Performance Trees:
Expressiveness and Quantitative Semantics

Tamas Suto Jeremy T. Bradley William J. Knottenbelt

Department of Computing, Imperial College London
180 Queen’s Gate, London SW7 2BZ, United Kingdom.
{suto,jb,wjk }@doc.ic.ac.uk

Abstract—Performance Trees are a recently-proposed mechanism toolbox [16]. Performance requirements have traditionally
for the specification of performance properties and measures. peen expressed as stochastic logic formulae and are evaluated
They represent an attractive alternative to stochastic logics, by model checkers such @RISM[17], ETMCC [18] and

since they support traditional stochastic model checking queries, . S
while also allowing for the direct extraction of a wide range VRMC[19]. Popular stochastic logics include CSL [20]-{23],

of quantitative measures. In this paper we illustrate differences @CSL [24], asCSL [25], CSRL [22], [26] and eCSL [27].

in expressiveness between Performance Trees and ContinuousThe strength of using a logical representation is that it en-
Stochastic Logic (CSL), and present quantitative semantics ables the concise and rigorous specification of performance
showing the mathematlcal basis underlying Performance Tree requirements and supports elegant query composition and
operators. As a running example, we demonstrate performance

query specification with Performance Trees on a stochastic Petri systematic verification. prever, _StOChaSt'C logics are u.nable
net model of a healthcare system. to represent many questions of interest to system designers,
mainly due to limitations of expressiveness. Further, logical

paradigms may seem esoteric to many industrial users. In

particular, an expert understanding is required to translate

Many systems — especially those in domains such as telecdifrformance requirements expressed in natural language into

munications, finance, healthcare, logistics and defence — pagical formulae.

form functions of vital importance. A thorough understandinferformance Trees [28], a novel approach to performance
of the performance characteristics of such systems is necesspugry representation, provide a standard unifying framework
in order to ensure that they satisfy their performance-relatéat expressing performance measures and performance re-
Quiality of Service (QoS) requirements. One way to achiewggiirements. They offer a superset of the expressive power of
this understanding is to construct and analyse stochastic parerently available stochastic logics through a rich selection of
formance models, which for reasons of analytical and numegiencepts and operators familiar to users with an engineering
cal tractability are usually based on Markov and semi-Markdyackground. These include steady-state and passage time
chains [1], [2]. Because specifying every state and transitiolistributions and densities, their moments, transition firing
in such models of real-life systems is infeasible, varioustes, convolutions and arithmetic operations. This power is
high-level formalisms that can be mapped automatically onpsovided without sacrificing computational tractability, since
underlying (semi-)Markov chains, such as stochastic Peali operators either impose a trivial computational burden
nets [2], [3], queueing networks [2], [4], [5] and stochastior — at least in the context of (semi-)Markov models — are
process algebras [6]-[10], are used. backed up by known numerical algorithms that are amenable

After constructing a model, performance characteristics can {gescalable parallel |mplementat|9n. Performance Trees have
extracted through analysis. Such characteristics are norm&iytumbper of further advantages: they support elegant query
expressed as performance queries of two kinds: performaffQEnpPosition, they are easily visualised as hierarchical tree

measures and performance requirements. Performance nwaictures, and they are applicable in the context of a wide
sures require quantitative results, € a hospital waiting range of modelling formalisms, including stochastic Petri nets,

room, what is the steady-state distribution of the number G€U€INg networks and stochastic process algebras, due to the
patients waiting to be treated?Performance requirements,YS€ of an abstract state specification mechanism. Furthermore,
on the other hand. seek a truth value as an answer“le.g.'it is possible to extend the formalism, either in terms of

a mobile communications network, does the time taken §§iSting operators by using a parameterised macro mechanism,
send an SMS message between two handsets take less $hdly defining new operators.

5 seconds with at least 95% probability?” The purpose of this paper is to illustrate differences in expres-
phieness between Performance Trees and CSL, to demonstrate
the concise expression of performance measanes per- the use of Performance Trees in the context of case study
formance requirements in a single query. Performance m&X@mples and to present the formal quantitative semantics
sures are traditionally specified in the tool-specific languagh@derlying Performance Tree operators. We proceed as fol-
of quantitative analysers such &PNP [11], Mébius [12] lows: firstly, we present an overview of CSL in Section Il to
DNAmaca[13], HYDRA[14], SHARPE[15] z;md theAPNN,- highlight the extent to which the logic is capable of expressing

I. INTRODUCTION

So far, no single formalism has been developed that ena

performance concepts and to provide a basis for comparison v E Xo - ?ﬁ Wl o
with Performance Trees, which are introduced in Section Ill. Y E oorUToy iff Tt /e T .(w@:ﬂ: o2 A
To familiarise the reader with the new formalism, several V' <t,4Qt' = 01)
examples of its use in the context of a healthcare model f . : . :

. . X erey|1] is a state immediately succeeding the start state of
presented in the case study of Section IV. Using the examp?&_s vl y d

fth tud trast s of th licabilit dw@t is the state that the system is in at tithen the path
ot Ihe case study, we contrast aspects ot i€ applicabllity ajfry,q y path operator is often referred to as thext state
expressive power of CSL with Performance Trees, showi

that Perf . ble th tati ; erator and asserts that the next transition will be made to a
al Feriormance frees enable the representation of qUETESate. Thetime-bounded untiformulas; U7 o, asserts that
that cannot be expressed in CSL. Section V introduces quan-

L .) 0o is satisfied at some time instant in the intervahnd that
titative semantics for the most important Performance Tr% all preceding time instants, holds
operators to describe their underlying mathematical meaning. '

A summary of the paper’s contributions is given in Section VI,

. o [1l. PERFORMANCETREES
and semantics for some remaining Performance Tree operators
are provided in the Appendix. A visualised instance of a Performance Tree consists of a set
of nodes, interconnected by arcs, that form a hierarchical tree
Il. CSL structure (see examples in Section 1V). Nodes in the tree can

be of two kinds: operation or value node3peration nodes

For our purposes, a semi-Markov CSL (similar to [29]) i§r€ functions, taking zero or more sub-nodes as arguments
defined over a semi-Markov state spats, P, [, £), where and returning a result (e.g. a passage time density). Sub-nodes
S is the set of states? is the embedded probability transitioncan be value nodes (usually representing numerical values,
matrix, H is the state holding time distribution matrix ad States or actions) or operation nodes that return a value of an
is a state labelling function. This labelling function attache®PPropriate type. Table | provides a summary of the currently
multiple labels to each state, thereby allowing states to B¥ailable Performance Tree operation and value nodes.
grouped and classified in a convenient way. A general C8\le note that parse trees can be used to visualise CSL

formula is defined as follows [23]: gueries; however, these are generally used as internal tool
representations and user-level CSL query specification is still
def .
o = tt]al| o] ona | Splo) | Pple) predominantly text-based. By contrast, Performance Trees
o £ Xo | cUTo were designed from the outset to be a graphical user-level

specification formalism, although they can also be expressed
S represents a steady-state condition &hdepresents a pas-in a textual form.

sage time condition on a set of paths defined:byrhe values A performance query that is expressible as a CSL formula

p and'r represent ranges of allowed 'probab|l|t|es and times g usually analysed by a model-checker that returns a truth
spectively. The semantics of the logic are expressed by statjn

7 .) g vaiue, indicating whether the model satisfies the requirements
the conditions under which a single statsatisfies each clause . .
A N .—encoded in the formula. By contrast, queries expressed as
of a o-formula; this is expressed by the satisfiability relatio

. L ?—’erformance Trees are evaluated by a query interpreter, which
sk o. The clause: is a label and a state satisfies that label y aquery P

,) . . . can return various kinds — or even a sequence — of results,
if a € L(s). Thus, using the negation and conjunction Claus%jsépending on which operation nodes are used

in combination with labelling allows whole sets of states to o o
be defined with ar-formula. The set of states specified in thig he Performance Tree formalism is extensible in two ways.

manner is writterSat(c) = {s € S | s}= o}. The steady- Firstly, whenever new performance operators are necessary to
state claus&p (o) defines a set of statefy = Sat(c) and is ©€XPress new types of queries, the set of basic operators can

true if the sum of the steady-state probabilities of the statB§ extended. Naturally, a query interpreter would need to be
in S; lies in rangep. modified to support any new operators. Secondly, Performance

Trees support parameterised macros of complex expressions

The formal semantics of CSL [23] are: ; L .)
built from existing operators. In this case, no query interpreter

s = ot for all s modifications are necessary. An example of this mechanism is
s = a iff @ L(s) used in is the Performance Tree of Query 3 below.

s B -o iff speo

s E o1ANoy iff sEopAsEoq IV. AN ILLUSTRATIVE CASE STUDY

s | Splo) iff I;€p whereJ = Sat(o) _ o))

s = Pply) iff P(occPath(s) | =) cp Consider the simplified stochastic Petri net model of a health-

care system of Figure 1. Here, there is an initial group of
wherell; is the steady-state probability of being in any ohealthy people who fall ill and go to a hospital — arriving
the states inJ, IP denotes a probability anBlath(s) is the set either by themselves as walk-in patients or by ambulance.
of all paths starting frons. Further, a path) satisfies a path Walk-in patients wait in the waiting room for assessment until
formula, o, as follows: a nurse becomes available, while ambulance patients wait on a

trolley to be assessed by a nurse with greater urgency. Patiggrtsups of states. To obtain weighted average semantics in CSL
are subsequently either seen by a doctor for treatment, stmtmultiple start states, it is necessary to (manually) insert
for lab tests, or sent for surgery. Once a patient has beaaditional states into the model’s underlying Markov chain.

discharged from the hospital, (s)he is (optimistically) assumeghe performance Tree of Figure 2 represents the above query.
to be healthy again. The PTD operator is used to calculate a passage time density.
The model is parameterised by the valuesiyf N and D, The set of start states for this passage consists of the single
which denote the number of tokens on the plabeslthy state in which the first patient has fallen ill, and the set of
(people),nursesand doctors respectively. To construct per-target states consists of the states where this patient has been
formance queries relating to individual patients, we emplajischarged from the hospital. To find the probability with
the well-known tagged customer concept, which in the Petvhich the passage takes place in under 240 minutes, we use
net context of the given model means tracking the flow of the Probinintervalnode to integrate the passage time density
token that represents a particular patient’s progress through tiver the time range specified by tfie .] node. To establish
system. This necessitates the introduction of an extra transitiwhether this probability is at least98, we use thdninterval

for each existing transition in the net to differentiate betwearode, which returns a boolean result.

the cases of forwarding tagged and untagged customers.
specify queries involving a tagged patient, we introduce th
notation patient@place which is an atomic proposition that
is attributed to a state if the token representing the taggBelevant state labels for this query are:

patient is at placelacein the model. initial == (#(healthy = P) A (#(nurses — N) A
The first two examples below illustrate performance queries (#(doctorg = D)

on this model that can be expressed as both CSL formy-3 patients recovering= (#(surgery dong < 3)

lae and Performance Trees. Two further examples providE h b f tok lagen th
performance queries which cannot be represented as |OgIW Fl’e#(p) returns the number of tokens on plagen the

formulae, due to limitations of CSL's expressiveness. model and boolean conditions such(g&surgery dong < 3)
are conditions on the marking of the Petri net used, in this case,

Query 1: Is the time from the first person falling ill to theto label individual states of the state space with the atomic
time of discharge from the hospital less than 4 hoursroposition & 3 patients recovering
(240 minutes) at least 98% of the time? .
CSL: sinital =

This query represents a performance requirement on a passage P 7((true) &/[120:120 (< 3 patients recovering

time quantile involving the transit of a tagged patient. Fgs- » Ininterval(ProbInStateéStateginitial, start),

both CSL and Performance Tree representations of this query, : . .
o . . : ' Stategs< 3 patients recovering,target Num(120,timg),
it is convenient to use state labels to identify the source and $<3p g,targgt Nunt 9)

ch)ery 2: Is the probability of having less than 3 patients in
recovery after surgery at time&20 greater than0.7?

destination states as follows: [-- .]](Nun(O.?,prolj,Nun(l,prob)))
fallen ill := (#(healthy = P — 1) A (£(ill) = 1) A In the CSL expressionsinitia indicates the single state that
(#(nurse$ = N) A (#(doctorg = D) corresponds to the state labmiitial. Figure 3 shows the

corresponding Performance Tree. Since we are representing a
transient state query, we use tReblnStateperator, which
returns the probability of the system being in a given set of
states at a given time instant after some initial marking. To
verify whether this probability lies in the interval [0.7,1], we
use thelninterval operator.

in hospital := (patient@waiting rooV (patient@trolley v
(patient@patient being asses3ed
(patient@ambulance patient being asse3sed
(patient@waiting to be treatgdv
(patient@treated by doctdr/ (patient@surgery donev
(patient@patient recovergd/ (patient@tests done

discharged:= (patient@healthy Query 3: What is the coefficient of variation (the ratio of the
) ‘ standard deviation to the mean) of the time for a patient

CSL: staten 1= tob treated and discharged from the hospital?

P-o.05 ((in hospita) 4//0:24] (discharged) 0 be seen, treated and discharged from the hospital?

PT. ?(InIntervaI(ProbInInterva(PTD(CSL: This question cannot be expressed in CSL, since it does
Stategfallen ill,start), Statesdischarged,targe, not provide the means to extract measures, especially not
[- - J(Num(0,time), Num(240,timg)), complex ones involving higher moments of passage time.
[--] (Nun(0.98,prot),Nun(l,prob)))) PT: ?(Cov(PTD(Statespatient arrived,start,

In the CSL expressionssen it iNdicates the single state that Statesdischarged,targep))

corresponds to the state lalfallen ill. It is important to note def ~(

that in the case of multiple start states, CSL does state-by-state Covx) =/ (((MomentNur(2, momenX),

verification of passage time constraints, while Performance (MomentNum(1,moment X), Num(2,powey)),
Trees verify the constraints using weighted averages over Num(0.5,powej), Momen{Num(1,momenj, X)

healthy

discharge
treated

treated patient

— by doctor
walk-in see patient complete —_— —_—
arrival waiting nurse being assessment
room assessed \ /
—*Q | |— _— waiting doctors
to be
\ / treated — / \ —
@ o Q Q Q
/ \ Ll surgery Ll patient
done recover recovered discharge
—_— —_— | [— R ——— recovered
patient
trolley ambulance
ambulance see patient complete
arrival emergency being emergency
nurse assessed assessment

evaluate
results

perform
lab tests

Fig. 1. Patient flow in a hospital environment

?
l

InInterval

ProblInlnterval [...]
PTD [...] Num Num
I
States States Num Num 0.98 prob. 1 prob.
fallen ill st!m disclharged tar|get (|) tirlne 24|10 time

Fig. 2.

The Performance Tree of Figure 4 includes an example
macro expansion, since the operatov is not part of the
standard set of operators.

Performance Tree showing an example of a passage time quantile calculation

of SS:RStategall),StateFung#(outside hospita)l))))

The Performance Tree for this query is shown in Figure 5. The
query consists of a number of independent sub-queries, so we

Query 4: What is the average rate of occurrence of surgeriegse the; operator to combine them. The first part of the query
and what is the steady-state probability distribution of seeking the average rate of occurrence of an action, which
the number of patients waiting for treatment and of thge represent by the firing ratéR) node. The remaining parts
number of patients inside and outside of the hospital? of the query address steady-state probability distributions, so

Relevant state labels for this query are:

all := true
#(in hospita) := P — #(outside hospital
#(outside hospital:= #(healthy) + #(ill)

CSL: A query of this type cannot be expressed in CSL, sin

the SS:Pnode is used.

V. QUANTITATIVE SEMANTICS FORPERFORMANCETREES

This section presents the formal mathematical basis underlying
the most interesting Performance Tree operators. These are
esented in the context of (semi-)Markov models and many

It is not fcaqule of calcu(;atmg the a\gerg?_e rS.te 9; OCCUSE them are represented in terms of the Laplace transforms of
rence of actions or steady-state probability distributiong, o quantities sought (see Section V-B1). Note that this section

PT: ?(; (FR(Actions{surger)&),

SS:KStategall), StateFung#(waiting to be treatey)),
SS:H Statesall), StateFun¢#(in hospita))),

is not intended as a guide to implementors seeking efficient
and/or scalable algorithms. These can be found in references
such as [13], [14], [30]-[35].

InInterval

ProbInStates [...]
States States Num Num Num
initial start <3 patients target 120 time 0.7 prob 1 prob
recovering

Fig. 3. Performance Tree showing an example of a transient state query

Cov " Moment

Num Num X

0.5 power 1 moment

L l

|patient start discharged target
i |

|
|
|
|
1!
States States : Moment A
|
|
|

Num X Moment Num

l l

moment

[}

Num X 2 power

l !

1 moment

Fig. 4. An example of Performance Tree macro expansion used to calculate the coefficient of variation

)

FR SS:P SS:P SS:P

l

Actions States StateFunc States StateFunc States StateFunc

| | | ! |

{surgery} all #(waitingtobe all #(in hospital) all #(outside
treated) hospital)

Fig. 5. An example of steady-state measure specification in the healthcare system

A. Notational Conventions A, the set of all actions in the model, ald= {true, false}.
L : S —2°% is a labelling function that assigns to a state

Throughout this section, we adhere to the following notationdl Iabel_ from AP, the set of z_';ltom|c proposnmns[.vl(f) IS
. . : - a function that converts the intervdl into the range repre-
conventions. Domains used in the description of Performance . " .
e) sentation of Performance Trees, such thal i [z,y] then
Tree operators ar§, the (finite) set of all states in the model,

Il(I) = [...](Num(z), Num(y)). Scalar values are denoted?) First Passage Times:Consider a finite, irreducible,
by lowercase letters, sets by uppercase letters and compooadtinuous-time semi-Markov process withV, states
expressions by. A - in place of an attribute of a Performance(1,2, ..., N,}. Recalling thatZ(¢) denotes the state of the
Tree node indicates that the attribute is of no importance 8MP at timet > 0, the first passage time [32] from a source
the current context and can assume an arbitrary value. state: at timet¢ into a non-empty set of target statéss:

Piy(t) = inf{u > 0: Z(t+u) € J, N(t+u) > N(t), Z(t) = i}
(6)

Consider a Markov renewal proce$¢X,,7,) : n > 0} For a stationary time-homogeneous SMP; () is indepen-
whereT’, is the time of thenth transition {, = 0) andX,, € dent of+ and we have:

S is the state immediately after theth transition. Let the . .
kernel of this process be: Py =inf{u>0:Z(u) € J,N(u) >0,Z(0) =1} (7)

B. An Introduction to Semi-Markov Performance Models

P;; has an associated probability density functifn(t):
R(n;iaj7 t) = IP(Xn—H =7, Tn+1 =T, <t ‘ Xn = Z) (1) ! P Y Y !@m()

ta
for i,j € S. The continuous-time semi-Markov process Pty < Pij <t2) :/t1 fis(t) dt (8)
(SMP), {Z(t),t > 0}, defined by the kerneR, is related

to the Markov renewal process by: In general, the Laplace transform gf;, L;;(s), can be

computed by solving a set d¥, linear equations:

Z(t) = Xn@ (2 Li(s) = Z s)Lry(s) + an ©)

k¢J kcJ
whereN (t) = max{n : T,, < t} is the number of state transi-

tions that have taken place by timeThusZ(t) represents the
state of the system at time We consider time- homogeneous
SMPs, in whichR(n,i,j,t) is independent of any previous “ (s) = < g dR(i, k1)
state, except the last. Thug becomes independent afand Tkl 0

for anyn > 0 we have:

wherel < ¢ < N, and r}.(s) is the Laplace-Stieltjes
transform (LST) ofR(i, k, t) defined by:

(10)

In case of multiple source states, denoted by/sétie Laplace

o)) transform of the passage time density at steady-state is:
R(Zvjat) = IP(Xn+1:]7Tn+1_Tn§t | Xn:Z)

= pyHi;(t) ©) Li;(s ZakLkJ (11)
kel
wherep,;; = P(X,41 = j | X, =) is the state transition where the weighty, is the probability at equilibrium that the
probability between statesand j and H;;(t) = IP(T,,+1 — systemisin staté € I at the starting instant of the passage. If
T, <t| X,41 =j,X, =1), is the sojourn time distribution 7 denotes the steady-state vector of the embedded DTMC with
in statei when the next state ig. one-step transition probability matri® = [p;;,1 < i,j <

1) Laplace transforms:The Laplace transform is an opera/Vs): thena is given by:

pon involving an integral transfor.m from real- valuegtpace B { T/ Yermi ke

into complex-valueds-space (within which the function may ok = otherwise

be much more easily manipulated in certain contexts). The

Laplace transformy*(s) of a function f(t) is: 3) Transient Distributions:Another key modelling result is
the transient state distribution;;(t), of a stochastic process:

[i(s) = /0 N e ' f(t)dt 4) mis(t) =P(Z(t) € J | Z(0) =) (13)

12)

wheres is a complex number. A useful property of the LaplacErom [36], the Laplace transform af; ; is:

transform is that the convolution operation in the time domain ;

is represented by the product in the Laplace domain. A further 7%, (s) = Lic; F, (s) + Z rie(s)mr s (s) (14)
appealing property is that a cumulative distribution function
can be obtained by dividing the Laplace transform of the
corresponding probability density function by Also, higher
moments are easily derived; thusfift) is a probability density
function of a continuous random variablg€, then thenth

moment of X is given by:

whereF; (s) = 1(1 = hy(s)) is the Laplace transform of the
rellab|l|ty function andh;(s) = >_,ry;(s) is the LST of the

sojourn time distribution in state Again for multiple source

states, with initial distributiory, we have:

. - (15)
E(X") = (—1)" ™ (0) 5) ! kza ot

C. Core Semantics 3) Probininterval operator: This operator represents the

. I . . robability with which a passage takes place in a given amount
Below, we discuss quantitative semantics of the most Wlde|§f time ‘the operator hgs tW(?inputS' g passagegtime density
used Performance Tree operators. Semantics for the remair}mgction defining the passage, and a time range. It returns a
operators can be found in Appendix A. : '

probability. The typing for the operator is therefore
1) Identifying Sets of States using Atomic Proposition Com-

position: Many Performance Tree operators require sets of [Problninterva] :: (R —R)x (R xR) - R
states as input; therefore, an elegant formalism—independEr\}t

o . . luation of aProblninterval rator yields:
way for specifying these sets of states is necessary. This jguation o aprob ervaloperator yields

done using atomic propositions that can be combined using Probininterval ptdf, [.. .|(Num(ry,), Num(rs,-))) =
boolean connectives, as demonstrated in Section IV. The ‘T2
allowed composition of atomic propositions is given by: ptdf (t) dt

T1
d

ef
© = true | ONO | 70 | a where ptdf refers to a passage-time density function.

where a € AP is an atomic proposition label. Given a4) ProbinStates operatorThis operator represents the prob-
composition of atomic proposition label$, we identify the ability of being in a set of states at a particular time, having
corresponding set of states §s € S : s = A} where the started from a given set of states. It requires three inputs: a
semantics of = A is given by: composition of atomic propositions identifying the set of start
sk true forall s sk A iff sk~ A states, a composition of a’ltomi(.: proposition; identifying.the set
sk A iff AeL(s) sEAAB iff s=AAsEB of target states and the t|me _mstant at which to consider the
state of the model. Its typing is therefore
2) PTD operator: The basic version of the passage time
density operator takes twBtatesnodes as input, which define [ProbinStatep :: © x© xR —R
the passage in terms of start and target states, and returns & uation of aProbInStatesoperator yields:
passage time density function. Hence, its typing is
[PTD] : ©x6 — (R—R) PI’OblnStateSStates(A, start), States(B, target),
Num(t,time)) = 7r;(t)
Evaluation of aPTD operator yields:
wherel = {se€S:sE= A} andJ = {s € S: s B}, and
PTD(States(A, start), States(B, target)) = f1,(t) the Laplacé transform|:0f1i(t) was dé{fined in S'e:ctio}n V-B3.
where fr,(t) is the probability density function of;;, the 5y Moment operator: This operator represents a (raw) mo-
first passage time from a set of source states {s € S: ment of a passage time density. It requires two inputs: an
s = A} to a set of target state$ = {s € S : s|= B}, i.e. nteger, representing which moment is to be calculated, and a

the first time the system enters a state/ingiven that it has passage time density that the moment is to be calculated from.
started inI and at least one transition has occurred. Here, The operator has type:

Pry=inf{u>0:Z(u) € J,N(u) >0,Z(0) € I} [Momenj :: Nx (R—R)—R

f1,(t) can be found by numerically inverting Laplace transI'Evaluation of aMomentoperator proceeds via the Laplace

form ?1,](5).]]] transform as described in Section V-B1:
A variant of the passage time density operator is one that

incorporates excluded states, in which case the typing becomes Momen{Num (n, moment), ptdf) = (—1)" L™ (0)

[PTD] = ©6x0O0x0 — (R—R) whereptdf is a passage time density function ah¢k) is its
Laplace transform.

Evaluation of aPTD operator with excluded states yields:
6) SS:P operator:This operator calculates the steady-state
PTD(States(A, start), States(B, target), States(C, excl)) probability distribution of an arbitrary state function over a set
= f17x(t) of states. That is, given a state functigh, which associates
) N]] a real value with every state in the system, 8f&Poperator
where f1 (t) is the probability density function aPrx (1), calculates the steady-state probabilityéofaking a particular
the first passage time between the set of states{s € S: \5ye SS:Prequires two inputs: an atomic proposition expres-
si= A} and the set of states = {s € S : s|= B}, constrained gjon @, and a functiong, on the set of stateg. is represented
by the set of state& = {s € S : s |= C'}, which must not p,y theStateFunmode in the performance tree notatiéhputs
form part of the passage. Here: a constraint on the set of states being conside8&dPhas the

Py = inf{u>0:Z(u) € J, N(u) >0, following type:
Vu’<u.Z(u/)¢K7Z(0)€I} [SSFE . 9—>(€—>(R—>R)

where thef state function has the syntax: APPENDIX

EZH(a) | E4+E | E-E | ExE | /€| f(&) | r Table Il gives semantics for remaining basic operators.

Herea € AP and[f] :: R — R is a user-definable arbitrary A. Dist operator

real-valued function, and € R. The semantics of the StateThe assage time distribution operator transforms a passage
function £ are given by the evaluation functio®val(E, s), P g P P 9

which calculates the value of the function for a state, time density into a passage time distribution.
[Disff = (R—-R)— (R—R)

Eval(#(a), s) = evaluation ofa € AP in states

Eval(&y + &E2,8) = Eval(&y, s) + Eval(&,, s) ¢

Fval(&1 — &2,8) = Ewal(&1,s) — Eval(&s, s) Dist(PTD(E))=IP(0 < Tg < t) = / fe(t) dt

Eval(& % E3,8) = Ewval(&r,8) x Eval(&,8) 0

Eval(&1/&2,8) = Ewval(&y,s)/Eval(&s, s) where Tt is the random variable corresponding to the first
Eval(f(£),s) = f(Bval(€,s)) passage time of the passage definedtbwith a pdf of fg(¢).
Eval(r, s) = r for all s

B. Conv operator
Finally, SS:Pcan be defined as creating the probability mass .)
function of the random variablgz, whereZp represents the This operator represents the convolution of two passage time

value of state functiorB on a state: densitiesptdf; and ptdf,.

SS:R States(A), StateFunc(B)) =1P(Zg =) [Cony = (R—R)x(R—R)—(R—R)

t
where Conv (1), a(t) = [f(r)glt~r)dr
0
Z 7 liff 7 € {Eval(B,s) : sl A} where f(t) = ptdf, and g(t) = ptdf, Section V-B1 for the
P(Zp=7)= sis =4, Laplace construction of the convolution.
Eval(B,s)=r
0 :otherwise C. StatesAtTime operator

andr, is the steady-state probability of state This operator selects the states that the system can occupy at

7) FR operator: This operator represents the average rate afgiven time instant within a probability range.
occurrence of any one of a group of actions (in the context of) S

. . o - StatesAtT : 2
stochastic Petri nets, this is the average firing rate of a group [StatesAtTime RXRxR =
of transitions). It requires a single input, namely the set of

relevant actions. The typing of the operator is StatesAtTime(Num(t,time),[.](Num(p, ,prob), Num(g,prob))) =
[FR] = 24 —=R {s: S | p; < ProbinStates(s,t) < p2}
Evaluation of aFR operator yields: D. SS:S operator
FR(Actions(A)) = Z Z Ra(X:)m(X;) This operator selects the set of states that have a steady-state
a€ A X;-enablesa probability of a certain value, represented by an interval.
where R, (X;) is the occurrence rate of actianin state X;. [SS:$ = ©xRxR-—2°

V1. CONCLUSION SS:S(States(l,start),. [. J(Num(p, ,prob),Num(p,prob))) =
) . {S: S | pp <SSPP(sK pz}

In this paper, we have contrasted aspects of two formalisms for
performance query specification, namely Performance Trdes Ininterval operator
and CSL. We have dlscu_ssed why Performance. Trees m.ay‘ll?ﬁs operator checks whether a given numerical value lies in
more applicable to certain performance analysis scenarios, -

: . .) articular interval.
mainly due to its extended expressiveness — in the context oP

a model of a healthcare system. [Inintervall : Rx (RxR)—B

With reg_ards to future work, we aim to deve_lop an integrated Ininterval(E[. . . J(Num(r,,),Num(s,,"))) =
stochastic performance analysis toolset with a Performance true iff 1y < F < Ty

Tree front-end and a Grid-based computational back-end that false otherwise

integrates several efficient numerical algorithms for passage

time, transient and steady-state analysis. Once a Grid-enabidgere F = Problininterval(E) | Moment(E) | FR(E) | +
analysis back-end is in place, we will be able to model ar@&) | —(E) | =(E) | /(E) | (E) | SS:PE) |
analyse large systems of industrial scale. ProbinStates(E)

Operation Node Description
? Represents the overall result of a performance query. It is the topmost node in every tree.
; Multiple independent queries can be joined together by this node, so that only one query is
submitted for analysis. It represents a vector of results of the independent queries.
PTD Represents a passage time density, calculated from a given set of start and target states| as well
as optional additional constraints on excluded states.
Dist Represents a passage time distribution that is obtained from a passage time density.
Conv Represents a convolution of two passage time densities.
Problninterval Represents the probability with which a passage takes place in a certain amount of time.
ProbinStates Represents the transient probability of the system being in a given set of states at a given|instant
in time.
Moment Represents a specified raw moment of a passage time density.
FR Represents the mean occurrence of an action / firing rate of a transition.
SS:P Represents the steady-state probability distribution for a given set of states.
SS:S Represents a set of states that have a certain steady-state probability.
StatesAtTime Represents the set of states that the system can occupy at a given time.
Ininterval A boolean operator that determines whether a numerical value is within an interval or possibly
within multiple intervals.
- A boolean operator that determines whether a set is included in or corresponds to another set.
V, A Represent a boolean disjunction or conjunction of two logical expressions.
= Represents boolean negation of a logical expression.
>, >, ==, <, < Represent arithmetic comparisons of two numerical values.
+, =% /0 Represent arithmetic operations on two numerical values.
Value Node Description
States Represents a set of states (identified by state labels).
Actions Represents a set of actions (identified by action labels).
Num Represents a real number.
Bool Represents a boolean value.
I--1 Represents a numerical range.
StateFunc Represents a function applied to a state that returns a real number.
Tab. |
DESCRIPTION OFPERFORMANCE TREE OPERATION AND VALUE NODES
Operation Syntax Semantics
true iff x C
AP AP _ =Y
< 2 X200 =B € (zy) = false otherwise
_ true iff x>y
> RxR—B > (z,y) = false otherwise
_ true iffxz>y
z RxR—B 2 (z,y) = false otherwise
 true iff x <y
< RxR—B <(zy) = false otherwise
_ true iff x <y
< RxR—B < (@y) = false otherwise
o L _ true iffx==y
== RxR—B == (z,y) = false otherwise
~ true iff o = true andy = true
A BxB—B Na,y) = false otherwise
_ true iff x = true or y = true
v BxB—B V(z,y) = false otherwise
~ true iff x= false
- BB ~(z) = false otherwise
+ RxR—R +(z,y) =z +y
— RxR—R —(z,y)=z—y
* RxR—R #(z,y) =T xy
/ RxR—R /(z,y) =x/y
- RxR—R (z,y) =¥
? E — FE E)=F
; EXXEH[Esz] ;(ql,u,(In):[le--.,rn}
where[rq,...,ry,] is a vector of the individual results of the queries
(q1,...,qn) respectively.
Tab. I

SEMANTICS FOR REMAINING PERFORMANCE TREE OPERATORS

(1]

(2]

(3]

(4]

(5]
(6]

(7]
(8]
(9]
[10]

[11]

[12]

(23]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

REFERENCES [25]
R. Pyke, “Markov renewal processes: Definitions and preliminary prop-
erties,” Annals of Mathematical Statisticgol. 32, no. 4, pp. 1231-1242, [26]
December 1961.

F. Bause and P. S. KritzingeBtochastic Petri Nets - An Introduction to

the Theory Vieweg Verlag, Wiesbaden, Germany, 1995.

M. Ajmone Marsan, G. Conte, and G. Balbo, “A class of generalizel®7]
stochastic Petri nets for the performance evaluation of multiprocessor
systems,”ACM Transactions on Computer Systemal. 2, no. 2, pp.
93-122, May 1984.

P. G. Harrison and N. M. PatdPerformance Modelling of Communica-
tion Networks and Computer Architectureer. International Computer [28]
Science Series. Addison Wesley, 1993.

1. Mitrani, Probabilistic Modelling Cambridge University Press, 1998.

J. Hillston, “A compositional approach to performance modelling,” Ph.D.
dissertation, Department of Computer Science, University of Edinburgh,
Edinburgh EH9 3JZ, UK, 1994, cST-107-94. 29
——, A Compositional Approach to Performance Modellirsgr. Dis-
tinguished Dissertations in Computer Science, 1996, vol. 12.

R. Milner, A Calculus of Communicating Systerser. Lecture Notes in
Computer Science. Springer-Verlag, 1980, vol. 92.

——, Communication and Concurrencger. PHI Series in Computer
Science. Prentice Hall, 1989, iSBN 0 13 115007 3.

H. Hermanns, “Interactive Markov chains,” Ph.D. dissertation, Univer-
sitat Erlangen-Nrnberg, July 1998. 31]
G. Ciardo, J. K. Muppala, and K. S. Trivedi, “SPNP: Stochastic PetLl
Net Package,” iPNPM’'89, Proc. 3rd Intl. Workshop on Petri Nets and
Performance Mode|s1989, pp. 142-151.

G. Clark, T. Courtney, D. Daly, D. D. Deavours, S. Derisavi, J. M.
Doyle, W. H. Sanders, and P. G. Webster, “Theédtis modeling [32]
tool,” in Proceedings the 9th International Workshop on Petri Nets
and Performance ModelsB. Haverkort and R. German, Eds. |EEE
Computer Society Press, Aachen, September 2001, pp. 241-250.

W. J. Knottenbelt, “Generalised Markovian analysis of timed transitions
systems,” M.Sc. Thesis, University of Cape Town, South Africa, July
1996. [33]
N. J. Dingle, W. J. Knottenbelt, and P. G. Harrison, “HYDRA:
HYpergraph-based Distributed Response-time Analysel?D#TA'03,
Proceedings of the 2003 International Conference on Parallel and
Distributed Processing Techniques and ApplicatiddsR. Arabnia and

Y. Man, Eds., vol. 1, Las Vegas, NV, June 2003, pp. 215-219. [34]
C. Hirel, R. Sahner, X. Zhang, and K. S. Trivedi, “Reliability and per-
formability modeling using SHARPE 2000,” iIROOLS 2000, Proc. 11th

Intl. Conf. on Computer Performance Evaluation, Modelling Techniques
and Tools ser. LNCS, vol. 1786, 2000, p. 345.

P. Buchholz, J.-P. Katoen, P. Kemper, and C. Tepper, “Model-checkifgs]
large structured Markov chainsjJournal of Logic and Algebraic Pro-
gramming vol. 56, pp. 69-96, 2003.

M. Kwiatkowska, G. Norman, and D. Parker, “Probabilistic symbolic
model checking with PRISM: A hybrid approach,” TACAS’02, Proc. [36]
Tools and Algorithms for Construction and Analysis of Systeses
LNCS, vol. 2280, 2002, pp. 52—-66.

H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, and M. Siegle, “A tool
for model checking Markov chainsSoftware Tools for Technology
Transfer vol. 4, no. 2, pp. 153-172, 2002.

J.-P. Katoen, M. Khattri, and I. S. Zapreev, “A Markov reward model
checker,” inQEST'05, Proc. 2nd Intl. Conf. on the Quantitative Evalu-
ation of Systemdtaly, September 2005, pp. 243-244.

A. Aziz, K. Sanwal, V. Singhal, and R. Brayton, “Verifying continuous-
time Markov chains,” inComputer-Aided Verificatigrser. LNCS, vol.
1102, 1996, pp. 269-276.

——, “Model checking continuous-time Markov chain®CM Trans-
actions on Computational Logiwol. 1, no. 1, pp. 162-170, 2000.

C. Baier, B. R. Haverkort, H. Hermanns, and J.-P. Katoen, “On the
logical characterisations of performability properties,”"Rroc. ICALP

200Q ser. LNCS, vol. 1853, 2000, pp. 780-792.

——, “Model-checking algorithms for continuous-time Markov chains,”
IEEE Transactions on Software Engineerirngl. 29, no. 6, pp. 524-541,
June 2003.

H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, and M. Siegle, “Towards
model checking stochastic process algebralFid 2000, Proc. 2nd Intl.

Conf. on Integrated Formal MethodBlovember 2000, pp. 420-439.

(30]

C. Baier, L. Cloth, B. R. Haverkort, M. Kuntz, and M. Siegle, “Model
checking action- and state-labelled Markov chais3N’04, Proc. Intl.
Conf. on Dependable Systems and Netwopks 701-710, June 2004.

B. R. Haverkort, L. Cloth, H. Hermanns, J.-P. Katoen, and C. Baier,
“Model checking performability properties,” iBSN’02, Proceedings of
International Conference on Dependable Systems and Netw20ke,

pp. 103-112.

J. T. Bradley, N. J. Dingle, W. J. Knottenbelt, and P. G. Harrison,
“Performance queries on semi-Markov stochastic Petri nets with an
extended Continuous Stochastic Logic,”mNPM'03, Proc. Petri Nets
and Performance Model$Jniversity of lllinois at Urbana-Champaign,
September 2003, pp. 62-71.

T. Suto, J. T. Bradley, and W. J. Knottenbelt, “Performance trees: A new
approach to quantitative performance specification, MASCOTS'06,
Proc. 14" Intl. Symp. on Modeling, Analysis and Simulation of Com-
puter and Telecommunication SystemsMonterey, California, USA:
IEEE Computer Society, September 2006.

G. G. Infante lopez, H. Hermanns, and J.-P. Katoen, “Beyond memory-
less distributions: Model checking semi-Markov chains,Pioceedings

of Process Algebra and Probabilistic Methodser. Lecture Notes in
Computer Science, L. de Alfaro and S. Gilmore, Eds., vol. 2165.
Aachen: Springer-Verlag, September 2001, pp. 57-70.

N. J. Dingle, P. G. Harrison, and W. J. Knottenbelt, “Uniformization
and hypergraph partitioning for the distributed computation of response
time densities in very large Markov modelslpurnal of Parallel and
Distributed Computingvol. 64, no. 8, pp. 908-920, August 2004.

J. T. Bradley, N. J. Dingle, P. G. Harrison, and W. J. Knottenbelt,
“Distributed computation of passage time quantiles and transient state
distributions in large semi-Markov models,” PMEQ’03, Performance
Modelling, Evaluation and Optimization of Parallel and Distributed
Systems Nice: IEEE Computer Society Press, April 2003, p. 281.

J. T. Bradley, N. J. Dingle, W. J. Knottenbelt, and H. J. Wilson,
“Hypergraph-based parallel computation of passage time densities in
large semi-Markov models,” ilfNSMC'03, Proceedings of the 4th
International Workshop on Numerical Solutions of Markov Chas\.
Langville and W. J. Stewart, Eds., University of lllinois at Urbana-
Champaign, September 2003, pp. 99-120.

J. T. Bradley, N. J. Dingle, S. T. Gilmore, and W. J. Knottenbelt, “Ex-
tracting passage times from PEPA models with the HYDRA tool: a case
study,” in UKPEW'03, Proceedings of 19th Annual UK Performance
Engineering WorkshgpS. A. Jarvis, Ed., University of Warwick, July
2003, pp. 79-90.

J. T. Bradley and W. J. Knottenbelt, “The ipc/HYDRA tool chain for
the analysis of pepa models,” PEST'04, Proceedings of the 1st IEEE
Conference on the Quantitative Evaluation of SysteBndHaverkort et

al., Ed. University of Twente, Enschede: IEEE Computer Society Press,
September 2004, pp. 334-335.

S. W. M. Au-Yeung, N. J. Dingle, and W. J. Knottenbelt, “Efficient
approximation of response time densities and quantiles in stochastic
models,” inWOSP 2004, Proc. 4th International Workshop on Software
and Performance Redwood City: ACM, January 2004, pp. 151-155.
J. T. Bradley, N. J. Dingle, P. G. Harrison, and W. J. Knottenbelt,
“Distributed computation of transient state distributions and passage time
quantiles in large semi-Markov modelg;uture Generation Computer
Systemsvol. 22, no. 7, pp. 828-837, August 2006.

