P(Y > x) for all

x ∈ R, then:

If X � Y , then E[X] ≤ E[Y] (2.3)

which means that if X is less than or equal to the Y almost surely, then the expectation

operators satisfy the same inequality [45].

2.2.2 Variance

Variance (or second central moment) characterised the expected spread of a set of samples

drawn from a random variable X about its mean E[X]. The variance of a discrete random

variable X is [71]:

σ2
X = Var[X] = (X −X)2 = X2 −X2

Similarly to Eq. 2.1, in case of a continuous positive random variable the variance can be

expressed through the cumulative distribution function as:

Var[X] = 2

∞∫
0

x
(
1− F (x)

)
dx−

(∞∫
0

1− F (x) dx
)2
. (2.4)

Next, we describe examples of well-known discrete and continuous random variables [19] which

are utilised in this thesis. Choice of continuous random variables is made to cover a full range

of possible variances from very low to very high:

Bernoulli RandomVariable: If an experiment has only two possible outcomes: 0 or 1, the pmf

of the random variable X is:

fX(x) =

 1− p x = 0

p x = 1

2.2. Random Variables 41

where 0 < p < 1.

Binomial Random Variable: Consider an experiment with only two possible outcomes (0 or 1).

If the random variable X is the number of times that 1 arises out of n independent trials of the

experiment, the pmf of X is:

P(X = k) =

(
n

k

)
pk(1− p)n−k k = 0, 1, . . . , n.

where
(
n
k

)
= n!

k!(n−k)! .

Geometric Random Variable: Consider an experiment with two possible outcomes (0 or 1).

The experiment is carried out several times. If the random variable X is the number of trials

it takes before the outcome 1 occurs (including the current trial), then its pmf is:

P(X = k) = p(1− p)k−1 k = 1, 2, ...

Exponential Random Variable: If a random variable X is exponentially distributed with pa-

rameter λ then its cdf is:

FX(x) =

 1− e−λx 0 ≤ x <∞,

0 x < 0.

Such random variables are often used to describe interarrival times in Poisson arrival streams

or to describe Markovian service times.

Erlang Random Variable: Consider an experiment which consists of identical k exponential

distributed time phases in tandem. Random variable X denotes the whole time span with the

cdf calculated by:

FX(x) =


1− e−µx

k−1∑
j=0

(µx)j

j!
x ≥ 0,

0 x < 0.

Each phase has a rate parameter µ.

42 Chapter 2. Background Theory

Pareto Random Variable: Pareto random variable X with parameters k and α, has cdf:

FX(x) =

 1− (k
x
)α x ≥ k,

0 x < k.

where α is referred to as the shape of the cdf and k is referred to as its rate.

The Pareto distribution may be bounded in an interval [a, b]. Then the Pareto random variable

X with parameters α, a, b has a cdf:

FX(x) =


0 x < a,

1−aαx−α
1−(a

b
)α

a ≤ x ≤ b,

1 x > b.

where α corresponds to the shape, a denotes the minimum value and b denotes the maximum

value of the distribution.

Uniform Random Variable: Consider a random variable X with parameters a, b which is dis-

tributed uniformly over the interval [a, b], the cdf can be calculated by:

FX(x) =


0 x < a,

x−a
b−a a ≤ x < b,

1 x ≥ b.

Deterministic Random Variable: Consider an experiment where a random variable X takes

only a particular value k; then its cdf is:

FX(x) =

 0 x < k,

1 x ≥ k.

Sometimes FX(x) is called the Heaviside function.

2.3. Stochastic Processes 43

2.3 Stochastic Processes

A stochastic process is a family of random variables {X(t), t ∈ T}, where t is a time parameter.

A set of all possible values of X(t) is the state space S [19]. In this section we are going to

summarise properties of stochastic processes that are applied in this thesis.

2.3.1 Markov Processes

Consider a stochastic process {X(t), t ∈ T} for all 0 = t0 < t1 < · · · < tn < tn+1 with a state

space of the process is S = {si = i, i ∈ N0}. If the future state of the system depends only on

its current state and not on the past history of the system then the system can be described by

a Markov process and X(t) is said to have the Markov property or memoryless property [18].

That is,

P{X(t) = s | X(tn) = sn, X(tn−1) = sn−1, . . . , X(t0) = s0} = P{X(t) = s | X(tn) = sn}.

A Markov process is called time-homogeneous if a Markov process is invariant to shifts in time

[18]:

P(X(t+ t̃) = s | X(tn + t̃) = sn) = P(X(t) = s | X(tn) = sn)

2.3.2 Discrete Time Markov Chain

A stochastic process {X0, X1, . . . , Xn+1, . . . } is a Discrete Time Markov Chain (DTMC) if the

following relationship holds for all n ∈ N0 and all si ∈ S [21]:

P{Xn+1 = sn+1 | Xn = sn, Xn−1 = sn−1, . . . , X0 = s0} = P{Xn+1 = sn+1 | Xn = sn}.

44 Chapter 2. Background Theory

2.3.3 Continuous Time Markov Chain

A given stochastic process {X(t), t ∈ T} constitutes a Continuous Time Markov Chain (CTMC)

if for any ti ∈ R+
0 , where 0 = t0 < t1 < · · · < tn < tn+1, ∀n ∈ N,∀si ∈ S = N0 the following

relation holds:

P{X(tn+1) = sn+1 |X(tn) = sn, X(tn−1) = sn−1, . . . , X(t0) = s0} = P{X(tn+1) = sn+1 |X(tn) = sn}.

2.3.4 Poisson Processes

Consider an experiment where events occur with exponentially distributed interarrival times,

then the random variable X(t) with Poisson distribution represents the number of events that

occur in time interval (0, t). The set of random variables {X(t), t > 0} is a Poisson process [21,

56]

p(x) =
e−λλx

x!
.

2.4 Queueing Theory

Queueing theory relates to the study of lines of tasks which are waiting to receive service [21, 43].

The word queue comes from French cue which means tail, which comes from Latin coda.

Queueing theory is a discipline in operations research which analyses and predicts the stochas-

tic behaviour of queues in order to improve key performance metrics and overall utilisation of

resources [77, 48]. Queueing theory is applied in many industrial areas such as telecommunica-

tions, computer networks, warehouses of online retailers, transportation and logistics etc. [102].

In computer systems, for example, queueing networks are often use to analyse and simulate

performance metrics in RAID (Redundant Array of Independent Disks) systems [62, 61]. In

wireless networks, queueing networks are used to model multimedia transmissions over down-

links, where queue has time or space priority [2].

In health centres, an example of a queue is where patients (tasks) have to wait (queue) in order

2.4. Queueing Theory 45

to see a doctor (server), possibly subject to some form of priority service [7, 8].

In 1953 David Kendall [53] developed a short notation to characterise a queueing system with

a single waiting queue: A/B/N/Y/Z, where A describes an interarrival distribution, where

the common types are M for Markov process and D for deterministic distribution and more

sophisticated ones include MMPP (Markov Modulated Poisson Process) and NHPP (Non-

Homogeneous Poisson Process). B de�nes a service time distribution; common distributions

are M, G, D where G stands for general service time distribution. N expresses a number

of parallel servers, Y is the system capacity and Z speci�es a queueing discipline. Sometimes

notation A/B/N is used; this means that the system capacity is in�nite and queueing discipline

is First Come First Served (FCFS), rather than, for example, priority queueing or Last Come

First Served (LCFS) [53].

2.4.1 M/M/1 queue

In general a queueing network is a set of simple queues which are connected together. One of the

well-studied and simplest queues to analyse is the M/M/1 queue. In such queues interarrival

times as well as service times have exponential distributions with rates λ and µ respectively [6].

Consequently, a M/M/1 queue characterises as a continuous time Markov chain with whose

state variable is a number of tasks in the queue. The queue's utilisation is ρ = λ
µ
, where ρ < 1

so λ < µ in order for queue to be stable. Using properties of Markov chains it is straightforward

to compute some performance metrics, such as mean response time, which is given by:

E[R] =
1

µ− λ

2.4.2 M/G/1 queue

Another well-known queue is the M/G/1 queue, which has exponential interarrival times and

general service time distributions [21, 46]. These types of queues are highly applied in the real

world because of their general service time distribution property. However this �exibility makes

46 Chapter 2. Background Theory

them harder to solve analytically.

Although for M/G/1 queues the theory of Markov process no longer holds [95], we can exploit

the fact that arrivals still have the Poisson property. The PASTA (Poisson Arrivals See Time

Averages) property states that the probability that an entering task sees a particular number

of tasks in the queue is equal to the steady-state probability of the queue [110]. M/M/1 queue

is a special case of M/G/1 queue; therefore a method that is applicable to M/G/1 queue is

applicable to M/M/1 queue as well, but not vice versa. The queueing systems that we study

in this thesis are mainly built on M/G/1 and M/M/1 queues.

2.5 Performance Metrics for Queues

Pollaczek-Khinchine Formula of Task Response Time

Mean task response time in a steady-stateM/G/1 queue with arrival rate (λ), mean service time

distribution (1/µ), variance (Var[X]) of a service time and ρ = λ
µ
is utilisation, characterised

by a random variable X. At any random time instant mean response time can be calculated

by Pollaczek-Khinchine formula [82, 54]:

E[R] =
ρ+ µ λ Var[X]

2 (µ− λ)
+ µ−1 (2.5)

This result can be extended to a queueing system with Poisson arrivals and general service

time distributions which can be conceptually represented as M/G/1 queue with arrival rate

(λ), service time distribution is maximum mean service time (1/µ) across all parallel servers

and variance.

Little's Law

Little's law is one of the most simple, but powerful results in queueing theory relating to steady-

state performance measures. It had been an empirical rule for many years before it was proven

2.5. Performance Metrics for Queues 47

by J.D.C. Little in 1961 [77].

This law states that in a steady-state queueing system the average number of tasks including

those in service (N) is the product of average arrival rate λ of the tasks entering the system

and the average time (T) that tasks spend in the queueing system before they exit it [69]:

N = λT (2.6)

The beauty of this theorem is that it places no restriction on the arrival process and service

time distribution; it also supports any queueing discipline and does not depend on the number

of parallel servers in the queueing system.

2.5.1 Multi-class Queues

A multi-class queue serves di�erent class of customers, each of which has its own service time

distributions and has di�erent routing behaviour.

2.5.2 Queues with Priorities

Consider a queue with a server and a FCFS waiting queue of tasks. At any time when a task

comes into the queue, it goes at the back of FCFS waiting queue and waits while all tasks before

it complete their service. Only after all tasks before the task have been served does the task

start receiving service. Yet, in some queues tasks have priorities; if a task has a higher priority

than others, then this task jumps the queue of tasks with lower priority and goes straight to

a server. This kind of queues called queues with priorities [77]. In preemptive queues with

priorities when a task with higher priority arrives, a server stops service of a current lower-

priority task immediately and starts service of a task with a higher priority. In non-preemptive

queues with priorities there is no interruption of service of a task that is in a service already,

therefore a task with a high priority has to wait while a server �nishes service of a current task

and a task with a higher priority can start receive service [77].

48 Chapter 2. Background Theory

2.5.3 Queueing Networks

A natural extension of a simple queue is a queueing network, which is a set of interacting

queues. Some queues may be situated in parallel with each other, some may be set one after

another such that, when tasks exit one queue they immediately enter the next queue. Usually a

queueing network has to be analysed as a whole on account of the interaction and dependence

between queues [77]. If a certain conditions are met, a queueing network has a product form

solution, in which case each queue may be analysed separably; the answer can then be expressed

as a product of all individual queues [47]. However such cases really encounter in practice and

may even depend on the value of particular transition rates or particular service or arrival rates

in the system [47]. An example of a simple queueing network is presented in Fig. 2.1 from [57].

Figure 2.1: Example of a queueing network [57].

2.6. Parallel Processing Systems 49

2.5.4 Open, Closed, Mixed Queueing Networks

Queueing networks can classi�ed as open, closed and mixed. The major di�erence is where

tasks are arriving from. If tasks arrive into a queueing system from one or more external

sources then it is a open queueing system. By the �ow conservation principle the total sum of

arrival rates is equal to the total sum of departure rates in a steady�state queueing system [77].

In a closed queueing system tasks do not arrive from external sources nor do they exit the

system. Instead tasks circulate inside the system. In a mixed queueing system there are several

classes of tasks; some of the classes are closed while other classes are open.

2.6 Parallel Processing Systems

In this section we describe essential foundations of parallel processing systems which are re-

lated to this thesis. There are two primary areas in parallel processing systems: systems with

synchronisation and systems where synchronisation is not required [21]. Since in this the-

sis we present research which is based on systems that require synchronisation, here we give

description of only this kind of system.

Parallel processing systems are applied in areas such as parallel and distributed computing,

computer networks and the warehouses of on-line retailers.

In area of concurrent and distributed computing Edsger W. Dijkstra was one of the most in�u-

ential scientists in the computer science world. He presented the �rst solution for the mutual

exclusion problem [33] which evolved into the area of concurrent and distributed computing and

he also invented semaphore-based synchronisation [34]. He solved the shortest path problem for

graphs with non-negative edge path costs [32]. Among his contributions are the self-stabilisation

concept [35], programming languages, algorithms and protocols in concurrent and distributed

computing.

Queueing network models are natural abstractions for representing the �ow and processing of

tasks in parallel systems in which high-level tasks split into subtasks which are concurrently

50 Chapter 2. Background Theory

processed by a set of (heterogeneous) parallel servers. We present de�nitions of two subclasses

of queueing network models for parallel processing systems that have been under research in

this dissertation, namely split-merge and fork-join queueing systems.

2.6.1 Split-Merge Queueing System

F
1

F2

F
n

λ
Split
point

Merge
point

Figure 2.2: Split�Merge queueing model.

We present an elementary split-merge system (see Fig. 2.2), where the system processes only

one task at a time. A split-merge system consists of split and merge points, a FCFS queue

before the split point (split queue) and several heterogeneous parallel servers with queueing

capability after service (merge bu�ers). When a task arrives in the system (usually assumed to

happen according to a Poisson process with mean rate λ) it joins the split queue. Whenever

all servers are idle and the split queue is not empty, a task is taken from the head of the split

queue and is injected into the system, splitting into n subtasks at the split point. Each subtask

enters the queue of its corresponding parallel server (where it is served according to a service

time distribution with mean 1/µi, i = 1, . . . , n). After service, a subtask enters a merge bu�er.

Only when all subtasks (of a particular task) are present in the merge bu�ers does the original

task instantaneously exit the system via the merge point.

Since waiting tasks queue in the split queue while the service nodes do not have queueing

capability, and only one task is processed by the servers at a time. We thus note that a split-

merge queueing system might be conceptually treated as an M/G/1 queue with service time

set to be the maximum of the parallel service times.

2.6. Parallel Processing Systems 51

2.6.2 Fork-Join Queueing System

F1

F
2

Fn

λ
Fork
point

Join
point

Figure 2.3: Fork�Join queueing model.

An elementary fork-join system is an asynchronous type of parallel queueing system (see

Fig. 2.3). It is composed of n parallel heterogeneous FCFS service queues, fork and join points

and join queues (join bu�ers) for completed subtasks [21]. When a task arrives in the system

(usually assumed to happen according to a Poisson process with mean rate λ) it instantaneously

enters the fork point, where it forks into n independent subtasks. Each subtask enters the queue

of its corresponding parallel server. Parallel server i processes its queue of subtasks according

to a heterogeneous general service time distribution with mean service time 1/µi, i = 1, . . . , n.

After service, a subtask enters a join queue. Only when all subtasks (of a particular task) are

present in the join queues does the original task instantaneously exit the system via the join

point.

Join and Merge Bu�ers

We note that in many real-life applications the join/merge bu�ers are managed as a single

shared physical space set aside for the storage of partially completed subtasks. In such cases

we term this space the output bu�er. Careful management of the arrival times of subtasks into

the output bu�er is vital especially in circumstances where it occupies limited physical space

and/or where it is highly utilised. One way to achieve this is to maintain low levels of subtask

dispersion is to attempt to cluster the arrival times of the subtasks in the output bu�er as close

as possible.

52 Chapter 2. Background Theory

2.6.3 Performance Metrics for Parallel Queueing Systems

In this dissertation we are concerned with four metrics related to the quality of service experi-

enced by tasks and subtasks in parallel queueing systems. Generally, optimising performance

of a queueing system means optimising a particular performance metric where one metric may

have a priority upon others [51]. There are four performance metrics that are have been under

attention for optimisation. Any of the last three of these metrics can be computed from two of

the others by utilising Little's law.

Subtask Dispersion

We de�ne subtask dispersion as the di�erence in time between the service completion of the

�rst and last subtask which originated from the same task. Equivalently, this is the di�erence

in time between the arrival of the �rst and last subtasks (of a given task) in the output bu�er.

Task Response Time

Task response time is the time di�erence between to a task entering the system until it �nishes

its service and exits the system. Task response time is usually a sum of waiting time and service

time.

System Throughput

System throughput is de�ned as the rate (tasks per unit time) at which the tasks can be served by

the system. Usually, throughput of an unsaturated system increases as a workload of the system

rises [51]. Since subtasks in a fork-join queueing system are subject to less synchronisation

than those in a split-merge queueing system, the structure of a fork-join system naturally

yields higher system throughput when compared to a split-merge queueing system with the

same system con�guration and parametrisation, such as the same service time distributions

and service rates as well as arrival distribution and arrival rate.

2.7. Theory of Order Statistics 53

Output Bu�er Length

An output bu�er queue length refers to the sum of subtasks present in each of the join or merge

queues in fork-join queueing systems or merge queue in split-merge queueing systems. Keeping

this metric under control is very important in a highly utilised queueing systems.

2.7 Theory of Order Statistics

In this section we recap the essentials of the theory of homogeneous order statistics which

we are going to extend later to heterogeneous order statistics. The theory of order statistics

studies the behaviour and properties of arranged random variables and the statistics derived

from them [28]. Recently it has become more applied in many real world areas, such as auction

theory [59], �oods and droughts [91], �elds of quality control in a problems of fatigue failure

and breaking strength [30].

De�nition 2.1. Let the increasing sequence X(1), X(2), . . . , X(n) be a permutation of the real

valued random variables X1, X2, . . . , Xn, i.e. the Xi arranged in ascending order

X(1) 6 X(2) 6 . . . 6 X(n)

Then X(i) is called the ith order statistic, for i = 1, 2, . . . , n.

The random variables Xi are typically assumed to be identically and independently distributed

(iid) with cumulative distribution function F (t), but of course X(i) are dependent because of

the ordering. The �rst and last order statistics, X(1) and X(n), are the minimum and maximum

respectively, which are also called the extremes. D = X(n) −X(1) is the range.

54 Chapter 2. Background Theory

Distribution of the rth-Order Statistic (iid case)

If X1, X2, . . . , Xn are n independent random variables, the cumulative distribution function

(cdf) of the maximum order statistic (the maximum) is given by:

Fn(x) = Pr{X(n) 6 x} = Pr{Xi 6 x, 1 6 i 6 n} = F n(x)

Likewise, the cdf of the minimum statistic is:

F1(x) = Pr{X(1) 6 x} = 1− Pr{X(1) > x} =

1− Pr{Xi > x, 1 6 i 6 n} = 1− [1− F (x)]n

These are special cases of the general cdf of the rth order statistic, Fr(x), which can be expressed

as:

Fr(x) = Pr{X(r) 6 x} = Pr{at least r of the Xi 6 x}

=
n∑
i=r

 n

i

F (x)i[1− F (x)]n−i
(2.7)

The pdf of Xr, fr(x) = F ′r(x), where the prime denotes the derivative with respect to x, when

it exists, is then:

fr(x) =
n!

(r − 1)!1!(n− r)!
F r−1(x)f(x)[1− F (x)]n−r [28].

Multiplying both sides by �small� ε, this result follows intuitively from noting that we require

one of the Xi to take a value in the interval (x, x+ ε], exactly r− 1 of the Xi to be less than or

equal to x and exactly n−r of them to be greater than x. The coe�cient n!/((r−1)!1!(n−r)!)

is the number of ways of doing this, given that the Xi are stochastically indistinguishable.

The joint density function of the rth and sth order statistics X(r), X(s), where (1 6 r < s 6 n),

is:

frs(x, y) = SrsF
r−1(x)f(x)[F (y)− F (x)]s−r−1f(y)[1− F (y)]n−s (2.8)

2.7. Theory of Order Statistics 55

where Srs = n!
(r−1)!(s−r−1)!(n−s)! , by similar reasoning. The corresponding joint cdf Frs(x, y) of

X(r) and X(s) may be obtained by integration of the pdf or, alternatively, for x < y we have:

Frs(x, y) = Pr{at least r of the Xi 6 x, at most n− s of the Xi > y}

=
n∑
j=s

j∑
i=r

Pr{exactly i of the Xi 6 x, exactly n− j of the Xi > y}

=
n∑
j=s

j∑
i=r

n!

i!(j − i)!(n− j)!
F i(x)[F (y)− F (x)]j−i[1− F (y)]n−j

Finally, the joint pdf for the k order statistics X(n1), . . . , X(nk), 1 6 n1 < . . . < nk 6 n), is,

similarly, for x1 6 . . . 6 xk:

fn1,...,nk(x1, . . . , xk) = Sn1,...,nkF
n1−1(x1)f(x1)[F (x2)− F (x1)]

n2−n1−1f(x2) · · ·

[F (xk)− F (xk−1)]
nk−nk−1−1f(xk)[1− F (xk)]

n−nk

where Sn1,...,nk = n!
(n1−1)!(n2−n1−1)!...(nk−nk−1−1)!(n−nk)!

.

Distribution of the Range

The pdf fDrs(x) of the interval Drs = X(s) −X(r) follows from the joint pdf of the rth and sth

order statistics in Eq. 2.8 by setting y = x+ trs and integrating over x, giving:

fDrs(trs) = Srs

∫ ∞
−∞

F r−1(x)f(x)[F (x+ trs)− F (x)]s−r−1f(x+ trs)[1− F (x+ trs)]
n−sdx

In the special case when r = 1 and s = n, Drs is the range D = X(n) − X(1) and the pdf

simpli�es to:

fD(t) = n(n− 1)

∫ ∞
−∞

f(x)[F (x+ t)− F (x)]n−2f(x+ t)dx

56 Chapter 2. Background Theory

The cdf of D then follows by integrating inside the integral with respect to x, giving:

FD(t) = n

∫ ∞
−∞

f(x)

∫ t

0

(n− 1)f(x+ t′)[F (x+ t′)− F (x)]n−2dt′dx

= n

∫ ∞
−∞

f(x)
[
[F (x+ t′)− F (x)]n−1

]t′=t
t′=0

dx

= n

∫ ∞
−∞

f(x)[F (x+ t)− F (x)]n−1dx (2.9)

As noted in [28], this equation follows intuitively by noting that the integrand (multiplied by

an in�nitesimal quantity dx) is the probability that Xi falls into the interval (x, x + dx] (for

some i) and the remaining n−1 of the Xj, j 6= i fall into (x, x+t]. There are n ways of choosing

i, giving the factor n.

2.8 Numerical Optimisation Algorithms

Area of numerical optimisation algorithms is a study of optimisation algorithms which make

use of numerical approximations, that is a non-symbolic analysis. These kind of algorithms aim

to obtain fast approximate solutions while keeping a tight error bounds.

Since in this thesis we utilise only numerical algorithms to minimise objective functions, there-

fore we recall only this type of algorithms. Assume we have an objective function f(x) which

converges to its minimum at some point xmin:

xmin = arg min
x

f(x) (2.10)

The aim of a numerical optimisation algorithm is to �nd a xmin.

Desirable computational properties in such procedures include: high speed, utilising marginal

amount of memory and minimising the number of f(x) evaluations [83].

2.8. Numerical Optimisation Algorithms 57

2.8.1 Newton's Method

Newton's method is a gradient based iterative method of �nding local minimum/maximum

of an objective function f(x), provided that it is a continuous and twice-di�erentiable [79].

Usually Newton's method is used rather than the well-known gradient descent method, because

the former requires fewer steps to converge to a minimum due to its utilisation of a Hessian

matrix, which describes the local curvature of a function. Each step in Newton's method is

more computationally expensive than a step in gradient descent but Newton's method typically

needs fewer steps to �nd the minimum.

The method calculates the gradient ∇f(xk) as a direction from the current point xk and utilises

curvature information to take a more direct course:

xk+1 = xk − γ[Hf(xk)]
−1∇f(xk) (2.11)

where 0 < γ ≤ 1 is a constant introduced to satisfy Wolfe's conditions. The step size γ needs to

be chosen to be small enough to support convergence, yet large enough to make rapid progress

towards the minimum, these conditions we discuss in the next section. Hf(xk) is a Hessian

matrix of a second order partial derivatives:

H =
∂2f(x)

∂xi∂xj
∀i, j.

Each iteration of the algorithm requires calculations of the gradient ∇f(xk) and the Hessian

matrix Hf(xk) at a point xk. We explore the surface of the function with applied current

vector xk and compare f(xk) against previous value f(xk−1), the calculations continue while

the current value of function is greater than previous one (f(xk) > f(xk−1)), than the previous

vector xk−1 = xmin is the desired vector.

58 Chapter 2. Background Theory

2.8.2 Wolfe Conditions

We discuss the Wolfe's conditions which can be applied in iterative optimisation methods where

a search direction towards the minimum of the objective function is based on a gradient descent.

Previously, in Newton's method Eq. 2.11 we utilised 0 < γ ≤ 1, which is a constant introduced

to satisfy Wolfe conditions [108, 109]. In this section we look how to rigorously compute step

length γ to satisfy a trade-o� between providing substantial reduction of f(x), but at the same

time make a rapid progress [79].

A descent direction for Newton's method from Eq. 2.11 is:

pk = −H−1f(xk)∇f(xk)

There are two inequalities namely the Wolfe conditions which must hold to ensure correct step

size. First condition stipulates that γ has su�cient decrease in the objective function f(x):

f
(
xk + γ

(
−H−1f(xk)∇f(xk)

))
≤

f(xk) + c1γ∇fT (xk)
(
−H−1f(xk)∇f(xk)

) (2.12)

where c1 ∈ (0, 1) is a constant. The inequality means that the reduction of f(x) should be

proportional to both the step size γ and the directional derivative ∇fT (xk)pk [79]. Eq. (2.12)

above corresponds to the Armijo rule [5].

The su�cient decrease condition is not enough to make sure that the optimisation algorithm

makes fast progress, as it satis�es for all su�ciently small values of γ. In order to reject all

unacceptable short steps the second condition, namely curvature condition should be satis�ed:

∇fT
(
xk + γ(−H−1f(xk)∇f(xk))

)(
−H−1f(xk)∇f(xk)

)
≥

c2∇fT (xk)
(
−H−1f(xk)∇f(xk)

) (2.13)

where c2 are constants, which should be chosen such that 0 < c1 < c2 < 1 and c1 � c2.

Practically, for the purposes of Newton method it is recommended to set c1 as 10−4 and for c2

2.8. Numerical Optimisation Algorithms 59

to take on 0.9 [79].

The former inequality means that if we look at the left-hand side as ∂f(xk−γpk)
∂γ

, than the

curvature condition ensures that the slope of f at γ is greater than c2
∂f(xk−γpk)

∂γ
|γ=0. This

condition works because a strongly negative left-hand-side illustrates that f can be signi�cantly

reduced by moving further in the chosen direction. But if left-hand side is just marginally

negative or positive, than it means that there is no more decrease in further direction of the

optimisation method [80].

2.8.3 Nelder-Mead Method

Nelder-Mead method is an iterative simplex-re�ection technique for minimising an objective

function f(x) where its derivatives may not be known, therefore it is gradient-free optimisation

algorithm. The method was created in 1965 by John Nelder and Roger Mead [73], the main

idea is in n dimension problem of minimising f(x) to keep track of n + 1 points which form a

simplex. Assume a simplex S is given, where vertices are

S = {s1, s2, ..., sn+1}.

From the vector of vertices associated matrix formed

V (S) = [s2 − s1, s3 − s1, . . . , sn+1 − s1].

In each iteration for the set of current vertices {x1, x2, . . . , xn+1}, which are in order such that

f(x1) ≤ f(x2) ≤ · · · ≤ f(xn+1), the algorithm replaces the vertex xn+1 which gives the highest

value of the objective function with a new vertex, that provides best value of the function.

The new vertex is computed by re�ecting, contracting or expanding the simplex along the line

joining the worst point with the centroid point (x̄) of remaining points [78, 10].

60 Chapter 2. Background Theory

2.9 Related Work in Parallel Queueing Systems

Parallel processing systems have been in scienti�c interest for many decades. Usually research

on fork-join and split-merge queueing systems is concerned with approximations of mean or

lower/upper bounds on task response time. The analysis of fork-join queueing systems is hard

even under Markovian assumptions because �rstly, a fork-join queueing system is a non-product

form since arrival process is correlated therefore the systems can not be decomposed. Secondly,

because of the asynchronous properties of fork-join queueing systems, its di�cult to analyse it

analytically, except very simple cases where analytical solutions were found [36, 37]. The main

di�erence between researches is speci�cations of the queueing systems which researches were

based on. Fork-join queueing systems may be classi�ed by di�erent number of sources (single

or multiple, although most fork-join queueing systems have one source of arrival tasks), open

or closed systems, considering only fork or only join points, multi-class systems etc.

By contrast, the focus of the present dissertation is not response time computation; rather it

concerns ways to control the dispersion of subtask completion time which a�ects a split/join

queue length in parallel queueing systems such as split-merge and fork-join queueing systems.

2.9.1 Performance Analysis of Parallel Systems

The importance of performance prediction in split-merge queueing systems and their less syn-

chronised � but analytically much less tractable � counterparts, fork-join queueing systems, has

been long appreciated by performance modellers. Understandably, for both kinds of model, the

primary focus of research work to date has been on the computation of the stationary distribu-

tion of the number of subtasks queued at each parallel server and on moments of task response

time, most especially the mean.

2.9. Related Work in Parallel Queueing Systems 61

Related Literature Review on Subtask Dispersion

There are only a few items in the literature which consider the issue of subtask dispersion in

parallel systems; and most of this work treats the metric indirectly through an examination of

the mean number of subtasks in the output bu�er. We summarise the main results below.

Balsamo and Mura [16] consider fork-join queueing networks with Poisson arrivals and general

service time distributions represented as a Coxian distribution. They claim any general service

time distribution that has rational Laplace transform can be approximated arbitrary closely

using this technique. They derive two approximations of the join queue length (i.e. the number

of subtasks in each join queue) distribution and closed�form expressions for all moments for

this distribution with a proof of lower and upper bounds on the moments of the join queue

length. The technique is based on an analysis of the Markov process underlying the fork-join

queueing system. They identify a regular process structure by choosing an appropriate state

ordering which allows to apply a matrix-geometric method [16].

Bolch proposed performance metrics for fork-join queueing systems that relate to join queues:

�rstly, synchronisation overhead � that is ratio of subtasks' mean waiting times in a join queues

to the mean task response time, secondly blocking factor � that is an average number of subtasks

in the join queues (join queue length) and lastly, speed-up, which is a ratio of mean task response

time with n subtasks that serve sequentially to a mean task response time with n subtasks that

are served by a parallel queueing system with a fork-join policy [20].

In the Map-Reduce community, Zaharia et al. study the scheduling of Map-Reduce tasks in

clusters, particularly sharing a cluster between users while keeping data locality, that is the

placement of computation near its input data in the system. Locality of data is an essential

performance issue in large clusters because network bandwidth is a bottleneck [31]. They

propose a delay scheduling algorithm, whereby some scheduled tasks wait for a small amount of

time, so that other tasks can �nish their service. This simple method was tested on a 600-server

Hadoop cluster at Facebook. This delayed scheduling of tasks can counter-intuitively lead to a

greater fairness and a higher level of data locality [111].

62 Chapter 2. Background Theory

Related Literature Review on Task Response Time

In this section we make attempt to recall some of major research on task response time in

chronological order.

Heidelberger and Trivedi developed two highly accurate approximation methods for mean queue

length and mean response time prediction in closed parallel queueing systems based on M/M/1-

queues where primary tasks fork into two or more secondary subtasks [50]. Flatto et al. derived

exact analytical solutions for the stationary distribution of the number of subtasks in each

queue in a two-node fork-join queueing systems with exponential task arrivals and heteroge-

neous exponential service time distributions [36, 37]. For fork-join systems with homogeneous

exponential service time distributions, Nelson and Tantawi describe a technique which yields

approximate lower and upper bounds on mean task response time as a function of the number

of servers [75]. Nelson et al. consider fork-join queueing networks with Poisson arrival bulks

of tasks, exponential service time distributions, they found analytical expression for mean task

response time in [76]. Kim and Agrawala derive an approach which approximates mean task

response time and state-occupancy probabilities in multi-server fork-join systems with Erlang

service time distributions [55]. Baccelli et al. derive bounds on various transient and steady-

state performance measures for (predominantly homogeneous) fork-join queueing systems by

stochastically comparing a given system with constructed queueing systems with simpler struc-

ture but identical stability characteristics [13, 14].

Towsley et al. develop mathematical models for mean task response time of fork-join parallel

programs executing on a shared memory multiprocessor under Poisson tasks arrivals and two

di�erent scheduling policies [94]. Under the task scheduling policy, the authors derive lower

and upper bounds for mean task response time, while under the job scheduling policy, standard

birth-death theory leads to an exact expression for mean task response time. Liu and Perros

in [70] consider a closed fork-join queueing system where they use decomposition algorithm for

approximation of mean task response time and system throughput. Furthermore, the result

converges to exact in case of 3 servers system. Varma and Makowski use interpolation between

light and heavy tra�c modes to approximate the mean response time for a homogeneous fork-

2.9. Related Work in Parallel Queueing Systems 63

join system of M/M/1 queues with Erlang and hyper-exponential arrival distributions [105].

Balsamo et al. consider fork-join queueing network. They found task response distributions

which are represented by homogeneous irreducible Markov processes with a Quasi-Birth-Death

structure [15]. Varki considers closed fork-join queueing network with Poisson arrivals exponen-

tial service time distributions where she approximates mean task response time, queue length

and throughput of the system. The method which is based on the mean value equation for

fork-join queueing networks for response time which computes lower performance bounds [103].

Fork-join queueing system based on homogeneous M/M/1 queues with Poisson arrivals was

considered in [62], where a maximum order statistic provides an easily-computable upper bound

on response time. Harrison and Zertal present an approximation for moments of the maximum

of response times in a split-merge queueing system with Poisson task arrivals and general

heterogeneous subtask service times [49]; this gives an exact result in the case of exponential

subtask service time distributions. Varki et al. present bounds on mean response time in a fork-

join queueing system with Poisson arrivals and exponential subtask service time distributions

and variable number of subtasks that fork from a task [104]. Lebrecht et al consider fork-join

queueing networks with general service time distributions and bulk arrivals for applications in

zoned disks in RAID. They found response time distribution for a randomly placed request

in bulk arrival [63]. Another recent approach by Sun and Peterson presented in the context

of parallel program execution time analysis � but with ready application to the analysis of

split-merge systems � approximates the expectation of the maximum value of a set of random

variables drawn from certain distribution classes by solving for the domain value at which the

inverse cdf of the maximum order statistic is equal to a constant (0.570376002) [92].

Chapter 3

Reducing Subtask Dispersion in

Split-Merge Systems

In this chapter, we consider an elementary split-merge queueing system with assumptions of

Poisson task arrivals, heterogeneous general service time distributions and non-preemptive sub-

task service as presented in Fig. 2.2. We aim to reduce subtask dispersion, which is de�ned as

the di�erence in time of completion between the �rst and the last subtasks from an original

task without structural recon�guration or reparametrisation of the system. We do this �rstly,

by extending the theory of heterogeneous order statistics to desire the mean and distribution

of the range of heterogeneous order statistics.

We describe subtask dispersion as a range of heterogeneous order statistics based on random

variables that derived from service time distributions of parallel nodes. Secondly, we introduce

delays to the processing of subtasks before their service � this has a side e�ect of reducing merge

bu�er utilisation in case of judiciously-chosen delays. We update our results for the mean of the

range of subtask dispersion and distribution of the range of subtask dispersion by introducing

delay vector into them. These formulae form objective functions for minimising mean subtask

dispersion [97] and reducing a given percentile of the distribution of subtask dispersion [99, 58].

Thirdly, we apply these objective functions into optimisation schemes which calculate a vector

of optimal delays. Each element i of the vector is applied to the processing of subtasks before

64

3.1. Theory of Heterogeneous Order Statistics 65

they start service at parallel server i. We derive an analytical solution for the mean number

of subtasks in the output bu�er. Furthermore, we quantify the inevitable e�ects of applying

our methodology on task response time and maximum sustainable system throughput. Lastly,

we illustrate the application of our techniques using three case studies and validate our results

with a simulator, written in C++, although we note that split-merge queueing systems are also

is analytically tractable.

3.1 Theory of Heterogeneous Order Statistics

In this section we extend the theory of classical homogeneous order statistics [28] to heteroge-

neous order statistics [29]. We give a de�nition of the concept theory, derive the mean of the

range of heterogeneous order statistics, derive the joint density function of a pair of heteroge-

neous order statistics, and hence derive the distribution of the range of heterogeneous order

statistics. These results will be useful in our analysis of parallel queueing systems in which the

parallel servers have heterogeneous service time distributions.

De�nition 3.1. We consider n independent, real-valued random variables X1, . . . , Xn where

each Xi has an arbitrary probability distribution Fi(x) and probability density function fi(x) =

F ′i (x). In this case of �heterogeneous� (or independent, but not necessarily identically dis-

tributed) random variables, we call the order statistics heterogeneous order statistics and writ-

ten as:

X(1), X(2), ..., X(n−1), X(n)

The �rst and last heterogeneous order statistics, X(1) and X(n), are the minimum and maximum

respectively, which are also called the extremes. D = X(n) −X(1) is the range.

Recent decades have seen increasing consideration given to heterogeneous order statistics in

the literature. Key theoretical results relating to the distributions and density functions of

heterogeneous order statistics are summarised in [29]. This includes the work of Sen [88],

who derived bounds on the median and the tails of the distribution of heterogeneous order

66 Chapter 3. Reducing Subtask Dispersion in Split-Merge Systems

statistics. Vaughan et al. [106] expressed the permanent joint and marginal density functions

of innid variates. Guilbaud [44] derived the probability of functions of independent random

variables with not necessary identical distributions as a linear combination of functions with iid

variates. Boncelet et al. [22] dealt with linear and non-linear recurrence relations for computing

distributions of order statistics in innid or Markov cases. Bapat and Beg [17] derived the joint

pdf and cdf of order statistics of innid variates. Sathe and Dixit in [87] derived a recurrence

relation for the joint distribution function of heterogeneous order statistics. Practical issues

related to the numerical computation of the ith heterogeneous order statistic were considered

in [26], with special consideration of recurrence relations among distribution functions of order

statistics. Pearson et al. [81] present linear function of order statistics and its expectations, but

a more straightforward approach is given in [85].

In the following sections we derive the mean and distribution of the range of heterogeneous

order statistics.

3.1.1 Mean of the Range of Heterogeneous Order Statistics

We assume that a random variable X takes only non-negative values. The rth heterogeneous

order statistic has the following cdf:

F(r)(x) = Pr{X(r) 6 x} = Pr{at least r of the Xi 6 x}

=
n∑
i=r

∑
{~̀1,~̀2}∈Pi

i∏
k=1

F`1k(x)
n−i∏
k=1

[1− F`2k(x)]
(3.1)

where Pi is the set of all two-set partitions {D,E} of {1, 2, . . . , n} with |D| = i and |E| = n− i,

and `hk is the kth component of the vector ~̀h for h = 1, 2.

Similarly to the homogeneous case, the minimum and maximum order statistics are respectively

3.1. Theory of Heterogeneous Order Statistics 67

given by:

F(1)(x) = Pr{X(1) 6 x} = 1− Pr{X(1) > x} =

1− Pr{Xi > x | 1 ≤ i ≤ n} = 1−
n∏
i=1

[1− Fi(x)],

and

F(n)(x) = Pr{X(n) 6 x} = Pr{Xi 6 x | 1 ≤ i ≤ n} =
n∏
i=1

Fi(x).

The expectation of the rth heterogeneous order statistic X(r) can be expressed in terms of F(r):

E
[
X(r)

]
=

∫ ∞
0

1− F(r)(x) dx (3.2)

Similarly, the expectations of X(1) and X(n) can be expressed in terms of F(1) and F(n) respec-

tively as:

E
[
X(1)

]
=

∫ ∞
0

1−F(1)(x) dx =

∫ ∞
0

1− (1−
n∏
i=1

[1−Fi(x)]) dx =

∫ ∞
0

n∏
i=1

(
1−Fi(x)

)
dx (3.3)

and

E
[
X(n)

]
=

∫ ∞
0

1− F(n)(x) dx =

∫ ∞
0

1−
n∏
i=1

Fi(x) dx (3.4)

Utilising the linearity property of the expectation operator over the di�erence of two random

variables from Eq. 2.2, the mean of the range D = X(n)−X(1), as presented in [97] is given by:

E[D] = E
[
X(n) −X(1)

]
= E

[
X(n)

]
− E

[
X(1)

]
=

∫ ∞
0

1− F(n)(x) dx−
∫ ∞
0

1− F(1)(x) dx

=

∫ ∞
0

1−
n∏
i=1

Fi(x) dx−
∫ ∞
0

n∏
i=1

(
1− Fi(x)

)
dx

(3.5)

This result can be applied to determine mean of the dispersion of subtask completion times

in an elementary split-merge queueing system with heterogeneous service time distributions;

this formula will form the basis for our numerical optimisation techniques relating to mean

subtask dispersion as considered in the next section and following chapters. Practically, we use

68 Chapter 3. Reducing Subtask Dispersion in Split-Merge Systems

truncated numerical integration to take advantage of the fact that these two terms that being

integrated are monotonically decreasing functions.

3.1.2 Joint Density of Two Heterogeneous Order Statistics

We apply previously derived the cdf of the rth heterogeneous order statistic in Eq. 3.1. Di�er-

entiating it and simplifying yields the pdf:

f(r)(x) =
n∑
i=r

∑
{~̀1,~̀2}∈Pi

[
i∑

j=1

i∏
k=1,k 6=j

F`1k(x)
n−i∏
k=1

[1− F`2k(x)]f`1j(x)−

n−i∑
j=1

i∏
k=1

F`1k(x)
n−i∏

k=1,k 6=j

[1− F`2k(x)]f`2j(x)

]

=
n∑
i=r

n∑
h=1

 ∑
{~̀1,~̀2}∈Ph−i−1

i−1∏
k=1

F`1k(x)
n−i∏
k=1

[1− F`2k(x)]fh(x)−

Ii<n
∑

{~̀1,~̀2}∈Ph−i

i∏
k=1

F`1k(x)
n−i−1∏
k=1

[1− F`2k(x)]fh(x)


=

n∑
h=1

fh(x)

 n∑
i=r

∑
{~̀1,~̀2}∈Ph−i−1

i−1∏
k=1

F`1k(x)
n−i∏
k=1

[1− F`2k(x)]−

n∑
i=r+1

∑
{~̀1,~̀2}∈Ph−i−1

i−1∏
k=1

F`1k(x)
n−i∏
k=1

[1− F`2k(x)]


=

n∑
h=1

fh(x)
∑

{~̀1,~̀2}∈Ph−r−1

r−1∏
k=1

F`1k(x)
n−r∏
k=1

[1− F`2k(x)]

where I• is the indicator function and Ph−i is the set of all 2-set partitions of {1, 2, . . . , n} \ {h}

with i elements in the �rst set and 1 ≤ h ≤ n. In fact this result also follows from an intuitive

argument over the in�nitesimal interval (x, x+ ε], as in the homogeneous case.

The joint density function frs(x, y) of two order statistics, X(r) and X(s), for 1 6 r < s 6 n,

3.1. Theory of Heterogeneous Order Statistics 69

follows similarly as:

f(r)(s)(x, y) =
∑

1≤h1 6=h2≤n

fh1(x)fh2(y)
∑

{~̀1,~̀2,~̀3}∈P
h1−,h2−
r−1,s−r−1

r−1∏
k=1

F`1k(x)× (3.6)

s−r−1∏
k=1

[F`2k(y)− F`2k(x)]
n−s∏
k=1

[1− F`3k(y)]

where Ph1−,h2−i1,i2
is the set of all 3-set partitions of {1, 2, . . . , n}\{h1, h2} with i1 elements in the

�rst set, i2 elements in the second set, and so n− i1− i2− 2 in the third, and 1 ≤ h1 6= h2 ≤ n.

3.1.3 Distribution of the Range for Heterogeneous Order Statistics

From the joint pdf of two heterogeneous order statistics in Eq. 3.6, we obtain the pdf of the

interval Drs = X(r) −X(s) by setting trs = y − x:

f(r:s)(trs) =
∑

1≤h1 6=h2≤n

∫ ∞
−∞

fh1(x)fh2(x+ trs) (3.7)

∑
{~̀1,~̀2,~̀3}∈P

h1−,h2−
r−1,s−r−1

r−1∏
k=1

F`1k(x)
s−r−1∏
k=1

[F`2k(x+ trs)− F`2k(x)]
n−s∏
k=1

[1− F`3k(x+ trs)]dx

For the range, we want the special case in which r = 1, s = n and D = X(n) −X(1), giving the

pdf:

f(1:n)(t) =
∑

1≤h1 6=h2≤n

∫ ∞
−∞

fh1(x)fh2(x+ t)
∑

{~̀1,~̀2,~̀3}∈P
h1−,h2−
0,n−2

n−2∏
k=1

[F`2k(x+ t)− F`2k(x)]dx

=
∑

1≤h1 6=h2≤n

∫ ∞
−∞

fh1(x)fh2(x+ t)
∏

k 6=h1,h2

[Fk(x+ t)− Fk(x)]dx (3.8)

The cdf now follows by integration (inside the sum and integral with respect to x):

70 Chapter 3. Reducing Subtask Dispersion in Split-Merge Systems

F(1:n)(t) =
∑

1≤h1 6=h2≤n

∫ ∞
−∞

fh1(x)

∫ t

0

fh2(x+ t′)
∏

k 6=h1,h2

[Fk(x+ t′)− Fk(x)]dx dt′

=
∑

1≤h1≤n

∫ ∞
−∞

fh1(x)
∏
k 6=h1

[Fk(x+ t)− Fk(x)]dx (3.9)

Given a particular choice of i = 1, 2, . . . , n, the integrand (multiplied by an in�nitesimal quantity

dx) is the probability that Xi falls into the interval (x, x+ dx] and the other Xj, j 6= i fall into

(x, x + t]. Of course there are n ways of choosing i,and so we have to sum over n terms; in

the homogeneous case, all these terms are the same, which gave the factor n in Eq. 2.9. For

heterogeneous order statistics, we therefore obtain:

FD(t) = F(1:n)(t) =
n∑
i=1

∫ ∞
−∞

fi(x)
n∏

j=1,j 6=i

[Fj(x+ t)− Fj(x)] dx (3.10)

This is a useful result, which requires a sum of only n terms. It can be directly applied to

determine the distribution of the dispersion of subtask completion times in any split-merge

system with heterogeneous service time distributions, and will form the basis for distribution-

based optimisation as considered in Section 3.4.

3.2 Reducing Mean Subtask Dispersion

This section presents a technique for reducing mean subtask dispersion in elementary split-

merge queueing systems. In the following we suppose random variable Xi with distribution

Xi ∼ Fi(x), ∀i describes the service time distribution of the ith parallel server. Taking into ac-

count that in an elementary split-merge queueing system all subtasks originate from the same

original task injected into the system and start service at the same instant, we can apply the

theory of heterogeneous order statistics.The heterogeneous order statistics X(i) then describe

arranged subtask completion times across all parallel servers. Particularly the minimum hetero-

geneous order statistic X(1) denotes the completion time of the �rst subtask and the maximum

3.2. Reducing Mean Subtask Dispersion 71

heterogeneous order statistic X(n) denotes completion time of the last subtask (corresponding

to task response time) which were form from the same original task. The dispersion or range

D = X(n) −X(1) corresponds to subtask dispersion.

In the following, we use our derived result of mean of the range of heterogeneous order statistics

in Eq. 3.5, which was derived utilising the linearity property of the expectation operator.

3.2.1 Incorporation of Deterministic Delays

In order to control subtask dispersion we apply judiciously-chosen deterministic delays to pro-

cessing times of subtasks before they start service. We now introduce a vector of deterministic

delays d:

d =
(
d1, d2, ..., dn

)
(3.11)

Each element di denotes the deterministic delay that is applied before a subtask begins its

service at a parallel server i.

Now Xd
i ∼ Fi(x− di) de�nes the delayed-adjusted service time distribution of parallel server i.

The variatesXd
1 , X

d
2 , . . . , X

d
n have corresponding heterogeneous order statisticsX

d
(1), X

d
(2), . . . , X

d
(n).

We can now express the objective function for mean subtask dispersion in an elementary split-

merge queueing system from Eq. 3.5 as a function of a given delay vector d:

E[Dd] = E
[
Xd

(n)

]
− E

[
Xd

(1)

]
=

∞∫
0

(
1−

n∏
i=1

Fi(x− di)
)
dx−

∞∫
0

(
1−

(
1−

n∏
i=1

(1− Fi(x− di))
))

dx

=

∫ ∞
0

1−
n∏
i=1

Fi(x− di) dx−
∫ ∞
0

n∏
i=1

(
1− Fi(x− di)

)
dx (3.12)

in Appendix A we prove the convexity of this objective function. The fact that this function is

convex will guarantee the optimality of the optimisation procedure that is presented next.

72 Chapter 3. Reducing Subtask Dispersion in Split-Merge Systems

3.2.2 Optimisation Procedure of Mean Subtask Dispersion

Our aim is to �nd that vector d which minimises the objective function for mean subtask

dispersion given by E[Dd].

That is, we aim to solve for dmin in:

dmin = arg min
d

E[Dd] (3.13)

We can explore the surface of E[Dd] for a minimum utilising Newton's method from Eq. 2.11.

That is we apply the iteration:

di+1 = di −
[
HE[Ddi

]

]−1∇E[Ddi], i ≥ 0 (3.14)

with initial vector

d0 = (max
i

E
[
Xi

]
− E

[
X1

]
,max

i
E
[
Xi

]
− E

[
X2

]
, . . . ,max

i
E
[
Xi

]
− E

[
XN

]
)

Here the intuitive minimum obtained by subtracting the mean service time of each server from

the maximum mean service time and is multiplied by the di�erence between full utilisation and

current utilisation. Therefore d0 attempts to begin the search in the expected locality of the

minimum, although we remark that Newton's algorithm is capable of �nding the minimum from

any initial vector for convex objective functions. We note that other plausible initial guesses

are possible, e.g. median initial approximations [11]. Here we use Newton's method rather

than the well-known gradient descent method, because it requires fewer steps to converge to its

minimum due to utilisation of a Hessian matrix (which is a square matrix of second order partial

derivatives: H = ∂2E[Dd]
∂di∂dj

), which de�nes a more direct path to the extreme point. Consequently,

each step in Newton's method is more computationally expensive than a step of the gradient

descent method, but Newton's method usually �nds the minimum in considerably fewer steps

than the gradient descent method. We found that the run time of Newton's method is typically

3− 4 times less than the run time of the gradient descent method.

3.2. Reducing Mean Subtask Dispersion 73

We implemented this numerical optimisation procedure in C++. For each step of Newton's

method our program evaluates the objective function of Eq. 3.12, where the integrals involved

in the computation of the expectations of the maximum and minimum heterogeneous order

statistics are evaluated numerically by the trapezoidal rule. As we explore the surface of the

objective function with current delay vector di, we compare E[Ddi] against its previous value

E[Ddi−1
]. We cease iterating when the current value of the objective function is no better than

the previous one i.e. (E[Ddi]− E[Ddi−1
] ≤ ξ). In order to avoid invalid and unnecessary delays

we apply constraints di ≥ 0 for all i and
∏
i

di = 0. The latter condition ensures that no delays

are added to a bottleneck server(s).

3.2.3 Analytical Solution for Mean Number of Subtasks in Output

Bu�er

Here we derive the mean number of subtasks in output bu�er in an unsaturated elementary

split-merge queueing system utilising Little's Law (Eq. 2.6). According to this law, the mean

number of subtasks is a product of average arrival rate of subtasks into the output bu�er and

mean waiting time of a subtask in the output bu�er. The former term can be derived from

a fact that if the mean arrival rate of tasks in the system is λ, then the mean arrival rate of

subtasks in the output bu�er is nλ, where n is number of subtasks that are born from a task,

and λ = min(λ, µi) ∀i in unsaturated systems. The latter term can be found from the service

policy of a split-merge queueing system; that is all subtasks must wait for all their siblings to

�nish the service. It means that the �rst subtask that enters the output bu�er is waiting for

X(n) −X(1) time units to exit the system, the waiting time of the second arrival is X(n) −X(2)

time units and so on. The last subtask does not wait at all � at an instant of its arrival all

siblings that originated from the task are merged together and exit the system. Therefore, the

74 Chapter 3. Reducing Subtask Dispersion in Split-Merge Systems

mean number of subtasks in output bu�er is:

EOutputBuffer =
(X(n) −X(1)) + ...+ (X(n) −X(n−1))

n
nλ

=
(
(n− 1)X(n) −

n−1∑
i=1

X(i)

)
λ (3.15)

In practice, computing this formula involves calculations of all means of heterogeneous order

statistics, which is tedious. An alternative way to compute the mean number of subtasks in

output bu�er, albeit inexact, is by simulation.

3.2.4 Impact of Applied Delays on System Performance

In this chapter our concern is solely on the minimising of mean subtask dispersion by introducing

delays to processing of the subtasks. However, the introduction of such delays has negative

implications for system stability and task response time, as quanti�ed below [100].

Impact on System Stability

We observe �rst that, at a high-level, any given elementary split-merge queueing system

with a set of parallel servers is conceptually equivalent to a single M/G/1 queue whose ser-

vice time is equal to the maximum of the service times of the replaced parallel servers, i.e.

max{X1, X2, ..., Xn} = X(n). This is of course applicable for a split-merge system with delays

as well, in which case we have max{Xd
1 , X

d
2 , ..., X

d
n} = Xd

(n). Secondly, due to the fact that

distributions are monotonically increasing functions:

Fi(x− di) ≤ Fi(x),∀i (given di ≥ 0 ∀i)

It follows that
n∏
i=1

Fi(x− di) ≤
n∏
i=1

Fi(x)

3.2. Reducing Mean Subtask Dispersion 75

and ∞∫
0

1−
n∏
i=1

Fi(x− di) dx ≥
∞∫
0

1−
n∏
i=1

Fi(x) dx

Thus from the expectation operator of random variable computed via its cdf as in Eq. 2.1 we

have:

E[Xd
(n)] ≥ E[X(n)]

which proves the intuition that applying any delay to any subtask maintains or increases the

mean task service time.

Exploiting the well-known stability condition for an M/G/1 queue, and denoting the maximum

arrival rate at which the system with and without delays remains stable as λd
max

and λmax

respectively, we have:

λd
max

=
1

E[Xd
(n)]
≤ λmax =

1

E[X(n)]
(3.16)

Thus, adding any delay to any subtask adversely impacts the maximum arrival rate at which

the system remains stable.

Impact on Response Time

In order to quantify the impact of applying delays to processing of subtasks on mean task

response time we use the following metric:

Response Penaltyλ =
E[Rd=dmin,λ]− E[Rd=0,λ]

E[Rd=0,λ]
∗ 100 (3.17)

where E[Rd=dmin,λ] and E[Rd=0,λ] correspond for a given arrival rate λ to mean task response

time with optimal delays and without any delays respectively. Response Penalty corresponds

to the percentage by which task response time increases after application of optimal delays to

the processing of subtasks.

The expected task response time in a split-merge queueing system is conceptually equivalent

to the expected task response time in a single M/G/1 queue, whose service time is given by

76 Chapter 3. Reducing Subtask Dispersion in Split-Merge Systems

the maximum of the service times of the parallel servers. Consequently, we can apply the

Pollaczek-Khinchine formula for mean task response time in an M/G/1 queue:

E[Rd=0,λ] =
ρ+ µ λ Var[X(n)]

2 (µ− λ)
+ µ−1 (3.18)

where λ is arrival rate, 1/µ is the mean service time (with µ = E[X(n)]), and Var[X(n)] is the

variance of service time. The latter can be calculated from Eq. 2.4 as:

Var[X(n)] = 2

∞∫
0

x
(
1−

n∏
i=1

Fi(x)
)
dx−

(∞∫
0

1−
n∏
i=1

Fi(x) dx
)2

Straightforward modi�cation of the above formulae yields the expected task response time with

applied delays:

E[Rd=dα,λ] =
ρd + µd λ Var[Xd

(n)]

2 (µd − λ)
+ (µd)−1 (3.19)

where λ is arrival rate, 1/µd is the mean service time with applied delay vector d (µd = E[Xd
(n)]),

and Var[Xd
(n)] is the variance of service time with applied delays:

Var[Xd
(n)] = 2

∞∫
0

x
(
1−

n∏
i=1

Fi(x− di)
)
dx−

(∞∫
0

1−
n∏
i=1

Fi(x− di) dx
)2

3.3 Numerical Results

3.3.1 Split-Merge Simulation

Simulations and analytical models are often used to mutually validate each other [64, 65, 107].

To this end, we have developed a simulator of parallel queueing systems written in C++ which

provides rapid event-driven simulation. Input for the simulator are speci�ed distributions for

task inter-arrival time and the service times of the set of parallel nodes. The simulations allow

for the computation of numerous performance-related metrics without and with subtask delays,

e.g.: mean task response time, mean subtask dispersion, mean number of subtasks in output

3.3. Numerical Results 77

bu�er, task throughput and distribution of subtask dispersion.

As shown in Fig. 3.1, our simulator of a split-merge queueing system is based on several classes,

e.g.: a split point with a queueing capability before it (split queue), which is linked to several

parallel nodes, which are connected to a merge queue and followed by amerge point. tasks

arrive at any time instant according to a Poisson process; they go to the back of the split queue.

When the system is empty and all parallel nodes are idle a task from the head of the split queue

is injected into the split point, where the task splits into several (n) subtasks. Each subtask

goes via a link to its allocated node. The number of tasks that is injected into the system is

trials. All variables and procedures that relate to statistical calculations are stored in the

network class. For the simulation of a split-merge queueing system with optimised subtask

dispersion, the vector of optimal delays is calculated beforehand. During the simulations the

optimal delays are applied to processing of subtasks at the instant of their arrival at a parallel

node.

Figure 3.1: UML class diagram for simulator of an elementary split-merge queueing network.

78 Chapter 3. Reducing Subtask Dispersion in Split-Merge Systems

3.3.2 Case Study

We present a case study of a split-merge queueing system, which is analysed using our method

and validated by simulation. The simulations were performed on a 3.5GHz Intel Core-i5 work-

station with 8GB RAM. The simulations were run by processing 10 000 000 tasks after a warm-

up period of 1 000 000 tasks. Results are reported to three signi�cant �gures. For all following

case studies we use the same experimental set up. We consider a split-merge queueing system

with task arrival rate λ = 1.0 (tasks/time unit) and 3 parallel servers having heterogeneous

service time density functions:

X1 ∼ Exponential(λ = 5)

(E[X1] = 0.2, Med[X1] = 0.139, Var[X1] = 0.04)

X2 ∼ Erlang(n = 2, λ = 3)

(E[X2] = 0.667, Med[X2] = 0.559, Var[X2] = 0.222)

X3 ∼ Uniform(0.2, 0.5)

(E[X3] = 0.35, Med[X3] = 0.35, Var[X3] = 0.00750)

Without adding any delays the mean subtask dispersion is E[D] = 0.576 time units, the ex-

pected task response time is E[Rd=0,1.0] = 2.026 time units and maximum sustainable arrival

rate is λmax = 1.377 tasks/time unit. The simulations of the system without delays show that

the mean number of subtasks in output bu�er is 0.963 (95% CI [0.962, 0.964]) subtasks. The

means of the corresponding heterogeneous order statistics are:

E[X(1)] = 0.153, E[X(2)] = 0.340, E[X(3)] = 0.726.

Mean output bu�er length from Eq. 3.15 is 0.962 subtasks giving con�dence in the accuracy of

the simulation. Applying Newton's method from Eq. 3.14 we �nd after 32 seconds of runtime

3.3. Numerical Results 79

the vector of optimal delays which satis�es Eq. 3.13 as:

dmin = (0.393, 0.0, 0.204)

Fig. 3.2 presents a surface plot of mean subtask dispersion for various d1 and d3 values. Af-

ter applying dmin to subtask processing, mean subtask dispersion becomes E[Ddmin] = 0.448

time units, which represents a 22% improvement. The expected task response time becomes

E[Rdmin,1.0] = 3.69 time units, which is 82% higher than before the application of delays. Af-

ter applying subtask delays the maximum sustainable task arrival rate drops to λd
max

= 1.178

tasks/time unit, as shown in Fig.3.5. Simulations of the split-merge system with applied delays

show that the mean number of subtasks in output bu�er becomes 0.733 (95% CI [0.732, 0.734])

subtasks, representing 24% fewer subtasks than in the system without delays. Heterogeneous

order statistics with applied delays become:

E[Xd
(1)] = 0.400, E[Xd

(2)] = 0.564, E[Xd
(3)] = 0.849.

Mean number of subtasks in the output bu�er from Eq. 3.15 with applied delays is thus 0.734

subtasks. We present application of analytical solution for calculating mean length of a merge

bu�er from Eq. 3.15 only in this case study because it is analytically tedious to calculate means

of all heterogeneous order statistics. Therefore for next case studies we present mean number

of subtasks in the output bu�er based on simulations.

It is shown in the Fig. 3.3 that at a distributional level the subtask dispersion of the split-merge

queueing systems with optimised delays applied to processing of the subtasks dominates the

subtask dispersion of the split-merge queueing system with no applied delays. However, Fig. 3.4

shows opposite a�ect on task response time.

80 Chapter 3. Reducing Subtask Dispersion in Split-Merge Systems

E[D]

d3 d1

Figure 3.2: Surface plot of mean subtask dispersion against delays.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

split-merge
split-merge with dispersion-optimised delays

P
r(
D
≤
t)

t

Figure 3.3: Distributions of subtask dispersion in split-merge queueing system with and without
delays optimised for mean subtask dispersion (E[Dd]). λ = 1.0 (task/unit time).

3.4. Reducing Percentiles of the Distribution of the Range of Subtask Dispersion 81

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

split-merge
split-merge with dispersion-optimised delays

P
r(
R

d
,λ
≤
t)

t

Figure 3.4: Distributions of task response time in split-merge queueing system with and without
delays optimised for mean subtask dispersion (E[Dd]). λ = 1.0 (task/unit time).

3.4 Reducing Percentiles of the Distribution of the Range

of Subtask Dispersion

In this section we move towards a more sophisticated framework for �nding delay vectors

which provide soft (probabilistic) guarantees on subtask dispersion. Previously we derived the

distribution of the range of heterogeneous order statistics in Eq. 3.10 which equates to the

range of subtask dispersion for elementary split-merge queueing systems. Here we make use of

these results in a numerical optimisation procedure. In order to control a given percentile of

the distribution of subtask dispersion we apply deterministic delays to processing of subtasks.

For a given probability α, α ∈ (0, 1] we aim to minimise the 100αth percentile of subtask

dispersion with respect to d. That is, we aim to solve for dα in:

dα = arg min
d

F−1D (α,d) (3.20)

82 Chapter 3. Reducing Subtask Dispersion in Split-Merge Systems

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

split-merge
split-merge with dispersion-optimised delays

E[
R

d
,λ

]

λ(task/unit time)

Figure 3.5: Expected response time of case study split-merge queueing system for various
customer arrival rates without any delays (red line), with delays optimised for mean subtask
dispersion (E[Dd]) (black line).

3.4. Reducing Percentiles of the Distribution of the Range of Subtask Dispersion 83

where F−1D (α,d) is the solution for t in:

FD(t,d) =
n∑
i=1

∫ ∞
−∞

fi(x− di)
n∏

j=1,j 6=i

[Fj(x+ t− dj)− Fj(x− dj)] dx = α. (3.21)

which is Eq. 3.10 updated to re�ect the application of delays. Put another way, we aim to

�nd that vector dα which yields the lowest value for the 100αth percentile of the di�erence in

the completion times of the �rst and the last subtasks in an elementary split-merge queueing

system.

3.4.1 Optimisation Procedure of the Distribution of Subtask Disper-

sion

Practically, we developed a full version of this numerical optimisation procedure in C++. Eval-

uation of Eq. 3.21 for a given α and d is performed by means of numerical integration using the

trapezoidal rule. While this is adequate for almost all continuous service time density functions,

complications arise in the case of the pdf of deterministic service time density functions because

of its in�nitely thin, in�nitely high impulse. We resolve this by replacing the deterministic pdf

with delay parameter a by the Gaussian approximation:

fDet(a)(x) ≈ 1

c
√
π
e−

(x−a)2

c2

which becomes exact as c→ 0; in practice we set c = 0.01.

In order to invert Eq. 3.21 for a given α and d, we �rst applied the Bisection method [25] in our

previous work [99] because of its excellent robustness characteristics. Subsequently, we have ap-

plied Brent's method [23] which combines bisection, secant and inverse quadratic interpolation.

This delivers considerably higher computational e�ciency without loss of robustness.

Finally, we explore the optimisation surface of F−1D (α,d) with the initial vector d0 = {0, . . . , 0}

using a numerical optimisation procedure. We constrain the search such that di ≥ 0 for all i

84 Chapter 3. Reducing Subtask Dispersion in Split-Merge Systems

and
∏
i

di = 0. In our implementation, we have used a simple Nelder-Mead optimisation tech-

nique [73], which is based on the simplex method. We note that a range of more sophisticated

(and correspondingly considerably more complex to implement) gradient-free optimisation tech-

niques are also available; see e.g. [3, 68].

3.4.2 Numerical Results

Case Study A

We present a three dimensional case study, that is chosen because its easily visualisable as well

as provide an intuition to the reader about the technique and its followed by higher dimensional

case study to show the scalability of the algorithm.

Consider a split-merge system with task arrival rate λ = 0.1 (tasks/time unit) and 3 parallel

servers having heterogeneous service time density functions:

X1 ∼ Pareto(α = 3, l = 3.5, h = 10)

(E[X1] = 4.81, Med[X1] = 1.2, Var[X1] = 24.96)

X2 ∼ Erlang(n = 2, λ = 1)

(E[X2] = 2, Med[X2] = 1.68, Var[X2] = 2)

X3 ∼ Det(5)

(E[X3] = 5, Med[X3] = 5, Var[X3] = 0.0)

The choice of distributions was made to illustrate our methodology against service time distri-

butions with di�erent variances: Deterministic distribution has no variance, Pareto distribution

has very high variance and Erlang distribution has intermediate variance.

Without adding any extra delays, it is straightforward to apply Eq. 3.10 in a root-�nding

algorithm (e.g. Brent's method) to compute the 50th (α = 0.5) and 90th (α = 0.9) percentiles

of subtask dispersion as t0.5 = 3.62 and t0.9 = 5.21 time units respectively. Simulations of

the split-merge queueing system show that the mean number of subtasks in output bu�er is

3.4. Reducing Percentiles of the Distribution of the Range of Subtask Dispersion 85

0.4647 (95% CI [0.4645, 0.4649]) subtasks. Incorporating delays into the distribution of subtask

dispersion as per Eq. 3.21, and executing a Nelder-Mead optimisation (suitably constrained so

that
∏
i

di = 0) to solve Eq. 3.20 given α = 0.5 yields

d0.5 = (0.533, 3.50, 0.0)

as shown in Fig. 3.6. The optimisation procedure's run time (using Brent's method) is 13

seconds in comparison with 46 seconds for the previous optimisation procedure where we use

bisection method. We note that in this case the �bottleneck� server is server 3. With the

incorporation of the optimal delays, the 50th percentile of subtask dispersion t0.5 = 1.29 time

units, representing an improvement of 64% over the original system con�guration without

delays. The mean number of subtasks in output bu�er is 0.289 (95% CI [0.288, 0.290]), a 38%

reduction.

d2 d1

F−1D (α = 0.5,d)

Figure 3.6: Surface plot of the 50th percentile of subtask dispersion of split-merge queue-
ing system for various deterministic processing delays. The optimal delay vector is d0.5 =
(0.533, 3.50, 0.0).

86 Chapter 3. Reducing Subtask Dispersion in Split-Merge Systems

d3 d2

F−1D (α = 0.9,d)

Figure 3.7: Surface plot of the 90th percentile of subtask dispersion of split-merge queue-
ing system for various deterministic processing delays. The optimal delay vector is d0.9 =
(0.0, 2.82, 1.16).

For α = 0.9 we obtain

d0.9 = (0.0, 2.82, 1.16)

as shown in Figure 3.7. We note that for this percentile the �bottleneck� switches from server 3 to

server 1, despite the fact that server 3 has a higher mean service time and median than server 1,

but server 3 does not have any variance, while server 1 has naturally very high variance, since it

has a heavy-tailed service time distribution. With the incorporation of optimal delays, the 90th

percentile of subtask dispersion becomes t0.9 = 3.35 time units, representing an improvement

of 36% over the original system con�guration without delays. The mean number of subtasks

in output bu�er is 0.3792 (95% CI [0.3790, 0.3794]) subtasks, a 18% reduction.

Figure 3.8 shows how the distribution of subtask dispersion changes according to the value of

α. We note that a change of α can have a signi�cant impact on the quantiles of FD(t,d), and

may result in the shifting of the �bottleneck� server.

Without delays, the expected task response time is E[Rd=0,0.1] = 8.93 time units. After

3.4. Reducing Percentiles of the Distribution of the Range of Subtask Dispersion 87

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

split-merge
split-merge with 50th percentile-optimised delays
split-merge with 90th percentile-optimised delays

P
r(
D
≤
t)

t

Figure 3.8: Distributions of subtask dispersion of split-merge queueing system without any
delays (blue line), with delays optimised under α = 0.5 (black line) and delays optimised under
α = 0.9 (blue line).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

split-merge
split-merge with 50th percentile-optimised delays
split-merge with 90th percentile-optimised delays

P
r(
R

d
≤
t)

t

Figure 3.9: Distributions of task response time of split-merge queueing system given λ = 0.1,
without any delays (red line), with delays optimised under α = 0.5 (black line) and delays
optimised under α = 0.9 (blue line).

88 Chapter 3. Reducing Subtask Dispersion in Split-Merge Systems

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.05 0.1 0.15 0.2

split-merge
split-merge with 50th percentile-optimised delays
split-merge with 90th percentile-optimised delays

E[
R

d
,λ

]

λ (task/unit time)

Figure 3.10: Expected response time of split-merge queueing system for various customer arrival
rates without any delays (red line), with delays optimised under α = 0.5 (green line) and delays
optimised under α = 0.9 (blue line).

introducing optimal subtask delays, the expected task response time becomes E[Rd=d0.5,0.1] =

11.7 time units for α = 0.5 and E[Rd=d0.9,0.1] = 12.8 time units for α = 0.9. The percentage

increases in expected task response time from Eq. 3.17 are 31% and 43% respectively. Figure 3.9

presents the corresponding distributions of task response time. For the system without delays

the maximum sustainable arrival rate from Eq. 3.16 is λmax < 0.182 tasks/time unit. After

introducing subtask delays to minimise the 50th and 90th percentiles of subtask dispersion,

this drops to 0.160 and 0.153 tasks/time unit respectively. This is illustrated in Figure 3.10.

Although the task response time corresponds to the maximum order statistic and no delays are

added to it, the task response time is a�ected by applying delays because the maximum order

statistic is not guaranteed to be always the largest due to the randomness of the distributions.

Therefore, if adding delays produces changes in the maximum order statistic then it a�ects the

task response time.

3.4. Reducing Percentiles of the Distribution of the Range of Subtask Dispersion 89

Case Study B

We present a higher dimensional case study with eight nodes to show that our methodology

scales. Consider a split-merge queueing system with arrival rate λ = 0.1 tasks/time unit and

service nodes with the following heterogeneous service time distributions:

X1 ∼ Exponential(λ = 1)

(E[X1] = 1, Med[X1] = 0.693, Var[X1] = 1)

X2 ∼ Erlang(n = 2, λ = 5)

(E[X2] = 0.4, Med[X2] = 0.336, Var[X2] = 0.08)

X3 ∼ Det(2)

(E[X3] = 2, Med[X3] = 2, Var[X3] = 0)

X4 ∼ Pareto(n = 2.1, a = 3.5, b = 10)

(E[X4] = 4.89, Med[X4] = 4.63, Var[X4] = 28.81)

X5 ∼ Exponential(λ = 4)

(E[X5] = 0.25, Med[X5] = 0.173, Var[X5] = 0.0625)

X6 ∼ Erlang(n = 3, λ = 3)

(E[X6] = 1, Med[X6] = 0.891, Var[X6] = 0.333)

X7 ∼ Exponential(λ = 8)

(E[X7] = 0.125, Med[X7] = 0.0866, Var[X7] = 0.0156)

X8 ∼ Pareto(n = 2.5, a = 3.5, b = 10)

(E[X8] = 4.98, Med[X8] = 4.49, Var[X8] = 26.97)

Applying Eq. 3.10 in a root-�nding algorithm, we compute the 50th (α = 0.5) and 90th (α =

0.9) percentiles of subtask dispersion as t0.5 = 5.43 time units and t0.9 = 8.26 time units

respectively. Simulations show that the mean number of subtasks in output bu�er is 3.196(95%

CI [3.194, 3.198]) subtasks.

90 Chapter 3. Reducing Subtask Dispersion in Split-Merge Systems

Applying our methodology for determining optimal subtasks delays under α = 0.5 yields:

d0.5 = (3.84, 4.13, 2.32, 0.0, 4.71, 3.55, 4.88, 0.279)

For this case the improved optimisation procedure (using Brent's method) takes 2 minutes 5

seconds, whereas the procedure where we apply the bisection method from [99] takes 29 minutes.

We see the �bottleneck� server is server 4. With the incorporation of the optimal delays, the 50th

percentile of subtask dispersion becomes t0.5 = 2.02 time units, representing an improvement

of 63% over the original system con�guration without delays. The mean number of subtasks

in output bu�er is 1.277 (95% CI [1.276, 1.278]) subtasks, a 60% reduction.

For α = 0.9 we obtain:

d0.9 = (4.92, 5.97, 3.16, 0.0, 5.02, 4.37, 7.04, 0.758)

Here we see the �bottleneck� remains server 4. After adding optimal delays, the 90th percentile

of subtask dispersion becomes t0.9 = 4.29 time units, representing an improvement of 48%

over the original system con�guration without delays. The mean number of subtasks in output

bu�er is 1.357 (95% CI [1.356, 1.357]), a 58% reduction.

Figure 3.11 shows how the distribution of subtask dispersion changes according to the value

of α. Without delays, the expected task response time is E[Rd=0,λ] = 10.3 time units. After

introducing optimal subtask delays, the expected task response time becomes E[Rd0.5,λ] =

12.4 time units for α = 0.5 and E[Rd0.9,λ] = 19.2 time units for α = 0.9. The percentage

increases in expected task response time are 20% and 86% respectively. Figure 3.12 presents

the corresponding distributions of task response time.

For the system without delays the maximum sustainable arrival rate from Eq. 3.16 is λmax <

0.171 tasks/time unit. After introducing subtask delays to minimise 50th and 90th percentile of

subtask dispersion, this drops to 0.156 and 0.133 tasks/time unit respectively. This is illustrated

in Figure 3.13.

3.4. Reducing Percentiles of the Distribution of the Range of Subtask Dispersion 91

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

split-merge
split-merge with 50th percentile-optimised delays
split-merge with 90th percentile-optimised delays

P
r(
D
≤
t)

t

Figure 3.11: Distributions of subtask dispersion of split-merge queueing system without any
delays (red line), with delays optimised under α = 0.5 (black line) and delays optimised under
α = 0.9 (blue line).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

split-merge
split-merge with 50th percentile-optimised delays
split-merge with 90th percentile-optimised delays

P
r(
R

d
≤
t)

t

Figure 3.12: Distributions of task response time of split-merge queueing system given λ = 0.1
without any delays (red line), with delays optimised under α = 0.5 (black line) and delays
optimised under α = 0.9 (blue line).

92 Chapter 3. Reducing Subtask Dispersion in Split-Merge Systems

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.05 0.1 0.15 0.2

split-merge
split-merge with 50th percentile-optimised delays
split-merge with 90th percentile-optimised delays

E[
R

d
,λ

]

λ(task/unit time)

Figure 3.13: Expected response time of split-merge queueing system for various customer arrival
rates without any delays (red line), with delays optimised under α = 0.5 (green line) and delays
optimised under α = 0.9 (blue line).

3.5 Summary

This chapter has presented a methodology for minimising the mean of the range of subtask

dispersion and controlling a given percentile of the distribution of subtask dispersion in el-

ementary split-merge queueing systems. Here subtask dispersion is de�ned in terms of the

di�erence between �rst and last arrival times of subtasks in the merge bu�ers, and is controlled

through the application of judiciously-chosen deterministic delays to subtask service times. The

methodology has four main components. The �rst is the extension of the classical theory of

heterogeneous order statistics, which yields the mean and distribution of the range of hetero-

geneous order statistics. The second component is the introduction of deterministic delays into

the aforementioned expressions, this yielding objective functions for the third component �

numerical optimisation procedures which yield vectors of subtask delays which either minimise

the mean of the range distribution of subtask dispersion or reduce a given percentile of the dis-

tribution of subtask dispersion. We presented a case study for the methodology of minimising

mean of the range of subtask dispersion and two case studies for the methodology of controlling

3.5. Summary 93

a given percentile of the distribution of subtask dispersion which showed that the choice of per-

centile can have a signi�cant impact on the optimal delay vector and the �bottleneck� server.

We derived analytical solutions for mean number of subtasks in the output bu�er. Lastly, in

the fourth component we quanti�ed the negative impact of adding delays into processing of

subtasks on task response time and maximum sustainable throughput of the system.

In this chapter we focused solely on reduction of subtask dispersion and did not pay attention

to inevitable impact of our methodologies on other performance related metrics. From the

case studies we observed that the task response time and the maximum sustainable throughput

increased dramatically after applying the deterministic delays for reducing subtask dispersion.

One possible direction for future work is to develop an initial subtask delay vector based on

medians rather than means of the service distributions, as it discussed in [11]. In the next

chapter we are going to improve our methodology by considering the impact of delays on the

trade-o� between subtask dispersion and task response time.

Chapter 4

Trading o� Subtask Dispersion and Task

Response Time in Split-Merge Systems

4.1 Introduction

In this chapter we present a technique for managing a trade-o� between mean subtask dispersion

and mean task response time. Mean subtask dispersion is de�ned as the di�erence between the

completion times of the �rst and last subtasks originating from a given task. Mean task response

time is de�ned as the di�erence between the arrival time of a task into the split queue and the

time at which the task leaves the system via the merge point. The methodology of trading o�

subtask dispersion and task response time is presented in [96].

In our analysis we assume elementary split-merge queueing systems (Fig. 2.2) with Poisson

arrivals and heterogeneous generally distributed service times. As discussed in Section 2.9.1

and Chapter 3 previous research has been concerned about minimisation of one but not both

of these measures [12, 4]. Particularly, in Chapter 3 we demonstrated how the processing of

selected subtasks can be delayed in order to reduce mean subtask dispersion and percentiles of

subtask dispersion for elementary split-merge queueing systems. Whilst we apply a constraint

to ensure that no delay is added to the bottleneck server, the introduction of subtask delays does

naturally have an adverse impact on mean task response time, with a corresponding reduction

94

4.1. Introduction 95

in maximum sustainable system throughput. The adverse impact expands as workload intensity

rises, and even can make a previously stable system become unstable. In an absence of the

ability to recon�gure or reparameterise the system there is a con�icting tension between these

two metrics � if we try to lower one metric, the other will be increased. Thus, trading o� these

two metrics allows e�ective balancing of subtask dispersion and response time. We formally

characterise the subtask dispersion�response time trade-o� in elementary split-merge queueing

systems as an optimisation problem.

Our inspiration for this technique of trading o� of two major performance metrics originates

from two sources; �rstly, the survey on continuous non-linear multi-objective optimisation

techniques by Marler and Arora [72], which explores a variety of di�erent optimisation tech-

niques that may be suitable for solving multi-objective problems (e.g. weighted global criterion,

weighted sum, lexicographic, weighted min/max, exponential weighted and bounded objective

function). In particular they presented a weighted product method which inspires our choice

of a product for our objective function.

Secondly, we were inspired by the work of Gandhi, Harchol-Balter et al. [39, 40] where they

explore energy-performance trade-o�s in server farms by means of an objective function based

on energy-response time product (ERP). In server farms with a large number of servers, each

server can be placed into one of several states, such as on/o� and several sleep or standby

modes. A problem occurs when a large setup time and energy penalty (setup cost) are needed

to switch a server from one state to another. Thus, a trade-o� arises when a potential server

switch between states occurs. For example leaving an idle server on will reduce mean response

time at the cost of extra energy use while turning it o� will case power but adversely impacts

on mean response time.

Choosing product of two performance metrics instead of weighted sum was also made because

the product objective function tends to penalise poor performance on one metric more heavily

than does the additive weighting sum objective function [52].

We are now going to demonstrate how our technique can reduce mean subtask dispersion while

keeping mean task response time under control. The objective function of the trade-o� is based

96Chapter 4. Trading o� Subtask Dispersion and Task Response Time in Split-Merge Systems

on the product of expected subtask dispersion and expected task response time. We compare

the e�ects of our previous methodology of solely reducing mean subtask dispersion with the

technique of trading-o� mean subtask dispersion and mean task response time.

4.2 Application of heterogeneous order statistics to split-

merge systems

As before, we consider an elementary split-merge queueing system with n parallel servers.

SupposeXi ∼ Fi(x) is a random variable that describes the (heterogeneous) general service time

distribution of the ith parallel server. Then the heterogeneous order statistics X(i) correspond

to ordered subtask completion times (since in a split-merge system all subtasks originating from

a given task are injected into the system from split point at the same instant). The minimum

heterogeneous order statistic X(1) corresponds to the time of �rst subtask completion and the

maximum heterogeneous order statistic X(n) corresponds to the time of last subtask completion

(equivalently, task response time). The dispersion or range D = X(n) − X(1) corresponds to

subtask dispersion.

As in Chapter 3, in order to provide a means to control the subtask dispersion�response time

trade-o� we introduce a vector of deterministic delays d = (d1, d2, ..., dn), where element di

represents a deterministic delay that is applied to the processing times of the subtasks that are

served by the ith parallel server. The random variables that describe the parallel service times

with applied delays are: Xd
i ∼ Fi(x− di) ∀i with corresponding heterogeneous order statistics

Xd
(1), X

d
(2), . . . , X

d
(n).

4.3. An objective function for the subtask dispersion�response time trade-o� 97

4.3 An objective function for the subtask dispersion�response

time trade-o�

In order to express the subtask dispersion�response time trade-o� for an elementary split-merge

queueing system subject to subtask delay vector d we create an objective function formed from

the product of mean subtask dispersion (E[Dd]) and mean task response time E[Rλ,d]. The

former metric is computed as the expected di�erence between the maximum and minimum

heterogeneous order statistics of subtask service times � the mean of the range (Eq. 3.5). As we

stated in Eq. 2.2 the dependence between order statistics is irrelevant when considering mean

values due to the linearity property of expectation operator, i.e. E[Dd] = E[Xd
(n) − Xd

(1)] =

E[Xd
(n)]− E[Xd

(1)]. The latter metric is computed by applying the Pollaczek-Khinchine formula

from Eq. 2.5 for mean task response time in an M/G/1 queue with service time distribution

Xd
(n). This is because an elementary split-merge queueing system is conceptually equivalent to

an M/G/1 queue whose service time is the maximum of its set of parallel service times (giving

mean service time µ−1 = E[Xd
(n)]).

We thus express the trade-o� as a function of d and λ:

T (d, λ) = E[Rd,λ]E[Dd] = E[Rd,λ](E[Xd
(n)]− E[Xd

(1)]) (4.1)

=
(ρ+ λµVar[Xd

(n)]

2(µ− λ)
+ µ−1

)
×
(∫ ∞

0

1−
n∏
i=1

Fi(x− di)dx−
∫ ∞
0

(
1− (1−

n∏
i=1

(1− Fi(x− di)))
)
dx
)

=
(ρ+ λµVar[Xd

(n)]

2(µ− λ)
+ µ−1

)
×
(∫ ∞

0

1−
n∏
i=1

Fi(x− di)dx−
∫ ∞
0

n∏
i=1

(
1− Fi(x− di)

)
dx
)

The variance of Xd
(n) can be computed from Eq. 2.4:

Var[Xd
(n)] = 2

∞∫
0

x
(
1−

n∏
i=1

Fi(x− di)
)
dx−

(∞∫
0

1−
n∏
i=1

Fi(x− di) dx
)2

98Chapter 4. Trading o� Subtask Dispersion and Task Response Time in Split-Merge Systems

In the above we have assumed that each major component of the objective function (i.e. mean

subtask dispersion and mean task response time) should be given equal weighting since we

regard these metrics to have equal signi�cance. We note that, in line with the treatment of

weighted product methods in [72], each component can be raised to a di�erent exponent (> 1)

in order to express a preference about the relative importance of the components.

4.4 Optimisation Procedure of a Product of Subtask Dis-

persion and Task Response Time

We seek the vector of subtask delays dmin which minimises T (d, λ). That is,

dmin = arg min
d

T (d, λ) (4.2)

We can apply Newton's method (see Eq. 2.11) to �nd dmin iteratively:

dk+1 = dk − γ
[
HT (dk,λ)

]−1∇T (dk, λ), k ≥ 0 (4.3)

where ∇T (dk, λ) is a gradient of the objective function T (dk, λ), HT (dk,λ) is the Hessian matrix

(matrix of second order partial derivatives) of the objective function T (dk, λ) and dk is the kth

iterate of the subtask delay vector. The initial subtask delay vector is chosen heuristically as:

d0 = ((max
i

E
[
Xi

]
− E

[
X1

]
)(1− ρ), . . . , (max

i
E
[
Xi

]
− E

[
Xn

]
)(1− ρ)) (4.4)

where ρ = λ/µ. Here the intuitive minimum obtained by subtracting the mean service time of

each server from the maximum mean service time and is multiplied by the di�erence between

full utilisation and current utilisation.

In Eq. 4.3 γ ∈ (0, 1) is a constant introduced to satisfy the Wolfe conditions from Eq. 2.12

and Eq. 2.13. The step size γ needs to be chosen to be small enough to support convergence

yet large enough to make rapid progress towards the minimum. For the objective function in

4.5. Numerical Results 99

Eq. 4.1 Wolfe's conditions must hold to ensure this. Firstly:

T
(
dk + γ

(
−H−1T (dk,λ)∇T (dk, λ)

)
, λ
)
≤

T (dk, λ) + c1γ∇T T (dk, λ)
(
−H−1T (dk,λ)∇T (dk, λ)

) (4.5)

And secondly:

∇T T
(
dk + γ(−H−1T (dk,λ)∇T (dk, λ)), λ

)(
−H−1T (dk,λ)∇T (dk, λ)

)
≥

c2∇T T (dk, λ)
(
−H−1T (dk,λ)∇T (dk, λ)

) (4.6)

Here c1 and c2 are constants, which should be chosen such that 0 < c1 < c2 < 1, c1 � c2.

Practically, we set c1 as 10−4 and c2 as 0.5. Eq. 4.5 above corresponds to the Armijo rule [5]

which guarantees that the step size γ will decrease the objective function su�ciently, while

Eq. 4.6 ensures the curvature condition.

4.5 Numerical Results

4.5.1 Implementation

We have implemented the above optimisation technique in C++. Using Newton's method, we

begin by initialising d0 according to Eq. 4.4 and choose an appropriate γ satisfying Eq. 4.5 and

4.6. On each iteration k the method calculates the inverse Hessian matrix and gradient of the

objective function, which gives a direction for the updated vector dk+1. Evaluation of the objec-

tive function involves computation of mean task response time using the Pollaczek-Khinchine

formula and computation of mean subtask dispersion, which in turn involves evaluating the

expected value of the minimum and maximum heterogeneous order statistics by numerical

integration (using the trapezoidal rule).

100Chapter 4. Trading o� Subtask Dispersion and Task Response Time in Split-Merge Systems

4.5.2 Case Study

Consider an elementary split-merge queueing system with 3 parallel servers having heteroge-

neous service time density functions:

X1 ∼ Pareto(α = 3, l = 3.5, h = 10) (E[X1] = 5.25, Med[X1] = 4.41, Var[X1] = 9.19)

X2 ∼ Erlang(n = 2, λ = 1) (E[X2] = 2, Med[X2] = 1.68, Var[X2] = 2)

X3 ∼ Det(5) (E[X3] = 5, Med[X3] = 5, Var[X3] = 0)

As we noted in Section 3.3.1, performance measures from split-merge queueing systems can be

obtained analytically or via simulation. In this case study we chose analytical computation of

performance measures instead of simulations.

Without adding any subtask delays, mean subtask dispersion is E[Dd=0] = 3.58 time units and

maximum sustainable task throughput is λmax = 0.182 tasks/time unit.

For λ = 0.01 tasks/time unit, mean task response time is E[Rd=0,0.01] = 5.65 time units, while

for λ = 0.15 tasks/time unit, mean task response time is E[Rd=0,0.15] = 18.7 time units.

Using our previously developed optimisation technique designed to reduce mean subtask dis-

persion without regard to impact on response time from Chapter 3 we obtain the vector of

optimal subtask delays:

dD = (0.608, 3.372, 0.0)

as shown in Fig. 4.1.

After applying these delays, maximum sustainable throughput drops to λmax = 0.161 tasks/time

unit and mean subtask dispersion improves to E[DdD] = 1.73 time units, improving by 62%.

For λ = 0.01 tasks/time unit, mean task response time rises to E[RdD,0.01] = 6.44 time units, a

14% increase. For λ = 0.15 tasks/time unit mean task response time dramatically increases to

E[RdD,0.15] = 51.4 time units, an increase of 175%.

Now we optimise the same system but under the subtask dispersion�response time trade-o�

4.5. Numerical Results 101

E[D]

d1
d2

Figure 4.1: Surface plot of mean subtask dispersion of split-merge queueing system against
subtask delays using our previous methodology from Chapter 3.

presented in this chapter. With λ = 0.01 tasks/unit time we obtain the following vector of

optimal subtask delays:

dT = (0.453, 3.002, 0.0)

as shown in Fig. 4.2. Mean subtask dispersion becomes E[DdT ,0.01] = 1.76 time units, which

is only 1.8% higher than the dispersion obtained under delay vector dD. Mean task response

time is E[RdT ,001] = 6.24 time units (a 10% rise in comparison to a system without delays, but

a 3% reduction compared to the response time under delay vector dD).

With λ = 0.15 tasks/unit time the vector of optimal subtask delays drops to:

dT = (0.0928, 2.04, 0.0)

as shown in Fig. 4.3. Mean subtask dispersion is now E[DdT ,0.15] = 2.08 time units, a 21%

increase over the dispersion obtained under delay vector dD, but still a good improvement over

the system without added delays (3.58 time units). The corresponding distributions of subtask

dispersion are shown in Fig. 4.4. It is apparent that the trade-o� is able to maintain competitive

dispersion with our previous methodology, especially for high percentiles. Mean task response

time is E[RdT ,0.15] = 22.9 time units, which is 23% worse than the system without delays but

102Chapter 4. Trading o� Subtask Dispersion and Task Response Time in Split-Merge Systems

T (d, λ)

d1
d2

Figure 4.2: Surface plot of subtask dispersion�response time trade-o� objective function of
split-merge queueing system against subtask delays for λ = 0.01 (tasks/time unit).

T (d, λ)

d1
d2

Figure 4.3: Surface plot of subtask dispersion�response time trade-o� objective function of
split-merge queueing system against subtask delays for λ = 0.15 (tasks/ time unit).

4.5. Numerical Results 103

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

split-merge
split-merge with dispersion-optimised delays

split-merge with trade-off-optimised delays

P
r(
D
≤
t)

t

Figure 4.4: Distributions of subtask dispersion of split-merge queueing system with λ = 0.15
(tasks/time unit) without any delays (red line) with delays optimised for T (d, 0.15) (green line)
and for E[Dd] (blue line).

104Chapter 4. Trading o� Subtask Dispersion and Task Response Time in Split-Merge Systems

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

split-merge
split-merge with dispersion-optimised delays

split-merge with trade-off-optimised delays

P
r(
R

d
,λ
≤
t)

t

Figure 4.5: Distributions of task response time of split-merge queueing system given λ = 0.15
(tasks/time unit), without any delays (red line), with delays optimised for T (d, 0.15) (green
line) and delays optimised for E[Dd] (blue line).

4.5. Numerical Results 105

a 55% improvement on mean task response time under delay vector dD. The corresponding

distributions of task response time are shown in Fig. 4.5. It is apparent that the trade-o� is

able to maintain competitive task response times as compared to the system with no delays, in

stark contrast with our previous methodology.

 0

 50

 100

 150

 200

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

split-merge
split-merge with dispersion-optimised delays

split-merge with trade-off-optimised delays

E[
R

d
,λ

]

d
=

(0
.4
75
,2
.8
54
,0
)

d
=

(0
.3
60
,3
.1
55
,0
)

d
=

(0
.2
79
,2
.3
28
,0
)

d
=

(0
.2
54
,2
.5
97
,0
)

d
=

(0
.2
77
,2
.8
18
,0
)

d
=

(0
.2
42
,2
.6
49
,0
)

d
=

(0
.0
53

7,
2
.5
61
,0
)

d
=

(0
.0
05

63
,2
.2
05
,0
.0
)

d
=

(0
.0
00

95
2,
1.
15

8,
0.
0
)

d
=

(0
,0
,0
)

λ(task/unit time)

Figure 4.6: Expected response time of split-merge queueing system for various customer arrival
rates without any delays (red line), with delays optimised for subtask dispersion�task response
time trade-o� (green line), and with delays optimised for mean subtask dispersion alone (blue
line). Subtask delay vectors are also shown for the subtask dispersion�task response time
trade-o�.

It is interesting to note that under our trade-o� as λ converges to the maximum sustainable

throughput of the split-merge system without delays (cf. [58]), the vector of optimal subtask

delays tends to a vector of zeros. Indeed, optimising the case study system for λ = 0.18 leads

106Chapter 4. Trading o� Subtask Dispersion and Task Response Time in Split-Merge Systems

to the vector of optimal subtask delays:

d = (0.0, 0.0, 0.0)

Fig. 4.6 shows how the vector of optimal delays changes with λ, and how it converges to the zero-

vector as λ approaches λmax = 0.182 task/time unit. We note that the maximum sustainable

throughput of the system optimised under our previous methodology from Chapter 3 is rather

less than that of the system without delays, whereas the maximum sustainable throughput of

the system without delays is maintained using the present methodology.

4.6 Summary

In this chapter we have described a framework for delaying the dispatch of subtasks to parallel

servers in elementary split-merge queueing systems in order to manage the trade-o� between

response time and subtask dispersion. At the core of our technique is an objective function

computed as the product of expected subtask dispersion and expected task response time.

Previous research has concentrated on the optimisation of each one of these metrics in isolation,

frequently resulting in signi�cant deterioration in the other. By contrast, the present approach

is able to achieve an excellent compromise between the two metrics, without adversely a�ecting

the maximum sustainable throughput of the system.

Chapter 5

Reducing Mean Subtask Dispersion in

Fork-Join Systems

5.1 Introduction

Fork-join queueing systems are well-known asynchronous counterparts of split-merge queueing

systems. This asynchronous nature is achieved by having queueing capabilities at service nodes,

which is missing in split-merge queueing systems.

In this chapter we consider an elementary fork-join queueing systems (see Fig 2.3) with as-

sumptions of Poisson task arrivals, heterogeneous exponentially distributed service times and

non-preemptive subtask service. Its detailed structure and operation was presented in Sec-

tion 2.6.2.

As we did for elementary split-merge queueing systems, for optimising elementary fork-join

queueing systems we consider the same two metrics of interest: task response time, or sojourn

time is the total time that a task spends in the system. This measure has been the major

target of research e�ort over many decades [49, 9] and subtask dispersion, that is the di�erence

in time between completions of service of the �rst and last subtasks that originated from the

same task. This is an especially important metric in certain real world applications. Reduction

107

108 Chapter 5. Reducing Mean Subtask Dispersion in Fork-Join Systems

of this metric has a side e�ect � it reduces utilisation of mean number of subtasks in output

bu�er.

As illustrated in Fig. 1.6 these metrics are in tension in the sense that trying to reduce one

usually results in an increase in another; this is especially the case for high-intensity workloads.

Elementary fork-join queueing systems have low task response times (and therefore higher

maximum sustainable system throughput), but subtask dispersion is high and worsens under

load. Conversely, split-merge queueing systems with the same parallel server con�guration are

characterised by low subtask dispersion, but usually su�er from a high task response times (and

therefore reduced maximum sustainable system throughput) under load. As we have shown

previously in Chapters 3 and 4, adding delays to subtask processing times in elementary split-

merge queueing systems can help to minimise mean subtask dispersion [97] and/or percentiles

of subtask dispersion [99], but the sole focus on subtask dispersion serves to exacerbate the

problem of poor task response times under load. One solution described in Chapter 4 is to

apply load-dependent subtask delays which reduce the product of expected task response time

and expected subtask dispersion [96]. This is highly e�ective at achieving a balance between the

metrics; however, maximum sustainable system throughput is still limited to that achievable

under an unmodi�ed split-merge system. Our goal is to �nd a way to reduce mean subtask

dispersion in elementary fork-join queueing systems to levels comparable with or below that

observed in all varieties of elementary split-merge queueing systems while retaining the task

response time and throughput bene�ts of a classical fork-join queueing system.

We present a technique that is able to reduce subtask dispersion with only a marginal increase

in task response time [98]. Achieving this is challenging since the unsynchronised operation of

fork-join queueing systems naturally militates against low subtask dispersion. Our approach

builds on the elements of our earlier research examining subtask dispersion and response time

in elementary split-merge queueing systems in Chapters 3 and 4. The methodology involves the

frequent application and updating of delays to the processing of subtasks which are at the head

of the parallel service queues. We present numerical results that show the ability to reduce

subtask dispersion in elementary fork-join queueing systems to levels comparable with or below

that observed in all varieties of elementary split-merge queueing systems while retaining the

5.2. Dynamic Online Algorithm for Reduction of Subtask Dispersion 109

task response time and throughput bene�ts of a classical fork-join queueing system.

5.2 Dynamic Online Algorithm for Reduction of Subtask

Dispersion

In the following we consider a fork-join system with n parallel heterogeneous servers, the ith of

which has an exponential service time distribution with rate parameter µi, i.e. Fi(x) = 1−e−µix.

To describe the state of the system at time t let ki(t) denote the number subtasks present in

parallel server queue i; as such n(maxi ki(t)) −
∑

i ki(t) subtasks will be present in the join

queues (or output bu�er) at time t.

Our strategy is to let the system operate in its normal fork-join fashion, but to delay the start

of service of certain of the subtasks that are at the head of the parallel service queues. In

particular, at every time instant t at which a hitherto-unserviced subtask S reaches the front of

a parallel queue, we take the following control actions:

1. If any of the siblings of S have already completed service then the best mean subtask

dispersion and task response time with respect to S's task are simultaneously achieved

by immediately beginning service of S and also of any of its siblings that are at the front

of their parallel queue.

2. Otherwise all siblings of S are still present in the parallel queues and we apply delays to

S and those of its siblings that are at the front of their parallel queues and which have

not yet entered service. We choose appropriate delays (which may include zero delays) by

observing that, from the point of view of subtask S and its siblings, the system at that

instant is equivalent to an n-server split-merge queuing system (see Fig. 5.1) in which

parallel server i has service time distribution Erlang(qi(t)+1, µi), where number of stages

in tandem in Erlang distribution, that is qi(t) is a number of subtasks in front of S or

its sibling subtask in parallel queue i plus residual service time (exploiting memoryless

property of the exponential distribution). We can then exploit the optimisation methods

110 Chapter 5. Reducing Mean Subtask Dispersion in Fork-Join Systems

λ

Fork
point

Join
point

Exp(µ1)

Exp(µ2)

Exp(µn)

Erlang(q1(t) + 1, µ1)

Erlang(q2(t) + 1, µ2)

Erlang(qn(t) + 1, µn)

Split
point

Merge
point

Figure 5.1: How a fork-join queueing system can be viewed as a split-merge queueing system
from the point of view of a subtask and its siblings at time instant t.

5.2. Dynamic Online Algorithm for Reduction of Subtask Dispersion 111

we developed in Chapter 3 and Chapter 4 to determine a vector of (near-)optimal deter-

ministic subtask delays d =
(
d1, d2, . . . , dn

)
. Here element di denotes the deterministic

delay which should notionally be applied to parallel server i. In fact we only adopt the

delays corresponding to S and its siblings that are at the front of their parallel queues

and which have not yet entered service (note this may involve overwriting a currently

pending delay).

Similarly at time instants at which a subtask S enters a join queue (or output bu�er)

then we immediately begin service of any of the siblings of S that are at the front of their

parallel queues.

The objective function of the optimisation is mean subtask dispersion based on Eq. 3.5,

computed as the di�erence between the maximum and minimum heterogeneous order

statistics of the split-merge-equivalent system with delays observed by queueing subtasks.

Utilising the linearity property of the expectation operator over dependent variables from

Eq. 2.2, we have:

E[Dd] =
(
E[Xd

(n) −Xd
(1)]
)

=
(
E[Xd

(n)]− E[Xd
(1)]
)

=

∞∫
0

(
1−

n∏
i=1

Fi(x− di)
)
dx−

∞∫
0

(
1−

(
1−

n∏
i=1

(1− Fi(x− di))
))
dx (5.1)

=

∫ ∞
0

1−
n∏
i=1

Fi(x− di) dx−
∫ ∞
0

n∏
i=1

(
1− Fi(x− di)

)
dx

where Fi(x− di) is a shifted Erlang(qi(t) + 1, µi) cumulative distribution function.

When optimising, we solve for:

dmin = arg min
d

E[Dd] (5.2)

while additionally applying the constraint (
∏
i

di = 0) to avoid the addition of super�uous

112 Chapter 5. Reducing Mean Subtask Dispersion in Fork-Join Systems

delays to bottleneck queues into the queueing system.

The optimisation procedure itself is based on Newton's method (Eq. 2.11) and Wolfe con-

ditions (Inequalities 2.12 and 2.13). Practically, the procedure utilises utilises numerical

integration when evaluating the objective function and exploits a disk-based memoisation

technique to dramatically reduce the time cost of computing optimised delay vectors for

system states that have already been encountered in the current execution or in some

previous execution.

5.3 Complexity

The computational e�ort of the dynamic online algorithm for �nding dmin increases dramati-

cally as the number of parallel servers rises. There are two reasons for this: �rstly, numerical

optimisation techniques for �nding the minimum of an objective function, such as Newton's

method or the Nelder�Mead method increase in complexity and computational cost as dimen-

sion of the problem increases this is because it is a hard class of combinatorial optimisation

problem. Secondly, the memoisation technique applied for parallel queueing systems is most

a�ective on systems with small dimension. When the size of the input vector d grows, the

memoisation algorithm sees the same permutation of numbers of subtasks in each queues much

more rarely.

5.4 Numerical Results

5.4.1 Fork-Join Simulation

In this section we present an event-driven simulator for elementary fork-join queueing networks

which is written in C++. The simulator collects a range of performance-related statistics, e.g.:

mean task response time, mean subtask dispersion, mean number of subtasks in output bu�er,

task throughput and distributions of subtask dispersion.

5.4. Numerical Results 113

This is an expanded version of the split-merge queueing system simulator. Knowing that the

main di�erence between split-merge queueing systems and fork-join queueing systems is that

the former can process more than one task at a time � we �rst validated correctness of the fork-

join queueing system simulator by comparing it with the split-merge queueing system simulator

where the arrival rate is very small (to make it very likely that there is only one task at a time in

both systems) and the same service time distributions in both simulators. Fig. 5.3 and Fig. 5.4

present the distributions of subtask dispersion and task response time in split-merge queueing

systems and fork-join queueing systems with the same con�gurations. Under light workload

the distributions of task response time and subtask dispersion are the same. But under heavy

workload task response time of the split-merge queueing system simulator was larger then task

response time from the fork-join queueing system simulator. Subtask dispersion under heavy

workload is lower for the split-merge queueing system simulator than for the fork-join queueing

system simulator.

As shown in Fig 5.2, our fork-join queueing system simulator is based on several classes, e.g.:

a fork point which is connected to n parallel queueingNodes, with a queueing capability

(FIFO). Each queueing node is connected to a joinBuffer (an output bu�er) followed by a

join point. A task come to the system via the fork point, where it forks immediately into

n subtasks. Each subtask arrives at the back of a queue of its allocated queueingNode.

After been served a subtask goes to the joinBuffer where it waits for all of its siblings. All

subtasks, that belong to the same original task; join together at the join point and leave

the system.

In order to embed the dynamic online algorithm for reduction of subtask dispersion into the

fork-join queueing system simulator we introduce several functions and variables: a queue-

ingNode class has functionality of calculation of the vector of optimal delays by the dynamic

online algorithm (getDelays). The delays are applied to subtasks that reach a front of

parallel queues in the queueingNodes. A function getDelays also updates delays for

the subTasks that are already in a parallel service nodes and have been already delayed but

have not start their service. When the �rst subTask from a particular task arrives into the

joinBuffer a �ag �res and all delays that relate to its siblings are deleted by the function

114 Chapter 5. Reducing Mean Subtask Dispersion in Fork-Join Systems

deleteDelays and no new delays are applied for these siblings.

Figure 5.2: UML class diagram for simulator of elementary fork-join queueing network.

5.4.2 Case Study

In this section we present results from C++ simulations of fork-join queueing systems and

split-merge queueing systems. We compare the dynamic optimisation algorithm for elementary

fork-join queueing systems and the static optimisation techniques developed in Chapter 3 and

Chapter 4 for elementary split-merge queueing systems.

For our case study each simulation run is made up of 10 replicas, and each replica consists of

a warm-up period of the processing of 250 000 tasks followed by an measurement period of the

processing of 250 000 tasks. For the static optimisation techniques, it takes approximately one

second to run each replica, and for the dynamic optimisation using the fork-join simulator it

5.4. Numerical Results 115

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

fork-join
split-merge

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

fork-join
split-merge

P
r(
D
≤
t)

P
r(
D
≤
t)

t t

λ = 0.01(task/unit time) λ = 0.75(task/unit time)

Figure 5.3: Distributions of subtask dispersion in fork-join and split-merge queues with the
same con�gurations but di�erent mean arrival rates.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

fork-join
split-merge

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

fork-join
split-merge

P
r(
R

d
=
0
,λ
≤
t)

P
r(
R

d
=
0
,λ
≤
t)

t t

λ = 0.01(task/unit time) λ = 0.75(task/unit time)

Figure 5.4: Distributions of task response time for fork-join queueing systems and split-merge
queueing systems with the same con�gurations but di�erent mean arrival rates.

116 Chapter 5. Reducing Mean Subtask Dispersion in Fork-Join Systems

takes around 7.5 minutes. The replicas are used to put 95% con�dence intervals (CIs) on all

measures. Results are reported to three decimal places.

Consider a parallel queueing system with Poisson arrivals with rate parameter λ = 0.78 tasks/-

time unit and 3 parallel service nodes with exponential service time density functions:

X1 ∼ Exponential(λ = 1)

(E[X1] = 1, Med[X1] = 0.693, Var[X1] = 1)

X2 ∼ Exponential(λ = 5)

(E[X2] = 0.2, Med[X2] = 0.139, Var[X2] = 0.04)

X3 ∼ Exponential(λ = 10)

(E[X3] = 0.1, Med[X3] = 0.0693, Var[X3] = 0.01)

In this context, we compute measures of subtask dispersion and of task response time in �ve

di�erent types of fork-join and split-merge queueing systems:

1. A fork-join queueing system (without subtask delays). Here the mean task response time

is E[Rd=0] = 4.553 (95% CI [4.504, 4.602]) time units and mean subtask dispersion is

E[Dd=0] = 4.49 (95% CI [4.429, 4.54]) time units. The mean number of subtasks in the

output bu�er is 6.862 (95% CI [6.79, 6.93]).

2. A fork-join queueing system utilising our dynamic online algorithm for reducing mean sub-

task dispersion. Here mean task response time is E[Rdmin
] = 4.703 (95% CI [4.586, 4.819])

time units and mean subtask dispersion is E[Ddmin
] = 0.752 (95% CI [0.745, 0.759]) time

units. The mean number of subtasks in the output bu�er is 1.081 (95% CI [1.071, 1.091]).

When comparing this modi�ed fork-join system with the fork-join system without subtask

delays, we observe that mean task response time has increased very slightly by 3.3% but

mean subtask dispersion dropped very dramatically by 83%. Similarly, the mean number

of subtasks in the output bu�er decreased by 84%.

5.4. Numerical Results 117

3. A split-merge queueing system (without subtask delays). Mean task response time is

E
[
Rd=0,λ=0.78

]
= 5.212(95% CI [5.1526, 5.271]) time units and mean subtask dispersion is

E[Dd=0] = 0.976 (95% CI [0.975, 0.977]) time units. The mean number of subtasks in the

output bu�er is 1.416 (95% CI [1.415, 1.418]). This method is thus completely dominated

by our dynamic online algorithm for each of these metrics, by factors of 11%, 30% and

31% respectively.

4. A split-merge queueing system with delays applied to reduce mean subtask dispersion

from Chapter 3. The vector of optimised delays is:

dmin = (0.0, 0.553, 0.617)

Mean task response time is E
[
Rdmin,λ=0.78

]
= 63.02 (95% CI [58.21, 67.83]) time units and

mean subtask dispersion is E[Ddmin
] = 0.783(95% CI [0.780, 0.785]) time units. The mean

number of subtasks in the output bu�er is 1.029 (95% CI [1.027, 1.031]). This method is

dominated by our dynamic online algorithm with respect to the mean task response time

and mean subtask dispersion metrics, by factors of 1240% and 4% respectively. There is

however a 5% improvement with respect to the mean number of subtasks in the output

bu�er.

5. A split-merge queueing system with delays applied to optimise the product of mean task

response time and mean subtask dispersion from Chapter 4. The vector of optimised

delays is:

dmin = (0.0, 0.0398, 0.0673)

Mean task response time is E
[
Rdmin,λ=0.78

]
= 5.329 (95% CI [5.272, 5.385]) time units and

mean subtask dispersion is E[Ddmin
] = 0.9343 (95% CI [0.9336, 0.9349]) time units. The

mean number of subtasks in the output bu�er is 1.355 (95% CI [1.353, 1.357]). While

improving dramatically on the mean task response of the previous case, the method is

completely dominated by our dynamic online algorithm for each metric, by factors of

13%, 24% and 25% respectively.

118 Chapter 5. Reducing Mean Subtask Dispersion in Fork-Join Systems

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

fork-join
fork-join with dispersion-optimised delays

split-merge
split-merge with dispersion-optimised delays

split-merge with trade-off-optimised delays

P
r(
D
≤
t)

t

Figure 5.5: Distributions of subtask dispersion in fork-join queueing systems and split-merge
queueing systems with and without optimised subtask delays. λ = 0.78 (task/unit time).

5.4. Numerical Results 119

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

fork-join
fork-join with dispersion-optimised delays

split-merge
split-merge with dispersion-optimised delays

split-merge with trade-off-optimised delays

P
r(
R

d
,λ
≤
t)

t

Figure 5.6: Distributions of task response time for fork-join queueing systems and split-merge
queueing systems with and without optimised subtask delays. λ = 0.78 (task/unit time).

120 Chapter 5. Reducing Mean Subtask Dispersion in Fork-Join Systems

 0

 5

 10

 15

 20

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fork-join
fork-join with dispersion-optimised delays

split-merge
split-merge with dispersion-optimised delays

split-merge with trade-off-optimised delays

E[
R

d
,λ

]

λ(tasks/unit time)

Figure 5.7: Expected response time of fork-join queueing systems and split-merge queueing
systems for various customer arrival rates.

5.5. Summary 121

Fig. 5.5 shows the corresponding distributions of subtask dispersion. The poor subtask dis-

persion of the fork-join queueing system without subtask delays is evident. Applying subtask

delays optimised for the subtask dispersion�task response time trade-o� yields a similar sub-

task dispersion pro�le to that of the split-merge queueing system without delays. The subtask

dispersion pro�le of the fork-join queueing system with dispersion-optimised delays is compet-

itive with that of the split-merge queueing system with dispersion-optimised delays, and even

dominates it for percentiles of subtask dispersion below 70%.

Turning now to distributions of task response time, Fig. 5.6 demonstrates that the distribution

of task response time of the fork-join queueing system with dispersion-optimised delays is very

close to that of the fork-join queueing system without subtask delays. Here, the distribution of

response time of the split-merge queueing system without subtask delays is marginally worse

than that of the fork-join queueing system, but after applying dispersion-optimised delays the

response time su�ers heavily. Applying delays optimised for subtask dispersion�task response

time trade-o� impacts only marginally on the task response time.

Fig. 5.7 shows how mean task response time varies with various task arrival rates under the

various queueing policies. We observe the split-merge queueing system with the dispersion-

optimised delays has the lowest maximum sustainable system throughput, followed by the

split-merge queueing system with dispersion-optimised delays and the split-merge queueing

system without delays. The highest maximum sustainable system throughput is provided by the

fork-join system without subtask delays and the fork-join system utilising dispersion-optimised

subtask delays.

5.5 Summary

In this chapter we considered a problem of reducing subtask dispersion in fork-join queueing

systems. To control this metric, we derived an online algorithm which dynamically computes

and applies state-dependent delays to the processing of subtasks and their siblings at various

time instants.

122 Chapter 5. Reducing Mean Subtask Dispersion in Fork-Join Systems

We demonstrated our algorithm on a case study, a parallel system subjected to �ve di�er-

ent kinds of split-merge and fork-join queueing policies. The results show how the technique

proposed in this chapter is able to deliver low subtask dispersion competitive with split-merge-

based queueing systems while simultaneously delivering low task response times competitive

with fork-join-based queueing systems.

Our current research can no doubt be extended to apply a fork-join queueing system with non-

exponential services time distributions. Certainly extension to Erlang and phase-type service

time distributions is likely to be straightforward given appropriate extensions to the system state

vector. Further possible directions are to extend the dynamic online algorithm to elementary

fork-join queueing systems with heterogeneous general service time distributions where residual

service times may be de�ned as in [11].

Chapter 6

Conclusion

6.1 Summary of Achievements

The main aim in this dissertation was to investigate ways in which subtask dispersion can be

reduced in parallel processing queueing systems by means of introducing judiciously-chosen

deterministic delays to the processing of subtasks. We have derived an analytical toolbox and

a set of numerical techniques to achieve reduction of subtask dispersion in parallel processing

systems.

We began by investigating a straightforward method for minimising subtask dispersion in split-

merge queueing systems with heterogeneous general service time distributions. To achieve

this we extended the theory of heterogeneous order statistics by deriving the mean and the

distribution of the range of heterogeneous order statistics. The former formula corresponds

to mean subtask dispersion in elementary split-merge queueing system, so it became an ob-

jective function in an optimisation procedure for minimising mean subtask dispersion. The

latter formula corresponds to the distribution of the subtask dispersion in elementary split-

merge queueing systems, so it was applied in an optimisation procedure for reducing a given

percentile of subtask dispersion. This allows us to control the system's dispersion with soft

(probabilistic) guarantees. The results showed that our techniques were very e�ective in terms

of minimising subtask dispersion, but adversely impacted task response time and maximum

123

124 Chapter 6. Conclusion

system sustainable throughput.

Because task response time su�ers from applying our previous methodology, we expanded it

to use a new objective function, that is a product of mean subtask dispersion and mean task

response time. Consequently, we started trading-o� mean subtask dispersion and mean task

response time. The results were very e�ective � mean subtask dispersion was reduced while

mean task response time was a�ected much less.

Although we could reduce subtask dispersion while having task response time under control

in split-merge queueing systems � the achieved methodology still left us with a problem that

split-merge queueing systems naturally have lower level of maximum sustainable throughput

and higher task response time than fork-join queueing systems with the same parallel server

con�guration. Therefore, we were looking for ways to relax our set of techniques to apply it in

fork-join queueing systems. But we faced a considerable challenge because fork-join systems are

notoriously analytically intractable. To overcome this, we devised a dynamic online algorithm

for elementary fork-join queueing systems with heterogeneous exponential service time distri-

butions. At certain instants, selected subtasks see the fork-join system queueing system with

heterogeneous exponentially distributed service times as being equivalent to a split-merge sys-

tem with heterogeneous Erlang service time distributions. This idea gives to us the opportunity

to apply our developed theory for split-merge queueing systems.

Finally we have achieved the goal of simultaneously reducing subtask dispersion (which is

compatible with the best subtask dispersion only minimising algorithm for split-merge queueing

systems) and achieving maximum sustainable system throughput and task response time which

are very close to the maximum sustainable system throughput and task response time of a fork-

join queueing system without any delays.

6.2 Applications

We discuss the applications enabled by our methods for reducing subtask dispersion in: split-

merge queueing systems and fork-join queueing systems.

6.2. Applications 125

An example where split-merge queueing systems can be applied is the �nance domain. In order

to increase the likelihood of �lling orders across multiple markets and experience fewer adverse

ticks, delays can be applied to the orders so that they arrive at all target exchanges nearly

simultaneously. This has been shown to increase execution quality. The applications of applied

delays to orders was a subject of a recent book [67] and the foundation of a new exchange IEX.

Results of minimising mean subtask dispersion from Chapter 3 and trading o� mean subtask

dispersion and mean task response time from Chapter 4 can be applied in this applications.

The random variables are the distributions of the time it takes to send an order to each of the

exchanges. The delays computed by Eq. 3.13 or Eq. 4.2 can be applied to the orders that are

sent to the nearest exchanges, and no delays have to be applied to the orders that are sent

to the exchanges that have the longest distance. This methodology will ensure that all orders

arrive to the exchanges with di�erent geographical distances simultaneously.

Secondly, in fork-join queueing systems, our methodology of applying delays from Chapter 5

can be applied in warehouses of online retailers, where each order is made up from a set of

items, that have to be retrieved from a di�erent place in the warehouse. Our methodology can

be installed into the control system of the warehouse where optimal delays can be introduced

before each item retrieval is initiated. It will apply delays computed by the dynamic online

algorithm from Section 5.2 to some items that have a low retrieval time so that these items

can �nish their service at around the same time as their slower siblings resulting in all items

arriving in the packing area at approximately at the same time. This will considerably lower

the utilisation of the packing area.

Another application is in restaurants where we can develop an intelligent order management

system based on Chapter 5 which suggests to the sta� working in a kitchen when they have

to start preparing dishes, so that all food comes to each table of customers at the same time.

Obviously the application here is not direct, because preparing n copies of a dish takes less

time that preparing them sequentially; the methodology needs some modi�cation to take this

feature into account, so that the service time in the queue depends on the number of waiting

items in the queue. This order management system will ensure that all food will come to each

table of customers at the same time without unnecessary delays.

126 Chapter 6. Conclusion

6.3 Future Work

There are several possible extensions of this research. The following sections present future work

for split-merge queueing systems and fork-join queueing systems, and discuss investigation of

subtask dispersion reduction in general work-�ows described by directed acyclic graphs.

6.3.1 Split-Merge Queueing System

Split-merge queueing systems with single class of tasks have been a focus of this thesis. However

it would be interesting to investigate subtask dispersion in split-merge queueing systems with

multiple classes of tasks. Previously only mean task response time was considered in multi-class

parallel queueing networks [103, 4].

One more potential way to extend our research is to consider a split-merge queueing system

with several classes of tasks, each of which splits into a di�erent number of subtasks. This

describes more accurately real-world systems such as warehouses of online retailers. In such

warehouses usually each order consists of a number of items, which is less than the number of

picking stations in the system.

Lastly, split-merge queueing system may be considered with very large number of parallel

servers. Consequently this kind of system will bring an issue of complexity, where the complexity

of the optimisation algorithm grows faster than the dimension of the problem (for discussion

see Section 5.3).

6.3.2 Fork-Join Queueing System

In this thesis we considered elementary fork-join queueing systems with exponential service

time distributions. This assumption of service times can perhaps, be extended to general

service time distributions for elementary fork-join queueing systems, where the residual service

times of general distributions can be computed from [11].

6.3. Future Work 127

Furthermore, elementary fork-join queueing systems with very large number of parallel servers

may be investigated, as in the split-merge case.

Throughout our research we have investigated reduction of subtask dispersion and compared

it against simulations of parallel queueing systems. A possible extension is to validate our

methodology in the context of real systems, such as warehouses of online retailers, restaurants

and trading systems.

6.3.3 Directed Acyclic Graph Work-�ows

The elementary queueing systems that we have considered in this thesis have a simple structure:

there is a fork/split point, then there is one level of parallel servers and a join/merge point. In

practice, workloads can follow a more complicated work-�ow, which can be represented by a

directed acyclic graph (DAG).

Not every subtask is processed concurrently in a system represented by a DAG structure.

For example, in scheduling of a building construction, certain kinds of work can be done in

parallel � for example, building several walls at the same time. Yet, a roof can be built only

after a foundation and walls have been installed.

The generalisation of parallel processing systems into DAGs provides a new area of applica-

tions � project scheduling [86]. However, the complexity of some optimisation problems in this

environment is NP-complete [41, 89, 90].

In comparison with parallel processing queueing systems, DAG work-�ows have their own

subtask dispersion-related metric called slack time. The aim is to keep this as low as possible.

Under Just-In-Time scheduling, necessary products have to be produced and delivered at the

instant where it is just needed; this scheduling has been adopted in many real-life applications

such as [60].

Bibliography

[1] D. Aisen, B. Katsuyama, R. Park, J. Schwall, R. Steiner, A. Zhang, and T. L. Popejoy.

Synchronized processing of data by networked computing resources. US Patent 8489747

B2, October 2011.

[2] K. Al-Begain, A. Dudin, and V. Mushko. Novel queuing model for multimedia over

downlink in 3.5 G wireless networks. Journal of Communications Software and Systems,

2(2):68�80, 2006.

[3] M. M. Ali and M. N. Gabere. A simulated annealing driven multi-start algorithm for

bound constrained global optimization. Journal of Computational and Applied Mathe-

matics, 223(10):2661�2674, 2010.

[4] F. Alomari and D. Menascé. E�cient response time approximations for multiclass fork

and join queues in open and closed queuing networks. Parallel and Distributed Systems,

IEEE Transactions on, PP(99):1�1, 2013.

[5] L. Armijo. Minimization of functions having Lipschitz continuous �rst partial derivatives.

Paci�c Journal of Mathematics, 16(1):1�3, 1966.

[6] S. Asmussen. Applied probability and queues, volume 2. Springer New York, 2003.

[7] S. Au-Yeung, P. Harrison, and W. Knottenbelt. A queueing network model of patient

�ow in an accident and emergency department. In Proc. 20th Annual European and

Simulation Modelling Conference, pages 60�67, 2006.

128

BIBLIOGRAPHY 129

[8] S. Au-Yeung, P. Harrison, and W. Knottenbelt. Approximate queueing network anal-

ysis of patient treatment times. In Proceedings of the 2nd international conference on

performance evaluation methodologies and tools, page 45. ICST (Institute for Computer

Sciences, Social-Informatics and Telecommunications Engineering), 2007.

[9] S. W. M. Au-Yeung. Response Times in Healthcare Systems. PhD thesis, Imperial College

London, January 2008.

[10] M. Avriel. Nonlinear programming. Dover Publications, 2003.

[11] T. Awagu. Variance reduction in manufacturing systems. MEng Individual Project,

Imperial College London, 2013.

[12] P. Axer, S. Quinton, M. Neukirchner, R. Ernst, B. Dobel, and H. Hartig. Response-time

analysis of parallel fork-join workloads with real-time constraints. In 25th Euromicro

Conference on Real-Time Systems (ECRTS), pages 215�224, 2013.

[13] F. Baccelli, A. M. Makowski, and A. Shwartz. The fork-join queue and related systems

with synchronization constraints: Stochastic ordering and computable bounds. Advances

in Applied Probability, 21(3):pp. 629�660, 1989.

[14] F. Baccelli, W. A. Massey, and D. Towsley. Acyclic fork-join queuing networks. J. ACM,

36(3):615�642, July 1989.

[15] S. Balsamo and I. Mura. Approximate response time distribution in fork and join systems.

ACM SIGMETRICS Performance Evaluation Review, 23(1):305�306, 1995.

[16] S. Balsamo and I. Mura. On queue length moments in fork and join queuing networks

with general service times. In Computer Performance Evaluation Modelling Techniques

and Tools, pages 218�231. Springer, 1997.

[17] R. B. Bapat and M. I. Beg. Order statistics for nonidentically distributed variables and

permanents. Sankhya: The Indian Journal of Statistics, Series A (1961-2002), 51(1):pp.

79�93, 1989.

130 BIBLIOGRAPHY

[18] F. Bause and P. S. Kritzinger. Stochastic Petri Nets: An Introduction to the Theory,

volume 26. ACM, New York, NY, USA, August 1998.

[19] K. Begain, G. Bolch, and H. Herold. Practical performance modeling: application of the

MOSEL language. Kluwer Academic Publishers, 2001.

[20] G. Bolch et al. Algorithms for non-product-form networks. In Queueing Networks and

Markov Chains, chapter 10, pages 421�556. J. Wiley & Sons, Inc., 2006.

[21] G. Bolch et al. Queueing Networks and Markov Chains. J. Wiley & Sons, Inc., 2006.

[22] C. G. Boncelet, JR. Algorithms to computer order statistic distributions. SIAM Journal

on Scienti�c and Statistical Computing, 8(5):868�876, 1987.

[23] R. P. Brent. Algorithms for Minimization Without Derivatives. Dover Books on Mathe-

matics. Dover Publications, 2002.

[24] J. Brutlag. Speed matters for google web search. www.tribler.org/trac/raw-

attachment/wiki/LivePlaylists/delayexp.pdf, 2009.

[25] E. F. Burden and R. L. Burden. Numerical Methods 3rd edition. Cram101 Textbook

Outlines. Academic Internet Publishers, 2006.

[26] G. Cao and M. West. Computing distributions of order statistics. Communicat. in

Statistics � Theory and Methods, 26(3):755�764, 1997.

[27] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson. RAID: High-

performance, reliable secondary storage. ACM Computing Surveys (CSUR), 26(2):145�

185, 1994.

[28] H. A. David. Order Statistics. Wiley Series in Probability and Mathematical Statistics.

John Wiley, 1980.

[29] H. A. David and H. N. Nagaraja. The non-IID case. In Order Statistics, chapter 5, pages

95�120. J. Wiley & Sons, Inc., 3rd edition, 2003.

www.tribler.org/trac/raw-attachment/wiki/LivePlaylists/delayexp.pdf
www.tribler.org/trac/raw-attachment/wiki/LivePlaylists/delayexp.pdf

BIBLIOGRAPHY 131

[30] H. A. David and H. N. Nagaraja. Order Statistics. Wiley Series in Probability and

Mathematical Statistics. John Wiley, third edition, 2003.

[31] J. Dean and S. Ghemawat. MapReduce: simpli�ed data processing on large clusters.

Communications of the ACM, 51(1):107�113, 2008.

[32] E. Dijkstra. A note on two problems in connexion with graphs. Numerische mathematik,

1(1):269�271, 1959.

[33] E. W. Dijkstra. Solution of a problem in concurrent programming control. Communica-

tions of the ACM, 8(9):569, Sept. 1965.

[34] E. W. Dijkstra. The structure of the "THE"-multiprogramming system. Communications

of the ACM, 11(5):341�346, May 1968.

[35] E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commun. ACM,

17(11):643�644, Nov. 1974.

[36] L. Flatto. Two parallel queues created by arrivals with two demands II. SIAM Journal

on Applied Mathematics, 45(5):861�878, 1985.

[37] L. Flatto and S. Hahn. Two parallel queues created by arrivals with two demands I.

SIAM Journal on Applied Mathematics, 44(5):1041�1053, 1984.

[38] S. Forman. How the â��navy sealsâ�� of trading are taking on wall street`s preda-

tory robots. http://qz.com/138388/how-the-navy-seals-of-trading-are-taking-

on-wall-streets-predatory-robots/, October 2013.

[39] A. Gandhi, V. Gupta, M. Harchol-Balter, and M. A. Kozuch. Optimality analysis of

energy-performance trade-o� for server farm management. Performance Evaluation,

67(11):1155�1171, 2010.

[40] A. Gandhi, M. Harchol-Balter, and I. Adan. Server farms with setup costs. Performance

Evaluation, 67(11):1123 � 1138, 2010.

http://qz.com/138388/how-the-navy-seals-of-trading-are-taking-on-wall-streets-predatory-robots/
http://qz.com/138388/how-the-navy-seals-of-trading-are-taking-on-wall-streets-predatory-robots/

132 BIBLIOGRAPHY

[41] M. R. Garey, D. S. Johnson, and R. Sethi. The complexity of �owshop and jobshop

scheduling. Mathematics of operations research, 1(2):117�129, 1976.

[42] M. Ghodsi and K. Kant. Performance analysis of parallel search algorithms on multipro-

cessors. In Proceedings of the 14th IFIP WG 7.3 International Symposium on Computer

Performance Modelling, Measurement and Evaluation, pages 407�421. North-Holland

Publishing Co., 1990.

[43] D. Gross, J. F. Shortle, J. M. Thompson, and C. M. Harris. Fundamentals of queueing

theory. Wiley, 2013.

[44] O. Guilbaud. Functions of non-iid random vectors expressed as functions of iid random

vectors. Scandinavian Journal of Statistics, 9(4):pp. 229�233, 1982.

[45] R. W. Hamming. The art of probability for Scientists and Engineers. Addison Wesley

Publishing Company, 1991.

[46] M. Harchol-Balter. Performance modelling and design of computer systems. Cambridge

University press, 2013.

[47] P. G. Harrison. Reversed processes, product forms and a non-product form. Linear

Algebra and Its Applications, 386:359�381, 2004.

[48] P. G. Harrison and N. M. Patel. Performance Modelling of Communication Networks and

Computer Architectures. Addison-Wesley Longman Publishing Co., Inc., 1992.

[49] P. G. Harrison and S. Zertal. Queueing models of RAID systems with maxima of waiting

times. Perf. Evaluation, 64(7�8):664�689, Aug 2007.

[50] P. Heidelberger and K. S. Trivedi. Analytic queueing models for programs with internal

concurrency. IEEE Transactions on Computers, C-32(1):73�82, Jan 1983.

[51] R. Jain. The art of computer systems performance analysis. John Wiley & Sons, 1991.

[52] C. Kahraman. Multi-criteria decision making methods and fuzzy sets. In Fuzzy Multi-

Criteria Decision Making, pages 1�18. Springer, 2008.

BIBLIOGRAPHY 133

[53] D. G. Kendall. Stochastic processes occurring in the theory of queues and their analysis

by the method of the imbedded Markov chain. The Annals of Mathematical Statistics,

pages 338�354, 1953.

[54] A. Y. Khinchin. The mathematical theory of a stationary queue. Technical report, DTIC

Document, 1967.

[55] C. Kim and A. Agrawala. Analysis of the fork-join queue. IEEE Transactions on Com-

puters, 38(2):250�255, Feb 1989.

[56] L. Kleinrock. Queueing systems. volume 1: Theory. Wiley-Interscience, 1975.

[57] W. J. Knottenbelt. Parallel performance analysis of large Markov models. PhD thesis,

Imperial College London (University of London), 2000.

[58] W. J. Knottenbelt, I. Tsimashenka, and P. G. Harrison. Reducing subtask dispersion

in parallel systems. In Trends in Parallel, Distributed, Grid and Cloud Computing for

Engineering. Saxe-Coburg Publications, 2013.

[59] V. Krishna. Auction theory. Academic Press, 2009.

[60] M. Laguna and J. Velarde. A search heuristic for just-in-time scheduling in parallel

machines. Journal of Intelligent Manufacturing, 2(4):253�260, 1991.

[61] A. Lebrecht, N. Dingle, and W. Knottenbelt. A response time distribution model for

zoned RAID. In Analytical and Stochastic Modeling Techniques and Applications, pages

144�157. Springer, 2008.

[62] A. Lebrecht and W. J. Knottenbelt. Response Time Approximations in Fork-Join Queues.

In 23rd Annual UK Performance Engineering Workshop (UKPEW), July 2007.

[63] A. S. Lebrecht, N. J. Dingle, P. G. Harrison, W. J. Knottenbelt, and S. Zertal. Using

bulk arrivals to model I/O request response time distributions in zoned disks and RAID

systems. In Proceedings of the Fourth International ICST Conference on Performance

Evaluation Methodologies and Tools, page 23. ICST (Institute for Computer Sciences,

Social-Informatics and Telecommunications Engineering), 2009.

134 BIBLIOGRAPHY

[64] A. S. Lebrecht, N. J. Dingle, and W. J. Knottenbelt. Modelling zoned RAID systems

using fork-join queueing simulation. In Computer Performance Engineering, pages 16�29.

Springer, 2009.

[65] A. S. Lebrecht, N. J. Dingle, and W. J. Knottenbelt. Analytical and simulation modelling

of zoned RAID systems. The Computer Journal, 54(5):691�707, 2011.

[66] A. Lee and P. Longton. Queueing processes associated with airline passenger check-in.

OR, pages 56�71, 1959.

[67] M. Lewis. Flash Boys. Penguin UK, 2014.

[68] R. M. Lewis, A. Shepherd, and V. Torczon. Implementing generating set search methods

for linearly constrained minimization. SIAM Journal on Scient�c Computing, 29(6):2507�

2530, 2007.

[69] J. Little. A proof for the queuing formula: L = λw. Operations Research, 9(3):383�387,

1961.

[70] Y. Liu and H. G. Perros. A decomposition procedure for the analysis of a closed fork/join

queueing system. IEEE Transactions on Computers, 40(3):365�370, 1991.

[71] M. Loève. Probability Theory. New York: D. Van Nostrand Company, 1955.

[72] R. T. Marler and J. S. Arora. Survey of multi-objective optimization methods for engi-

neering. Structural and multidisciplinary optimization, 26(6):369�395, 2004.

[73] J. A. Nelder and R. Mead. A simplex method for function minimization. The Computer

Journal, 7(4):308�313, 1965.

[74] R. Nelson and B. Iyer. Analysis of a replicated data base. Performance Evaluation,

5(3):133�148, 1985.

[75] R. Nelson and A. N. Tantawi. Approximate analysis of fork/join synchronization in

parallel queues. IEEE Transactions on Computers, 37(6):739 �743, 1988.

BIBLIOGRAPHY 135

[76] R. Nelson, D. Towsley, and A. N. Tantawi. Performance analysis of parallel processing

systems. Software Engineering, IEEE Transactions on, 14(4):532�540, 1988.

[77] C. H. Ng. Queueing Modelling Fundamentals. John Wiley & Sons, 1997.

[78] J. Nocedal and S. J. Wright. Derivative-free optimization. In Numerical optimization,

chapter 3, pages 220�244. Springer Series in Operations Research and Financial Engi-

neering, 2nd edition, 1999.

[79] J. Nocedal and S. J. Wright. Line search methods. In Numerical optimization, chapter 3,

pages 30�65. Springer Series in Operations Research and Financial Engineering, 2nd

edition, 1999.

[80] J. Nocedal and S. J. Wright. Numerical optimization. Springer Series in Operations

Research and Financial Engineering, 2nd edition, 1999.

[81] E. Pearson and C. Sekar. The e�ciency of statistical tools and a criterion for the rejection

of outlying observations. Biometrika, 28(3/4):308�320, 1936.

[82] F. Pollaczek. Über eine Aufgabe der Wahrscheinlichkeitstheorie. I. Mathematische

Zeitschrift, 32(1):64�100, 1930.

[83] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical recipes

in C: The art of scienti�c computing, 1992.

[84] S. M. Ross. Introduction to probability models. Academic Press, 6th edition, 2006.

[85] T. Rychlik. Projecting statistical functionals. In Lecture Notes in Statistics, volume 160.

Springer, 2001.

[86] R. Sakellariou, H. Zhao, E. Tsiakkouri, and M. Dikaiakos. Scheduling work�ows with

budget constraints. In S. Gorlatch and M. Danelutto, editors, Integrated Research in

Grid Computing, pages 189�202. Springer, 2007.

[87] Y. Sathe and U. Dixit. On a recurrence relation for order statistics. Statistics & probability

letters, 9(1):1�4, 1990.

136 BIBLIOGRAPHY

[88] P. K. Sen. A note on order statistics for heterogeneous distributions. The Annals of

Mathematical Stat., 41(6):pp. 2137�2139, 1970.

[89] Z. Shi and J. J. Dongarra. Scheduling work�ow applications on processors with di�erent

capabilities. Future Generation Computer Systems, 22(6):665 � 675, 2006.

[90] O. Sinnen and L. Sousa. Communication contention in task scheduling. Parallel and

Distributed Systems, IEEE Transactions on, 16(6):503�515, 2005.

[91] J. Smith. Regional �ood frequency analysis using extreme order statistics of the annual

peak record. Water Resources Research, 25(2):311�317, 1989.

[92] J. Sun and G. D. Peterson. An e�ective execution time approximation method for parallel

computing. IEEE Transactions of Parallel and Distributed Systems, January 2012.

[93] D. Towsley, S. Chen, and S.-P. Yu. Performance analysis of a fault tolerant mirrored disk

system. In Proceedings of the 14th IFIP WG 7.3 International Symposium on Computer

Performance Modelling, Measurement and Evaluation, pages 239�253. North-Holland

Publishing Co., 1990.

[94] D. Towsley, C. G. Rommel, and J. A. Stankovic. Analysis of fork-join program re-

sponse times on multiprocessors. IEEE Transactions on Parallel and Distributed Systems,

1(3):286�303, July 1990.

[95] K. Trivedi. Probability and statistics with reliability, queuing, and computer science ap-

plications. Prentice-hall Englewood Cli�s, 1982.

[96] I. Tsimashenka and W. Knottenbelt. Trading o� subtask dispersion and response time in

split-merge systems. In Analytical and Stochastic Modeling Techniques and Applications

(ASMTA'13), Lecture Notes in Computer Science, 2013.

[97] I. Tsimashenka and W. J. Knottenbelt. Reduction of Variability in Split-Merge Sys-

tems. In Imperial College Computing Student Workshop (ICCSW 2011), pages 101�107,

September 2011.

BIBLIOGRAPHY 137

[98] I. Tsimashenka and W. J. Knottenbelt. Reduction of subtask dispersion in fork-join

systems. In Computer Performance Engineering, pages 325�336. Springer, 2013.

[99] I. Tsimashenka, W. J. Knottenbelt, and P. Harrison. Controlling variability in split-

merge systems. In Analytical and Stochastic Modeling Techniques and Applications

(ASMTA'12), volume 7314 of Lecture Notes in Computer Science, pages 165�177.

Springer, June 2012.

[100] I. Tsimashenka, W. J. Knottenbelt, and P. G. Harrison. Controlling variability in split�

merge systems and its impact on performance. Annals of Operations Research, pages

1�20.

[101] L. G. Underhill. Introstat. Juta and Company Ltd, 1987.

[102] N. M. van Dijk. Why queuing never vanishes. European Journal of Operational Research,

99(2):463�476, 1997.

[103] E. Varki. Mean value technique for closed fork-join networks. In Proc. of the ACM

SIGMETRICS 1999, SIGMETRICS '99, pages 103�112, New York, NY, USA, 1999.

ACM.

[104] E. Varki, A. Merchant, and H. Chen. The M/M/1 fork-join queue with variable sub-tasks.

Unpublished�http://www.cs.unh.edu/varki/publication/open.pdf, 2008.

[105] S. Varma and A. M. Makowski. Interpolation approximations for symmetric fork-join

queues. Performance Evaluation, 20(1â��3):245�265, 1994.

[106] R. J. Vaughan and W. N. Venables. Permanent expressions for order statistic densities.

Journal of the Royal Statistical Society. Series B (Methodological), 34(2):pp. 308�310,

1972.

[107] F. Wan, N. Dingle, W. Knottenbelt, and A. Lebrecht. Simulation and modelling of RAID

0 system performance. In 22nd Annual European Simulation and Modelling Conference

(ESM), pages 145�149. Citeseer, 2008.

[108] P. Wolfe. Convergence conditions for ascent methods. SIAM review, 11(2):226�235, 1969.

[109] P. Wolfe. Convergence conditions for ascent methods. II: Some corrections. SIAM review,

13(2):185�188, 1971.

[110] R. Wol�. Poisson arrivals see time averages. Operations Research, 30:223�231, 1982.

[111] M. Zaharia et al. Delay scheduling: a simple technique for achieving locality and fairness

in cluster scheduling. In Proc. 5th European Conference on Computer Systems (EuroSys

'10), pages 265�278, 2010.

Appendix A

Proof of the Mean of Range of

Heterogeneous Order Statistics Convexity

This proof was done in collaboration with Dr. Richard Hayden. Here we prove that the mean

of the range of heterogeneous order statistics

E[D] = E
[
X(n)

]
− E

[
X(1)

]
is convex. Let

g(X,d) = max
i
{Xi + di} −min

i
{Xi + di}

So the cost function E[Dd] = E
[
g(X,d)

]
.

Claim: For �xed x we have g(x, di) is convex

Proof. Firstly, xi + di is trivially convex.

Secondly, for maximum max{x1 + d1, . . . , xn + dn} is convex as maximum of convex functions

is convex.

For the minimum: −min{x1 +d1, . . . , xn+dn} is convex because −min{x1 +d1, . . . , xn+dn} =

max{−x1 − d1, . . . ,−xn − dn}, maximum is convex and −xi − di is convex.

Consequently, max{x1 + d1, . . . , xn + dn} −min{x1 + d1, . . . , xn + dn} is convex as required.

139

For the convex functions the following inequality should hold:

g(x, λd + (1− λ)d′) ≤ λg(x,d) + (1− λ)g(x,d′)

Therefore if the function g(x, ·) is convex then E
[
g(X, ·)

]
is convex:

E
[
g(X, λd + (1− λ)d′)

]
≤ λE

[
g(X,d)

]
+ (1− λ)E

[
g(X,d′)

]

	Introduction
	Motivation
	Performance Metrics in Parallel Queueing Systems
	Real-World Examples

	Objectives
	Contributions
	Theory of Heterogeneous Order Statistics
	Reducing Subtask Dispersion in Split-Merge Queueing Systems
	Trading off Mean Subtask Dispersion and Mean Task Response Time
	Reducing Mean Subtask Dispersion in Fork-Join Queueing Systems

	Thesis Outline
	Publications and Statement of Originality

	Background Theory
	Introduction
	Random Variables
	Expectations of Random Variables
	Variance

	Stochastic Processes
	Markov Processes
	Discrete Time Markov Chain
	Continuous Time Markov Chain
	Poisson Processes

	Queueing Theory
	M/M/1 queue
	M/G/1 queue

	Performance Metrics for Queues
	Multi-class Queues
	Queues with Priorities
	Queueing Networks
	Open, Closed, Mixed Queueing Networks

	Parallel Processing Systems
	Split-Merge Queueing System
	Fork-Join Queueing System
	Performance Metrics for Parallel Queueing Systems

	Theory of Order Statistics
	Numerical Optimisation Algorithms
	Newton's Method
	Wolfe Conditions
	Nelder-Mead Method

	Related Work in Parallel Queueing Systems
	Performance Analysis of Parallel Systems

	Reducing Subtask Dispersion in Split-Merge Systems
	Theory of Heterogeneous Order Statistics
	Mean of the Range of Heterogeneous Order Statistics
	Joint Density of Two Heterogeneous Order Statistics
	Distribution of the Range for Heterogeneous Order Statistics

	Reducing Mean Subtask Dispersion
	Incorporation of Deterministic Delays
	Optimisation Procedure of Mean Subtask Dispersion
	Analytical Solution for Mean Number of Subtasks in Output Buffer
	Impact of Applied Delays on System Performance

	Numerical Results
	Split-Merge Simulation
	Case Study

	Reducing Percentiles of the Distribution of the Range of Subtask Dispersion
	Optimisation Procedure of the Distribution of Subtask Dispersion
	Numerical Results

	Summary

	Trading off Subtask Dispersion and Task Response Time in Split-Merge Systems
	Introduction
	Application of heterogeneous order statistics to split-merge systems
	An objective function for the subtask dispersion–response time trade-off
	Optimisation Procedure of a Product of Subtask Dispersion and Task Response Time
	Numerical Results
	Implementation
	Case Study

	Summary

	Reducing Mean Subtask Dispersion in Fork-Join Systems
	Introduction
	Dynamic Online Algorithm for Reduction of Subtask Dispersion
	Complexity
	Numerical Results
	Fork-Join Simulation
	Case Study

	Summary

	Conclusion
	Summary of Achievements
	Applications
	Future Work
	Split-Merge Queueing System
	Fork-Join Queueing System
	Directed Acyclic Graph Work-flows

	Appendices
	Proof of the Mean of Range of Heterogeneous Order Statistics Convexity

