
Parkway 2.0: A Parallel Multilevel Hypergraph

Partitioning Tool

Aleksandar Trifunovic and William J. Knottenbelt

Department of Computing, Imperial College London
South Kensington Campus, London SW7 2AZ, UK

{at701,wjk}@doc.ic.ac.uk

Abstract. We recently proposed a coarse-grained parallel multilevel
algorithm for the k-way hypergraph partitioning problem. This paper
presents a formal analysis of the algorithm’s scalability in terms of its
isoefficiency function, describes its implementation in the Parkway 2.0
tool and provides a run-time and partition quality comparison with state-
of-the-art serial hypergraph partitioners. The isoefficiency function (and
thus scalability behaviour) of our algorithm is shown to be of a similar
order as that for Kumar and Karypis’ parallel multilevel graph partition-
ing algorithm. This good theoretical scalability is backed up by empirical
results on hypergraphs taken from the VLSI and performance modelling
application domains. Further, partition quality in terms of the k-1 metric
is shown to be competitive with the best serial hypergraph partitioners
and degrades only minimally as more processors are used.

1 Introduction

A hypergraph generalises a graph, such that hyperedges of a hypergraph connect
arbitrary, non-empty, sets of vertices. Like graphs, hypergraphs can be used to
represent the structure of sparse irregular problems such as data dependencies in
distributed databases and component connectivity in VLSI circuits. Hypergraphs
may also be partitioned such that a cut metric (a function of the interconnect in
a partition) is minimised subject to a load balancing criterion. Hypergraph cut
metrics provide a more accurate model than graph partitioning in many cases
of practical interest such as the row-wise decomposition of a sparse matrix for
parallel matrix–vector multiplication [4].

Algorithms for serial hypergraph partitioning have been studied extensively
[9,2,14] and tool support exists (e.g. hMeTiS [13] and PaToH [4]). However, these
are limited by the computing power and memory available on a single processor.
Recently, we proposed the first parallel hypergraph partitioning algorithm [21].
However, while capacity was significantly improved, absolute run times and scal-
ability were poor and partition quality was highly dependent on the structure of
the input hypergraph. In [20] we proposed a new coarse-grained algorithm which
improved processor utilisation and removed the structural dependency.

In this paper, we introduce an analytical performance model for the asymp-
totic run time complexity of the new parallel algorithm, derive its isoefficiency

C. Aykanat et al. (Eds.): ISCIS 2004, LNCS 3280, pp. 789–800, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

790 Aleksandar Trifunovic and William J. Knottenbelt

function and perform an empirical evaluation of the algorithm’s implementation
in the tool Parkway 2.0. We consider example hypergraphs from two applica-
tion domains and compare the performance of Parkway 2.0 with that of two
state-of-the-art serial partitioners in terms of run time and partition quality.

The remainder of this paper is organised as follows. Section 2 outlines serial
multilevel hypergraph partitioning. Section 3 describes the parallel algorithm
and its scalability analysis. Section 4 presents the experimental evaluation. Sec-
tion 5 concludes and considers future work.

2 Serial Multilevel Hypergraph Partitioning

A hypergraph H(V, E) is defined as follows. Let V be the set of vertices and E
the set of hyperedges, where each hyperedge ei ∈ E is a non-empty subset of the
vertex set V . The map fw : V → Z assigns an integer weight wi to every vertex
vi ∈ V and the map fc : E → Z assigns a cost ci to each hyperedge ei ∈ E.
The size of a hyperedge is defined as its cardinality. The sum of the sizes of the
hyperedges in a hypergraph, denoted here by m, is referred to as the number of
pins in the hypergraph.

We formally define the k-way partitioning problem as follows. The goal is
to find k disjoint subsets (or parts) Vi, (i = 0, . . . , k − 1) of the vertex set V
with corresponding part weights Wi (given by the sum of the constituent vertex
weights), such that, given a prescribed balance criterion 0 < ε < 1,

Wi < (1 + ε)Wavg (1)

holds ∀i = 0, . . . , k − 1 and an objective function over the hyperedges is mini-
mized. Here Wavg denotes the average part weight. If the objective function is
the hyperedge cut metric, then the partition cost (or cut-size) is given by the sum
of the costs of hyperedges that span more than one part. Alternatively, when
the objective function is the k-1 metric, the partition cost is given by

Pcost =

|E|−1
∑

i=0

(λi − 1)ci (2)

where λi is the number of parts spanned by hyperedge ei. Computing the opti-
mal bisection of a hypergraph under the hyperedge cut metric (and hence the
k-1 metric since k = 2 for a bisection) is known to be NP-complete [10]. Thus, re-
search has focused on developing polynomial-time heuristic algorithms resulting
in good sub-optimal solutions. The k-way partition is typically computed either
directly or by recursive bisection. As it scales well in terms of run time and solu-
tion quality with increasing problem size, the multilevel paradigm is preferred to
solely flat approaches because the likelihood of flat heuristic algorithms converg-
ing to poor local minima rises significantly with increasing problem size. Flat
heuristic algorithms such as spectral bisection and simulated annealing methods
are reviewed in more detail in [2]. Note that flat approaches can also be used at
the coarsest levels of the multilevel framework. The following subsections briefly
describe the main phases of the multilevel paradigm.

Parkway 2.0: A Parallel Multilevel Hypergraph Partitioning Tool 791

2.1 The Coarsening Phase

The original hypergraph is approximated via a succession of smaller hypergraphs
that maintain its structure as accurately as possible. A single coarsening step is
performed by merging the vertices of the original hypergraph together to form
vertices of the coarse hypergraph, denoted by a map fmerge : V → Vcoarse, where

|V |

|Vcoarse|
= r, r > 1 (3)

and r is the prescribed reduction ratio. The map fmerge is used to transform
the hyperedges of the original hypergraph to the hyperedges of the coarse hy-
pergraph. Single vertex hyperedges in the coarse hypergraph are discarded as
they cannot contribute to the cut-size of a partition of the coarse hypergraph.
When multiple hyperedges map onto the same hyperedge of the coarse hyper-
graph, only one of the hyperedges is retained, with its cost set to be the sum
of the costs of the hyperedges that mapped onto it (thus preserving the cut-size
properties of the original hypergraph). Coarsening algorithms are discussed in
detail in both [2] and [12].

2.2 The Initial Partitioning Phase

The coarsest hypergraph is partitioned using a flat partitioning method such as
an iterative improvement algorithm. As the coarsest hypergraph is significantly
smaller than the original hypergraph, flat partitioning methods are computation-
ally feasible and the time taken to compute the initial partition is usually con-
siderably less than the time taken by the other phases of the multilevel pipeline.
Since heuristic algorithms are typically used, the best solution out of a number
of runs is chosen as the starting point for the uncoarsening phase.

2.3 The Uncoarsening Phase

The initial partition is propagated up through the successively finer hypergraphs
and at each step the partition is further refined using heuristic refinement tech-
niques. When the k-way partition is computed via recursive bisection, the re-
finement phase consists of bisection refinement, typically based on the Fiduccia-
Mattheyses (FM) algorithm [9]. Conversely, when it is computed directly, the
greedy refinement algorithm [14] has been shown to perform well, especially with
increasing values of k. Both refinement algorithms typically converge within a
few passes, during each of which each vertex is moved at most once. More so-
phisticated refinement algorithms have been developed, motivated by the idea
of escaping from poor local minima [18,6,7,8,12,3].

3 Parallel Algorithm and Performance Model

This section briefly reviews our parallel multilevel partitioning algorithm and
then presents its analytical performance model. Since the algorithms that make

792 Aleksandar Trifunovic and William J. Knottenbelt

up the multilevel pipeline are inherently serial in nature, we sought a coarse-
grained formulation of the multilevel k-way partitioning algorithm [14]. This
was chosen over the recursive bisection algorithm as the k-way refinement algo-
rithm has better opportunities for concurrency than variants of the FM bisection
refinement, where ways to perform the gain update calculations in parallel are
not readily apparent.

Only the coarsening and refinement phases are parallelised since the coars-
est hypergraph should be small enough for the initial partition to be rapidly
computed serially. Multiple runs of the initial partitioning algorithm are carried
out on the available processors in parallel with the best partition selected for
further refinement. The initial partitioning phase commences when the coarsest
hypergraph has approximately 100× k vertices.

3.1 Data Distribution

If p denotes the number of processors, we store the hypergraph across the pro-
cessors by storing |E|/p hyperedges and |V |/p vertices on each processor. We
assume that each processor initially stores a set of contiguous vertices (in terms
of their indices), although a random initial allocation of vertices to processors
can be supported via a reassignment of vertex indices. In addition, for each of
these vertices the processor stores the index of the corresponding vertex in the
coarse hypergraph and the part index of the vertex.

With each hyperedge we associate a b-bit hash-key, computed using a variant
of the load balancing hash-function f2 from [17]. It has the desirable property
that f2(e) mod p is near-uniformly distributed, independent from the input hy-
peredge e. Consequently, to ensure an even spread of hyperedges across the
processors, each hyperedge e resides on the processor given by f2(e) mod p. To
calculate the probability of collision, assume that f2 distributes the keys inde-
pendently and uniformly across the key space (i.e. that all M = 2b key values
are equally likely) and let C(N) be the number of hash-key collisions among N
distinct hyperedges. Then,

IP(C(N) ≥ 1) = 1 − IP(C(N) = 0) (4)

= 1 −
M !

(M − N)!MN
(5)

≤ e
−N

2

2M (6)

if N2 << M , as shown in [17]. We have b = 64 and N = |E|. This ensures that
the probability of collisions occurring is remote – for example, when |E| = 108,
IP(C(N) ≥ 1) ≤ 0.0003 – and thus facilitates rapid hyperedge comparison.

At the beginning of every multilevel step, each processor assembles the set
of hyperedges that are adjacent to its locally held vertices using an all-to-all
personalised communication. A map from the local vertices to their adjacent hy-
peredges is then built. At the end of the multilevel step, the non-local assembled
hyperedges are deleted together with the vertex-to-hyperedge map. Frontier hy-
peredges may be replicated on multiple processors, but only for the hypergraph

Parkway 2.0: A Parallel Multilevel Hypergraph Partitioning Tool 793

used in the current multilevel step. Experience suggests that the memory over-
head incurred by duplicating frontier hyperedges is modest (see Table 3).

3.2 Parallel Coarsening Phase

We parallelised the First Choice (FC) [14] serial coarsening algorithm. Briefly,
the serial algorithm proceeds as follows. The vertices of the hypergraph are
visited in a random order. For each vertex vi, all vertices (both those already
matched and those unmatched) that are connected via hyperedges incident on
vi are considered for matching with vi. A connectedness metric is computed
between pairs of vertices and the most strongly connected vertex to vi is chosen
for the matching, provided that the resulting cluster does not exceed a prescribed
maximum weight. This condition is imposed to prevent a large imbalance in
vertex weights in the coarsest hypergraph.

In parallel, each processor i traverses the local vertex set Vi in random order,
computing the vertex matchings as prescribed by the FC algorithm. Each proces-
sor also maintains request sets to the p− 1 remote processors. If the best match
for a local vertex v becomes a vertex w stored on processor j, i 6= j, then the
vertex v is placed into the request set Si,j . If another local vertex subsequently
chooses v or w as its best match then it is also added to the request set Si,j .
The local matching computation terminates when the ratio of the initial num-
ber of local vertices to the number of local coarse vertices exceeds a prescribed
threshold (cf. Eq. 3). When computing the cardinality of the local coarse vertex
set, we include the potential matches with vertices from other processors.

Each processor i then communicates its request sets to the other processors,
including the weights of the vertices that are involved in the matching request.
The processors concurrently decide to accept or reject matching requests from
other processors. Denote by Mw

i,j the set of vertices (possibly consisting of a single
vertex) from the remote processor i that seeks to match with a local vertex w
stored on processor j (thus, Si,j =

⋃

x Mx
i,j). Processor j considers these sets for

each of its requested local vertices in turn, handling them as follows:

1. If w is unmatched, matched locally or already matched remotely, then a
match with Mw

i,j is granted to processor i if the weight of the combined
cluster (including vertices already matched with w) does not exceed the
maximum allowed coarse vertex weight.

2. If w has been sent to a processor l, l 6= i, as part of a request for another
remote match, then processor j informs processor i that the match with Mw

i,j

has been rejected. This is necessary since granting this match may otherwise
result in a coarse vertex that exceeds the maximum allowed coarse vertex
weight, if the remote match of w with a vertex on processor l is granted.
When informed of the rejection by processor j, processor i will locally match
the set Mw

i,j into a single coarse vertex.

In order to enable a match between two vertices on remote processors that
make requests to each other, we communicate the request sets in two stages.

794 Aleksandar Trifunovic and William J. Knottenbelt

In the first stage, processor i communicates request sets Si,j to processor j and
receives replies to its requests from j if i > j, while in the second stage processor
i communicates request sets Si,j to processor j and receives replies to its requests
from j if i < j. Note that only the combined weight of the vertices in Mw

i,j and
the index of vertex w need to be communicated from processor i to processor j,
further reducing the communication requirements. The sets Mw

i,j are received as
an array on processor j and are processed in random order.

The coarsening step is completed by contracting the hyperedges of the finer
hypergraph onto the hyperedges of the coarse hypergraph. Each processor con-
tracts the |E|/p locally stored hyperedges. The matching vector values for ver-
tices not stored locally are assembled using an all-to-all personalised communica-
tion. The removal of duplicate coarse hyperedges on remote processors and load
balancing is done as follows. Processors communicate each hyperedge e and its
cost to the destination processor given by f2(e) mod p. Each processor retains dis-
tinct hyperedges, setting their cost to be the sum of the costs of their respective
duplicates (if any). The parallel coarsening step concludes with a load-balancing
communication of coarse vertices such that each processor has |Vcoarse|/p local
vertices at the start of the subsequent coarsening step.

3.3 Parallel Uncoarsening Phase

Firstly, the partition of the coarse hypergraph is used to initialise the partition of
the finer hypergraph. Processors scan the local vertex list of the finer hypergraph
and if the part index value of the corresponding coarse vertex is not available,
it is requested from the relevant processor. Our parallel refinement algorithm
then proceeds in passes; however, instead of moving single vertices across a
partition boundary as in the serial algorithm, the parallel algorithm moves sets
of vertices. The processors traverse the local vertex set in random order and
compute the best move for each vertex. The best moves resulting in positive
gain are maintained in sets Ui,j , i 6= j, i, j = 0, . . . , k − 1, where i and j denote
current and destination parts respectively. In order to prevent vertex thrashing,
the refinement pass proceeds in two stages. During the first stage, only moves
from parts of higher index to parts of lower index are permitted and vice versa
during the second stage. Vertices moved during the first stage are locked with
respect to their new part in order to prevent them moving back to their original
part in the second stage of the current pass. The balance constraint on part
weights (cf. Eq. 1) is maintained as follows. At the beginning of each of the two
stages, the processors know the exact part weights and maintain the balance
constraint during the local computation of the sets Ui,j . The associated weights
and gains of all the non-empty sets Ui,j are communicated to the root processor
which then determines the actual partition balance that results from the moves of
the vertices in the sets Ui,j . If the balance criterion is violated, the root processor
determines which of the moves should be taken back to restore the balance and
informs the processors containing the vertices to be moved back. Currently, this
is implemented as a greedy scheme favouring taking back moves of sets with large
weight and small gain. Finally, the root processor broadcasts the updated part

Parkway 2.0: A Parallel Multilevel Hypergraph Partitioning Tool 795

weights before the processors proceed with the subsequent stage. As in the serial
algorithm, the refinement procedure terminates when the overall gain of a pass
is not positive. Note that vertices are not explicitly moved between processors;
rather, their part index value is changed by the processor that stores the vertex.

3.4 Analytical Performance Model

Suppose that |V | = n and |E| = Θ(n). Let h and d denote the average hyperedge
size and the average vertex degree of the original hypergraph respectively. In our
analysis, we assume that h << n, d << n and that the numbers of vertices and
hyperedges are respectively reduced by constant factors 1+υ and 1+ω (ω, υ > 0)
at each coarsening step. We consider the computation and the communication
requirements in turn, assuming O(log n) coarsening steps.

During each coarsening step, O(dh) computation steps are performed for
matching each vertex and O(h log h) computation steps in contracting each hy-
peredge. Once a coarse hyperedge is constructed, checking for local duplicate hy-
peredges is done using a hash table. It takes O(h) steps to check for and resolve a
possible collision if a duplicate key is found in the table. Thus, the computation
requirement during each coarsening step is O(n/p). At the initial partitioning
phase, the hypergraph has size O(k) and can be partitioned in O(k2) time. Dur-
ing each pass of a refinement step, we compute the vertex gains concurrently
and then compute rebalancing moves on the root processor if required. In order
to compute the gains for a vertex, we need to visit all the hyperedges incident
on each vertex and determine the connectedness to the source and destination
parts. These computations have complexity O(n/p) per pass. The rebalancing
computation has complexity O(pk2). As the number of passes during a refine-
ment stage is a small constant, the overall asymptotic computational complexity
is given by

Tcomp = O(n/p)

(

log n
∑

i=0

1

(1 + υ)i
+

log n
∑

i=0

1

(1 + ω)i

)

+ O(pk2 log n) (7)

≤ O(n/p)

(

∞
∑

i=0

1

(1 + υ)i
+

∞
∑

i=0

1

(1 + ω)i

)

+ O(pk2 log n) (8)

≤ O(n/p) + O(pk2 log n) (9)

In the following communication cost analysis, we assume the underlying paral-
lel architecture to be a p-processor hypercube. During both the coarsening and
refinement stages the hyperedges adjacent to the locally held vertices are as-
sembled at each processor using an all-to-all personalised communication. The
required matching vector entries during coarsening and the required entries of
the partition vector during refinement are assembled in the same fashion. We
will compute an average-case time for hyperedge communication. As each pro-
cessor stores O(n/p) vertices, it requires O(n/p) adjacent hyperedges (since d is a
small constant). Thus, each remote processor will on average contribute O(n/p2)

796 Aleksandar Trifunovic and William J. Knottenbelt

of its hyperedges, resulting in message size of O(n/p2) in the all-to-all person-
alised communication. This is a reasonable assumption since the hash function
scatters the hyperedges randomly across the processors with a near-uniform dis-
tribution. An all-to-all personalised communication with this message size can
be performed in O(n/p) time [11]. During coarsening, we also require the compu-
tation of prefix sums to determine the numbering of the vertices in the coarser
hypergraph, which has complexity O(log p). During refinement, we require an
additional broadcast of rebalancing moves and a reduction operation to com-
pute the cut-size, which have complexities O(k2 log p) and O(log p) respectively
(since each processor may be required to take moves back in O(k2) directions).
Arguing as for the overall computational complexity, we deduce that the overall
asymptotic communication cost is

Tcomm = O(n/p) + O(k2 log p log n) (10)

Eliminating dominated terms from equations 9 and 10, the parallel run time of
the multilevel partitioning algorithm is

Tp = O(n/p) + O(pk2 log n) (11)

As the complexity of the serial algorithm is O(n), we deduce that the isoefficiency
function is W = O(k2p2(log p + log k)). Thus, if the number of processors is
doubled and the number of parts is kept constant, the input problem size must
increase by a factor of just over 4 to maintain a given level of efficiency. This
isoefficiency function is of the same order as that given in [15] for the parallel
graph partitioning algorithm implemented in the ParMeTiS tool [16].

4 Experimental Results

4.1 Implementation and Test Environment

The three phases of our parallel multilevel k-way partitioning algorithm were
implemented in C++ using the Message Passing interface (MPI) standard [19],
thus forming the Parkway 2.0 tool. It is an optimised version of the first Parkway
implementation [20]. Parkway 2.0 interfaces with the HMETIS PartKway() rou-
tine from the hMeTiS [13] library for the initial partitioning phase when the
coarsest hypergraph from the parallel coarsening phase has less than 100 × k
vertices. The best partition obtained by p serial runs of HMETIS PartKway() in
parallel is then passed to the parallel uncoarsening phase.

Base-case serial comparison was provided by the state-of-the-art hypergraph
partitioning tools khMeTiS [13] and PaToH [5]. Like Parkway 2.0, khMeTiS is a
direct k-way partitioner implementing the HMETIS PartKway() routine and thus
can be compared fairly with our tool. For comparison with the recursive bisection
algorithm, PaToH was preferred to the recursive bisection variant hMeTiS [13]
because it produced partitions of comparable quality at significantly faster run
times.

Parkway 2.0: A Parallel Multilevel Hypergraph Partitioning Tool 797

Table 1. Characteristics of the test hypergraphs

Hypergraph #vertices #hyperedges #pins min max avg variance

Voting 175 1 140 050 1 140 050 6 657 722 2 7 5.84 3.37
ibm 16 183 484 190 048 778 823 2 40 4.10 13.06
ibm 17 185 495 189 581 860 036 2 36 4.54 16.57
ibm 18 210 613 201 920 819 617 2 66 4.06 15.71

The architecture used in all the experiments consisted of a Beowulf Linux
Cluster with 64 dual-processor nodes (although we only had access to a 32-
processor partition due to configuration limitations and high machine utilisa-
tion). Each node has two Intel Xeon 2.0GHz processors and 2GB of RAM. The
nodes are connected by a Myrinet network with a peak throughput of 250 MB/s.

4.2 Empirical Evaluation

We evaluated our parallel algorithm on hypergraphs from the domain of perfor-
mance modelling and VLSI circuit design. Voting 175 is the hypergraph rep-
resentation of a transition matrix derived from a high-level semi-Markov model
of a voting system with 175 voters. It has an almost lower-triangular structure
typical of transition matrices from the domain of performance modelling [21,17].
The three largest hypergraphs from the ISPD98 Circuit Benchmark Suite [1]
(ibm16–ibm18) were also used in the evaluation. The main characteristics of
the test hypergraphs are shown in Table 1, where min and max denote the
minimum and maximum hyperedge length respectively while avg and variance

denote the average and variance of hyperedge length. We sought partitions with
a 5% imbalance according to Eq. 1. When computed by recursive bisection using
the PaToH tool, this meant that the maximum imbalance factor on each bisection
was set to (1.05/k)1/log

2
k−0.5 in order to enforce the 5% balance criterion in the

final partition. Since the k-1 metric was evaluated, we set the partitioning objec-
tive to SOED (sum of external degrees) in khMeTiS and HMETIS PartKway() [14]
while for PaToH we used settings for sparse matrices or VLSI hypergraphs as
appropriate [5]. The V-Cycle feature was turned off for all experimental runs
as it was observed to provide only a marginal increase in partition quality at
a large run time cost. The coarsening reduction ratio from Eq. 3 was set to
2.0 in the Parkway 2.0 tool. The results were averaged over ten runs for each
parameter configuration. Table 2 presents the results of our experiments. The
parallel implementation achieves a ten-fold speedup over the fastest serial time
on the larger Voting 175 hypergraph with 32 processors, as seen in Fig. 1. We
observe absolute speedups over the PaToH base-case when four or more pro-
cessors are used and a near-linear speedup trend as the number of processors
increases. The latter supports the scalability behaviour predicted by our analyt-
ical performance model. On the VLSI hypergraphs, good speedups are harder to
achieve because the communication overhead in the parallel algorithm is more
significant given the small problem sizes. However, in general, absolute run times
decrease as p increases. In terms of partition quality, we note that our parallel
algorithm outperforms the serial partitioners on almost all the VLSI benchmark

798 Aleksandar Trifunovic and William J. Knottenbelt

Table 2. Partitioning results for four sample hypergraphs. Here p is the number
of processors used and time is the average of ten serial/distributed run times

Partition Size
p Tool 8 16 32

ibm16 time cut-size time cut-size time cut-size
(s) avg (best) (s) avg (best) (s) avg (best)

1 PaToH 8.20 10 036 (9 381) 9.67 15 565 (14 536) 10.77 22 906 (22 394)
1 khMeTiS 8.66 8 651 (7 696) 11.58 13 719 (13 214) 15.52 20 713 (20 216)
2 Parkway 2.0 10.17 8 472 (8 125) 12.23 13 882 (13 639) 17.52 21 605 (21 114)
4 Parkway 2.0 6.71 8 221 (7 931) 10.02 13 813 (13 305) 13.16 21 250 (20 979)
8 Parkway 2.0 4.96 8 357 (7 865) 7.70 13 615 (13 269) 13.50 20 961 (20639)
16 Parkway 2.0 5.07 7 974 (7 713) 7.37 13 374 (13 245) 10.35 20 747 (20 388)

ibm17 time cut-size time cut-size time cut-size
(s) avg (best) (s) avg (best) (s) avg (best)

1 PaToH 9.62 12 731 (11715) 11.74 19 586 (18 774) 13.37 27 597 (26 959)
1 khMeTiS 11.02 13 181 (12 636) 14.99 19 797 (18 700) 20.57 28 476 (27 567)
2 Parkway 2.0 11.26 12 194 (11767) 14.63 19 390 (19 059) 20.76 25 932 (25 448)
4 Parkway 2.0 7.40 12 173 (11 846) 11.71 18 669 (17 978) 15.82 26 164 (26 013)
8 Parkway 2.0 5.63 11 834 (11 489) 9.30 18 574 (18 188) 15.96 25 696 (25 453)
16 Parkway 2.0 6.11 11 477 (11411) 8.88 18 661 (18 336) 13.20 25 649 (25 328)

ibm18 time cut-size time cut-size time cut-size
(s) avg (best) (s) avg (best) (s) avg (best)

1 PaToH 8.76 12 169 (11 415) 10.34 17 340 (16 318) 11.79 23 252 (22 454)
1 khMeTiS 9.91 7 973 (7 465) 12.93 12 084 (11 190) 17.75 18 271 (17 510)
2 Parkway 2.0 11.15 8 440 (7 806) 13.64 13 544 (11 947) 20.05 18 307 (17 803)
4 Parkway 2.0 7.58 8 076 (7 677) 9.33 12 760 (12 213) 14.58 17 445 (17 078)
8 Parkway 2.0 5.36 8 376 (7 560) 7.90 11 806 (11 430) 10.99 17 845 (17 226)
16 Parkway 2.0 5.48 7 181 (6 837) 7.63 11 317 (11 096) 10.55 17 007 (16 858)

Voting 175 time cut-size time cut-size time cut-size
(s) avg (best) (s) avg (best) (s) avg (best)

1 PaToH 41.40 22 863 (22 191) 54.30 46 496 (45 960) 67.13 93 045 (92 654)
1 khMeTiS 53.76 25 387 (24 600) 58.39 50 588 (49 246) 67.92 95 072 (94 352)
2 Parkway 2.0 66.30 26 227 (25 605) 74.60 52 876 (51 673) 90.57 97 715 (97 043)
4 Parkway 2.0 30.41 26 230 (25 785) 35.78 53 031 (52 313) 46.18 98 201 (97 819)
8 Parkway 2.0 14.66 26 406 (26 160) 17.37 53 207 (52 973) 30.81 97 534 (96 832)
16 Parkway 2.0 6.57 26 671 (26 548) 9.68 53 013 (52 160) 19.93 98 000 (97 078)
32 Parkway 2.0 4.10 26 570 (25 786) 5.55 53 411 (52 679) 11.18 98 082 (97 217)

Table 3. Maximum number of hypergraph pins on a processor after hyperedges
adjacent to local vertices have been assembled

Number of Processors
Hypergraph 1 2 4 8 16 32

Voting 175 6 657 722 3 369 040 1 718 498 886 076 469 206 260 828
ibm 16 778 823 692 001 539 420 377 743 243 514 -
ibm 17 860 036 776 561 622 477 445 314 291 184 -
ibm 18 819 617 734 599 571 752 403 543 263 631 -

Parkway 2.0: A Parallel Multilevel Hypergraph Partitioning Tool 799

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30 35

S
pe

ed
up

Number of Processors

Speedup Graph for Voting 175

8 parts
16 parts
32 parts

Fig. 1. Speedup results on Voting 175 hypergraph using PaToH as base-case

hypergraphs. This may be because Parkway 2.0 utilises all processors during the
initial partitioning phase, enabling it to select the best quality partition from
many more candidate runs than is possible on a single processor. In addition,
this superior initial partition quality helps to maintain overall partition quality
as the number of processors is increased. Hypergraphs arising from the perfor-
mance modelling domain exhibit regularity and are more amenable to recursive
bisection (divide and conquer) solution methods than the more irregular VLSI
benchmark hypergraphs. This may explain the slightly higher partition quality
achieved by PaToH over the direct k-way partitioners. We note that the parti-
tion quality of Parkway 2.0 is comparable to that produced by khMeTiS for the
Voting 175 model. Finally, Table 3 shows the maximum number of hypergraph
pins per processor after frontier hyperedges adjacent to local vertices have been
assembled in the multilevel steps involving the original hypergraph.

5 Conclusion

This paper has presented an analytical performance model for our recently pro-
posed parallel multilevel hypergraph partitioning algorithm. By deriving the
isoefficiency function from the performance model we have shown that our al-
gorithm is scalable in a technically correct sense. This has been empirically
confirmed by running our parallel tool on hypergraphs taken from two different
application domains.

In the future, we aim to apply our tool to an even wider range of applica-
tion domains, for example bioinformatics and computational grids. We will also
investigate parallel formulations of the recursive bisection algorithm.

800 Aleksandar Trifunovic and William J. Knottenbelt

References

1. Alpert, C.J.: The ISPD98 Circuit Benchmark Suite. In: Proc. International Sym-
posium of Physical Design. (1998) 80–85

2. Alpert, C.J., Huang, J.H., Kahng, A.B.: Recent Directions in Netlist Partitioning.
Integration, the VLSI Journal 19(1–2) (1995) 1–81

3. Caldwell, A.E., Kahng, A.B., Markov, I.L.: Improved Algorithms for Hypergraph
Bipartitioning. In: Proc. 2000 ACM/IEEE Conference on Asia South Pacific Design
Automation. (2000) 661–666

4. Catalyurek. U.V., Aykanat. C.: Hypergraph-Partitioning-Based Decomposition for
Parallel Sparse-Matrix Vector Multiplication. IEEE Transactions on Parallel and
Distributed Systems 10(7) (1999) 673–693

5. Catalyurek. U.V., Aykanat. C.: PaToH: Partitioning Tool for Hypergraphs, Ver-
sion 3.0 (2001)

6. Dutt, S., Deng, W.: A Probability-based Approach to VLSI Circuit Partitioning.
In: Proc. 33rd Annual Design Automation Conference. (1996) 100–105

7. Dutt, S., Deng, W.: VLSI Circuit Partitioning by Cluster-Removal Using Iterative
Improvement Techniques. In: Proc. 1996 IEEE/ACM International Conference on
Computer-Aided Design. (1996) 194–200

8. Dutt, S., Theny, H.: Partitioning Around Roadblocks: Tackling Constraints with
Intermediate Relaxations. In: Proc. 1997 IEEE/ACM International Conference on
Computer-Aided Design. (1997) 350–355

9. Fiduccia, C.M., Mattheyses, R.M.: A Linear Time Heuristic For Improving Net-
work Partitions. In: Proc. 19th IEEE Design Automation Conference. (1982) 175–
181

10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Co. (1979)

11. Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to Parallel Comput-
ing. 2nd edition. Addison-Wesley (2003)

12. Karypis, G.: Multilevel Hypergraph Partitioning. Technical Report, 02-25, Uni-
versity of Minnesota (2002)

13. Karypis, G., Kumar, V.: hMeTiS: A Hypergraph Partitioning Package, Version
1.5.3. University of Minnesota (1998)

14. Karypis, G., Kumar, V.: Multilevel k-way Hypergraph Partitioning. Technical
Report, 98-036, University of Minnesota (1998)

15. Karypis, G., Kumar, V.: A Parallel Algorithm for Multilevel Graph Partitioning
and Sparse Matrix Ordering. Journal of Parallel and Distributed Computing 48
(1998) 71–95

16. Karypis, G., Schloegel, K., Kumar, V.: ParMeTiS: Parallel Graph Partitioning
and Sparse Matrix Ordering Library, Version 3.0. University of Minnesota (2002)

17. Knottenbelt, W.J.: Parallel Performance Analysis of Large Markov Models. PhD.
Thesis, Imperial College, London, United Kingdom (2000)

18. Krishnamurthy, B.: An Improved min-cut Algorithm for Partitioning VLSI Net-
works. IEEE Transactions on Computers 33(C) (1984) 438–446

19. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI – The
Complete Reference. 2nd edition. MIT Press, Cambridge, Massachussets (1998)

20. Trifunovic, A., Knottenbelt, W.J.: A Parallel Algorithm for Multilevel k-way Hy-
pergraph Partitioning. In: Proc. 3rd International Symposium on Parallel and
Distributed Computing, University College Cork, Ireland. (2004)

21. Trifunovic, A., Knottenbelt, W.J.: Towards a Parallel Disk-Based Algorithm for
Multilevel k-way Hypergraph Partitioning. In: Proc. 5th Workshop on Parallel and
Distributed Scientific and Engineering Computing, Santa Fe, NM, USA. (2004)

	Introduction
	Serial Multilevel Hypergraph Partitioning
	The Coarsening Phase
	The Initial Partitioning Phase
	The Uncoarsening Phase

	Parallel Algorithm and Performance Model
	Data Distribution
	Parallel Coarsening Phase
	Parallel Uncoarsening Phase
	Analytical Performance Model

	Experimental Results
	Implementation and Test Environment
	Empirical Evaluation

	Conclusion

