
Stochastic analysis of scheduling strategies in a
Grid-based resource model

N. Thomas, J.T. Bradley and W.J. Knottenbelt

Abstract: A model inspired by a scenario found in Grid-based scheduling systems is considered.
Scheduling is performed remotely without access to up-to-date resource availability and usage
information. This system is modelled as a collection of queues where servers break down and are
subsequently repaired. There is a delay before the scheduler learns of failures, and requests may
continue to arrive into a resource queue for some time after active service has ceased. The queues
are considered to be persistent under failure. However, these queues have finite capacity; therefore
there is the possibility that queues become full, causing job-loss. Stochastic process algebra and
stochastic probes are used to analyse this model to find steady-state measures and passage time
distributions. The effect of the duration of any delay on information propagation on the system
response time and job loss is investigated and evaluated numerically.

1 Introduction

Models of systems where servers break down are of
considerable theoretical and practical interest. However,
most existing models assume that the presence of break-
downs is immediately known by any router or scheduler
directing jobs to a queue. The only real exceptions are
models where no rerouting of jobs takes place. This paper is
motivated by Grid computing where scheduling will
generally be performed remotely from servers. Unlike a
cluster, the information used to inform a distributed
scheduler cannot be constantly updated as the communi-
cation cost would be too great. As such, the scheduler makes
routing choices based on longer term quantities. A small
number of studies have been done on scheduling and
resource management for Grid computing [1–4], but none
of these studies deals with the consequences of failure at the
resources.

In this paper, the variable factor in routing is the
operational state of the server, that is, whether it is working
or not. This presents the problem of how a scheduler can be
informed of the changing states of servers. In the case of
congestion, nodes can broadcast their problems to their
neighbours, causing jobs to be routed elsewhere (if
possible). However, if a node has failed it is in no position
to communicate its state and its neighbours must become
aware of the problem passively. In general this takes time
and, until the scheduler is informed, they continue to act on
old information. Clearly, a server which has just come into
working order can send a message to the scheduler. Such
active messaging can be assumed to carry a minimal
overhead. However, a server that has just crashed cannot

perform such an operation. Therefore it is a matter for the
scheduler, or some third party, to determine the working
state of the server.

Conventionally there are several mechanisms that can be
employed to determine server availability. One such
mechanism, as employed in SOAP, for example, is that
when a job is submitted to a node the scheduler will expect
an acknowledgment. If no acknowledgment arrives during a
given time frame (generally in the order of tens of seconds),
it is assumed that the request has failed and an exception is
raised. However, the failure to receive an acknowledgment
is no guarantee that a service has failed and so some
additional communication is still required to determine the
status of the node. Additional mechanisms include the
scheduler regularly pinging all the nodes, or alternatively
the nodes can send regular keep alive packets to maintain a
connection. Both these mechanisms carry an overhead
which, by the regularity of the messaging, may be
significant. Such messaging can be minimised by extending
the intervals between messages; this, however, causes a
delay between when a failure occurs and when the next
communication takes place (or is expected). The length of
the delay will be variable depending on the precise moment
of failure relative to the expected time of the next message.

The aim of this paper is to investigate the penalty of
prolonged delays in information propagation to the
scheduler. In a related context, Thomas and Mitrani [5]
studied a class of queueing model where M=M=1 queues
were arranged in parallel and the routing process could take
account of the operational state of the servers without job
loss. As expected, the case where jobs are routed away from
failures generally performs much better than cases where
that information is ignored. Clearly this means that having
that information is vital to good routing of jobs. Mitrani and
Wright [6] considered a model with the same structure but
the effect of a server failure is to lose the entire contents of
the associated queue. In this case the most important
consideration is generally job loss. Thomas and Bradley [7]
considered the same model as [5] but with finite capacity
queues. Once again the routing decision is made indepen-
dently of queue size, even if a queue is full, thus making job
loss a possibility. The simpler and less applicable infinite
queue case of the model presented here has been studied

q IEE, 2004

IEE Proceedings online no. 20041091

doi: 10.1049/ip-sen:20041091

N. Thomas is with the School of Computing Science, University of
Newcastle Upon Tyne, Newcastle Upon Tyne, NE1 7RU, UK

J.T. Bradley and W.J. Knottenbelt are with the Department of Computing,
Imperial College London, Huxley Building, 180 Queen’s Gate, London
SW7 2BZ, UK

Paper received 24th August 2004

IEE Proc.-Softw., Vol. 151, No. 5, October 2004232



previously [8] and some initial work has been presented on
dynamic analysis of a related model where failure notifica-
tion is immediate [9].

2 Scheduling and brokerage in Grid architectures

There are many approaches to scheduling of tasks
performed within Grid systems. Some approaches derived
from traditional distributed systems rely on having almost
complete knowledge of the resources available. Thus jobs
may be directed to the node which will be able to complete
the task first with some degree of certainty. If problems
arise, for instance a node fails or a task takes much longer
than predicted, then a new schedule can be computed
relatively easily. An example of such a system is [4] where
local (cluster) scheduling has been developed for Grid-
enabled jobs using a fast genetic algorithm to compute near-
optimal schedules across highly dependent distributed tasks.
Such an approach is highly effective on a local level, but
cannot be directly applied to wider scheduling issues on the
Grid as it is generally not feasible to know the status of
resources sited remotely from the scheduler, particularly as
those resources are subject to local rescheduling.

The general problem encountered here is referred to as
brokering, that is, incorporating scheduling decisions over
resources across multiple domains [3]. A broker operating
on the Grid must be able to select distributed resources over
which it has no control and information about which is often
limited or stale [10]. The ARMS system [1] attempts to
overcome this problem by using agents representing local
domains to negotiate prior to allocation of local resources.
Other approaches rely on some centralised monitoring
system, such as MDS [11], to collect up-to-date information
on available services. Such approaches potentially suffer
from the obvious problems that the information needs to be
kept up-to-date and also that additional layers of communi-
cation are introduced that themselves have a negative
impact on performance. Examples of such systems include
Condor-G [12], Nimrod=G [13] and AppLeS [14]. These
approaches are best suited to very large tasks where the
computation times greatly exceed the additional overhead
and the penalty for a poor decision is large; however, they
still have to cope with old, and possibly inaccurate,
information.

To work around the problem of out-of-date resource
information, several systems [14, 13, 10] employ resource
reservation to negotiate some kind of service level
agreement prior to deployment. This requires direct
communication between the scheduler and resource man-
agers to determine the availability, and possibly usage cost,
of resources. Once a good selection has been made the
reservation can be confirmed. However, time has elapsed
since the first enquiry and so the resource status may have
changed, causing the performance to be less than expected.
In addition, a resource manager is unlikely to be passive
during this period and may also be offering services to other
schedulers. This brings the two distinct viewpoints, the
system-centric resource managers and the user-centric
schedulers, into direct competition. The system therefore
has inherently complex interactive behaviour and ultimately
will be optimised to predominantly suit one or other view,
but not both.

3 Model definition

The general model under consideration in this paper can be
described thus. Jobs arrive into the system in a Poisson
stream with rate l: There are N servers, each with an

associated queue, to which incoming jobs may be directed.
Each server goes through alternating independent operative
and inoperative periods. While it is operative, the jobs in its
queue receive service according to a given distribution and
depart upon completion. When a server becomes inopera-
tive (breaks down), the corresponding queue, including the
job in service (if any), may remain in place or be lost
entirely. The system model is illustrated in Fig. 1.

Failures are considered to have two modes. In the first
mode, the server has failed, but the router is not aware of
this and so jobs continue to arrive. In the second mode, the
router is aware of the failure and so no jobs are directed into
its queue. The time it takes for the router to become aware
of the failure can be modelled as a negative exponential
delay with mean 1=a: However, before this time has elapsed
the server may have been repaired. Failures occur at instants
separated by negative exponential delays with mean 1=�;
and are consequently repaired, with time-to-repair negative-
exponentially distributed with mean 1=�:

The operational state of the system is given as s ¼
fið1Þ; . . . ; iðNÞg; where ið jÞ 2 f0; . . . ;M � 1g given M
distinct operational states of an individual server, j. If, at
the time of arrival, a new job finds the system in
configuration s; then it is directed to node j with probability
qjðsÞ: These decisions are independent of each other, of
past history and of the sizes of the various queues. Thus,
a scheduling policy is defined by specifying MN vectors,

qðsÞ ¼ ½q1ðsÞ; q2ðsÞ; . . . ; qNðsÞ	; s 
 ON ; such that for

every s;
PN

j¼1 qjðsÞ ¼ 1:
Here, we consider models with M ¼ 3 distinct oper-

ational states. As well as the state where the server behaves
normally (denoted by state 2), there are two states where no
service occurs (states 1 and 0). In state 2, jobs arrive in the
queue in a Poisson stream with rate l and are served in FIFO
order with service times negative-exponentially distributed
with mean 1=m: In state 1, jobs arrive at the node in a
Poisson stream with rate l (since the scheduler is unaware of
the server failure) but there is no service. In state 0, there are
no arrivals (since the scheduler is aware of the server
failure) and no service.

Each of the models presented gives rise to a set of Markov
processes where the system state at time t is described by
the pair IðtÞ; JðtÞ : t � 0; where IðtÞ 
 f0; . . . ; 3N � 1g
represents the known operational state of the system and
J(t) is the number of jobs in the queue being studied. Each
queue may be studied in isolation as they exhibit a property
referred to as quasi-separability; that is, the marginal
distributions of the numbers of jobs in each queue are
dependent only on the operational state of the system, I(t),
and not on the number of jobs in the other queues.

In the basic model of finite capacity queues, it is assumed
that the scheduler does not know if a queue is full and that
the consequence of sending a job to a full queue is that the

Fig. 1 Single source split among N unreliable nodes

IEE Proc.-Softw., Vol. 151, No. 5, October 2004 233



job is lost. The steady-state probability of a given node i
being in a particular operational state is calculated as

Pið0Þ ¼
a�

ðaþ �Þð� þ �Þ Pið1Þ ¼
��

ðaþ �Þð� þ �Þ
Pið2Þ ¼

�

� þ �

On failure there are a number of different possibilities: the
entire queue may be lost, the job in service may be lost, or the
entire queue may be retained. In the case where the entire
contents of the queue are lost on breakdown the conse-
quences of information latency are the same as in the infinite
case [8], namely that jobs will be lost from the system if they
continue to be sent to a broken node. Hence, in this case, the
job loss due to latency at node i is given by

�lli

�iai

ðai þ �iÞð�i þ �iÞ

where �lli is the average arrival rate at at node i.
If the system is experiencing a heavy load then it is

possible that redirecting jobs to alternative nodes may cause
those queues to become full, thus causing job loss. Thus
some of the jobs lost due to latency may have been lost from
the system in any case, even if the latency ð1=aÞ had been
nil. Thus, under heavy load, reducing latency does not
generally increase throughput. This point is further
illustrated by the numerical examples in Section 4.

The case where the queue is preserved is much more
interesting and is the main focus of this paper. In this case it
is necessary to consider not just the increased response time
due to jobs arriving when the server is broken, but also the
potential job loss arising from the fact that the queue will fill
up during broken periods. Therefore it is necessary to
calculate the increase in the probability that the queue is full
when the server is both broken and operative. This latter
property is important since a recently repaired server will be
suffering under a backlog of jobs, making it more likely that
arriving jobs find the queue full.

This suggests the following strategy for minimising the
job loss due to information latency. If the queue size passes
a certain threshold then the node signals the scheduler to
send fewer jobs (or none at all). This is similar to a
conventional quench packet used to reduce congestion
problems in packet-switched networks. The result of this
strategy is that the queue is less likely to become full during
repair; consequently the job loss probability should be
reduced. A scheduler working in such an environment may
be said to be semi-blind, as it is basing routing decisions on
only partial, and possibly out-of-date, queue status
information.

This strategy is likely to work well when the system load
is relatively light. However, when the load is high and split
between fewer operative nodes, this may cause a higher job
loss rate in the system. If all nodes are heavily loaded then it
is impossible for the scheduler to reroute jobs away from
busy nodes, and so the strategy will fail. Clearly this strategy
is going to add additional states to the scheduler behaviour.
If each node operates a single threshold then the operational
state space grows from 3N to 6N ; since it will be necessary to
track the queue size relative to the threshold in all modes for
all servers. In addition, such a feature would destroy the
quasi-separability condition used to decompose the model
solution in Section 3. A simple stochastic delay on repair
prior to sending jobs would increase the operational state
space from 3N to 4N ; but crucially preserve the quasi-
separable nature of the model, making it much less costly to
solve.

There is also the problem of determining the optimal
value for the queue size thresholds and scheduler delay for a
given set of system parameters. It is reasonable to assume
that failures are rare enough that the system will tend to a
steady state during operative periods. Thus the distribution
of the number of jobs at node j with a capacity Kj at time of
failure will tend towards the steady-state solution for a
simple M=M=1=Kj queue. In addition, the average number
of jobs arriving at a broken node will be lj=ð�j þ ajÞ;
where lj is the arrival rate at node j when it is not known
to be broken. It is not difficult, therefore, to set the
threshold Tj such that the average job loss at node k will be
known. However, it is much more difficult to calculate
the resultant job loss at other nodes as a function of all
Tj; 1 
 j 
 N:

4 Numerical evaluation

Experiments have been carried out using both the PEPA
Workbench [15] and ipc [16] stochastic process algebra
tools, which are useful for analysing complex behaviour,
such as that of the scheduler. All the figures show results for
a two identical node system with relatively small capacity
queues, N ¼ 12: Parameters in the following figures are
given in terms of rate per hour. The average service time
is 10 min ðm ¼ 6Þ; the average inter-arrival time is 6 min
ðl ¼ 10Þ and the availability of each node is fixed as
99:01%: Other parameters are varied as indicated.

Numerical results are derived for steady-state and
response time distributions. Steady-state results are derived
conventionally and are focused on two key performance
measures: the average rate of job loss and the average
response time. Passage time distributions are derived by
means of stochastic probes, described below.

4.1 Stochastic probes

A stochastic probe is a fragment of stochastic process
algebra, for our purposes PEPA, which describes the start
and end points of a measurement that we wish to make on a
system. The start and ends points are specified by the
modeller in terms of the behaviour that the model exhibits:
for example, below we generate results that look at the
time taken between a node-failure event and a queue-full
event.

Stochastic probes [17] are used to define specific response
time measurements on the semi-blind scheduling system.
Briefly, a stochastic probe is defined by a regular expression.
In this case, however, the atoms of the regular expression
are action names drawn from the alphabet of the underlying
process algebra model. The probe is automatically trans-
lated into a component of the stochastic process algebra and
composed with the original model in order to make the
required measurement.

The power of using a stochastic probe over a stochastic
process algebra lies in the fact that:

. its uses the native action-based (rather than state-based)
language of the process algebra
. it can be used to define arbitrary behaviour before a
measurement is started or stopped
. it is designed not to interfere in any behavioural or
temporal way with the model it is measuring.

We make use of the Imperial PEPA Compiler, ipc,
for processing the stochastic probes and the HYDRA=
DNAmaca Markov chain analyser [18] for producing the
response time results.

IEE Proc.-Softw., Vol. 151, No. 5, October 2004234



4.2 Results

Figures 2 and 3 show results of the average rate of job loss
varied against the latency, a; for the basic model without
threshold levels. In Fig. 2 the job loss resulting from
rerouting after the exponentially distributed delay is
compared with the job loss when no rerouting takes place
(which does not vary with a). In addition we also show the
job loss arising from a Markov modulated arrival process
which is more bursty than the Poisson process. This Markov
modulated process has two arrival rates, lhigh ¼ 15 and
llow ¼ 5; with a rate of switching between them of 1
(per hour), the process spending an equal proportion of time
in each state on average. As expected at low values of a
(long delay), the job loss tends to the maximum value
attained when no rerouting takes place. The reason for this is
obviously that, as the delay increases, the probability of the
broken node becoming full also increases. The shape of the
plots for Poisson and Markov modulated arrivals is nearly
identical, although with the more bursty process giving a
higher rate of job loss. This plot and other such experiments
give us some confidence that the Poisson assumption made
in this model does not generally affect the conclusions
drawn from this study, although the absolute measures may
be optimistic.

Figure 3 shows results for different repair and failure
rates, although in each case the probability of being working
or broken is the same. The longer the repair periods the
greater is the probability that the working queue will

become full, and hence lead to increased job loss. The
implication of this is that the system becomes more reliant
on the capacity of the broken queue. Hence, as �i decreases,
so does the optimal value of a to minimise job loss. That is,
the longer the repair period, the longer the scheduler will
continue to send jobs to a broken queue in order to reduce
the job loss from the system as a whole.

As a increases towards instant rerouting ða ! 1Þ there is
not a uniform decrease in job loss, but rather the rate
initially decreases as expected, but then rises slightly again,
the minima in this case being around a ¼ 1 for �i ¼ 0:1 and
�i ¼ 1: The reason for this is not quite so intuitive, but is
caused by the fact that rerouting from a broken node will
cause a greater load at the working node. This will cause an
increase in the full probability at that node, and hence an
increase in job loss from that node. At low load this effect
will be minimal and fast rerouting will be near-optimal for
reducing job loss. However, as system load increases this
effect will become more apparent and it will become
necessary for the scheduler to use the entire queueing
capacity of the system to reduce job loss. In this model the
only mechanism available to the scheduler is to wait longer
before acting on the failure (we have modelled this as the
delay before the scheduler knows of the failure). Therefore,
to utilise the queue capacity at the broken node the
minimum job loss is reached by delaying the rerouting of
jobs.

Figure 4 shows the average response time for successful
jobs for the same parameters as Fig. 3. The value of average
response time is greatly influenced by the rate of job loss.
Thus, although we would expect instances where the latency
is large (a is small) to give poor response time, this is not
universally true because the job loss is also greater in these
cases and hence there are fewer jobs entering the queues
(this also explains why the plot of �i ¼ 0:1 appears to have
potentially better performance than �i ¼ 10). It is clear that
when the repair rate is relatively fast, the latency has little
effect on response time. This has been observed in earlier
studies, for example in [7], where the conclusion was that in
cases of rapid repair there is little advantage to be gained
from rerouting. As the repair rate decreases there is an
increasing effect from latency. It is interesting to note
that the optimal response time occurs when a ¼ 4096 and
�i ¼ 0:1; that is when the repair period is longest and the
rerouting is fastest. This is because in this scenario there is
the greatest chance that a job will be directed to a working
node and that node will still be operational when the job
reaches the head of the queue. Comparison of Figs. 2 and 4

Fig. 2 Mean rate of job loss varied against latency

mi ¼ 6; �i ¼ 1; �i ¼ �i=100; l ¼ 10; qi ¼ 0:5

Fig. 3 Mean rate of job loss varied against latency

mi ¼ 6; �i ¼ �i=100; l ¼ 10; qi ¼ 0:5

Fig. 4 Average response time varied against latency

mi ¼ 6; �i ¼ �i=100; l ¼ 10; qi ¼ 0:5

IEE Proc.-Softw., Vol. 151, No. 5, October 2004 235



shows that there is a potential tradeoff between gains in
response time and job loss, with the relative minima
occurring in different regions of the plots. Ultimately the
optimal delay will therefore depend on whether reliability or
performance is the more important factor.

Figures 5 and 6 show the response time density and
cumulative distribution function for the time elapsing
following a failure at a node until the queue at that node
becomes full. Figures 7 and 8 show the corresponding
functions for the time elapsing following a repair at a node
until the queue at that node becomes full. In each case the
elapsed time may include the node being repaired or failing
again prior to becoming full. Comparing these four plots it is
evident that a queue is no more likely to become full
following a failure at that node than following a repair. This
might appear counterintuitive; however, when a repair
occurs the queue is likely to contain a significant number of
jobs due to receiving some during the failed period.
Therefore initially it is prone to becoming full until the
backlog is cleared. The probability of becoming full drops
off relatively quickly in this case. Following a failure the
probability density of the queue becoming full drops off
slightly less quickly as not only may jobs continue to arrive
if the scheduler has not been updated, but also the other
node may fail (or may already be inoperative). In addition a
repair action will happen at some point following a repair

and at this time jobs will be directed back to that node
regardless of the number already in the queue. More
surprising is the apparent lack of distinction between the
plots for the various repair rates considered, unlike the
steady-state results. Figure 5 shows the greatest distinction
in this regard, particularly at the start of the plot where the
faster repair time shows a more rapid decline in probability
density than would be expected. As time increases,
however, the slower repair time (and hence longer operative
period) becomes more advantageous as subsequent failures
are much less likely to occur in this time frame.

Figure 9 shows response time distributions for an
arbitrary successfully completing job from the time it enters
the system to when it completes its service. The response
time is made up of the service of this job, plus the services of
all the jobs ahead of it in the queue (if any) and any repair
periods that may occur before successful completion.
Because no jobs are lost once they enter the queue it is
only necessary to keep track of the number of service
actions from an arrival event in order to compute the
response time. The graph shows multiple response times in
conditions of underload and overload, together with an
Erlang(12) distribution. The Erlang distribution represents
the limiting case where there are no server failures and the
system is always completely full, so an incoming job sees 12
successive exponential service times.

Fig. 5 No threshold model: response time density of time taken
from a failure to a full queue event for different values of �i

mi ¼ 6; �i ¼ �i=100; l ¼ 10; qi ¼ 0:5; a ¼ 1

Fig. 6 No threshold model: cumulative response time from a
failure to a full queue event for different values of �i

mi ¼ 6; �i ¼ �i=100; l ¼ 10; qi ¼ 0:5; a ¼ 1

Fig. 7 No threshold model: response time density of time taken
from a repair to a full queue event for different values of �i

mi ¼ 6; �i ¼ �i=100; l ¼ 10; qi ¼ 0:5; a ¼ 1

Fig. 8 No threshold model: cumulative response time from a
repair to a full queue event for different values of �i

mi ¼ 6; �i ¼ �i=100; l ¼ 10; qi ¼ 0:5; a ¼ 1

IEE Proc.-Softw., Vol. 151, No. 5, October 2004236



In Fig. 10, the model with a threshold level is introduced.
The aim here is to limit the number of jobs in a queue
without adding an excessive communication overhead. The
threshold prevents one queue from becoming too full if the
other has fewer jobs than the threshold. Thus the queues can
only ever become full (and cause job loss) if the other queue
is either above the threshold or broken. The rate of job loss
shown in Fig. 10 is far lower than that for the same
parameter set shown in Fig. 3 – a clear indication of the
success of this strategy.

However, it is necessary to set the threshold sufficiently
high that both queues only exceed it together as rarely as
possible. This is difficult to achieve if the load is high. In
Fig. 10, the load is fairly high and this causes rerouting of
jobs away from broken nodes to be less optimal. There may
be a potential advantage in this case towards only rerouting
away from queues above the threshold and ignoring the
operative state of the server, particularly when the repair
rate is relatively fast. This is because all jobs will be directed
to one node if the other is known to be broken, regardless of
its queue size. Figure 11 shows the average response time
for the same parameter set as Fig. 10. Since the job loss is
more stable in this case, it has less of an impact than in
Fig. 4; hence the system has more of the characteristics of
the simpler infinite queue system. There is a large penalty
for long latency, particularly when the repair times are long.

Hence for response time there is an advantage in rerouting
away from failures quickly when the threshold is utilised.

Figures 12 and 13 show the response time density and
cumulative distribution functions for the elapsed time from
a failure of a node to that queue becoming full. The first
point to observe is that the probability density is much
heavier tailed than in the case not employing a threshold, i.e.
there is a much lower chance that a job will be lost as

Fig. 9 Total response time for a completing job; shown for
increasing input job rate, l; for conditions of underload to
overload

mi ¼ 6; �i ¼ 1; a ¼ 1; �i ¼ �i=100; qi ¼ 0:5

Fig. 10 Job loss varied against latency

N ¼ 12; threshold ¼ 9; mi ¼ 6; �i ¼ �i=100; l ¼ 10; qi ¼ 0:5

Fig. 11 Average response time varied against latency

N ¼ 12; threshold ¼ 9; mi ¼ 6; �i ¼ �i=100; l ¼ 10; qi ¼ 0:5

Fig. 12 Threshold model: response time density of time taken
from a failure to a full queue event for different values of �i

mi ¼ 6; �i ¼ �i=100; l ¼ 10; qi ¼ 0:5; a ¼ 1

Fig. 13 Threshold model: cumulative response time from a
failure to a full queue event for different values of �i

mi ¼ 6; �i ¼ �i=100; l ¼ 10; qi ¼ 0:5; a ¼ 1

IEE Proc.-Softw., Vol. 151, No. 5, October 2004 237



a direct result of a failure than in the equivalent
nonthreshold case. Thus we can conclude that the queue is
much more stable with respect to job loss when a threshold
strategy is adopted. It is curious to note that the plots of
�i ¼ 1 show worse performance than for �i ¼ 0:1; the same
phenomenon is evident in Fig. 3 at a ¼ 1: This is because,
when a ¼ 1; proportionally very few jobs arriving during a
repair period will be directed to the broken node if �i ¼ 0:1;
whereas if �i ¼ 1 far more jobs arriving during a repair
period will be directed to the broken node. If the repair
period is much shorter then the effect of a service
interruption will be much less significant on response time.

5 Model limitations

There are a number of practical limitations to the model
which are presented here:
Resource reservation: Resource reservation is one
mechanism that is employed to increase predictable
performance in Grid systems. However, at present, the
only practical evaluations that have been made are based on
systems with a relatively low load; hence it is always
possible to find sufficient available resources. Under a high
load scenario, resource reservation is insufficient in itself to
provide any performance guarantee as it will become
necessary to either make future reservations or delay
reservation until such time as resources are known to
become available. These additional mechanisms introduce
several possibilities for unpredictable performance pro-
blems, not least of which is that the timeliness of
information will be crucial. The model presented here
does not consider resource reservation.
Distributed scheduling: The model presented here
considers a single scheduler which is remote from the
services it uses. In reality, there will be many such
schedulers which are at, or close to, the sources of the
tasks. Modelling these multiple schedulers as one entity is
not a significant problem; but it does overlook the issue that
different schedulers may be operating on different
information.
Multiple services: It is important to note that the model
here considers each of the nodes to be independent whilst
offering equivalent atomic service. In reality, this unlikely
to be true. Most services are compound, meaning that any
given service will itself request other services to perform
some or all of its functionality. This is not a significant
direct challenge to the atomic assumption made in the model
because the service time can include many individual,
possibly distributed services, although higher moments may
be lost.
Common mode failure: For a specialist service, it is
possible, likely even, that two apparently distinct services
utilise the same service to perform some operation. Whilst
this may be considered not to be significant for performance,
it does have an important effect on reliability. Specifically, if
this shared service fails then both the parent services will
fail. Thus, under certain circumstances, the operational state
of the nodes may not be independent as stated in the model.
Furthermore this information will not be available to the
scheduler as the nodes will only present information
pertaining to the parent services and not any services they
may employ. To overcome this type of hierarchical
modelling problem, greater specific detail about the
scheduling system has to be gathered and tools such as
SPAs (as used here) and LQNs (layered queueing networks)
[19] used for further investigation.
Degrading service: In this paper, we consider only that a
node is either working or not. In reality each node may

contain many servers and so a single failure may only partly
degrade the service. When the system is lightly loaded this
degradation may be very slight indeed. The assumption
made here is that we are only really interested in
catastrophic failures causing the complete loss of a service,
although we accept that degrading service is an interesting
problem and one which can affect scheduling significantly.

6 Conclusions

We have studied scheduling strategies that are of use when
minimising job loss and improving reliability and fault-
tolerance in Grid systems. We have empirically measured
job loss and response times across these different strategies
and shown that a system of thresholding within the resource
buffers can dramatically improve buffer utilisation and
overall fault-tolerance.

In all strategies, it is clear that profound changes in
system performance and reliability can be achieved by
modifying the information latency as seen by the scheduler.
In addition, it is the case that current Grid implementations
have large latencies and very few services are being
constructed from a fault tolerant perspective. It is evident
therefore that unreliable services may well give rise to very
poor performance, even when alternative services could be
employed.

The results presented here are not all intuitive and differ
from the simpler infinite queue case. The effect of job loss is
marked and it is shown that in some cases it is better not to
act immediately (or at all) to route away from failures. For
finite capacity queues two simple, low cost, strategies have
been suggested to reduce the impact of failures. The
implementation of these strategies over a network of
possibly interdependent services suggests that a simple
game-theoretic problem may be constructed to optimise the
scheduler. Such a game could, potentially, involve pricing
differences to represent urgent requests or requests to
currently unavailable services.

7 References

1 Cao, J., Jarvis, S.A., and Saini, S.: ‘ARMS: An agent-based resource
management system for Grid computing’, Sci. Program., 2002, 10, (2),
pp. 135–148

2 Nitzberg, B., and Schopf, J.: ‘Current activities in the scheduling and
resource management area of the global Grid forum’, Lect. Notes
Comput. Sci., 2002, 2537

3 Schopf, J.M.: ‘A general architecture for scheduling on the Grid’,
Preprint ANL=MCS-P1000-1002, Argonne National Laboratory, 2002

4 Spooner, D.P., Jarvis, S.A., Cao, J., Saini, S., and Nudd, G.R.: ‘Local
Grid scheduling techniques using performance prediction’, IEE Proc.,
Comput. Digit. Tech., 2003, 150, (2), pp. 87–96

5 Thomas, N., and Mitrani, I.: ‘Routing among different nodes where
servers break down without losing jobs’, in ‘Quantitative methods in
parallel systems’ (Springer-Verlag, 1995), pp. 248–261

6 Mitrani, I., and Wright, P.E.: ‘Routing in the presence of breakdowns’,
Perform. Eval., 1994, 20, (1–3), pp. 151–164

7 Thomas, N., and Bradley, J.T.: ‘Decomposing models of parallel
queues’. Proc. 4th Int. Workshop on Queueing Networks with Finite
Capacity, 2000

8 Thomas, N.: ‘The effect of information latency on performance’. Proc.
19th UK Performance Engineering Workshop, University of Warwick,
2003

9 Martin, S., and Mitrani, I.: ‘Optimal scheduling among intermittently
unavailable servers’, Int. J. Simul., (accepted for publication)

10 Haji, K.D.M., Gourlay, I., and Dew, P.: ‘A SNAP-based community
resource broker using a three-phase commit protocol: a performance
study’, Comput. J., (accepted for publication)

11 Fitzgerald, S., Foster, I., Kesselman, C., von Laszewski, G., Smith, W.,
and Tuecke, S.: ‘A directory service for configuring high-performance
distributed computations’. Proc. 6th IEEE Symp. on High-Performance
Computing, 1997, pp. 365–375

12 Frey, J., Tannenbaum, T., Foster, I., Livny, M., and Tuecke, S.:
‘Condor-G: A computation management agent for multi-institutional
Grids’. Proc. 10th IEEE Symp. on High-Performance Computing,
San Francisco, CA, USA, 2001

13 Buyya, R., Abramson, J., and Giddy, J.: ‘Nimrod=G: An architecture
for a resource management and scheduling system in a global

IEE Proc.-Softw., Vol. 151, No. 5, October 2004238



computational Grid’. 4th IEEE Conf. on High-Performance Computing
in the Asia-Pacific Region, China, 2000

14 Berman, F., and Wolski, R.: ‘The AppLeS project: A status report’.
Proc. 8th NEC Research Symp., Berlin, Germany, 1997

15 Clark, G., Gilmore, S.T., Hillston, J., and Thomas, N.: ‘Experiences
with the PEPA workbench modelling tools’, IEE Proc. – Softw., 1999,
146, (1), pp. 11–19

16 Bradley, J.T., Dingle, N.J., Gilmore, S.T., and Knottenbelt, W.J.:
‘Derivation of passage-time densities in PEPA models using ipc: the
Imperial PEPA Compiler’. Proc. 11th IEEE=ACM Int. Symp. on
Modeling, Analysis and Simulation of Computer and Telecommuni-
cations Systems (MASCOTS), University of Central Florida, Florida,
USA, 2003, pp. 344–351

17 Argent-Katwala, A., Bradley, J.T., and Dingle, N.J.: ‘Expressing
performance requirements using regular expressions to specify
stochastic probes over process algebra models’. Proc. 4th Int. Workshop
on Software and Performance (WOSP), Redwood City, CA, USA,
2004, pp. 49–58

18 Dingle, N.J., Knottenbelt, W.J., and Harrison, P.G.: ‘HYDRA:
HYpergraph-based Distributed Response-time Analyser’. Proc. 2003
Int. Conf. on Parallel and Distributed Processing Techniques and
Applications, Las Vegas, NV, USA, 2003, vol. 1, pp. 215–219

19 Woodside, C.M., Neilson, J.E., Petriu, D.C., and Majumdar, S.: ‘The
stochastic rendezvous network model for performance of synchronous
client-server-like distributed software’, IEEE Trans. Comput., 1995,
44, (1), pp. 20–34

IEE Proc.-Softw., Vol. 151, No. 5, October 2004 239


	footer1: 


