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Abstract. The Association of Tennis Professionals (ATP) and the Women’s Tennis Association (WTA) 

generate weekly rankings for professional tennis players by awarding points to each player depending on 

how far the player has advanced in a countable tournament. Since tournaments are designed such that top 

players face the lower-ranked players in the earlier rounds, a bias is introduced which favours the top 

players. In this paper we demonstrate two new algorithms, SortRank and LadderRank, which rank 

professional tennis players. Both ideas make use of a quantitative tennis model to assess the performance of 

individual players and then compare them with each other. SortRank uses traditional sorting algorithms to 

rank the players using the result of a simulated match between the two players as the comparison criterion. 

LadderRank ranks players using a “sports-ladder” style iterative algorithm, which also compares players 

based on the result of a simulated match between them. Both algorithms are flexible as they can be 

implemented using any underlying quantitative model. The ranking systems are demonstrated and assessed 

based on their ability to predict the outcome of matches played within the period used to rank the players. 

 

1. Introduction 

Professional tennis rankings are at the centre of attention of the tennis world. Both the Association of Tennis 

Professionals (ATP) and the Women’s Tennis Association (WTA) rank professional tennis players and use 

their rankings to decide both the participation of players in tournaments, as well as the ultimate champion of 

the year. Being a top ranked player generates a great deal of prestige and popularity. In fact, most 

professional tennis players have, in one way or the other, mentioned their passion to reach the top of the 

rankings. 

One may argue that any absolute ranking system is by definition flawed when applied to such a complex 

sport in which there is an unknown degree of transitivity and a multitude of parameters to take into account. 

Nonetheless, an overall ranking is a simplistic method of determining who is performing better at the sport 

and captivates both the public and media. Simplistic as it may be, there is a general desire for the overall 

ranking system to be “fair”. Unfortunately rankings, as they are currently calculated, provide the top players 

with an unfair advantage as seeded tournaments make it increasingly difficult for lower ranked players to 

climb the rankings. 

This bias which favours the top players of the rankings, does not only affect the lower ranked players but 

also researchers who have used these rankings as a tool for prediction of match outcomes. Clarke & 

Dyte (2000) propose an approach based on regression which uses ATP ranking points to simulate 

professional tennis matches. Addtionally, del Corral & Prieto-Rodriguez (2010) attempt to assess the degree 

to which the difference in ranking points are good indicators of the outcome of Grand Slam matches.  

Some research has also been directed towards the invention of different ranking systems. Clarke (1994) 

proposed a ranking system which uses a player rating which is adjusted after each match played by the 

player. The adjustment is calculated using exponential smoothing on the difference between an expected 

result suggested from the previous ranking difference, and the actual match result. A more recent method 

was proposed by Radicchi (2011) which makes use of an algorithm similar to Google PageRank by Brin & 

Page (1998). Radicchi uses PageRank by assigning prestige values for all professional players and adjusts 

them relative to the number of victories they achieved against other players. This ranking system can be used 

to rank all players regardless of the time period they were active and thus contributes to an investigation on 

the best player of all time. A few years later, Dingle, et al. (2013) presented further evidence of PageRank’s 

usefullness as a ranking tool for both female and male professional tennis players and also showed that a 

ranking generated using PageRank is a better predictor of match results than the official ATP rankings. 
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In this paper, we provide evidence towards the forementioned bias inherent in the current ATP ranking 

system and we attempt to introduce a new, flexible concept of ranking systems. We compare our ranking 

systems with PageRank for tennis and the official ATP Rankings by quantifying the extend to which they 

reflect the outcome of the set of matches used to generate them and show up-to-date (March 2013) results. 
 

2. ATP Ranking System  

The Emirates ATP Rankings is the official ranking system ATP used for 2013. It is “a historical objective 

merit-based method used for determining entry and seeding in all tournaments” as the official ATP World 

Tour website states. The ranking is generated using a summation of points players acquire while proceeding 

within seeded tournaments. Tournaments themselves are split into categories with some tournaments 

awarding more points than others (see  

Table 1). 

 

Table 1 – ATP Ranking points awarded for main ATP tournament categories. (Additional points are 

awarded from the Barclays ATP World Tour Finals, Olympic Games, Challenger and Futures tournaments 

that are not included in this table. Numbers in brackets are dependent on the tournament draw size. Points for 

qualification are also dependent on draw size.) 
 

 W F SF QF R16 R32 R64 R128 Qual. 

Grand Slams 2000 1200 720 360 180 90 45 10 25 

ATP World Tour Masters 

1000 

1000 600 360 180 90 45 10(25) (10) 25 

ATP 500 500 300 180 90 45 (20) - - 20 

ATP 250 250 150 90 45 20 (5) - - 12 

 

The summation of ranking points is over a maximum of 18 tournaments played within the previous 52 

weeks, out of which four are the Grand Slam tournaments, eight are the compulsory ATP World Tour 

Masters 1000, and the rest are the best six results from the ATP 500, 250 and other tournaments (given a 

minimum of 4 ATP 500 tournament participations). Additionally, players who have finished within the top 

eight rankings at the end of the ATP tennis season, qualify to play at the Barclays World Tour Finals to earn 

points that count towards crowning the final champion of the year. In those years where the Olympics occur, 

the players also win extra points for the position they get in the Olympics. 

While the Emirates ATP Rankings provide accurate rankings for the top 32 players, by design players 

ranked lower than the top 32 are at a disadvantage. The seeded tournament system makes it increasingly 

difficult for lower ranked players to proceed into the latter rounds of tournament and thus earn the necessary 

points to climb the rankings.  

Almost all countable tournaments have seeded players, i.e. the top 16 or 32 players who are participating 

in the tournament have a seeded position. The tournament draw is set up in a way such that the seeded 

players do not face any other seeded players in the first round. The reasoning behind this is to avoid 

situations where top ranked players face off in the earlier rounds and get knocked out earning fewer points. 

This non-random selection of draws creates a bias towards the top 32 players as any players ranked lower 

than that have a much higher chance to face the top players in the early rounds of the tournament and 

therefore have much higher chance of being knocked out without earning the points they deserve. This can 

make it difficult to rank the true performance of these players especially when compared to one another. 

Evidence of this will be presented in the results section later on. 

 On the other hand, seeded tournaments together with the Emirates ATP Ranking system, create a much 

more accurate ranking of the top 32 players when compared to each other. The reasoning behind this is that 

these players get to face each other in higher frequency as they are more likely to proceed in the latter rounds 

and therefore there is a more data on which the rankings are based upon. Additionally, the difference in 

points earned for each victory is higher in the latter rounds. This higher difference in points boosts players 
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who achieve victories against other high ranked players and thus enhances the subtle differences in their 

performance. 
 

3.  Background of Rankings and Tennis Models 

In this section we briefly introduce some tennis models which have been presented in past literature and are 

used in combination with our ranking algorithms, SortRank and LadderRank. We first introduce how one can 

construct a hierarchical Markov model to estimate the probability of a player winning a match against 

another player using only the probabilities of the two players winning points while serving. We then describe 

a Markov model that can be used to calculate the probability of a player winning a point against another 

player while serving. Finally, we briefly present the PageRank ranking system for tennis that is used as a 

comparison system in the results section. 
 

3.1 Hierarchical Markov Model for Tennis 

A study performed by Klaassen & Magnus (2001), shows that even though points in tennis are not 

independent and identically distributed (i.i.d.), one may assume that they are for the purpose of modelling a 

tennis match because the deviation from independency is small. This means that one can estimate the 

probability of a player winning a game while serving or even the probability of a player winning a tiebreaker 

by constructing a Markov Chain of the game/tiebreaker which uses only two parameters, the probabilities of 

the two players winning a point while serving. This is turn allows one to calculate the probability of a player 

winning a set using only the probabilities of each player winning a service game and the probability of a 

player winning a tiebreaker. Finally, one can hierarchically calculate the probability of a player winning a 

match using only the probabilities of the two players winning sets in which they served first. Barnett & 

Clarke (2002) demonstrate this idea using a simple spreadsheet application which recursively calculates the 

probability of a player winning a match from every score-line. 
 

3.2 Low-Level Point Markov Model 

Having discussed how to hierarchically model a tennis match, all that remains is a method to estimate the 

probability of a player winning a point on serve. Spanias & Knottenbelt (2012) present a Markov chain in an 

attempt to model a tennis point and show two techniques of parameterising the model using historical player 

statistics. The first technique, named the “Uncombined” model, estimates the probability of a player winning 

a point while serving against the “average” professional player. The second technique, named the 

“Combined” model, estimates the probability of a player winning a point while serving against a specific 

player by combining serving statistics of the server with return statistics of the receiver. These two models 

will be used in conjunction with the hierarchical Markov model introduced earlier to generate rankings using 

SortRank and LadderRank. 
 

3.3 PageRank Tennis Ranking 

The PageRank tennis ranking system was first introduced by Radicchi (2011) and further investigated by 

Dingle, et al. (2013). It is an effective ranking system for tennis players which we use in this paper as a good 

comparison for the ranking systems introduced by this paper. The system is based on Google’s PageRank 

algorithm summarized in Brin & Page (1998) which is used for ranking websites. 

In order to explain how PageRank can be applied in tennis we need to define a few variables. Let wji be 

the amount of tennis matches player j has lost against player i, and   
    be the total defeats suffered by 

player j. Also let   be a weight factor between 0 and 1 and   be the total number of players being ranked. 

The prestige of player i is then described by the following equation. 
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  , the prestige value assigned to player i, is calculated as the summation of three parts. The first part is 

the amount of prestige that is transferred from player j to player i, the second part is a constant redistribution 
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of prestige and the third part is used as a constant value for players with no outward links (no defeats). An 

algorithm can be designed which will iteratively calculate the prestige of all players until they converge. 

Players are then ranked according to the amount of prestige they hold. 
 

4. SortRank and LadderRank 

SortRank and LadderRank are two similar approaches to ranking professional tennis players. They both use 

an underlying tennis model which estimates the outcome of a simulated match between players and rank 

players based on that outcome. SortRank is a faster algorithm but has the requirement that the underlying 

model is absolutely transitive. LadderRank is a slower algorithm which expands the idea of SortRank taking 

into account the non-transitive nature tennis models may have. This is done by sorting the same players over 

and over even after a regular sorting algorithm would have finalized their position. Also the algorithm has 

the ability to compare players with other players who are not immediately next them. 
 

4.1 SortRank 

The concept behind SortRank is very simple: take any tennis model, convert it into a binary model and then 

use it as the comparison criterion of a sorting algorithm. For example: let’s assume that we have a list of 

players to rank. A sorting algorithm such as QuickSort, as described by Hoare (1961), can be used to sort this 

list of players by using a binary model which outputs a comparison criterion between players.  

A limitation of any sorting algorithm is that it assumes absolute transitivity. This means that if Player A 

can beat Player B and Player B can beat Player C then it must hold that Player A can beat Player C. As a 

concequence, any model that is used as the comparison criterion should also be absolutely transitive.  

An example of a fully transitive model is the “Uncombined” model mentioned in section 3.2. This model 

is transitive by definition as the opponent is not taken into consideration when estimating the parameter of a 

player winning a point while serving. Therefore, the output of any probability from the model is always 

compared against the constant “average” player. This “Uncombined” model can be converted into a binary 

model by using the resulting probability of Player A winning a match against Player B. If this probability is 

greater than 0.5 then the binary model returns “true”, otherwise it returns “false”.  

This binary model can be joined with any sorting algorithm to generate a ranking. For this to happen, the 

sorting algorithm, when comparing two players, A and B, should use the binary model as the comparison 

criterion. That is, if the binary model returns “true” for Player A winning a match against Player B, the 

sorting algorithm places Player A above Player B in the rankings. By completing the algorithm for the entire 

list of players, the end result is a sorted list of players based on their performance, with the best player at the 

top of the list, thus a ranking. 
 

4.2 LadderRank 

To overcome the limitation of absolute transitivity, we constructed a new algorithm that does not assume the 

comparison criterion is absolutely transitive. This algorithm is inspired by normal “sports-ladders”. In a 

“sports-ladder” there is an initial ranked list of players, and each of those players is allowed to challenge 

another player that is ranked up to X positions higher. If the challenger is victorious in the challenge, then 

he/she overtakes the player challenged and pushes everyone in-between one position down. The resulting 

algorithm is described by the pseudo-code below. 

For this algorithm to function correctly it must be provided with these crucial variables: the 

number_of_iterations, the positions_above_allowed_to_challenge and the ranking_list. To ensure complete 

ranking of the players the number_of_iterations must always be larger than the number of players being 

ranked. The positions_above_allowed_to_challenge defines the number of positions in the ranking list that 

any player is allowed to jump after any challenge. Finally the ranking_list is the list of players ranked in an 

initial order. 
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The function PlayerWithRank(integer) which appears in the algorithm retrieves the player which has the 

ranking provided as the integer parameter. The function MovePlayerToRanking(player, integer) changes the 

ranking of the player to the integer value provided and shifts all rankings of players which were between the 

player and the new ranking by 1 position towards the direction of the player’s current ranking. For example 

in a list of three players, A, B and C ranked as 1, 2 and 3 respectively, the function 

MovePlayerToRanking(C, 1) will change the rankings of A, B and C to 2, 3, 1 respectively. 
 

5. Evaluation and Results 

In this section we will present and discuss the results of our implementation of the LadderRank ranking 

system when using the “Combined” model as the comparison criterion. Figure 1 illustrates the top 100 

players in the ATP Official Rankings on the 18
th
 of March 2013 and corresponding LadderRank ranking 

generated over the same period for x=3. It can be observed that players ranked by the ATP in positions 1-32 

are positioned very close to the y=x line. This means that the LadderRank system ranks them in a similar 

position to the ATP ranking system. The two systems start to deviate in the rankings a lot more for players 

ranked in positions greater than 32 by the ATP. This appears to support the theory that seeded tournaments 

deteriorate the accuracy of rankings of players ranked greater than 32 by the current ATP system. In fact 

similar results have been produced using the PageRank ranking system and are also evident in other periods 

(see Dingle, et al. (2013)).  

In Figure 1, any players that appear above the y=x line are players which according to LadderRank are 

ranked higher than they should be by the ATP. Similarly players that appear below the line are players that 

are ranked lower than they should be.  

A striking case is Mardy Fish who has dropped to ATP position 33 on the 18
th
 of March 2013, from being 

number 9 in the world on the 19
th
 of Match 2012. Mardy Fish on the other hand is still ranked in the top 10 

players on the LadderRank system. The reason for this is the underlying model, which uses the average 

statistics of the player over the past year. Therefore the “Combined” model itself does not adapt fast to 

changes in performance of players and as such, the LadderRank ranking did not adapt quickly and is still 

showing Mardy Fish as one of the top players. This can be fixed by using a heavier weighting to more recent 

statistics when calculating the probabilities of winning the point on serve in the underlying model. Therefore 

this is not a problem of the LadderRank algorithm but a problem with the “Combined” model. 
 

for (int i =0; i <  number_of_iterations; i++) { 

foreach (current_player in ranking_list) { 

if (current_player.ranking > 0) { 

x = positions_above_allowed_to_challenge 

if (x > current_player.ranking) { x = current_player.ranking } 

for (int position = x; position > 0; position--) { 

PlayerA = PlayerWithRanking(current_player.ranking – position) 

PlayerB = current_player 

if (Compare(PlayerA, PlayerB) == false) {  

//if player A loses the match-up move player B 

//above A and push all players inbetween 1 spot down 

MovePlayerToRanking(PlayerB, PlayerA.ranking)  

position = 0 //stop challenging 

} 

} 

} 

} 

} 
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Figure 1 – Comparison between LadderRank-Combined model with x=3 and the ATP Rankings of the 

Top 100 players over the period 18/03/2012-18/03/2013. 
 

To analyse the performance of our ranking systems further and get a metric to compare them with other 

systems such as the PageRank and the ATP, we used the rankings generated by each system and tested 

whether those rankings “predict” the outcomes of the matches within the period that was used to generate 

them. To put it simply, we calculate the percentage of matches in which the winner of the match is better 

ranked than the loser.  

Using 2552 matches that were played in the period 18
th
 of March 2012 to 18

th
 of March 2013, we 

generated these percentages for 5 ranking systems – the ATP Official rankings, the PageRank system using 

Match Victories as weights, the SortRank-Uncombined system and the LadderRank-Combined system with 

x=1, 3 and 5). Table 2 shows these results in detail. 
 

Table 2 – Comparison of predictive power of ranking models over matches played in the period used to 

generate them. These rankings were generated for 298 players who competed in 2552 matches over the 

period 18/03/2012 to 18/03/2013. In SortRank and LadderRank prediction results, 381 matches were not 

attempted as there were insufficient statistics (less than 10 matches) to model one or both the players who 

took part in those matches. 
 

ATP Match 

PageRank 

(α=0.15) 

SortRank 

Uncombined 

(381 Skipped) 

LadderRank 

Combined  

(381 Skipped) 

(x=1) 

LadderRank 

Combined 

(381 Skipped) 

(x=3) 

LadderRank 

Combined 

(381 Skipped) 

(x=5) 

69.83354% 71.15987% 66.97374% 70.65868% 70.70474% 70.65868% 

 

Observing the results presented in Table 2, it is evident that the PageRank system appears to describe the 

matches which were used to generate it better than the rest of the systems. Also the SortRank-Uncombined 

system seems to perform worse than the rest of the systems – something which is expected as the 

“Uncombined” model which used to generate the rankings also performs poorly. The LadderRank-Combined 

system appears to be in second place with marginally better performance when the allowed challenge 

positions, x=3.  Both the LadderRank-Combined system and the PageRank system outperform the ATP 

Official Rankings.  
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In an attempt to provide further evidence that the ATP ranking system is inaccurate at ranking players 

with rankings greater than 32, we selected a subset of the matches played only in-between players ranked 32-

80 according to the ATP Official Rankings on the 18
th
 of March 2013. This subset was comprised of 275 

matches that were played within the period 18/03/2012-18/03/2013. The small size of this subset also hints to 

the problem of the seeded tournament system as it is only 275 matches out of a total of 2552 that were played 

in the period. This means that this group of players play a much smaller number of matches between them 

and as a result there are not enough matches to compare the performance of these players against one 

another.  

Table 3 presents how the ranking systems perform at predicting the outcomes of this subset of matches. 

 

Table 3 – Comparison of predictive power of ranking models over 275 matches played between players 

ranked in positions 32 to 80 by ATP rankings in the period 18/03/2012 to 18/03/2013. 
 

ATP Match 

PageRank 

SortRank 

Uncombined 

LadderRank 

Combined 

(x=1) 

LadderRank 

Combined 

(x=3) 

LadderRank 

Combined 

(x=5) 

55.27273% 58.54545% 54.54545% 56.00000% 56.3634% 56.00000% 

 

The ATP Official rankings perform much more poorly in this subset of matches with a success rate as low 

as 55.27273%. The other models also perform much worse than when using the full range of players but still 

outperform the ATP Rankings. This generic drop in the success rate of the ranking systems to reflect the 

outcomes of matches played by players ranked in the range 32-80, could occur for a number a of reasons. It 

could be because the players of this range are more unstable in their performance which adds to the 

uncertainty of the outcome. Also, since we are comparing a group of players which are more similar to each 

other, the outcomes in the matches played between players in this group would also have increased 

uncertainty. Additionally, the small number of matches played between these players also affects the quality 

of the models: the PageRank model uses match victories to rank players and the “Combined” model uses 

average statistics from these matches. In other words, the seeded tournament system affects all these ranking 

systems as players ranked 32-80 face each other a lot less, thus reducing the quality of statistics available for 

these players. 
 

6. Conclusion 

We introduced a new, flexible idea for ranking professional tennis players by simulating a “sports-ladder” 

driven by a tennis model in the background. We demonstrated this idea by using existing models from the 

literature and comparing the rankings that they generate with the official ATP Rankings. We identified 

problems such as the slow adaptation of the LadderRank-Combined system and discussed how they could be 

solved by changing the underlying model to account for them.  

Despite the slow-adapting underlying model that we used, comparing the LadderRank-Combined 

system’s performance against the ATP rankings in terms of how well the rankings represent the set of 

matches used to generate them, the LadderRank algorithm outperformed the ATP rankings.  

We also detected the bias created by seeded tournaments which is inherent in the official ranking systems 

and we provided evidence which support this. By simply comparing the differences in the rankings assigned 

to players by the various ranking systems we provided evidence towards the bias by detecting an explosion 

of disagreement with the ATP for players ranked greater than 32. By testing the performance of the ATP 

Ranking system on a subset of matches that were played between players ranked in the range 32-80, we 

found further evidence of the poor representation those same players have in the official rankings. 

To sum up, even though the “LadderRank” ranking system joined with the “Combined” model does not 

perform as well as the PageRank ranking system, it still outperforms the ATP Official Rankings. This proves 

that it works as an idea. Also, since the quality of the rankings generated by the “LadderRank” system is 

directly dependent on the quality of the model that drives the comparisons of players, by using a more 
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sophisticated model one can improve the performance further and this is exactly what makes “LadderRank” 

so flexible. 
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