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Abstract—Performance Trees are a recently-proposed mechanism
for the specification of performance properties and measures.
They represent an attractive alternative to stochastic logics,
since they support traditional stochastic model checking queries,
while also allowing for the direct extraction of a wide range
of quantitative measures. In this paper we illustrate differences
in expressiveness between Performance Trees and Continuous
Stochastic Logic (CSL), and present quantitative semantics
showing the mathematical basis underlying Performance Tree
operators. As a running example, we demonstrate performance
query specification with Performance Trees on a stochastic Petri
net model of a healthcare system.

I. I NTRODUCTION

Many systems – especially those in domains such as telecom-
munications, finance, healthcare, logistics and defence – per-
form functions of vital importance. A thorough understanding
of the performance characteristics of such systems is necessary
in order to ensure that they satisfy their performance-related
Quality of Service (QoS) requirements. One way to achieve
this understanding is to construct and analyse stochastic per-
formance models, which for reasons of analytical and numeri-
cal tractability are usually based on Markov and semi-Markov
chains [1], [2]. Because specifying every state and transition
in such models of real-life systems is infeasible, various
high-level formalisms that can be mapped automatically onto
underlying (semi-)Markov chains, such as stochastic Petri
nets [2], [3], queueing networks [2], [4], [5] and stochastic
process algebras [6]–[10], are used.

After constructing a model, performance characteristics can be
extracted through analysis. Such characteristics are normally
expressed as performance queries of two kinds: performance
measures and performance requirements. Performance mea-
sures require quantitative results, e.g.“In a hospital waiting
room, what is the steady-state distribution of the number of
patients waiting to be treated?”Performance requirements,
on the other hand, seek a truth value as an answer, e.g.“In
a mobile communications network, does the time taken to
send an SMS message between two handsets take less than
5 seconds with at least 95% probability?”

So far, no single formalism has been developed that enables
the concise expression of performance measuresand per-
formance requirements in a single query. Performance mea-
sures are traditionally specified in the tool-specific languages
of quantitative analysers such asSPNP [11], Möbius [12],
DNAmaca[13], HYDRA [14], SHARPE[15] and theAPNN-

toolbox [16]. Performance requirements have traditionally
been expressed as stochastic logic formulae and are evaluated
by model checkers such asPRISM [17], ETMCC [18] and
MRMC [19]. Popular stochastic logics include CSL [20]–[23],
aCSL [24], asCSL [25], CSRL [22], [26] and eCSL [27].
The strength of using a logical representation is that it en-
ables the concise and rigorous specification of performance
requirements and supports elegant query composition and
systematic verification. However, stochastic logics are unable
to represent many questions of interest to system designers,
mainly due to limitations of expressiveness. Further, logical
paradigms may seem esoteric to many industrial users. In
particular, an expert understanding is required to translate
performance requirements expressed in natural language into
logical formulae.

Performance Trees [28], a novel approach to performance
query representation, provide a standard unifying framework
for expressing performance measures and performance re-
quirements. They offer a superset of the expressive power of
currently available stochastic logics through a rich selection of
concepts and operators familiar to users with an engineering
background. These include steady-state and passage time
distributions and densities, their moments, transition firing
rates, convolutions and arithmetic operations. This power is
provided without sacrificing computational tractability, since
all operators either impose a trivial computational burden
or – at least in the context of (semi-)Markov models – are
backed up by known numerical algorithms that are amenable
to scalable parallel implementation. Performance Trees have
a number of further advantages: they support elegant query
composition, they are easily visualised as hierarchical tree
structures, and they are applicable in the context of a wide
range of modelling formalisms, including stochastic Petri nets,
queueing networks and stochastic process algebras, due to the
use of an abstract state specification mechanism. Furthermore,
it is possible to extend the formalism, either in terms of
existing operators by using a parameterised macro mechanism,
or by defining new operators.

The purpose of this paper is to illustrate differences in expres-
siveness between Performance Trees and CSL, to demonstrate
the use of Performance Trees in the context of case study
examples and to present the formal quantitative semantics
underlying Performance Tree operators. We proceed as fol-
lows: firstly, we present an overview of CSL in Section II to
highlight the extent to which the logic is capable of expressing



performance concepts and to provide a basis for comparison
with Performance Trees, which are introduced in Section III.
To familiarise the reader with the new formalism, several
examples of its use in the context of a healthcare model are
presented in the case study of Section IV. Using the examples
of the case study, we contrast aspects of the applicability and
expressive power of CSL with Performance Trees, showing
that Performance Trees enable the representation of queries
that cannot be expressed in CSL. Section V introduces quan-
titative semantics for the most important Performance Tree
operators to describe their underlying mathematical meaning.
A summary of the paper’s contributions is given in Section VI,
and semantics for some remaining Performance Tree operators
are provided in the Appendix.

II. CSL

For our purposes, a semi-Markov CSL (similar to [29]) is
defined over a semi-Markov state space,(S, P,H, L), where
S is the set of states,P is the embedded probability transition
matrix,H is the state holding time distribution matrix andL
is a state labelling function. This labelling function attaches
multiple labels to each state, thereby allowing states to be
grouped and classified in a convenient way. A general CSL
formula is defined as follows [23]:

σ
def= tt | a | ¬σ | σ ∧ σ | Sρ(σ) | Pρ(ϕ)

ϕ
def= Xσ | σ Uτ σ

S represents a steady-state condition andP represents a pas-
sage time condition on a set of paths defined byϕ. The values
ρ andτ represent ranges of allowed probabilities and times re-
spectively. The semantics of the logic are expressed by stating
the conditions under which a single states satisfies each clause
of a σ-formula; this is expressed by the satisfiability relation
s |= σ. The clausea is a label and a states satisfies that label
if a ∈ L(s). Thus, using the negation and conjunction clauses
in combination with labelling allows whole sets of states to
be defined with aσ-formula. The set of states specified in this
manner is writtenSat(σ) = {s ∈ S | s |= σ}. The steady-
state clauseSρ(σ) defines a set of statesS1 = Sat(σ) and is
true if the sum of the steady-state probabilities of the states
in S1 lies in rangeρ.

The formal semantics of CSL [23] are:

s |= tt for all s
s |= a iff a ∈ L(s)
s |= ¬σ iff s 6|= σ
s |= σ1 ∧ σ2 iff s |= σ1 ∧ s |= σ2

s |= Sρ(σ) iff ΠJ ∈ ρ whereJ = Sat(σ)
s |= Pρ(ϕ) iff IP(σ ∈ Path(s) | σ |= ϕ) ∈ ρ

where ΠJ is the steady-state probability of being in any of
the states inJ , IP denotes a probability andPath(s) is the set
of all paths starting froms. Further, a pathψ satisfies a path
formula,ϕ, as follows:

ψ |= Xσ iff ∃ψ[1] |= σ
ψ |= σ1 Uτ σ2 iff ∃t ∈ τ .(ψ@t |= σ2 ∧

∀t′ < t, ψ@t′ |= σ1)

whereψ[1] is a state immediately succeeding the start state of
ψ; ψ@t is the state that the system is in at timet on the path
ψ. TheX path operator is often referred to as thenext state
operator and asserts that the next transition will be made to a
σ state. Thetime-bounded untilformulaσ1 Uτ σ2 asserts that
σ2 is satisfied at some time instant in the intervalτ and that
at all preceding time instantsσ1 holds.

III. PERFORMANCETREES

A visualised instance of a Performance Tree consists of a set
of nodes, interconnected by arcs, that form a hierarchical tree
structure (see examples in Section IV). Nodes in the tree can
be of two kinds: operation or value nodes.Operation nodes
are functions, taking zero or more sub-nodes as arguments
and returning a result (e.g. a passage time density). Sub-nodes
can be value nodes (usually representing numerical values,
states or actions) or operation nodes that return a value of an
appropriate type. Table I provides a summary of the currently
available Performance Tree operation and value nodes.

We note that parse trees can be used to visualise CSL
queries; however, these are generally used as internal tool
representations and user-level CSL query specification is still
predominantly text-based. By contrast, Performance Trees
were designed from the outset to be a graphical user-level
specification formalism, although they can also be expressed
in a textual form.

A performance query that is expressible as a CSL formula
is usually analysed by a model-checker that returns a truth
value, indicating whether the model satisfies the requirements
encoded in the formula. By contrast, queries expressed as
Performance Trees are evaluated by a query interpreter, which
can return various kinds – or even a sequence – of results,
depending on which operation nodes are used.

The Performance Tree formalism is extensible in two ways.
Firstly, whenever new performance operators are necessary to
express new types of queries, the set of basic operators can
be extended. Naturally, a query interpreter would need to be
modified to support any new operators. Secondly, Performance
Trees support parameterised macros of complex expressions
built from existing operators. In this case, no query interpreter
modifications are necessary. An example of this mechanism is
used in is the Performance Tree of Query 3 below.

IV. A N ILLUSTRATIVE CASE STUDY

Consider the simplified stochastic Petri net model of a health-
care system of Figure 1. Here, there is an initial group of
healthy people who fall ill and go to a hospital – arriving
either by themselves as walk-in patients or by ambulance.
Walk-in patients wait in the waiting room for assessment until
a nurse becomes available, while ambulance patients wait on a



trolley to be assessed by a nurse with greater urgency. Patients
are subsequently either seen by a doctor for treatment, sent
for lab tests, or sent for surgery. Once a patient has been
discharged from the hospital, (s)he is (optimistically) assumed
to be healthy again.

The model is parameterised by the values ofP , N andD,
which denote the number of tokens on the placeshealthy
(people),nursesand doctors, respectively. To construct per-
formance queries relating to individual patients, we employ
the well-known tagged customer concept, which in the Petri
net context of the given model means tracking the flow of a
token that represents a particular patient’s progress through the
system. This necessitates the introduction of an extra transition
for each existing transition in the net to differentiate between
the cases of forwarding tagged and untagged customers. To
specify queries involving a tagged patient, we introduce the
notation patient@place, which is an atomic proposition that
is attributed to a state if the token representing the tagged
patient is at placeplace in the model.

The first two examples below illustrate performance queries
on this model that can be expressed as both CSL formu-
lae and Performance Trees. Two further examples provide
performance queries which cannot be represented as logical
formulae, due to limitations of CSL’s expressiveness.

Query 1: Is the time from the first person falling ill to the
time of discharge from the hospital less than 4 hours
(240 minutes) at least 98% of the time?

This query represents a performance requirement on a passage
time quantile involving the transit of a tagged patient. For
both CSL and Performance Tree representations of this query,
it is convenient to use state labels to identify the source and
destination states as follows:

fallen ill := (#(healthy) = P − 1) ∧ (#(ill ) = 1) ∧
(#(nurses) = N) ∧ (#(doctors) = D)

in hospital := (patient@waiting room) ∨ (patient@trolley) ∨
(patient@patient being assessed) ∨
(patient@ambulance patient being assessed) ∨
(patient@waiting to be treated) ∨
(patient@treated by doctor) ∨ (patient@surgery done) ∨
(patient@patient recovered) ∨ (patient@tests done)

discharged:= (patient@healthy)

CSL: sfallen ill |=
P≥0.98

(
(in hospital) U [0,240](discharged)

)

PT: ?
(

InInterval
(

ProbInInterval
(
PTD(

States(fallen ill,start), States(discharged,target)),
J. . .K(Num(0,time), Num(240,time))

)
,

J. . .K(Num(0.98,prob),Num(1,prob)
)))

In the CSL expression,sfallen ill indicates the single state that
corresponds to the state labelfallen ill. It is important to note
that in the case of multiple start states, CSL does state-by-state
verification of passage time constraints, while Performance
Trees verify the constraints using weighted averages over

groups of states. To obtain weighted average semantics in CSL
for multiple start states, it is necessary to (manually) insert
additional states into the model’s underlying Markov chain.

The Performance Tree of Figure 2 represents the above query.
The PTD operator is used to calculate a passage time density.
The set of start states for this passage consists of the single
state in which the first patient has fallen ill, and the set of
target states consists of the states where this patient has been
discharged from the hospital. To find the probability with
which the passage takes place in under 240 minutes, we use
the ProbInIntervalnode to integrate the passage time density
over the time range specified by theJ. . .K node. To establish
whether this probability is at least0.98, we use theInInterval
node, which returns a boolean result.

Query 2: Is the probability of having less than 3 patients in
recovery after surgery at time120 greater than0.7?

Relevant state labels for this query are:

initial := (#(healthy) = P ) ∧ (#(nurses) = N) ∧
(#(doctors) = D)

< 3 patients recovering:= (#(surgery done) < 3)

where#(p) returns the number of tokens on placep in the
model and boolean conditions such as(#(surgery done) < 3)
are conditions on the marking of the Petri net used, in this case,
to label individual states of the state space with the atomic
proposition (< 3 patients recovering).

CSL: sinitial |=
P>0.7

(
(true) U [120,120](< 3 patients recovering)

)

PT: ?
(

InInterval
(
ProbInStates(States(initial,start),

States(< 3 patients recovering,target), Num(120,time)),
J. . .K(Num(0.7,prob),Num(1,prob))

))

In the CSL expression,sinitial indicates the single state that
corresponds to the state labelinitial . Figure 3 shows the
corresponding Performance Tree. Since we are representing a
transient state query, we use theProbInStatesoperator, which
returns the probability of the system being in a given set of
states at a given time instant after some initial marking. To
verify whether this probability lies in the interval [0.7,1], we
use theInInterval operator.

Query 3: What is the coefficient of variation (the ratio of the
standard deviation to the mean) of the time for a patient
to be seen, treated and discharged from the hospital?

CSL: This question cannot be expressed in CSL, since it does
not provide the means to extract measures, especially not
complex ones involving higher moments of passage time.

PT: ?
(

Cov
(
PTD(States(patient arrived,start),

States(discharged,target))
))

Cov(X) def= /
(

ˆ
(− (Moment(Num(2, moment),X),

ˆ(Moment(Num(1,moment), X), Num( 2,power))),
Num(0.5,power)

)
, Moment

(
Num(1,moment), X

))



Fig. 1. Patient flow in a hospital environment

Fig. 2. Performance Tree showing an example of a passage time quantile calculation

The Performance Tree of Figure 4 includes an example of
macro expansion, since the operatorCov is not part of the
standard set of operators.

Query 4: What is the average rate of occurrence of surgeries,
and what is the steady-state probability distribution of
the number of patients waiting for treatment and of the
number of patients inside and outside of the hospital?

Relevant state labels for this query are:

all := true
#(in hospital) := P −#(outside hospital)
#(outside hospital) := #(healthy) + #(ill )

CSL: A query of this type cannot be expressed in CSL, since
it is not capable of calculating the average rate of occur-
rence of actions or steady-state probability distributions.

PT: ?
(

;
(

FR
(
Actions(surgery)

)
,

SS:P
(
States(all),StateFunc(#(waiting to be treated))

)
,

SS:P
(
States(all),StateFunc(#(in hospital))

)
,

SS:P
(
States(all),StateFunc(#(outside hospital))

)))

The Performance Tree for this query is shown in Figure 5. The
query consists of a number of independent sub-queries, so we
use the; operator to combine them. The first part of the query
is seeking the average rate of occurrence of an action, which
we represent by the firing rate (FR) node. The remaining parts
of the query address steady-state probability distributions, so
the SS:Pnode is used.

V. QUANTITATIVE SEMANTICS FORPERFORMANCETREES

This section presents the formal mathematical basis underlying
the most interesting Performance Tree operators. These are
presented in the context of (semi-)Markov models and many
of them are represented in terms of the Laplace transforms of
the quantities sought (see Section V-B1). Note that this section
is not intended as a guide to implementors seeking efficient
and/or scalable algorithms. These can be found in references
such as [13], [14], [30]–[35].



Fig. 3. Performance Tree showing an example of a transient state query

Fig. 4. An example of Performance Tree macro expansion used to calculate the coefficient of variation

Fig. 5. An example of steady-state measure specification in the healthcare system

A. Notational Conventions

Throughout this section, we adhere to the following notational
conventions. Domains used in the description of Performance
Tree operators areS, the (finite) set of all states in the model,

A, the set of all actions in the model, andB = {true, false}.
L : S →2AP is a labelling function that assigns to a state
a label from AP, the set of atomic propositions.Ivl(I) is
a function that converts the intervalI into the range repre-
sentation of Performance Trees, such that ifI = [x, y] then



Ivl(I) = [. . .](Num(x),Num(y)). Scalar values are denoted
by lowercase letters, sets by uppercase letters and compound
expressions byE. A · in place of an attribute of a Performance
Tree node indicates that the attribute is of no importance in
the current context and can assume an arbitrary value.

B. An Introduction to Semi-Markov Performance Models

Consider a Markov renewal process{(Xn, Tn) : n ≥ 0}
whereTn is the time of thenth transition (T0 = 0) andXn ∈
S is the state immediately after thenth transition. Let the
kernel of this process be:

R(n, i, j, t) = IP(Xn+1 = j, Tn+1−Tn ≤ t | Xn = i) (1)

for i, j ∈ S. The continuous-time semi-Markov process
(SMP), {Z(t), t ≥ 0}, defined by the kernelR, is related
to the Markov renewal process by:

Z(t) = XN(t) (2)

whereN(t) = max{n : Tn ≤ t} is the number of state transi-
tions that have taken place by timet. ThusZ(t) represents the
state of the system at timet. We consider time-homogeneous
SMPs, in whichR(n, i, j, t) is independent of any previous
state, except the last. ThusR becomes independent ofn and
for anyn ≥ 0 we have:

R(i, j, t) = IP(Xn+1 = j, Tn+1 − Tn ≤ t | Xn = i)
= pijHij(t) (3)

wherepij = IP(Xn+1 = j | Xn = i) is the state transition
probability between statesi and j andHij(t) = IP(Tn+1 −
Tn ≤ t | Xn+1 = j,Xn = i), is the sojourn time distribution
in statei when the next state isj.

1) Laplace transforms:The Laplace transform is an opera-
tion involving an integral transform from real-valuedt-space
into complex-valueds-space (within which the function may
be much more easily manipulated in certain contexts). The
Laplace transformf∗(s) of a functionf(t) is:

f∗(s) =
∫ ∞

0

e−stf(t) dt (4)

wheres is a complex number. A useful property of the Laplace
transform is that the convolution operation in the time domain
is represented by the product in the Laplace domain. A further
appealing property is that a cumulative distribution function
can be obtained by dividing the Laplace transform of the
corresponding probability density function bys. Also, higher
moments are easily derived; thus iff(t) is a probability density
function of a continuous random variableX, then thenth
moment ofX is given by:

IE(Xn) = (−1)nf∗(n)(0) (5)

2) First Passage Times:Consider a finite, irreducible,
continuous-time semi-Markov process withNs states
{1, 2, . . . , Ns}. Recalling thatZ(t) denotes the state of the
SMP at timet ≥ 0, the first passage time [32] from a source
statei at time t into a non-empty set of target statesJ is:

PiJ(t) = inf{u > 0 : Z(t+u) ∈ J,N(t+u) > N(t), Z(t) = i}
(6)

For a stationary time-homogeneous SMP,PiJ(t) is indepen-
dent of t and we have:

PiJ = inf{u > 0 : Z(u) ∈ J,N(u) > 0, Z(0) = i} (7)

PiJ has an associated probability density functionfiJ(t):

IP(t1 < PiJ < t2) =
∫ t2

t1

fiJ(t) dt (8)

In general, the Laplace transform offiJ , LiJ(s), can be
computed by solving a set ofNs linear equations:

LiJ(s) =
∑

k/∈J

r∗ik(s)LkJ (s) +
∑

k∈J

r∗ik(s) (9)

where 1 ≤ i ≤ Ns and r∗ik(s) is the Laplace-Stieltjes
transform (LST) ofR(i, k, t) defined by:

r∗ik(s) =
∫ ∞

0

e−st dR(i, k, t) (10)

In case of multiple source states, denoted by setI, the Laplace
transform of the passage time density at steady-state is:

LIJ(s) =
∑

k∈I

αkLkJ(s) (11)

where the weightαk is the probability at equilibrium that the
system is in statek ∈ I at the starting instant of the passage. If
π denotes the steady-state vector of the embedded DTMC with
one-step transition probability matrixP = [pij , 1 ≤ i, j ≤
Ns], thenαk is given by:

αk =
{
πk/

∑
j∈I πj if k ∈ I

0 otherwise
(12)

3) Transient Distributions:Another key modelling result is
the transient state distribution,πij(t), of a stochastic process:

πiJ(t) = IP(Z(t) ∈ J | Z(0) = i) (13)

From [36], the Laplace transform ofπiJ is:

π∗iJ(s) = Ii∈JF
∗
i (s) +

Ns∑

k=1

r∗ik(s)π∗kJ(s) (14)

whereF
∗
i (s) = 1

s (1− h∗i (s)) is the Laplace transform of the
reliability function andh∗i (s) =

∑
j r
∗
ij(s) is the LST of the

sojourn time distribution in statei. Again for multiple source
states, with initial distributionα, we have:

π∗IJ(s) =
∑

k∈I

αkπ
∗
kJ (s) (15)



C. Core Semantics

Below, we discuss quantitative semantics of the most widely-
used Performance Tree operators. Semantics for the remaining
operators can be found in Appendix A.

1) Identifying Sets of States using Atomic Proposition Com-
position: Many Performance Tree operators require sets of
states as input; therefore, an elegant formalism-independent
way for specifying these sets of states is necessary. This is
done using atomic propositions that can be combined using
boolean connectives, as demonstrated in Section IV. The
allowed composition of atomic propositions is given by:

Θ def= true | Θ ∧Θ | ¬Θ | a
where a ∈ AP is an atomic proposition label. Given a
composition of atomic proposition labelsA, we identify the
corresponding set of states as{s ∈ S : s |= A} where the
semantics ofs |= A is given by:

s |= true for all s s |= ¬A iff s 6|= A
s |= A iff A ∈ L(s) s |= A ∧B iff s |= A ∧ s |= B

2) PTD operator: The basic version of the passage time
density operator takes twoStatesnodes as input, which define
the passage in terms of start and target states, and returns a
passage time density function. Hence, its typing is

JPTDK :: Θ×Θ → (R→ R)

Evaluation of aPTD operator yields:

PTD(States(A, start),States(B, target)) = fIJ(t)

wherefIJ(t) is the probability density function ofPIJ , the
first passage time from a set of source statesI = {s ∈ S :
s |= A} to a set of target statesJ = {s ∈ S : s |= B}, i.e.
the first time the system enters a state inJ , given that it has
started inI and at least one transition has occurred. Here,

PIJ = inf{u > 0 : Z(u) ∈ J,N(u) > 0, Z(0) ∈ I}
fIJ(t) can be found by numerically inverting Laplace trans-
form LIJ(s).

A variant of the passage time density operator is one that
incorporates excluded states, in which case the typing becomes

JPTDK :: Θ×Θ×Θ → (R→ R)

Evaluation of aPTD operator with excluded states yields:

PTD(States(A, start),States(B, target),States(C, excl))

= fIJK(t)

wherefIJK(t) is the probability density function ofPIJK(t),
the first passage time between the set of statesI = {s ∈ S :
s |= A} and the set of statesJ = {s ∈ S : s |= B}, constrained
by the set of statesK = {s ∈ S : s |= C}, which must not
form part of the passage. Here:

PIJK = inf{u > 0 : Z(u) ∈ J,N(u) > 0,
∀u′ < u.Z(u′) 6∈ K,Z(0) ∈ I}

3) ProbInInterval operator: This operator represents the
probability with which a passage takes place in a given amount
of time. The operator has two inputs: a passage time density
function, defining the passage, and a time range. It returns a
probability. The typing for the operator is therefore

JProbInIntervalK :: (R→ R)× (R×R) → R

Evaluation of aProbInIntervaloperator yields:

ProbInInterval(ptdf , [. . .](Num(r1, ·),Num(r2, ·))) =∫ r2

r1

ptdf (t) dt

whereptdf refers to a passage-time density function.

4) ProbInStates operator:This operator represents the prob-
ability of being in a set of states at a particular time, having
started from a given set of states. It requires three inputs: a
composition of atomic propositions identifying the set of start
states, a composition of atomic propositions identifying the set
of target states and the time instant at which to consider the
state of the model. Its typing is therefore

JProbInStatesK :: Θ×Θ×R→ R

Evaluation of aProbInStatesoperator yields:

ProbInStates(States(A, start),States(B, target),
Num(t, time)) = πIJ (t)

whereI = {s ∈ S : s |= A} andJ = {s ∈ S : s |= B}, and
the Laplace transform ofπIJ(t) was defined in Section V-B3.

5) Moment operator:This operator represents a (raw) mo-
ment of a passage time density. It requires two inputs: an
integer, representing which moment is to be calculated, and a
passage time density that the moment is to be calculated from.
The operator has type:

JMomentK :: N× (R→ R) → R

Evaluation of aMoment operator proceeds via the Laplace
transform as described in Section V-B1:

Moment(Num(n,moment),ptdf) = (−1)nL(n)(0)

whereptdf is a passage time density function andL(s) is its
Laplace transform.

6) SS:P operator:This operator calculates the steady-state
probability distribution of an arbitrary state function over a set
of states. That is, given a state function,E , which associates
a real value with every state in the system, theSS:Poperator
calculates the steady-state probability ofE taking a particular
value.SS:Prequires two inputs: an atomic proposition expres-
sion,Θ, and a function,E , on the set of states.E is represented
by theStateFuncnode in the performance tree notation.Θ puts
a constraint on the set of states being considered.SS:Phas the
following type:

JSS:PK :: Θ → E → (R→ R)



where theE state function has the syntax:

E def= #(a) | E + E | E − E | E ∗ E | E/E | f(E) | r
Herea ∈ AP and JfK :: R → R is a user-definable arbitrary
real-valued function, andr ∈ R. The semantics of the state
function E are given by the evaluation function,Eval(E , s),
which calculates the value of the function for a state,s:

Eval(#(a), s) = evaluation ofa ∈ AP in states
Eval(E1 + E2, s) = Eval(E1, s) + Eval(E2, s)
Eval(E1 − E2, s) = Eval(E1, s)− Eval(E2, s)
Eval(E1 ∗ E2, s) = Eval(E1, s)× Eval(E2, s)
Eval(E1/E2, s) = Eval(E1, s)/Eval(E2, s)
Eval(f(E), s) = f(Eval(E , s))
Eval(r, s) = r :for all s

Finally, SS:Pcan be defined as creating the probability mass
function of the random variableZB , whereZB represents the
value of state functionB on a state:

SS:P(States(A),StateFunc(B)) = IP(ZB = r)

where

IP(ZB = r) =





∑

s : s |=A,

Eval(B,s)=r

πs :iff r ∈ {Eval(B, s) : s |= A}

0 :otherwise

andπs is the steady-state probability of states.

7) FR operator: This operator represents the average rate of
occurrence of any one of a group of actions (in the context of
stochastic Petri nets, this is the average firing rate of a group
of transitions). It requires a single input, namely the set of
relevant actions. The typing of the operator is

JFRK :: 2A → R

Evaluation of aFR operator yields:

FR(Actions(A)) =
∑

a∈A

∑

Xi:enablesa

Ra(Xi)π(Xi)

whereRa(Xi) is the occurrence rate of actiona in stateXi.

VI. CONCLUSION

In this paper, we have contrasted aspects of two formalisms for
performance query specification, namely Performance Trees
and CSL. We have discussed why Performance Trees may be
more applicable to certain performance analysis scenarios –
mainly due to its extended expressiveness – in the context of
a model of a healthcare system.

With regards to future work, we aim to develop an integrated
stochastic performance analysis toolset with a Performance
Tree front-end and a Grid-based computational back-end that
integrates several efficient numerical algorithms for passage
time, transient and steady-state analysis. Once a Grid-enabled
analysis back-end is in place, we will be able to model and
analyse large systems of industrial scale.

APPENDIX

Table II gives semantics for remaining basic operators.

A. Dist operator

The passage time distribution operator transforms a passage
time density into a passage time distribution.

JDistK :: (R→ R) → (R→ R)

Dist(PTD(E))= IP(0 < TE ≤ t) =
∫ t

0

fE(t) dt

where TE is the random variable corresponding to the first
passage time of the passage defined byE, with a pdf offE(t).

B. Conv operator

This operator represents the convolution of two passage time
densitiesptdf1 andptdf2.

JConvK :: (R→ R)× (R→ R) → (R→ R)

Conv(f(t), g(t)) =
∫ t

0

f(τ) g(t− τ) dτ

where f(t) = ptdf1 and g(t) = ptdf2 Section V-B1 for the
Laplace construction of the convolution.

C. StatesAtTime operator

This operator selects the states that the system can occupy at
a given time instant within a probability range.

JStatesAtTimeK :: R×R×R→ 2S

StatesAtTime(Num(t,time),[. . . ](Num(p1,prob),Num(p2,prob)))={
s : S | p1 ≤ ProbInStates(·,s,t)≤ p2

}

D. SS:S operator

This operator selects the set of states that have a steady-state
probability of a certain value, represented by an interval.

JSS:SK :: Θ×R×R→ 2S

SS:S(States(I,start), [. . . ](Num(p1,prob),Num(p2,prob)))={
s : S | p1 ≤ SS:P(s)≤ p2

}

E. InInterval operator

This operator checks whether a given numerical value lies in
a particular interval.

JInIntervalK :: R× (R×R) → B

InInterval(F,[ . . . ](Num(r1,·),Num(r2,·))) ={
true iff r1 ≤ F ≤ r2
false otherwise

whereF = ProbInInterval(E) | Moment(E) | FR(E) | +
(E) | − (E) | ∗ (E) | /(E) | (̂E) | SS:P(E) |
ProbInStates(E).



Operation Node Description

? Represents the overall result of a performance query. It is the topmost node in every tree.
; Multiple independent queries can be joined together by this node, so that only one query is

submitted for analysis. It represents a vector of results of the independent queries.
PTD Represents a passage time density, calculated from a given set of start and target states, as well

as optional additional constraints on excluded states.
Dist Represents a passage time distribution that is obtained from a passage time density.
Conv Represents a convolution of two passage time densities.
ProbInInterval Represents the probability with which a passage takes place in a certain amount of time.
ProbInStates Represents the transient probability of the system being in a given set of states at a given instant

in time.
Moment Represents a specified raw moment of a passage time density.
FR Represents the mean occurrence of an action / firing rate of a transition.
SS:P Represents the steady-state probability distribution for a given set of states.
SS:S Represents a set of states that have a certain steady-state probability.
StatesAtTime Represents the set of states that the system can occupy at a given time.
InInterval A boolean operator that determines whether a numerical value is within an interval or possibly

within multiple intervals.
⊆ A boolean operator that determines whether a set is included in or corresponds to another set.
∨, ∧ Represent a boolean disjunction or conjunction of two logical expressions.
¬ Represents boolean negation of a logical expression.
>, ≥, ==, ≤, < Represent arithmetic comparisons of two numerical values.
+, −, ∗, /, ˆ Represent arithmetic operations on two numerical values.

Value Node Description

States Represents a set of states (identified by state labels).
Actions Represents a set of actions (identified by action labels).
Num Represents a real number.
Bool Represents a boolean value.
J. . .K Represents a numerical range.
StateFunc Represents a function applied to a state that returns a real number.

Tab. I
DESCRIPTION OFPERFORMANCETREE OPERATION AND VALUE NODES

Operation Syntax Semantics

⊆ 2AP × 2AP → B ⊆ (x, y) =

¡
true iff x ⊆ y
false otherwise

> R×R→ B > (x, y) =

¡
true iff x > y
false otherwise

≥ R×R→ B ≥ (x, y) =

¡
true iff x ≥ y
false otherwise

< R×R→ B < (x, y) =

¡
true iff x < y
false otherwise

≤ R×R→ B ≤ (x, y) =

¡
true iff x ≤ y
false otherwise

== R×R→ B == (x, y) =

¡
true iff x == y
false otherwise

∧ B × B → B ∧(x, y) =

¡
true iff x = true andy = true
false otherwise

∨ B × B → B ∨(x, y) =

¡
true iff x = true or y = true
false otherwise

¬ B → B ¬(x) =

¡
true iff x = false
false otherwise

+ R×R→ R +(x, y) = x + y
− R×R→ R −(x, y) = x− y
∗ R×R→ R ∗(x, y) = x ∗ y
/ R×R→ R /(x, y) = x/y
ˆ R×R→ R ˆ(x, y) = xy

? E → E ?(E) = E
; E × . . .× E → [E, . . . , E] ; (q1, . . . , qn) = [r1, . . . , rn]

where[r1, . . . , rn] is a vector of the individual results of the queries
(q1, . . . , qn) respectively.

Tab. II
SEMANTICS FOR REMAINING PERFORMANCETREE OPERATORS
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