
Performance Trees: A New Approach to Quantitative Performance Specification

Tamas Suto
Department of Computing
Imperial College London

180 Queen’s Gate
SW7 2BZ London

suto@doc.ic.ac.uk

Jeremy T. Bradley
Department of Computing
Imperial College London

180 Queen’s Gate
SW7 2BZ London

jb@doc.ic.ac.uk

William J. Knottenbelt
Department of Computing
Imperial College London

180 Queen’s Gate
SW7 2BZ London

wjk@doc.ic.ac.uk

Abstract

We introduce Performance Trees (PTs), a novel repre-
sentation formalism for the specification of model-based
performance queries. Traditionally, stochastic logics have
been the prevalent means of performance requirement ex-
pression; however, in practice, their use amongst system
designers is limited on account of their inherent complexity
and restricted expressive power. PTs are a more accessible
alternative, in which performance queries are represented
by hierarchical tree structures. This allows for the conve-
nient visual composition of complex performance questions,
and enables not only the verification of stochastic require-
ments, but also the direct extraction of performance mea-
sures. In addition, PTs offer a superset of the expressive-
ness of Continuous Stochastic Logic (CSL) since all CSL
formulae can be translated into PT form.

Performance Trees can be used to represent passage
time, transient, steady-state and higher order queries of
varying levels of sophistication. While they are concep-
tually independent of the underlying stochastic modelling
formalism, in many cases the tree operators we use are al-
ready backed up by good algorithmic and tool support for
both stochastic verification and performance measure ex-
traction. We do not therefore perceive major barriers to
the integration of PTs into existing stochastic model check-
ing tools. Indeed, we illustrate how semi-Markov passage
time computation algorithms, based on numerical Laplace
transform inversion, can be directly applied to the resolu-
tion of a case study PT query.

1 Introduction

Systems engineers are faced with high expectations to
design and build systems that meet end-user operational
performance requirements – an especially challenging task
for large-scale, high-throughput distributed systems, such

as cluster computers and telecommunication networks. An
established pipeline for determining whether a given system
meets its expected performance is to:

a. construct a mathematical model of its operation (using
some stochastic modelling formalism),

b. express associated performance-related queries in
terms of requirements and measures (using a stochastic
logic or other methodology),

c. apply specialised stochastic model checking or quanti-
tative analysis software to resolve the queries.

This paper focuses primarily on step (b) of the process, but
we also present a brief overview of steps (a) and (c) in order
to convey a clearer understanding of the wider context of
our work.

1.1 Stochastic Models

Many real-life systems exhibit random or probabilistic
behaviour, which makes it difficult to predict individual
events. However, it is often possible to use probability dis-
tributions to characterise and model this behaviour math-
ematically. Stochastic modelling formalisms encapsulate
such systems of distributions in an elegant manner. Vari-
ous formalisms exist, each of which characterises system
behaviour at a different level of abstraction. We distin-
guish between two levels of models.Low-levelmodelling
formalisms, such as Markov processes, semi-Markov pro-
cesses (SMPs) [21] and generalised semi-Markov processes
(GSMPs) [20], provide a raw representation of the system
in terms of its states and transitions, and in many cases are
amenable to numerical analysis.High-levelmodels, such
as stochastic Petri nets (SPNs) [1] and stochastic process
algebras (SPAs) [12,15] abstract the level of detail required
for model specification and avoid the need for the tedious
enumeration of every system state and transition. Whilst

it is sometimes the case that analysis can be performed on
the high-level model directly, these are usually mapped onto
low-level models for detailed performance analysis.

1.2 Performance Query Specification

Having created a stochastic model of the system, it needs
to be decided what performance measures are of interest.
For example, it may be part of a service level agreement
that 95% of the time, an SMS message should take less
than 5 seconds to travel between mobile phone handsets.
It is common to capture such requirements in a logical for-
mula, using a language such as CSL (see Section 2.1). This
exploits the strength of logical performance specification,
namely the ability to compose performance-related require-
ments systematically and concisely.

It might be natural to assume that the task of posing
performance queries is solved by the use of stochastic log-
ics, but it is not as simple as that. Two criticisms of such
formalisms might be that they obscure the question being
asked and do not provide the modeller with a complete set
of usable performance questions. Many performance ques-
tions of value to system designers can not be asked, due
to the limitation in expressiveness of current stochastic log-
ics. Such questions may relate to performance measures
that need to be extracted from the model directly in some
way. In addition, performance engineers are often unsure
as to what measures of performance should be used dur-
ing analyses in order to obtain the most relevant feedback.
Meaningful analysis results can only be expected if the sys-
tem designer has a complete understanding of the full range
of performance queries that can be expressed. In this paper,
we seek to present a new framework for performance query
specification which:

1. allows the specification of performance queries in a
clearer and more accessible way,

2. provides an enlarged set of performance questions to
the modeller and allows not only performance require-
ment verification, but also the extraction of quantita-
tive performance measures of interest,

3. maintains the ability to express performance measures
concisely, compositionally and systematically.

1.3 Stochastic Model Checking

Once the model representation of the system is available
and the necessary performance-related queries have been
specified, they can be submitted to a model checker (such as
PRISM [19], ETMCC [14], MRMC [17] or the APNNtool-
box [9]) for validation, or to a quantitative analyser (such as
SHARPE [16], DNAmaca [18], SPNP [10] or M̈obius [11])
for measure extraction.

Most current model checkers are not enabled to perform
performance measure extractions; therefore a significant
limitation exists that constrains the scope of system anal-
ysis. We aim to address this problem when further develop-
ing tool support for our formalism, and intend to implement
a combined model checker and quantitative analyser.

The remainder of this paper is organised as follows. In
the next section, we present various flavours of stochastic
logics for performance-related requirement representation.
Section 3 provides an overview of various types of use-
ful performance queries. Section 4 introduces the Perfor-
mance Tree formalism for performance query representa-
tion, which is contrasted with stochastic logics in Section 5.
Section 6 shows a worked example of a Performance Tree
query with numerical results. Section 7 concludes and con-
siders future work.

2 Logical Performance Specification For-
malisms

This section introduces related performance specifica-
tion formalisms. It also serves to give an overview of the
distinct types of performance query that these different for-
malisms address. This catalogue of performance questions
was the foundation of the design of the Performance Tree
specification system of Section 4.

2.1 CSL

The most prevalent performance-enabled logic isCon-
tinuous Stochastic Logic (CSL)[2, 3, 5, 6], which can be
considered to provide the framework for all other extended
stochastic logic formalisms. CSL operates on continuous-
time Markov chains on the state level. Performance re-
quirements are expressed as formulae, which can be of two
types. State formulae are true or false in a specific state,
while path formulae are true or false along a specific path
of the underlying model. The logic has the power to express
steady-state, path-based and nested constraints. The syntax
for these constructs is as follows:

σ
def= tt | a | ¬σ | σ ∧ σ | S./p(σ) | P./p(ϕ)

ϕ
def= X Iσ | σ UIσ

tt represents a truth value, while atomic propositiona holds
in stateσ if σ is labelled witha. S./p(σ) asserts that the
aggregate steady-state probability for the states satisfying
σ meets the bound./ p, i.e. either≤ p or ≥ p, since
./ ∈ {≤,≥}. P./p(ϕ) expresses a constraint on the paths
satisfyingϕ to meet the bound./ p. Paths are defined by
ϕ, which can take the form ofX Iσ or σ1 UIσ2. TheX Iσ
path formula asserts that a transition is made to aσ state at

some time,t ∈ I, while σ1 UIσ2 asserts thatσ2 is satis-
fied at some time instant in the time intervalI, while at all
preceding time instantsσ1 holds.

2.2 aCSL / asCSL

aCSL[13] is an action-oriented variant of CSL, which is
able to describe behaviours of interest. It is derived from
stochastic process algebras, which model systems by de-
scribing their possible action behaviours. The fundamental
premise underlying aCSL is that a state is more naturally
described by the action behaviour it exhibits, and thus per-
formance measures should be specified, in part, using action
constraints. This logic enables the reasoning about system
behaviours on a state-based model, enhanced with relevant
action information. State formulae are defined just like the
σ formulae in CSL, however, aCSL augments path formulae
with the following:

ϕ
def= σ AU<tσ | σ AU<t

B σ

The path formulaσ1 AU<tσ2 is satisfied by a path if aσ2

state is eventually reached in at mostt time units by visiting
σ1 states and performingA-transitions only. σ1 AU<t

B σ2

requires in addition that a move into aσ2 state is performed
and that this move is effected by transitionB. The formula
X<t

A σ can be derived, sinceX<t
A σ ≡ tt ∅U<t

A σ.
asCSL[4] was originally developed to characterise ex-

ecution paths of action- and state-labelled Markov chains
and to subsume CSL and aCSL. Path properties are charac-
terised by regular expressions over actions and state formu-
lae, in conjunction with time bounds. The CSL path formu-
lae need to be amended in the following manner:

ϕ
def= ε | σ b | ϕ ; ϕ | ϕ ∪ ϕ | ϕ∗

whereε is the empty word andb ∈ Act ∪ Act′, given that
Act′ 6∈ Act, whereAct is a finite set of action labels and
Act′ is a pseudo-action which effects no state change. ‘;’
denotes sequential composition,i.e. concatenation;∪ rep-
resents alternative choice, and∗ stands for then-fold se-
quential composition for arbitraryn ≥ 0.

2.3 eCSL

eCSL[7] is defined over a higher level of models, namely
semi-Markov stochastic Petri nets (SM-SPNs). These are
semi-Markov extensions of conventional stochastic Petri
nets whose state spaces map onto underlying semi-Markov
processes. In contrast to other logical formalisms, eCSL
operates on the model level, rather than at the state level.
It was designed to represent a broader spectrum of perfor-
mance requirements, including constraints on transient state
distributions. eCSL does not support compound formulae,
and thereby simplifies the representation mechanism. It also

introduces separate layers for the specification of sets of
states and of performance criteria. Its syntax is as follows:

σ
def= tt | ¬σ | σ ∧ σ | p[N]

ϕ
def= tt | ¬ϕ | ϕ ∧ ϕ | Sρ(σ) | T τ

ρ (σ, σ) |
Pτ

ρ (σ, σ)

p[N] defines a marking of the SM-SPN by specifying that
placep containsN tokens.Sρ(σ) is true if the steady-state
probability of occupying the set of states identified byσ lies
in the setρ. T τ

ρ (σ1, σ2) is satisfied by a set of start states
if the probability of occupying states denoted byσ1 at time
t, while not having visited states in the set denoted byσ2,
lies in ρ for all timest ∈ τ . Pτ

ρ (σ1, σ2) is true for a set of
start states if the time taken to complete the passage to the
set of target states identified byσ1, while not having passed
through the set of states marked byσ2 en route to the target
states, lies in the rangeτ with probabilityp ∈ ρ.

3 Performance Query Classification

In this section, we classify the types of performance
queries that are useful to performance modellers, and
present examples to demonstrate their application. In doing
so, we will distinguish between two kinds of performance
uery: aperformance requirementand aperformance mea-
sure. A performance requirement describes a property re-
lated to stochastic behaviour that must be satisfied by a sys-
tem model; such a requirement is traditionally phrased in
terms of a stochastic logic formula, which can be verified as
true or false by a stochastic model checking tool. A perfor-
mance measure is a more general concept that enables the
extraction of quantitative measures of various kinds from
a system model. These measures include densities or quan-
tiles of response time, mean time to failure, system through-
put and so on. Evaluation of performance queries is enabled
by quantitative analysis tools.

3.1 Passage time queries

Passage time queries address requirements for the time
needed for the system to reach a particular state or a set
of states, having started from a given state or set of states.
These requirements are useful when measuring system re-
sponsiveness. We can see from the examples below that
even from a passage time query, distinct return types are
possible, according to the performance quantity that is re-
quired:

1. “What is the distribution of time for the passage be-
tween the set of states S and the set of states T?”

2. “What is the average time until the system reaches the
set of states T, having started from the set of states S?”

3. “Does a passage between the set of states S and the set
of states T occur within the time interval[0, 10] with
probability lying in the range[0.9, 0.98]?”

Query 1 is expecting a (cumulative) distribution function
for the passage time, Query 2 an average value (the first
moment) of the passage time and Query 3 a truth value.
When considering passages, we might want to narrow them
even further by specifying that we require the passage to
exclude a given set of states, meaning that the set of states
should not be encountered en route to the target states. The
following query illustrates these restrictions:

4. “What is the probability of the passage from the set
of states S to the set of states T completing in71 time
units, provided that the set of states E must be avoided
along the passage?”

3.2 Transient queries

Transient queries relate to the probability of the system
being in a particular state or a set of states at a time instantt.
They can be used to assess system reliability, since they can
take the likelihood of the system entering a failure mode at
a given time into account. Transient queries typically have
three return types, namely a probability measure, a set of
states or a truth value,e.g.

5. “Is the probability that the system will be in the set of
states T at time instant40, given that the system has
originally started from the set of states S, greater than
0.87?”

6. “What states does the system occupy at time instant40
with probability exceeding0.2?”

3.3 Steady-state queries

Steady-state queries target the relative frequency of state
occupancy for a set of states within a model. Long-run aver-
ages of resource-based metrics, such as availability or util-
isation, can be expressed using steady-state measures. The
idea of the long-run is based on the assumption that the sys-
tem eventually reaches “equilibrium” (often referred to as
the “steady-state”). Examples of different return types from
steady-state queries include:

7. “What is the steady-state probability of being in one of
the set of states T?”

8. “Out of the set of states S, which states have a steady-
state probability greater than0.12?”

Query 8 is interested in finding a probability value and
Query 9 aims at obtaining a set of states as the result. A
special kind of steady-state measure is the firing rate of a

transition. It is classified into this category, because steady-
state values are used in the relevant numerical calculations.
Query 10 provides an example for this:

9. “What is the productivity of the system, defined as the
sum of the mean firing rate of action ‘processed at A’
multiplied by 100, and the mean firing rate of action
‘processed at B’ multiplied by 200?”

3.4 Higher order queries

Queries can be extended to include additional restric-
tions. A change of state in a system is effected by an action.
Hence, it may be of interest to specify, as in the previous
case, a set of included or a set of excluded actions, in order
to observe the behaviour and development of the system,
given that certain actions do or do not occur. The following
examples illustrate this concept:

10. “What is the variance of the passage time defined over
the set of start states S and the set of target states T,
with the constraint that action′processed′ takes place
at least once and that actions′halt′ and ′fail′ do not
occur during the passage?”

As mentioned previously, queries can consist of multiple
performance requirements and measures. These can be
composed together, with the result that the model checker
or quantitative analyser will evaluate the individual require-
ments sequentially and produce separate results. Such
queries could take the following form:

11. “What is the probability that a passage from the set of
states S to the set of states T will complete in50 time
units, and what is the density of time that it takes to
complete this passage?”

12. “What is the average time required to complete the
passage defined by the convolution of the passage from
the set of start states S1 to the set of target states
T1 with the passage from the set of start states S2 to
the set of target states T2, having the additional con-
straint that the set of states E is excluded from both
passages?”

4 A Tree Formalism for Query Representa-
tion

In the past, as outlined in Section 2, various logical for-
malisms have been designed for the representation of per-
formance requirements. However, even though these logi-
cal formalisms are very powerful, they lack the accessibility
necessary to attract a larger and more diverse user base, and
they are also unable to express certain types of performance

requirements. As can be seen from the previous examples,
performance queries can become fairly complex. Hence, it
is desirable to devise a concise, yet complete representation
that summarises the essence of a query in a less esoteric
way than stochastic logics do. To cater for this requirement
and to overcome the indicated shortcomings, we have de-
veloped thePerformance Treeformalism, a graphical alter-
native for compositional performance query specification,
based on a hierarchical tree structure. We propose a general
framework that allows for the expression of a wide range of
performance requirements and measures in a uniform man-
ner, regardless of the underlying modelling formalism.

A particular instance of a Performance Tree consists of
various nodes interconnected by arcs. Nodes in the tree can
be of two types. They can either represent operations or
values. Anoperation nodehas inputs and outputs, which
are represented by subnodes and supernodes respectively.
They symbolise operations that will be performed during
the verification and analysis procedure.Value nodes, on
the other hand, only carry information that form the funda-
mental building blocks of the performance query, and hence
have no subnodes. They symbolise the arguments of the op-
erations. The following syntax describes the operation and
the possible arguments (subnodes) of each node.

4.1 Syntax

4.1.1 Operation Nodes

The ? operator is the topmost node of a tree. It rep-
resents the overall result of the performance query.

? ::= ; | ∨∧ | ¬ | ./ | ⊕ | PTD | Dist | Moment

| Conv | InInterval | InStates| ProbInInterval

| ProbInStates| SS:P | SS:S| FR | StatesAtTime

The ; operator is the sequential execution operator, which
allows multiple performance requirements and measures
to be composed together into one performance query.
This operator is especially useful for the identification of
optimisation opportunities across several sub-queries. The
operator must have at least two subnodes and its result is
the list of combined results of the individual sub-queries it
combines.

; ::= (∨∧ | ¬ | ./ | ⊕ | PTD | Dist | Moment

| Conv | InInterval | InStates| ProbInInterval

| ProbInStates| SS:P | SS:S| FR

| StatesAtTime)2..∗

The∨∧ operator performs a boolean disjunction or conjunc-
tion operation.∨∧ ∈ {∨, ∧}. It has two arguments, both of
which need to represent a truth value.

∨∧ ::= (∨∧ | ¬ | ./ | InInterval | InStates| Bool)2

The¬ operator performs a boolean negation operation. It
has one argument, which must represent a truth value.

¬ ::= ¬ | ∨∧ | ./ | InInterval | InStates| Bool

The ./ operator performs a binary comparison operation.
./ ∈ {<, ≤, =, ≥, >}. It has two arguments, both of
which have a numerical value, and it returns a truth value.

./ ::= ([⊕ | Num | Moment | ProbInInterval |
ProbInStates| SS:P | FR] × (⊕ | Num))
| Moment, Moment| SS:P, SS:P| FR, FR

| ProbInInterval, ProbInInterval

| ProbInStates, ProbInStates

The⊕ operator represents an arithmetic operation.⊕ ∈
{+, −, ∗,÷}. It has two arguments, both of which have a
numerical value, and it returns a numerical result.

⊕ ::= ([⊕ | Num | Moment | ProbInInterval

| ProbInStates| SS:P | FR] × (⊕ | Num))
| Moment, Moment| SS:P, SS:P| FR, FR

| ProbInInterval, ProbInInterval

| ProbInStates, ProbInStates

The PTD operator represents a passage time density. The
arguments (subnodes) define the passage and the node itself
represents the density of time for the passage to take place
between two sets of states. There must always be at least
two sets of states provided (start and target states), but op-
tional constraints relating to actions, states or rewards (rep-
resented by the range operatorJ. . .K) can also be supplied.

PTD ::= States2..4 | States2..4, Actions1..2 | States2..4,

J. . .K | States2..4, Actions1..2, J. . .K

The Dist operator represents a (cumulative) passage time
distribution. It takes a passage time density as an argument
and converts it into a passage time distribution.

Dist ::= PTD

The Conv operator represents the convolution of two pas-
sage time densities or distributions. The operator takes two
arguments, which can both either be densities or distribu-
tions, and returns the convoluted function.

Conv ::= PTD, PTD | Dist, Dist

The Moment operator represents the raw moments of a

passage time density function. A single moment generat-
ing function can provide us with multiple valuable metrics,
since we can derive any number of central moments, the first
of which is the expected value, second the variance,etc.The
operator has two arguments; the first being the rank of the
moment that we want to calculate (e.g. 3rd moment) and
the second being the passage time density, distribution or
convolution that we calculate the moments from. The result
is a numerical value.

Moment ::= Num, PTD | Num, Dist | Num, Conv

The SS:P operator represents the steady-state probability
for a given set of states.

SS:P ::= States

The SS:Soperator represents the set of states that out of
a specified set of states has a steady-state probability of a
certain value or within a certain range.

SS:S ::= States, Num| States, J. . .K

TheFR operator represents the average firing rate of a cer-
tain transition,i.e. the average occurrence of a certain ac-
tion.

FR ::= Actions

The InInterval operator determines whether a numerical
value is within a certain interval or within multiple inter-
vals. It returns a truth value.

InInterval ::= [ProbInInterval | Moment | FR | ⊕
| SS:P | ProbInStates] × [J. . .K]1..∗

The InStates operator is responsible for returning a truth
value that expresses whether a certain state or set of states
is included in or corresponds to another set of states.

InStates ::= States, States

The ProbInInterval operator returns the probability with
which the passage takes place in a certain amount of time,
defined by a time range.

ProbInInterval ::= PTD, J. . .K1..∗ | Conv, J. . .K1..∗

The ProbInStates operator corresponds to the transient
probability of being in a certain set of states at a given in-
stant in time, having started from a particular set of states.
The first argument is the set of start states, the second the
set of target states and the third the time instant of interest.

ProbInStates ::= States, States, Num

TheStatesAtTimeoperator returns the set of states that the
system can occupy at a given time instant with a certain
probability. The first argument represents the time instant
and the second the probability value or range.

StatesAtTime ::= Num, Num| Num, J. . .K

4.1.2 Value Nodes

The J. . .K node represents a range / interval. It has two ar-
guments, both of which have a numerical value.

J. . .K ::= ([⊕ | Num| Moment | ProbInInterval |
ProbInStates| SS:P | FR] × (⊕ | Num))
| Moment, Moment| SS:P, SS:P| FR, FR

| ProbInInterval, ProbInInterval | ProbInStates,

ProbInStates

The Statesnode represents a set of states. The first an-
notation identifies the set of states either through state
labels or by referencing states directly, and the sec-
ond annotation is a label representing the type of the
states. Labels identify states by specifying conditions
on the model. We have two sets of atomic proposi-
tions, SAL = {state and action labels} and TYP =
{start, target, incl., excl., time, prob., reward, mo−
ment, ∅}. We also haveState::= a | tt | State∧ State
| ¬State, wherea ∈ SAL, andType∈ TYP.

States ∼ State, Type

TheActions node represents a set of actions. The first anno-
tation identifies individual actions either through a set of la-
bels or by referencing them directly. The second represents
the type of action. We haveAction ::= a | tt | Action∧
Action | ¬Action, wherea ∈ SALandType ∈ TYP.

Actions ∼ Action, Type

The Num node represents a numerical value. The first
annotation is the numerical value itself, while the second
identifies the type of the numerical value. We have that
Integer∈ Z, Real∈ R andType∈ TYP.

Num ∼ Integer, Type| Real, Type

TheBool node represents a truth value. Its annotation is the
truth value itself. We have thatBoolean∈ {true, false}.

Bool ∼ Boolean

4.2 Type System

For the type system, the following basic types are used:

num : a numerical value
range : a range of numerical values
bool : a truth value
func : a distribution or density function

states : states of the system
actions : actions that can occur in the system

The type system for the operators used in the formalism is
defined as follows:

? ` (bool | num | func | states)1..∗

; ` (bool | num | func | states)2..∗

∨∧ ` bool, bool : bool

¬ ` bool : bool

./ ` num, num : bool

⊕ ` num, num : num

PTD ` states2..4 | states2..4, actions1..2 |
states2..4, range | states2..4,

actions1..2, range : func

Dist ` func : func

Conv ` func, func : func

Moment ` num, func : num

SS:P ` states : num

SS:S ` states, num| states, range : states

FR ` actions : num

InInterval ` num, range1..∗ : bool

InStates ` states, states : bool

ProbInInterval ` func, range1..∗ : num

ProbInStates ` states, states, num : num

StatesAtTime ` num, num| num, range : states

J. . .K ` num, num

4.3 Examples

Performance Trees are best appreciated when demon-
strated on specific examples. The performance queries in-
troduced earlier are ideal candidates for the visualisation of
the concept.

A good example of passage time requirements is Query
3 (cf. Section 3.1), which is seeking for a truth value that
determines whether a passage between two sets of states
occurs within a specified interval of time with probability
lying in a given range.

?

InInterval

PTD

States States

S T

[...]

Num Num

[...]

Num Num

ProbInInterval

0.9

start target

0.98prob. prob.

time10time0

Figure 1. Query 3

In terms of transient requirements, Queries 5 and 6 are
relevant. Query 5 aims at finding the probability of the sys-
tem occupying a set of states at a given time instant, while
Query 6 is interested in the set of states that the system oc-
cupies at a given time with a given probability.

?

[...]

NumNumStates

S

States

start

ProbInStates

Num

targetT 40 time 0.87 prob. 1 prob.

InInterval

Figure 2. Query 5

Interesting requirements in terms of steady-state are con-
tained in Queries 8 and 9. Query 8 is interested in obtain-
ing a set of states having a certain steady-state probability,
while Query 9 is looking at system productivity, obtained
through transition firing rates.

?

StatesAtTime

Num

40 Num Num

[...]

time

prob. 1 prob.0.2

Figure 3. Query 6

?

Num

[...]States

S

SS : S

0.12

Num

1prob. prob.

Figure 4. Query 8

Higher order requirements worth looking at are to be
found in Queries 10 and 12. Query 10 addresses the vari-
ance of a passage time, taking into account included and ex-
cluded actions along the passage, while Query 12 is search-
ing for an average value for the passage time, where the
passage is composite, defined by a convolution of two inde-
pendent passage time densities.

processed
at A

* *

?

+

100

NumFR

200

processed
at B

NumFR

Actions Actions

Figure 5. Query 9

Num

Actions

excl.halt

PTD

?

Moment

S

States

target

Statesmoment2 Actions

processedTstart incl.

Figure 6. Query 10

5 Performance Trees vs. Stochastic Logics

As we have demonstrated, the Performance Tree formal-
ism is well-equipped for specifying a large variety of system
performance-related queries. The advantage of using Per-
formance Trees as a representation mechanism lies in their
broad expressiveness and the fact that they can be applied
to general stochastic systems, without the need to rely on
any underlying modelling methodology in particular. A fur-
ther appealing feature is that they can not only be used for
the verification of properties on stochastic models, but also
for the extraction of valuable measures from them (such as
obtaining passage time distributions and densities, higher
moments, firing rates of actions,etc.).

In contrast, stochastic logics have been used successfully
for some time now and have subsequently firmly established
themselves in the performance community as the represen-
tation formalism of choice for stochastic model checking.
Even though they enjoy such popularity, we believe that
current stochastic logics lack a certain degree of expressive-
ness that would in many cases be desirable. It is possible
to introduce extensions to existing logics or to merge them
into new, possibly more powerful formalisms, in order to
extend the range of requirements that can be catered for,
but we regard Performance Trees as a more powerful and
more convenient alternative. In addition, most of the un-
derlying mathematical techniques and tools necessary for
evaluating queries expressed as Performance Trees already
exist. Also, due to the ability to depict performance query
representations graphically, in a way that reflects the logi-
cal structure of natural language performance queries, Per-
formance Trees can be understood and used perhaps more

Num Conv

?

Moment

PTDPTDmoment1

States

start

States

target

States

E excl.

States

start

States

target

States

E excl.S1 T1 S2 T2

Figure 7. Query 12

naturally than stochastic logic formulae.
The Performance Tree formalism subsumes CSL, since

it is capable of expressing everything that CSL can. How-
ever, to emphasise the differences in terms of expressive-
ness between the two formalisms, we give a brief list of
the types of requirements that stochastic logics are unable
to represent, but which Performance Trees were designed
to express: distributions, densities and convolutions, higher
moments, firing rates of transitions, arithmetic operations,
included states and excluded actions along a passage and
multiple probability and time intervals. To show that Per-
formance Trees do indeed subsume CSL, we present below
how the mapping of CSL model checking questions onto
Performance Trees is carried out.

A CSL model checking question has the forms |=
σ. The purpose of model checking is to verify whether
the satisfaction relation holds for a particular states and
formula σ. For the mapping, we employ the func-
tion f(s, x), where s is a state andx is a CSL for-
mula. f translates a CSL model checking question
into the corresponding Performance Tree representation.

f(s, tt) = ?(tt)
f(s, a) = ?(InStates(States(a), States(L(s)))

f(s,¬σ) = ?(¬(f(s, σ)))
f(s, σ1 ∧ σ2) = ?(∧(f(s, σ1), f(s, σ2)))
f(s,S./p(σ)) = ?(./ (

SS:P(States({x : f(x, σ)})),
Num(p, prob.)))

f(s,P./p(σ1UIσ2)) = ?(./ (
ProbInInterval(
PTD(
States({s}, start),
States({x : f(x,¬σ1)}, excl.),
States({x : f(x, σ2)}, target)),

g(I)),
Num(p, prob.)))

wherea ∈ SAL andL : S → 2SAL is a labelling func-

tion that assigns to a state in the finite set of statesS a
label fromSAL, the set of atomic propositions.g(I) is a
function that converts the intervalI into the range represen-
tation of Performance Trees, such that ifI = [x, y] then
g(I) = [...](Num(x), Num(y)). The Next operatorX Iσ
can be expressed with the Until operator asX Iσ ≡ tt UIσ,
therefore there is no need to have a specific translation rule.

6 Worked Example: Voting system

Below, we present an example of a voting system
from [7] with possible breakdowns and a recovery mech-
anism to illustrate the applicability of the Performance Tree
formalism to real-life systems. The voting system is mod-
elled by an SM-SPN, as shown in Figure 8.

In order to help specify the underlying semi-Markov pro-
cess, the transition specification table on the right of Fig-
ure 8 displays the (selection weight, priority, firing distribu-
tion) triples associated with the transitions in the SM-SPN.
From the model, we can see that a voter can only be pro-
cessed if a polling unit is available and that the vote can
only be counted if a voting server is available. Once a vote
has been processed, the polling unit that dealt with the voter
casting the vote is freed up, as is the voting server that pro-
cessed the vote. We now present a performance query that
is to be executed on the model:

V1. “Can we be98% confident that the voting system will
be in state‘all voters have voted’at time instant730,
given that it started in state‘no voters have voted yet’
at time0?”

This is a passage-related query, so we need to specify start
and target states. We do that by creating relevant labels at
the Petri net level, since states (and actions) are easily iden-
tified in this way. We useS as the label for the set of start
states andT as the label for the set of target states. For the
sake of simplicity, we substituteS for ‘no voters have voted
yet’ andT for ‘all voters have voted’. For labelling pur-
poses, a table is maintained for every model, each entry of
which is a tuple consisting of an identifier and a constraint.
The identifier is a label that stands for a particular set of
reachable states in the model. The model-level identifica-
tion of this set of states is achieved by the constraint, which
needs to be satisfied. In other words, the set of states that
satisfies the constraint is associated with the label. In our
example,S andT are defined as follows:

(S, (not voted , CC)) (T, (voted , CC))

A constraint is dependent on the underlying model, but in
this particular case, it concerns the number of tokens on the
places in the net, since their flow indicates change in the
system. Having defined the necessary labels, we can formu-
late our query as a Performance Tree as shown in Figure 9.

One method that can be used for resolving the query is the

?

Num

prob.

>

[...]

States

S start

States

T target

Num

time

Num

time

ProbInInterval

0

PTD

730

0.98

Figure 9. Query V1: extraction of a passage
time quantile constraint from a density func-
tion

response time analysis method based on numerical Laplace
transform inversion, as described in [8]. When analysing
the voting system with 300 voters in the model, we obtain
a state space of 10.9 million states. Figure 10 shows the
overlap of the density function calculated analytically and
by simulation for the time taken to process all voters. The
Performance Tree specification for this passage time density
is given by the boxed subtree shown in Figure 9. This pas-
sage specification is incorporated into the complete Query
V1 to give the results depicted in Figure 11, which shows
the cumulative distribution function of the same passage, as
well as the quantile of the time taken to process all voters in
the system by time 730. We present a further Performance
Tree query as an instance of a measure that could not be
expressed in CSL:

V2. “What is the expected time until two servers have bro-
ken down in the voting system?”

As before, this is a passage-related query, so we need to
create labelsS andT to define the start and target states of
the passage.

(S, (not voted , CC) ∧ (servers, NN) ∧
(polling units,MM))

(T, (server broken, 2))

Having defined the necessary labels, we can formulate our
query as a Performance Tree as shown in Figure 12. Higher
moments could be extracted as required by the modeller.

7 Conclusions and Future Work

In this paper, we have presented the Performance Tree
framework, which seeks to expand the present boundaries
of performance query specification. Performance Trees in-
troduce a new environment for the verification of perfor-
mance requirements and the quantitative analysis of perfor-
mance measures on stochastic models.

CC

MM

NN

not voted

voted

polling units

vote taken

servers

serversbroken

pollersbroken

NN NN

MM MM

CC

CC

t1t9 t2

t3

t4

t5

t6

t7

t8

SM-SPN Transition specification

t1 → (1.0, 1, exp(0.5, s))
t2 → (1.0, 1,det(0.01, s))
t3 → (0.05, 1, exp(1.5, s))
t4 → (1.0, 1,uni(1.0, 2.0, s))
t5 → (1.0, 2, 0.8 uni(1.5, 10, s) + 0.2 erl(0.2, 5, s))
t6 → (0.01, 1, exp(1.0, s))
t7 → (1.0, 1,uni(2.0, 3.0, s))
t8 → (1.0, 2, gam(0.1, 12.337, s))
t9 → (1.0, 2,det(0, s))

Figure 8. A voting system model with breakdowns and recoveries

0

0.002

0.004

0.006

0.008

0.01

0.012

500 550 600 650 700 750 800

P
ro

ba
bi

lit
y

de
ns

ity

Time

Passage time density: 10.9 million state voting model
Error from 10 simulation runs of 1 billion transitions each

Figure 10. Density function for completed
voting passage time in the voting model.

0

0.2

0.4

0.6

0.8

1

500 550 600 650 700 750 800

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Time

Cumulative passage time distribution: 10.9 million state voting model

Figure 11. Cumulative distribution function
for voting model. Probability of having com-
pleted voting by time 730 is 0.9876.

Num

moment1 States

T targetS start

States

PTD

?

Moment

Figure 12. Query V2: a moment calculation
for a passage time density

The main reason for this is the extended expressiveness
of the formalism, which allows us to formulate a multi-
tude of performance queries that were previously not for-
mally expressible. The relative ease of constructing these
queries is an important factor that sets Performance Trees
apart from other formalisms, which are mostly based on
obfuscating logical expressions that require an expert un-
derstanding for effective application.

Since most existing model checkers are based on
stochastic logics, it is clear that no one existing tool can
currently resolve the full range of queries expressible in
our new representation. However, we anticipate no diffi-
culties for existing tools to incorporate an interface for Per-
formance Trees. This would facilitate the implementation
of a “meta-tool” environment with a complete analysis ca-
pability. Alternatively, since algorithms used in these tools
are accessible via public literature, a more ambitious goal

would be to construct a large open-source integrated analy-
sis toolset. Such a system will also give rise to new opportu-
nities for the integration of previously unexploited methods
for the parallelisation, distribution and optimisation of com-
putation in model checking and quantitative analysis.

Below is a diagram of the proposed workflow from the
initial composition of a performance query to the final result
obtained from its verification on the model. Work targeted

Model

Result

Quantitative Analyser
Model Checker

Performance Requirements

Performance Measures

Performance Tree Query

at developing tool support for the design and subsequent
analysis of Performance Trees is in progress, forming part
of the GRAIL1 project. Future publications will detail the
applicability of Performance Trees to a variety of modelling
formalisms, present formal semantics and discuss appropri-
ate underlying mathematical analysis methods.

References

[1] M. Ajmone Marsan, G. Conte, and G. Balbo. A class of gen-
eralized stochastic Petri nets for the performance evaluation
of multiprocessor systems.ACM Transactions on Computer
Systems, 2(2):93–122, May 1984.

[2] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Verifying
continuous-time Markov chains. InComputer-Aided Verifi-
cation, volume 1102 ofLNCS, pages 269–276, 1996.

[3] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Model
checking continuous-time Markov chains.ACM Transac-
tions on Computational Logic, 1(1):162–170, 2000.

[4] C. Baier, L. Cloth, B. R. Haverkort, M. Kuntz, and
M. Siegle. Model checking action- and state-labelled
Markov chains. DSN’04, Proc. Intl. Conf. on Dependable
Systems and Networks, pages 701–710, June 2004.

[5] C. Baier, B. R. Haverkort, H. Hermanns, and J.-P. Katoen.
On the logical characterisations of performability properties.
In Proc. ICALP 2000, volume 1853 ofLNCS, pages 780–
792, 2000.

[6] C. Baier, B. R. Haverkort, H. Hermanns, and J.-P. Ka-
toen. Model-checking algorithms for continuous-time
Markov chains. IEEE Transactions on Software Engineer-
ing, 29(6):524–541, June 2003.

[7] J. T. Bradley, N. J. Dingle, W. J. Knottenbelt, and P. G.
Harrison. Performance queries on semi-Markov stochastic
Petri nets with an extended Continuous Stochastic Logic.
In PNPM’03, Proc. Petri Nets and Performance Models,
pages 62–71, University of Illinois at Urbana-Champaign,
September 2003.

1“Grid-enabled Performance Analysis using Stochastic Logics”. See
http://aesop.doc.ic.ac.uk/projects/grail for more de-
tails. The project is supported by EPSRC grant EP/D505933/1.

[8] J. T. Bradley, N. J. Dingle, W. J. Knottenbelt, and H. J. Wil-
son. Hypergraph-based parallel computation of passage time
densities in large semi-Markov models.Journal of Linear
Algebra and Applications, 386:311–334, July 2004.

[9] P. Buchholz, J.-P. Katoen, P. Kemper, and C. Tepper. Model-
checking large structured Markov chains.Journal of Logic
and Algebraic Programming, 56:69–96, 2003.

[10] G. Ciardo, J. K. Muppala, and K. S. Trivedi. SPNP: Stochas-
tic Petri Net Package. InPNPM’89, Proc. 3rd Intl. Work-
shop on Petri Nets and Performance Models, pages 142–
151, 1989.

[11] G. Clark, T. Courtney, D. Daly, D. D. Deavours, S. Derisavi,
J. M. Doyle, W. H. Sanders, and P. G. Webster. The Möbius
modeling tool. In B. Haverkort and R. German, editors,Pro-
ceedings the 9th International Workshop on Petri Nets and
Performance Models, pages 241–250. IEEE Computer So-
ciety Press, Aachen, September 2001.

[12] H. Hermanns.Interactive Markov Chains. PhD thesis, Uni-
versiẗat Erlangen-N̈urnberg, July 1998.

[13] H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, and M. Siegle.
Towards model checking stochastic process algebra. InIFM
2000, Proc. 2nd Intl. Conf. on Integrated Formal Methods,
pages 420–439, November 2000.

[14] H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, and M. Siegle.
A tool for model checking Markov chains.Software Tools
for Technology Transfer, 4(2):153–172, 2002.

[15] J. Hillston. A Compositional Approach to Performance
Modelling, volume 12 of Distinguished Dissertations in
Computer Science. 1996.

[16] C. Hirel, R. Sahner, X. Zhang, and K. S. Trivedi. Reliabil-
ity and performability modeling using SHARPE 2000. In
TOOLS 2000, Proc. 11th Intl. Conf. on Computer Perfor-
mance Evaluation, Modelling Techniques and Tools, volume
1786 ofLNCS, page 345, 2000.

[17] J.-P. Katoen, M. Khattri, and I. S. Zapreev. A Markov reward
model checker. InQEST’05, Proc. 2nd Intl. Conf. on the
Quantitative Evaluation of Systems, pages 243–244, Italy,
September 2005.

[18] W. J. Knottenbelt. Generalised Markovian analysis of timed
transitions systems. M.Sc. thesis, University of Cape Town,
South Africa, July 1996.

[19] M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic
symbolic model checking with PRISM: A hybrid approach.
In TACAS’02, Proc. Tools and Algorithms for Construction
and Analysis of Systems, volume 2280 ofLNCS, pages 52–
66, 2002.

[20] J. Matthes. Zur Theorie der Bedienungsprozesse. InTrans-
actions of the 3rd Prague Conference on Information The-
ory, Statistical Decision Functions and Random Processes,
pages 513–528, 1962.

[21] R. Pyke. Markov renewal processes: Definitions and pre-
liminary properties. Annals of Mathematical Statistics,
32(4):1231–1242, December 1961.

