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Abstract

Professional singles tennis is a popular global sport that attracts spectators and
speculators alike. In recent years, financial trading related to sport outcomes has
become a reality, thanks to the rise of online betting exchanges and the ever-
increasing development and deployment of quantitative models for sports.

This thesis investigates the extent to which the outcome of a match between
two professional tennis players can be forecast using quantitative models param-
eterised by historical data. Three different approaches are explored, each having
its own advantages and disadvantages. Firstly, the problem is approached using a
Markov chain to model a tennis point, estimating the probability of a player win-
ning a point while serving. Such a probability can be used as a parameter to exist-
ing hierarchical models to estimate the probability of a player winning the match.
We demonstrate how this probability can be estimated using varying subsets of
historical player data and investigate their effect on results.

Averaged historical data over varying opponents with different skill sets, does
not necessarily provide a fair basis of comparison when evaluating the performance
of players. The second approach presented is a technique that uses data, which
includes only matches played against common opponents, to find the difference
between the modelled players’ probability of winning a point on their serve against
each common opponent. This difference in probability for each common opponent
is a “transitive contribution” towards victory for the match being modelled. By
combining these “contributions” the “Common-Opponent” model overcomes the
problems of using average historical statistics at the cost of a shrinking data set.

Finally, the thesis ventures into the field of player rankings. Rankings provide a
fast and simple method for predicting match winners and comparing players. We
present a variety of methods to generate such player rankings, either by making
use of network analysis or hierarchical models. The generated rankings are then
evaluated using their ability to correctly represent the subset of matches that were
used to generate them as well as their ability to forecast future matches.
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1. Introduction

1.1. Motivation

Tennis has developed, over the years, to one of the most popular spectator sports.
Professional tennis players tour all over the world, during the tennis season, com-
peting in very prestigious and at the same time profitable events. The sport’s
player-rivalry sagas, as well as its apparent unpredictability and potential for dra-
matic match turnarounds, attract world-wide interest and engages spectators like
no other sport. Wherever there is such crowd engagement there is almost always a
market for bets and it is needless to say that the market is thriving for tennis.

With the introduction of live online betting, financial markets related to tennis
have proliferated allowing traders to speculate on numerous outcomes – e.g. the
likely winner of a match or the expected number of aces. In the above context,
quantitative models of tennis have gained importance as they provide an under-
standing of the sport and allow traders to make educated guesses for any outcome.

A good quantitative model can benefit the online sports trader by providing the
knowledge required to build a successful betting strategy. Indeed a number of
hedge funds, such as the Priomha Capital Sports hedge fund, have turned their
attention to sports markets in order to exploit the short-term market inefficiencies
that arise. In fact, some of the hedge funds claim significant growth in the past
years, e.g. Sports Trading Club boasts figures such as 61% trading profits in the
first quarter of 2014 [1]. It appears to be highly possible to make profit using
algorithmic trading in online betting exchanges. The sports trader who utilises
statistical analysis to manage risk, can take advantage of the fact that many partic-
ipants are driven by emotion rather than logic which creates opportunities to make
profit. This is not without risk though; the Centaur Galileo fund was a sport based
hedge fund that was forced to liquidate because, since it opened in 2010, lost $2.5
million dollars in investments [2].

Of course, the uses of quantitative tennis models are not limited to sports trading.
They provide invaluable tools for bookmakers who can use them to estimate odds,
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detect fraudulent activities, such as fixed matches, and even provide tools for their
customers to make betting suggestions, expanding their services.

Statistical analysis may also be used by the players themselves to reveal a player’s
weaknesses and strengths and to consequently devise game strategies against par-
ticular opponents or focus their own training to specific areas. Taken to extremes
quantitative models can be used to simulate match strategies and see what their
effect would be on particular opponents.

Additionally, statistical models for tennis are also valuable to broadcasting sta-
tions as they can be used to estimate match duration and hence arrange their broad-
casting schedule accordingly. They can also be used by sports commentators to
increase the interest of the broadcast information.

The International Tennis Federation has used quantitative models in the past to
assess rule change proposals by simulating what would happen if a rule would
change. There are in fact a number of articles in literature that use quantitative
analysis to propose new scoring systems and tournament structures. Quantitative
models have also been used in other tennis areas, such as the creation of new equip-
ment and even the prevention of player injuries or the prediction of retirement age.

It is fact then, that good quantitative tennis models are desirable for a range
of applications. This dissertation develops a number of quantitative tennis mod-
els in an attempt to provide some insight towards the result of professional ten-
nis matches and therefore is directly applicable to sports traders and bookmakers.
With a currently booming market of online sports-betting and future predictions
(by Bank of America and Merrill Lynch) that the on-line sports market will be
worth over $500 billion by 2015, models like the ones proposed in this thesis are
in high demand [3].

1.2. Objectives

The present research aims to develop quantitative models which yield insights into
the outcome of professional tennis matches using existing and freely available his-
torical data. A fair amount of research has already been directed towards this goal.

A number of authors have attempted to quantitatively model tennis in the past.
The most widely used approach in literature is to model tennis as sequence of in-
dependent contests. By modelling a tennis game as a sequence of independent
and identically distributed points, one can model a game as a sequence of points, a
tennis set as a sequence of games and a match as a sequence of sets. This hierarchi-
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cal Markov chain approach appears throughout the literature and is the underlying
idea whether authors end up with closed form equations or conditional probability
equations. Some authors argue that, in fact, tennis points are neither independent
nor identically distributed and present solutions taking that into account. A few
papers outline more unique approaches to modelling tennis, for example, by con-
structing quantitative models using player rankings or even using machine learning
techniques. Even less publications, though, discuss how to parameterise the mod-
els using existing historical data. A complete analysis of the literature can be found
in Chapter 2.

Exploring the literature, it was evident that there was no attempt to model a
tennis point, in detail, for the purpose of estimating the probability of winning a
point while serving – a probability which is used as a parameter in most hierar-
chical quantitative models in the literature. Also, few papers discuss how to use
historical data to represent specific contests between two players. In an attempt to
fill this gap, we develop a Markov chain of a tennis point and discuss how to com-
bine one player’s serving performance with the opponent’s returning performance
to improve on the parameters’ representation of a specific contest. Additionally,
we introduce a novel approach which we named the “Common-Opponent” model,
which limits the use of the available data to a few related matches which are more
representative of the match being modelled.

Objectively we will attempt to achieve the development of novel quantitative
tennis models, which provides insight towards the outcome of professional tennis
matches by:

• Modelling a single tennis point as a Markov chain and using it as a parameter
to existing hierarchical Markov tennis models.

• Experimenting with different subsets of historical data and arriving at con-
clusions on the impact they have on the prediction accuracy of the models.

• Exploiting the transitive component of tennis matches, using statistical data
from a small set matches which only include opponents faced by both play-
ers being modelled.

• Introducing new algorithms for generating professional tennis player rank-
ings and using the generated rankings for prediction.
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1.3. Contributions

This dissertation approaches the problem of forecasting professional tennis re-
sults from three different angles. Firstly, we introduce a method to estimate the
probability of players winning points while serving against particular opponents,
expanding existing models which use this parameter extensively. Secondly, we
propose a completely novel approach to modelling a tennis match, using statistics
from matches which are linked to the players via common opponents. Finally, we
explore tennis rankings, propose new techniques of ranking players and use these
generated rankings to quickly predict match results.

1.3.1. Point Model

The probability of players winning points on their serve is the basic parameter in
the majority of tennis match models. While there are multiple publications about
modelling tennis matches using the probability of winning points, there are few
that discuss how to calculate this probability.

We solve this problem by analysing the tennis point, creating a Markov chain
in the process and generating closed form equations for calculating the probability
of a player winning a service point. These equations use probabilities of specific
events occurring during the point, such as the probability of serving an ace, the
probability of entering a rally and winning it and various others. We then show how
to calculate the probabilities of those events occurring, using publicly available
statistics, and adjusting them for specific opponents.

Further analysing historical data, we discuss and analyse the impact (on predic-
tion efficiency) of using different subsets of match statistics and identify possible
pitfalls. Expanding our point model to predict match results, using existing tech-
niques, we are able to compare its performance with industry-standard models to
find that it is of similar quality.

1.3.2. Common-Opponent Model

In an attempt to eliminate the pitfalls of using averaged statistics over a wide vari-
ety of opponents, we created a completely novel approach to forecasting the result
of a professional tennis match. The Common-Opponent model avoids using such
averaged statistics by comparing differences in the performance of players against
their common opponents and combining them to predict match outcomes. We
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Figure 1.1.: The Common-Opponent model has inspired a new approach which is
featured in tennisinsight.com headlines.

have, therefore, contributed a model which exploits the transitive component of
tennis to predict match results. When compared to other predictive models, in-
cluding industry standard models, the Common-Opponent model is of similar per-
formance, while still having an unexploited potential for improvement and further
research.

This method has, in fact, been enthusiastically adopted by the community. In
particular, it has inspired a new range of statistical analysis options on the tennis
website, tennisinsight.com, whereby common opponent statistics can be viewed
across matches (see Figures 1.1 and 1.2).

1.3.3. Ranking Systems

Diversifying our approach to tennis outcome predictions, we focused on tennis
rankings. A number of authors have created models which make use of tennis rank-
ings to estimate the probability of professional players winning matches against
particular opponents but few have focused on improving existing rankings.

In this dissertation we explore the existing PageRank ranking system for tennis
and improve on it, as well as introduce a new concept for a versatile ranking algo-
rithm which can make use of any predictive model to generate rankings. Namely,
we introduce new PageRank ranking systems which use quantities of Sets, Games
and Points lost as weights in their network. Also we introduce the SortRank and
LadderRank algorithms used in conjunction with the low-level point model we
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Figure 1.2.: Screenshot of the tennisinsight.com statistics feature using the
Common-Opponent inspired approach.

generated earlier.
We compare all these ranking systems to the official ATP Rankings and identify

their strengths as well as their weaknesses. In various cases, the new introduced
ranking systems significantly outperform the official ATP Rankings in representing
the subset of data that was used to generate them. Furthermore, we test the ability
of these ranking systems to predict future matches to find that two of the ranking
systems, the PageRank Match and Set, perform significantly better than the official
ATP Rankings.

1.4. Thesis Structure

The thesis is structured in six chapters.

• Chapter 2 is divided into three main sections. The first section describes
the sport of tennis, introducing the rules of the game and the structure of
professional competitions. The second section provides an overview of the
theoretical background required in understanding the remainder of this dis-
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sertation. Finally the third section explores the literature and the already
existing work related to mathematical models involving the sport of tennis.

• Chapter 3 begins by introducing the idea of hierarchical Markov chains and
how they can be used to model the sport of tennis in great detail making the
important assumption that individual tennis points are identically distributed
and independent from each other. It then continues by analysing individual
points as Markov chains by assuming that individual strokes are independent
and identically distributed. Once the theory has been introduced, we explain
how to put it in practice by showing how to collect the data which will be
used to parameterise our models. We discuss how one can use this data and
how different subsets of data can affect the predictive power of the model.
Finally, we introduce a method to evaluate tennis models and by implement-
ing our model we evaluate predicted results by comparing them against real
match results.

• Chapter 4 approaches professional tennis outcome prediction from a new
perspective attempting to improve on some disadvantages of the models dis-
cussed in the previous chapters. By taking advantage of the transitive ele-
ment in tennis, we introduce a model that combines a subset of data, which
includes only common opponent matches, to estimate the probability of win-
ning a match. The chapter begins by introducing the shortcomings of past
models and explaining the notion of transitivity in sport. It then continues
to introduce the work of O’Malley, which is vital in the understanding of
the Common-Opponent model. It then continues to explain the Common-
Opponent model and in-turn evaluate it comparing its performance against
other models. Finally it concludes by explaining the results and problems of
this approach.

• Chapter 5 turns focus to the area of tennis rankings in attempt to find the
better performing players and in turn use these rankings to simplify match
winner prediction. Three main algorithms are discussed in this chapter,
PageRank, SortRank and LadderRank. For the PageRank algorithm we
present four different techniques of generating rankings and discuss their ef-
fectiveness by evaluating how well the final set of rankings represents the set
of matches used to generate them. We take similar approaches for SortRank
and LadderRank algorithms. Finally, we show how these rankings can be
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used to predict match results and present results based on real world data.

• Chapter 6 concludes the dissertation by discussing the work done over the
years and the results produced. It also introduces work which can still be
done to further improve the models presented in this thesis.

1.5. Publications

The following articles were published as part of the research related to this thesis
and will be closely referenced in the duration of this dissertation.

The first publication [4] presented at the 3rd IMA International Conference
on Mathematics in Sport introduces a Markov chain which models a tennis point
and presents some preliminary results which show promise. This publication was
later evolved and published as a journal article [5] in a special edition of the IMA
Journal in Management Mathematics, presenting extended results. Chapter 3
explores this journal paper in greater detail and presents more recent results.

Continuing the work on tennis prediction, we published another article in the
journal of Computers and Mathematics with Applications [6], in which we dis-
cuss a new approach which uses common opponent matches to exploit the transi-
tive element of tennis. Chapter 4 is based on this journal publication presenting
new evidence on the effectiveness of this model for match outcome prediction.

Turning our attention towards methods of ranking players in tennis, we ex-
plored the application of the PageRank algorithm to ranking players. Our publica-
tion [7] presented in the 9th UK/European Performance Evaluation Workshop
(UKPEW/EPEW 2012), expands the work of Radicchi [8] by presenting a more
efficient algorithm and evaluating new data.

Further research in the topic of tennis player rankings resulted in a another pub-
lication [9] at the 4th International Conference on Mathematics in Sport. This
paper presents a new tennis player ranking algorithm that combines quantitative
tennis models with a sports ladder. Chapter 5 of this dissertation explores tennis
rankings and discusses all these techniques in greater depth. During the 4th Inter-
national Conference on Mathematics in Sport we also presented a second tennis
related paper [10] which introduces the possibility of inferring live tennis match
score-lines using only a live feed of betting exchange odds. Results presented in
this paper demonstrate the feasibility of score inference from betting odds in tennis
and simultaneously indicates the efficiency of current exchange odds.
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2. Background

This chapter introduces the game of tennis by describing the rules, the scoring
system and its variations, the way professional tournaments work and how profes-
sional players are ranked. It then briefly introduces basic probability theory, sta-
tistical testing and stochastic processes required in the understanding of the topic
of tennis modelling and of the work contributed by this thesis. Finally the chapter
includes a comprehensive literature review which covers the most important work
done related to mathematical modelling of tennis.

2.1. The Game of Tennis

This section will introduce the rules and scoring system of the game of tennis while
defining tennis specific terminology in the process. The aim of this section is to
ensure the reader has complete knowledge of the specifics of the sport of tennis.
This section will also discuss tournament structure and identify rules and scoring
system changes which apply to specific tournaments. To find further details on the
rules of tennis, it is advisable to read Exhibit I of the Official ATP Rulebook [11].

2.1.1. Rules

This section will attempt to briefly describe the rules of tennis aiming to give the
reader an understanding of the flow of the sport and acquire some of the terminol-
ogy used in tennis. The rules described in this section are a summary of the tennis
rules as described in the 2014 Official ATP Rulebook.

The sport of tennis is played in a rectangular court of dimensions 23.77m in
length and 8.23m in width. In the case of a doubles tennis match, the court widens
further to 10.97m. The court is split in the middle lengthwise by a net which stands
at 0.914m height in the center and 1.07m at the poles on which it is supported. The
baselines of the court are defined as the two lines which define the ends of the
court which run in parallel to the net. The sidelines of the court are the four lines
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that run perpendicular to the net along the length of the court and define the sides
of the singles and doubles courts.

As it can be observed in Figure 2.1, each side of the court also has two service
courts or service boxes. These service boxes define the area in which a service
must land before it is struck by the returner. In a singles tennis game, each player
stands on opposite sides of the net and one player serves while the other receives
the ball. The server starts by serving from the right half side of the court behind the
baseline and is to serve the ball to the service box diagonally from him where the
receiver expects to return the ball. The service location alternates between right
and left halves after every point. Who will serve first is decided by a coin toss
before the start of the match. The winner of the toss can choose whether he serves
or receives first. The server changes with every new game except in the case of
a tie-breaker. More will be discussed about the serving order when the scoring
system is introduced.
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Figure 2.1.: The tennis court schematic.

During the serve a service fault may occur for any one of three reasons:

• The player is not standing in the correct half of the court and at rest before
starting the service motion or does not execute the service motion correctly.
The service motion begins when the server releases the ball into the air with
his hand and ends when the server strikes the ball with his racket.

• The ball does not land within the confines or on the lines of the desired
service box.
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• A foot fault – this may be caused when during the service motion the server
walks or runs out of position, touches the baseline or inside the court with
either foot or touches an area on the left or right hand side of the half of the
court the server is standing in.

In the case of a service fault, a first serve is followed by a second serve from
the same half of the court unless that half was the wrong one to begin with. If a
service fault occurs during the second serve, the server forfeits the point.

A service may be repeated in the case a let occurs during the service. A let may
occur if the ball, which has been served, bounces off the top of the net or otherwise
touches the net, and then lands in the correct service box, or if the ball touches the
receiver before hitting the ground or, finally, if the ball is served before the receiver
is ready to receive.

The aim of of the two competing teams or players is to win a point at the end of
every exchange. A player will forfeit a point if:

• as a server he succumbs to two consecutive service faults; or

• as a receiver he returns the service before it bounces off the ground; or

• the player does not return a ball in-play before it bounces twice; or

• the player fails to return the ball and achieve a good return (defined later on);
or

• the player catches the ball or touches it more than once before returning it
in-play; or

• the player touches the net or opponent’s side of the court while the ball is
in-play; or

• the player hits the ball before the ball passes over the net; or

• the ball while in-play, touches anything other than the player’s racket or the
player’s racket when not held by the player; or

• the player changes the shape of the racket in any way when the ball is in-
play.

A player can achieve a good return when the returned ball lands inside the con-
fines of the opponent’s court or on the baseline and sidelines in the opponent’s
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half of the court. The return is still considered good even if, before it lands on the
ground, it touches the net (provided that it passes over it). The player’s racket may
even pass over the net after hitting the ball on the player’s side of the court and be
considered a good return given it lands correctly.

This section covers the basic and most common occurrences of events and rules
within a tennis match. The ATP Rulebook [11] covers a much more detailed ac-
count of the rules and addresses more obscure events which are beyond the scope
of this thesis. For the purpose of understanding the nature and flow of the sport of
tennis the rules included here will suffice.

Having achieved an understanding of how a player can win or lose a point while
serving, the only issue remaining in order to understand how a player can win a
tennis match is to describe the scoring system that is used and the order of serve.

2.1.2. Scoring System and Order of Serve

The game of tennis has a very granular and hierarchical scoring system which is
also the reason why it is such a great candidate for creating mathematical models
to represent it. Granularity provides an abundance of data which makes it easier
to historically assess the performance of individual players and the hierarchical
nature of the scoring system allows mathematicians to simplify models by making
them hierarchical.

A tennis match is won by winning a number of sets with the number being
dependant on the tournament. The sets are won by winning a number of games
and in some cases tiebreakers depending on the tournament and set. Games and
tiebreakers are in turn won by winning a number of points.

Game Scoring

A tennis game is played as a sequence of tennis points. For the duration of a
singles tennis game, one player is the server and the other one is the receiver. The
score-line starts with 0-0 or as often referred in tennis terms, “love all”. Now let’s
assume that the server wins all the points the score-line will develop as follows:
15-0, 30-0, 40-0 and finally victory for the server – notice that the server’s score is
always the first number on the score-line. The same score-line progress applies to
the receiver. The victor of the game is the player that wins a point while having a
score of 40 given his opponent has a score of 30 or less. In the case the score-line is
either 40-30 and the receiver wins the point or 30-40 and the server wins the point,
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the score-line becomes Deuce. From Deuce, a player needs to win two consecutive
points in order to win the game. When the first point is won from Deuce it is said
that the player has an Advantage. When a player has an Advantage and loses the
point the score-line reverts to Deuce.

The origin of this non-conformative scoring system is unknown but one theory
is that the score-line used to follow quarters of the minute clock-hand with the 45
later simplified to 40.

Tiebreaker Scoring

A tiebreaker is a special type of game that is played as the decider of the result of
a tiebreaker set. A player can win a tiebreaker by being the first to win 7 points
given that the opponent has won 5 points or less. In the case the score-line reads
6-6 then the tiebreaker proceeds until one player has won two consecutive points.
Given the tiebreaker is the decider of the tiebreaker set, both players need to serve
in order for it to be fair. In fact serving begins with the receiver of the last game,
then proceeds with the other player and alternates every two points. Given that
players A and B participate in the tiebreaker and player A serves first the serving
sequence is as follows: A B B A A B B A A. . . . The first number on the tiebreaker
score-line is always the score of the player who served first.

Set Scoring

There are two types of set scoring systems, the advantage set and the tiebreaker set.
In order to win an advantage set a player must be the first one to reach a score of
6 games or more with a gap of two games or more from the opponent. Advantage
sets can sometimes take a very long time to complete and as a result they are used
in exceptional cases depending on the tournament rules. An example of a very
long match, due of an advantage set, is the famous John Isner vs. Nicolas Mahut
match during the 2010 Wimbledon. In Wimbledon, if the match score reaches 2
sets all, the final set played is an advantage set. The final score of this match was
6-4, 3-6, 6-7(7-9), 7-6(7-3), 70-68 and it lasted a total of 11 hours and 5 minutes
spanning over 4 days of play. A commemorative plaque of this match is on display
on the grounds at Wimbledon (Figure 2.2).

To avoid very long matches, tiebreaker sets were introduced. A tiebreaker set’s
conclusion differs since when a score of 6 all is reached, the winner of the set is
decided using a special type of game called a tiebreaker, described in Section 2.1.2.
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Figure 2.2.: Commemorative plaque in Wimbledon for the longest match in the
history of the tournament1.

Match Scoring

The match score is a simple count of the number of sets won by either player. A
player can win a match by being the first to win 2 sets. Exceptions exist according
to tournament rules, e.g. the men’s Grand Slams for which it is a requirement to
win 3 sets in order to win a match.

Serving Order

Serving is important in tennis as it provides the player who serves an advantage in
winning the point. This is because a strong serve can set up the rally to follow to
the advantage of the server.

During each game of a match, one player is always the server unless that game
is a tiebreaker. Players alternate serve after each game. That is, the receiver of the
previous game becomes the server of the current game. In the case of a tiebreaker,
the receiver of the previous game is the server of the first point of the tiebreaker.

1Image source: wikipedia.org - uploaded by user Jonotennis on the 2nd of July 2011.
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This alternation of serve continues through sets – i.e. the receiver of the last game
of a set becomes the server of the first game of the following set. The server of the
tiebreaker is considered to be the player who served first in the tiebreaker and as
such the receiver of the first point in the tiebreaker will serve first in the following
set.

2.1.3. Tournaments

Tennis tournaments are split into categories based on the points they award towards
player rankings. In this section we will focus on the ATP World Tour tournaments
and will discuss how these tournaments are set up and specific rules that govern
the most important tournaments.

The most prestigious tournament is the World Tour Finals where only 8 play-
ers are allowed to participate. These eight players are selected from a priority list
composed of the top players in the ATP Official Rankings at the end of the ten-
nis season. These eight players are split into two groups of four who face each
other in three best-of-three round-robin matches. The top two seeds are placed in
different groups. From these two groups, the best two players emerge from each
group to face each other in a knock-out phase which again comprises of best-of-
three tiebreaker-set matches. Each round-robin victory awards players 200 points
towards the rankings, a semi-final victory awards another 400 points and a final
victory awards 500 points. An undefeated champion therefore has the opportunity
to amass 1500 points from this tournament2.

The four Grand Slams award the highest amount of points (2000 to the cham-
pion) and money to the winner. They are highly prestigious and at the same time
competitive tournaments. Comprised of 128 very skilled participants, Grand Slams
are always crowd and player favourites. Each Grand Slam is played on a different
surface, requiring different skill sets from the participants. Wimbledon is played
on a natural grass surface which is a fast, low bounce surface. Rolland Garros is
played on red clay surface which is a slow, high bounce surface. The U.S. Open
is played on a blue hard-court surface called DecoTurf which is a fast, medium
bounce surface. Finally, the Australian Open is played on Plexicushion which is
a medium speed, medium bounce, hard-court surface [12]. Men’s Grand Slams
are the only tournaments where a best-of-5 tiebreaker-set victory is required to

2Information retrieved from http://www.barclaysatpworldtourfinals.com/en/event/rules-and-format
on 18/09/2014
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progress to the next round. In all Grand Slams with the exception of the U.S.
Open, the 5th set is an advantage set [13].

The third category of ATP tournaments are the ATP Masters series which award
1000 points to the winner. There is a total of 8 Masters tournaments in the ATP
World Tour, each comprising of draws varying from 96 to 48 participants.

ATP 500 series tournaments award, as the name suggests, 500 points to the
winner. In 2014 there was a total of 11 ATP 500 Series tournaments scheduled.
The number of participants allowed in an ATP 500 tournament is officially 32 but
in reality it varies from 48 to 32 as tournaments can petition for increased draw
sizes.

Finally, ATP 250 tournaments feature less prestigious events which award 250
points to the winner. The draw size is officially 28 participants but can vary, de-
pending on the tournament, from 56 participants to 28. In 2014 a total of 40 ATP
250 tournaments were scheduled all over the world.

Seeded Players

Most tournaments, if not all, have seeded players. A number of top ATP Ranked
players (number depends on the draw size) who are participating in the tournament
are awarded seeded positions in the draw. These players are strategically placed in
the knock-out draw so that if they achieve victories they will face each other in the
latter rounds of the tournament. If the tournament is concluded in 7 rounds (which
is the case in Grand Slams which have 128 participants and the Masters which
have 96 participants) then there are 32 seeded players. Tournaments which have
6 rounds, (i.e. tournaments with 56 or 48 participants) usually have 16 seeded
positions and finally tournaments with 5 rounds (32 or 28 participants) usually
have 8 seeded positions in the draw.

When the draw is constructed, the seeded players are placed in the predefined
positions of the draw, and then the remaining players (direct acceptances, qualify-
ing round winners, wild cards and lucky losers) are usually drawn randomly and
placed in order in the remaining lines of the draw.

Direct Acceptances

Direct acceptances are players who are ranked high enough in the ATP Rankings
to be accepted directly into the tournament with no need to pass through the qual-
ifying tournament. There is a fixed number of Direct Acceptances which depends
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on the tournament category and on the draw size.

Qualifiers

Qualifiers are players who have won the final round of the qualifying tournament
of the main event. The qualifying tournament is a full tournament with seeded
players which is played before the main tournament. Players who manage to qual-
ify are then placed in the main draw of the main event. There is a fixed number
of Qualifiers which varies depending on the tournament category and on the draw
size but has a minimum of 4.

Lucky Losers

Lucky losers are players who have played in the qualifying tournament of the event
but lost in the final round. If for some reason a player already participating in the
main draw is unable to attend the tournament, a lucky loser takes his/her place in
the draw.

Wild Cards

Wild Cards are players who, at the discretion of the tournament organisers, are
allowed to participate in the tournament with no need to pass through the quali-
fying rounds or have a high enough ranking to be accepted in the draw directly.
Wild Cards are usually given to players who have in the past performed well but
have dropped in ranking. They may also be given to local talent or local favourite
players. The amount of Wild Cards allowed varies, from 3 to 6, depending on
tournament type and draw size.

2.1.4. The Official Ranking Systems

Rankings have always been the focal point of both the fans and the players. They
are a representation of the players’ ability to win matches and persevere over time.
Also, they are used to determine seeding positions in tournaments as well as the
participation of players in the World Tour finals, which indicate the season cham-
pion. This section discusses how these rankings are calculated by both the ATP
and the WTA.
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ATP

The Emirates ATP Rankings is the official ranking system ATP used in 2013. As
the official ATP World Tour website states: it is “. . . a historical objective merit-
based method used for determining entry and seeding in all tournaments . . . ”. The
ranking is generated using a summation of points that players acquire while pro-
ceeding within tournaments. Tournaments themselves are split into categories with
some tournaments awarding more points than others.

The ranking points of a player is the summation of the points awarded over a
maximum of 18 tournaments played within the previous 52 weeks (19 tournaments
if the player qualifies to the World Tour Finals). From these 18 tournaments, four
are the Grand Slam tournaments, eight are the compulsory ATP World Tour Mas-
ters 1000, and the rest are the best six results from the ATP 500, 250 and other
tournaments (a minimum of 4 ATP 500 tournament attendances are required). Ad-
ditionally, players who have finished within the top eight positions, in the official
ATP rankings, at the end of the ATP tennis season, automatically qualify to play
at the Barclays World Tour Finals to earn points that count towards crowning the
final champion of the year. In those years where the Olympics occur, the players
also win extra points for the position they get in the Olympics.

Table 2.1.: ATP ranking points structure for larger tournaments (excludes Chal-
lenger and Futures tournaments, the Olympics and Tour Finals)

W F SF QF R16 R32 R64 R128 Qual.3

Grand Slams 2000 1200 720 360 180 90 45 10 25
Masters 1000 1000 600 360 180 90 45 10(25) (10) 25
ATP Tour 500 500 300 180 90 45 20 - - 20
ATP Tour 250 250 150 90 45 20 (10) - - 12

Points awarded by playing in the ATP Challenger Tour vary from tournament to
tournament depending on the tournament’s prize money and hospitality. Points for
the overall winner range from 75 to 125. For playing in the Futures Series, players
are awarded even less points, with points earned by the overall winners ranging
from 18 to 35.

The ATP Ranking score is therefore the summation of the points awarded from:

• The four so-called Grand Slam tournaments (Australian Open, French Open,
3Points awarded for qualifying subject to adjustment depending on tournament type
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Wimbledon US Open)

• The eight mandatory ATP World Tour Masters 1000 tournaments,

• The previous Barclays ATP World Tour Finals count until the Monday fol-
lowing the final regular-season ATP event of the following year.

• The best six results from all ATP World Tour 500, 250, ATP Challenger Tour,
and Futures Series tournaments played in the calendar year (a minimum of
4 ATP 500 tournaments must be included).

In those years when the Olympics are held, results from the Olympics also count
towards a player’s world ranking.

Table 2.1 shows the points awarded according to the tournament type and round
(beginning with Qualifying, and ending with the Final) in which a player is elimi-
nated – or if they win the tournament.

WTA

Similarly to ATP rankings, a player’s WTA ranking is computed over the immedi-
ate past 52 weeks, and is based on the total points a player accrues at a maximum
of 16 tournaments. As shown in Table 2.2, points are awarded according to the
round in which a player is eliminated in or for winning the tournament. The tour-
naments that count towards the ranking are those that yield the highest ranking
points. These must include:

• The four Grand Slam tournaments (Australian Open, French Open, Wim-
bledon US Open)

• Premier Mandatory tournaments (Indian Wells, Miami, Madrid, Beijing)

• The WTA Championships (Istanbul)

The qualifying points awarded for the tournaments in Table 2.2 may vary de-
pending on the tournament’s draw size.

For top 20 players, their best two results at Premier 5 tournaments (Doha, Rome,
Cincinnati, Montreal, Toronto and Tokyo) also count. Like in the ATP tour, in
those years when the Olympics are held, results from the Olympics also count
towards a player’s world ranking.
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Table 2.2.: WTA ranking points structure for larger tournaments (excludes ITF Cir-
cuit tournaments, the Olympics and Tour Finals)

W F SF QF R16 R32 R64 R128 Qual.
Grand Slams 2000 1400 900 500 280 160 100 5 60

Premier
Mandatory 1000 700 450 250 140 80 50(5) (5) 30

Premier 5 800 550 350 200 110 60(1) (1) - 30
Premier 470 320 200 120 60 40(1) (1) - 20
International 280 200 130 70 30 15(1) (1) - 16

2.2. Theoretical Methods

This section is meant to provide a brief introduction to the theoretical methods
and fundamental knowledge used through-out this thesis. First, we introduce basic
probability theory and some commonly used probabilistic distributions. Following
that, we describe the fundamentals of significance testing and finally stochastic
processes and in particular Discrete-Time Markov chains.

2.2.1. Probability Theory

Probability theory provides the fundamental building blocks for both significance
testing and stochastic processes. This section introduces succinctly, the basic for-
mulae and terminology used in probability theory.

A sample space, S, is the full set of outcomes of an experiment. E.g. The sample
space of flipping a coin consists of the outcomes (events), Heads and Tails. Two
events are mutually exclusive when their intersection is the empty set.

A \ B = /0 (2.1)

When the events are mutually exclusive exhaustive, then each event in the set is
mutually exclusive to all other events in the set and the union of all of the events
of the set is equal to the full set itself.

Ai \ B j = /0 for all i 6= j (2.2)

A1 [ A2 [ ... [ An = S (2.3)

A fundamental concept of probability theory is conditional probability i.e. the

36



probability of an event occurring given another event is known to have occurred.
The probability of event A occurring given event B is known to have taken place
is denoted by P(A | B).

P(A | B) :=
P(AB)
P(B)

(2.4)

where P(B) 6= 0
Two events can be called independent when the probability of both events hap-

pening is the probability of one event multiplied by the probability of the other.

P(A \ B) = P(A)P(B) (2.5)

The conditional probability of two independent events A and B is then the proba-
bility of each event happening independently of the other event.

P(A | B) = P(A) (2.6)

P(B | A) = P(B) (2.7)

Two other important theorems in probability theory is the theorem of Total Prob-
ability and Bayes’ theorem [14]. Total Probability states: For an event B and a set
of mutually exclusive exhaustive events A1,A2, ...,An, if event B occurs it must oc-
cur with exactly one of the mutually exhaustive events Ai then

P[B] =
n

Â
i=1

P[AiB] (2.8)

Bayes’ theorem states: For a set of mutually exclusive and exhaustive events Ai

then
P[Ai | B] =

P[B | Ai]P[Ai]

Ân
j=1 P[B | A j]P[A j]

(2.9)

2.2.2. Common Distributions

Uniform Distribution

The uniform distribution in probability and statistics is used to describe uniform
random variables. These are variables that can take any value within a range
(a,b) with identical probability. The uniform distribution is usually denoted as
uni f (a,b). The probability density function (pdf) and the cumulative density func-
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Figure 2.3.: Uniform distribution pdf and cdf plots for a = 0 and b = 1.

tion (cdf) of the uniform distribution are described by Equations 2.10 and 2.11
respectively and demonstrated by Figure 2.3.

f (x) =

(
1

b�a for a 6 x 6 b,
0 for x < a or x > b

(2.10)

F(x) =

8
><

>:

0 for x < a,
x�a
b�a for a 6 x < b,
1 for x > b

(2.11)

The mean, E(X) and variance, Var(X) of the uniform distribution are described by
Equations 2.12 and 2.13.

E(X) =
1
2
(a+b) (2.12)

Var(X) =
1

12
(b�a)2 (2.13)

Bernoulli Distribution

A random variable which takes the value of 1 with a probability p and otherwise
the value of 0, can be described by the Bernoulli probability distribution. This
random variable is most commonly used as a binary success/failure variable. It
takes the value 1 for a success with a probability of success, p. It is implied that
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Figure 2.4.: Bernoulli distribution pmf and cdf plots with parameter p=0.4.

the probability of failure is therefore q = 1� p. The probability mass function
(pmf) and cumulative distribution function (cdf) of the Bernoulli distribution with
success probability p are described by Equations 2.14 and 2.15 [15].

f (k) =

(
p for k = 1,

1� p for k = 0
(2.14)

F(k) =

8
><

>:

0 for k < 0,
1� p for 0 6 k < 1,

1 for k = 1
(2.15)

The mean, E(X) and variance, Var(X) of the Bernoulli distribution are described
by Equations 2.16 and 2.17.

E(X) = p (2.16)

Var(X) = p(1� p) (2.17)

Binomial Distribution

The binomial distribution is related to the Bernoulli random variable. It represents
the discrete probability distribution of achieving k successes in n successive inde-
pendent and identically distributed binary experiments with probability of success
p. That means that when n=1 then the binomial distribution is identical to the
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Figure 2.5.: Binomial distribution pmf and cdf plots with parameters n=100 and
p=0.4.

Bernoulli distribution. An example of a binomial distribution with 100 trials and a
probability of success 0.4 is demonstrated in Figure 2.5.

The binomial distribution, with parameters: the number of trials, n, and prob-
ability of success, p, for k successes, is thus represented by the probability mass
function shown in Equation 2.18.

f (k) =
✓

n
k

◆
pk(1� p)n�k (2.18)

where: ✓
n
k

◆
=

n!
k!(n� k)!

(2.19)

The cumulative density function of the binomial distribution is a summation of
all the discrete values of the Binomial pmf up to k as shown in Equation 2.20.

F(k) =
b kc

Â
i=0

✓
n
i

◆
pi(1� p)n�i (2.20)

The mean, E(X) and variance, Var(X) of a binomial distribution are shown in
Equations 2.21 and 2.22 respectively [15].

E(X) = np (2.21)
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Var(X) = np(1� p) (2.22)

Normal Distribution

The Normal distribution is a very important distribution in statistics. It is most
commonly used to describe real-world variables with unknown distributions whose
average and standard deviation can be estimated. Additionally, the central limit
theorem, which is described in detail in Section 2.2.3, states that the means of
independent samples drawn from the same distribution are normally distributed.
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Figure 2.6.: Normal distribution pdf and cdf plots with parameters µ=0 and s2=1.

The Normal distribution takes two parameters, the mean, µ , and the standard
deviation s (or sometimes the variance, s2, instead). The probability density func-
tion of the normal distribution with parameters µ and s is shown in Equation 2.23.
The standard normal distribution which is used very frequently is a normal distri-
bution with parameters, µ = 0 and s = 1. The standard normal distribution is
demonstrated in Figure 2.6.

f (x) =
1

s
p

2p
e�

(x�µ)2

2s2 (2.23)

The cumulative distribution function of the normal distribution is the integral of
the normal pdf from �• to x which is equivalent to Equation 2.24.
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F(x) =
1
2


1+ erf

✓
x�µ
s
p

2

◆�
(2.24)

where
erf(x) =

1p
p

Z x

�x
e�t2

dt (2.25)

The mean, E(X), and variance, Var(X), are in fact the parameters of the normal
distribution and are shown below in Equations 2.26 and 2.27 respectively.

E(X) = µ (2.26)

Var(X) = s2 (2.27)

2.2.3. Significance Testing

Testing for statistical significance is important in any experiment which uses sam-
ples of a population. A significance test is used to make sure that a hypothesis is
true with a probability greater than a significance level that has been set. The sig-
nificance level used to ensure reproducible results is most often the 95% threshold.

In this thesis we will use simple A/B testing or Split tests to compare whether the
results of different models are actually different. Since all of our experiments use
a high number of samples which have known distribution and hence the variance
can be calculated with fair accuracy, we only use the Z-Score for testing.

Central Limit Theorem

The central limit theorem is what allows us to use the normal distribution to calcu-
late the Z-score and subsequently the p-value of our simple tests.

Consider N samples which contain n values each, {X1, ...,Xn}, all generated
independently from the same distribution which has a mean µ and a variance s2.
For each of the N samples we calculate the sample average, Si =

1
n Ân

k=1 Xk for
i = {1, ...,N}. The central limit theorem states that the distribution of the sample
averages Si, approximates a normal distribution with a mean equal to the source
distribution’s mean, µ and variance equal to the the source distribution’s variance
over the number of values in each sample (i.e. s2

n ). This is true regardless of the
source distribution [16].

The central limit theorem therefore provides us with a tool to understand how
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sample averages can deviate from the population mean and also calculate the prob-
ability of a particular deviation occurring.

Z-Score

The Z-Score or standard score is simply a signed measure of standard deviations
a data point, x, differs from the mean, µ , of a normal distribution with standard
deviation s . This is calculated using Equation 2.28.

z =
x�µ

s
(2.28)

The Z-Score can be used in conjunction with the standard normal distribution
to find the p-value of the Z-Test. The p-value is the probability of getting a sample
average with a specific deviation or more from the mean of the population distri-
bution.

For example, let’s say we have retrieved a sample with n=100 values from a
distribution which we know has a mean µ = 3 and standard deviation of s = 1.
Our sample has an average of x = 2.98 and we want to know the probability of
getting that average or lower, given we know the mean and standard deviation of
the distribution.

According to the central limit theorem we know that the sample average has a
normal distribution with mean 3 and variance s2

n = 1
n . The z-score of our sample

average is therefore 2.98�3
1/10 = �0.2. As a result, we know that the sample average

is -0.2 standard deviations away from its mean. Depending on whether we want to
do a one-tailed or two-tailed test we can then use the standard normal distribution
to calculate the probability of getting a sample average of 0.2 or more standard
deviations away from the population mean.

Split Test

The split test (or A/B test) is designed to test whether the results of two experiments
differ from one another. Experiment A and experiment B may have different aver-
ages but may not be in fact different. This test allows us to distinguish whether the
difference occurs due to the natural variation of the sample averages or because in
fact the two experiments have different means.

A very common usage for a split test is website feature testing. The experiment
is very simple, randomly present website visitors either the original website or
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the modified website and observe whether they convert by reaching a target (e.g
clicking the check-out button). One can then use a split test on the number of
conversions for each of the two versions of the website to determine whether the
change observed in conversions is actually statistically significant.

Throughout this thesis we will use two-sample Z-tests for split testing because
sample sizes are sufficiently large in all our experiments and therefore the vari-
ances of distributions can be estimated with a fair amount of accuracy.

Example: The original website received 1000 visitors out of which 50 pur-
chased something. The modified version of the website received 1000 visitors out
of which 59 purchased something. Is this because of chance or is it because of the
changes made to the website?

The conversions on a version of the website can be modelled as n Bernoulli trials
with expected value equal to the probability of conversion (in this case a purchase)
and n equal to the number of visitors.

For such a large n, it is safe to assume that p is a good estimate for the probability
of conversion. Therefore for the original website the probability of conversion is
0.05 and for the modified it is 0.059. Knowing the mean, and standard deviation
of the Bernoulli distribution makes testing easy since we can calculate the z-score.
Since we are comparing two samples for differences in the mean, we are asking the
question: Is the mean of the first sample equal to the mean of the second sample?
Table 2.3 provides the answer to this question.

Table 2.3.: A simple website example for a two-sample Z-test.
Website n p Standard Error Z-Score

Original 1000 0.050
q

0.05⇥0.95
1000 -

Variation 1000 0.059
q

0.059⇥0.941
1000

0.059�0.05p
0.05⇥0.95

1000 + 0.059⇥0.941
1000

= 0.8867

For a Z-Score of 0.8867 using a two-tailed test and a significance threshold of
95%, the result is not significant which means that the means of the two samples
can be considered equal.

2.2.4. Stochastic Processes

To define a stochastic process we must first define a random variable. A random
variable is a variable which can take an uncertain value. A discrete random vari-
able is a variable which has an uncertain value but at the same time its value is one
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of a countable set of possible values. The sum of the probabilities of the variable
having each value is equal to 1. For example a discrete random variable x can take
either one of 3 values x1,x2,x3 with probabilities p1, p2 and p3. By definition

3

Â
i=1

pi = 1 (2.29)

A stochastic process is a random variable which includes the dimension of time.
i.e. a stochastic process has an uncertain value at one point in time and another
uncertain value at another point in time. An example of a stochastic process is
readings of the temperature for every hour of the day. Stochastic processes are
classified in terms of three things: “their state space; the nature of the time pa-
rameter and the statistical dependencies among the random variables” at different
times [14]. If the number of states of a stochastic process is countable then the
process is a discrete-state process or chain. If the stochastic process is sampled
at a countable intervals then the stochastic process is a discrete-time process. The
random variables themselves can either be independent or dependent on each other
over time.

Discrete-Time Markov Chains

Discrete-Time Markov Chains are stochastic processes which have a countable
number of states in their state space, are sampled at discrete points in time and
the random variables are only dependent on their immediately previous state and
independent from any other previous states. Therefore a stochastic process is a
DTMC given that

P[Xn+1 = xn+1|Xn = xn,Xn�1 = xn�1, . . . ,X0 = x0] = P[Xn+1 = xn+1|Xn = xn]

(2.30)
for n 2 N

A Markov chain can be visualised using a state diagram such as the one in
Figure 2.7 . The circles indicate the different states of the Markov chain and the
arrows connecting them show the possible paths the chain can follow with the
probability that they are followed. For example from state 1, the sequence can
move to state 2 with a probability of 2

3 or to state 3 with a probability of 1
3 .
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Figure 2.7.: A Discrete-Time Markov Chain

2.3. Literature Overview

Tennis is considered a sport which lends itself to mathematical modelling. In fact,
the nature of the granular scoring system which tennis uses, the abundance of
match statistics and the popularity of the sport has led many authors to use tennis
as an example for teaching applied statistics [17, 18, 19]. Even so, this does not
make the problem of modelling a tennis match, a simple matter. Over the years,
dozens of authors have published work which attempts to provide an answer to this
problem or related aspects. The most important work in the field is discussed in
this section.

2.3.1. Hierarchical Match Models

The hierarchical approach to modelling tennis is the most popular among the liter-
ature. Kemeny and Snell [17] were some of the earliest authors to model the game
of tennis using a hierarchical approach utilising Markov Chains. The hierarchical
idea is relatively simple: in order to win the match, a player must win a number
of sets, in order to win a set, a player must win a number of games and in order
to win the game, a player must win a number of points. Using the probability of
a player winning a point, one can hierarchically model the match by making the
assumption that points are independent of each other and identically distributed
(i.i.d.). In their book, Kemeny and Snell [17] model a tennis game using a single
parameter which is a constant probability of a player winning a point throughout
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the match, regardless of who is serving. This simple game model was made up of
a preliminary Markov chain followed by a random walk (in the case of a deuce) of
5 states with two absorbing states as demonstrated in Figure 2.8.

Deuce Adv. AAdv. BWin B Win A1-p p

1-p

p

p

1-p

Figure 2.8.: Random walk from Deuce using a single parameter p which is the
probability of Player A winning a point.

The simplistic model developed by Kemeny and Snell [17], to demonstrate a
Markov chain, disregards the advantage of serve when extended to a match model,
something which plays a vital role in tennis. Hsi and Burych [20] stress the im-
portance of the advantage of serve and calculate the algebraic expressions for the
probability of winning tennis games, sets and matches by taking this into account.
They use a two parameter model and assign two different probabilities of winning
a point, one for Player A serving and one for Player B serving.

Carter and Crews [21] later develop a single parameter Markov chain model
which uses a constant probability throughout the match. This single parameter
is calculated from the average of each player’s probability of winning a point on
their serve, thus combining the two parameters. Fischer [22] develops a model of
winning a match for both tiebreaker sets and advantage game sets but ignores the
serving advantage because, as he points out, it averages out through the match.

In the interest of analysing the efficiency of the scoring systems of various
sports, including tennis, Miles [23] adopts Bernoulli-type models to represent se-
quences of contests. Miles uses both a one parameter model (unipoint model) and
a two parameter model (bipoint model) for tennis and compares the two. Miles
agrees with the “averaging assumption” used by Carter and Crews [21]. This dis-
cussion about the disaggregation of statistics continues to this day and it appears
that disaggregating statistics makes little difference on the higher level probability
of winning the match as it does in fact “average” out. On the other hand when mod-
elling lower level probabilities such us the probability of winning the point or the
probability of winning the game, disaggregation of model parameters is important.

Croucher discusses the impact tie-breakers have on a tennis match [24] and in-
troduces the idea that the probability of winning a tennis game changes throughout
the game [25]. This is done by presenting conditional probabilities to winning a
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single game from any score-line while making some deductions about the most
“important points” in a tennis game. Morris [26] also discusses the most “impor-
tant points” in tennis and proves that they are equally important for both competing
players. The importance of points is a concept which appears in a broad variety of
papers and has originated from these two papers.

Riddle [27] models a tiebreaker set as a sequence of contests (games) between
the two players, using three parameters (the probability that Player A/B wins a
game given they are serving and the probability Player A wins a tiebreaker). He
then models a tennis game and a tiebreaker as a sequence of contests (points)
and formulates equations for the probability of a player winning a game and a
tiebreaker when serving first. Riddle [27] also presents empirical evidence that
the assumption that the probability of winning a point on serve remains constant
throughout the match is valid since the factors that may affect that probability are
cancelled out over many matches. Though this is a valid argument for match out-
come prediction (since over the many points in the match the factors affecting the
probability of winning a point may cancel out) when trying to predict the winner
of individual points or even games the factors affecting the probability of winning
points become more important.

Liu [28] also used finite Markov chains to derive equivalent closed form equa-
tions for calculating the probabilities of winning games, sets and finally the match.
He models deuce as a 5 state random walk similarly to Kemeny and Snell [17] and
proceeds to find the steady state probabilities of the game Markov chain. Liu [28]
also demonstrates a Gambler’s ruin style approach which yields the same solution.

Klaassen and Magnus [29] among other important research, proposed a method
that uses a closed form equation of the probability of a player winning the game,
for forecasting winners of a tennis match. Using their program and data from
Wimbledon they were able to find the probability of a player winning the match
not only prior to but during the match. Their method was later used by Easton and
Uylangco1 [30] to generate point-by-point probabilities and compare them to bet-
ting exchange implied probabilities during live matches. They concluded that odds
presented by the exchange are in fact closely related to the model as they found
extremely high correlation between the model and exchange probabilities. In fact,
betting exchanges respond extremely well to the changing realities of matches
given sufficient liquidity and do provide a good guideline towards validation of
tennis models.

Barnett and Clarke [31] use the work of Riddle and show how to use a spread-
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sheet to predict the outcome of a tennis match. This spreadsheet clearly shows the
probability of winning the game/set/match from any point in the match taking as
input the probability of each player winning a point on their serve. In a later pub-
lication, Barnett and Clarke [32] formulate the conditional probabilities for game,
set and match given the probability of winning a point on serve and in the same
paper demonstrating a gambling strategy using the model. Barnett and Clarke [33]
also present a means to calculate the probability of each player winning a point on
their serve by using publicly available statistics. They do that by first calculating
the percentage of points won on serve, fi, for each player i, as well the percent-
age of points won while returning serve gi. Calculating fi from the statistics is
straightforward, gi though is not that simple as the number of first serves that were
in play is not known. To overcome that they use the average 1st serve percentage
of the top 200 players of the ATP. They then combine fi with gi to come up with
a probability of player i winning a point on serve when playing against player j.
This is done by adding the probability ( fi � fav) and subtracting the probability
(g j �gav) to the tournament average probability of winning a point on serve. This
approach combines the capability of a player winning a point on his serve with the
capability of his opponent winning a point while returning serve. This is the first
approach that actually accounts for the abilities of the server and the returner and
as such, the predictions are much more accurate.

Newton and Keller [34] unify some of the previous literature and derive the
probabilities of winning a point, set and match hierarchically. They present ev-
idence that winning a set depends on who will serve first and also calculate the
probability of a player to win in a 128-player tournament such as a Grand Slam.
They also discuss possible solutions to the non-i.i.d effects of points in tennis.
O’Malley [35] explores the properties of the probability function of winning a
game on serve by plotting the derivative and integral of the probability function.
He concludes that a 0.01 increase in probability of winning a point on serve when
it is at 0.5 affects the probability of wining a game much more than when the prob-
ability is around 0.7. He also calculates the probability functions of winning the
set and match and plots their distributions giving a complete account on their prop-
erties. O’Malley [35] also demonstrates the interesting fact that the probability of
winning a match is highly dependant on the difference between the two players’
probabilities of winning a point on serve and not so much on the values of the
individual probabilities.

Newton and Aslam [36] demonstrate the importance of looking at the distri-
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Figure 2.9.: The distribution of Rafael Nadal’s probability of winning points while
serving and returning over 124 matches played within January 2012
to December 2013 ATP tournaments.

butions of a player’s probability of winning points and not just their means as in
previous literature. They examine how the player’s probability of winning a point
on serve and while receiving changes over multiple matches and show that they
can be modelled as normally distributed random variables as seen in the case of
Rafael Nadal in Figure 2.9. They then build a four parameter model which uses
the means of those Gaussian distributions and their standard deviation to model
the probability of winning a tennis match. They do that by firstly combining the
probabilities of winning a point on serve with the opponents’ probabilities of re-
turning a point in a similar way as Barnett and Clarke [33] propose. They then
use those adjusted probabilities as the mean and the player’s standard deviation in

50



order to generate a truncated gaussian distribution of the match. Next, they sam-
ple a random probability from the distribution and use it as the input to a game
Markov chain model running Monte Carlo simulations of the entire chain to cal-
culate the probability of a player winning the match. Newton and Aslam [36] also
point out that the standard deviation can also be used as a measure of the player’s
consistency from match to match and over the different surfaces which is a con-
cept which can be explored further, especially when applied to selecting possible
wagers.

2.3.2. Independence of Points

The hierarchical models discussed in Section 2.3.1 make the assumption that win-
ning a point on serve during a tennis match is an independent and identically dis-
tributed process. This is an important assumption and it simplifies the hierarchical
tennis models significantly. It is widely accepted though that factors such as fa-
tigue, injuries and psychological factors based on the importance of the point and
winning streaks [37, 38] can greatly impact the probability of winning a point in
tennis during a match. Therefore in reality, the probability of winning points on
service is both dependant to other points being won and not identically distributed.

Klaassen and Magnus in 1998 [39] investigated, using data from Wimbledon,
whether points are i.i.d. and have concluded that in fact they are not. They
further propose an extended logit model which attempts to correct for the inter-
dependency of points. In their paper in [40] they also conclude that even though
the probability of winning a point during a match is not i.i.d., for professional
players the deviation from i.i.d. is small and for the stronger players even smaller.
For applications such as forecasting professional tournaments therefore. it is not
unacceptable to assume that they are in fact i.i.d.

Newton and Keller [34] also discuss evidence of the non-i.i.d. nature of tennis
points and present how one can adjust the probabilities of points won depending
on “point importance” [26] and player characteristics.

2.3.3. Ranking Models

As mentioned in Section 2.1.4 official ranking tables are developed to assess the
yearly performance of professional players. We have in the past argued that these
ranking tables suffer from bias [9] and are unfair to poorly ranked players.

Radicchi [8] demonstrates a technique which enables the ranking of 3500 tennis
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players from 1960 to 2011 in a quest to find the best player of all time. Radic-
chi adapted the PageRank [41] algorithm, which was originally developed to rank
websites, to rank professional tennis players. He creates a network out of the
meetings of the players and assigns a weight to each connection depending on
how many defeats each player had from its paired player. Radicchi then calculates
a prestige score for each player from those connections. The prestige score of a
player is calculated as follows:

Pi = (1�q)Â
j

Pj
w ji

sout
j

+
q
N
+

1�q
N Â

j
Pjd (sout

j ) (2.31)

where:
Pi is the prestige score of player i
Pj is the prestige score of player j
w ji is the weight of the directional connection from player j to player i. (i.e. the
number of times player j has been defeated by player i)
sout

j is the out-strength of player j, that is sout
j = Âi w ji

q is a damping factor where q 2 [0,1]
and finally d () is a function which takes the value of 1 for zero input and 0 for all
others.

Radicchi then goes on to generate the prestige ranking of a player from a single
tournament as an example. Radicchi concludes by ranking all tennis players from
1960 according to their prestige score and finds Jimmy Connors to be the best
player of all time.

Baker and McHale [42] present a new, more generalised, closed form of Stern’s
gamma comparison model [43]. They then use this model with barycentrically in-
terpolated player strengths, which adapt over time, in a quest to discover the best
tennis player since 1968. The answer they provide to the question is Roger Fed-
erer, closely followed by Bjorn Borg and Jimmy Connors. Using their generated
ranking they found that it closely follows a ranking of players which is based on
the number of Grand Slams won.

2.3.4. Using Rankings as Predictive Tools

Various other authors approach the problem of predicting match outcomes by mak-
ing use of player rankings and figuring out methods of extracting probabilities from
the rankings.
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Boulier and Stekler [44] construct a probit regression model which uses the
differences in player rankings to make predictions on the tennis match outcome,
finding rankings as useful predictors. Clarke [45] predicts the outcomes of matches
of top players by using exponential smoothing on official ATP player rankings and
later on uses that approach [46] to simulate major tournaments such as Wimbledon.

Klaassen and Magnus [47] use a logit model based on the differences between
the competing players’ rankings to estimate an initial probability of winning a
point on serve which they then adapt during the match to provide in-game analysis.

Corral and Rodriguez [48] use a different approach to investigate whether the
difference in player rankings is a good predictor. They suggest three different
probit models which include differences in player rankings and use them to evalu-
ate their forecasting accuracy by comparing the predicted probabilities with actual
match results. They also study the effect of ranking differences on prediction for
varying player gender.

An issue with the above approaches is not the models they develop but the un-
derlying ATP rankings which provide the data for the models. It can be argued that
the official ATP rankings do not represent true player ability but rather the ability
of players to compete within the rules of the ranking system itself. This affects the
performance of these models in a negative way.

McHale and Morton [49] overcome this problem by using the number of games
won against opponents, exponentially decayed over time (accounting for players’
recent form), to calculate the players’ ability to win games. They then generate
rankings based on that ability and use it as a parameter to a Bradley-Terry type
model [50] to calculate the probability of a player winning a game against another
player. This game winning probability can be expanded using hierarchical models
to the probability of winning the match.

2.3.5. Other Tennis Model Uses

Result Prediction and Sport Analysis

Hierarchical models and ranking systems are not the only way to predict tennis
results. This section includes all literature which focuses on different methods for
predicting tennis results as well as general analysis of various factors related to the
sport of tennis.

Richardson et al. [51] analyse the effect of psychological momentum in tennis
across genders and ability. They concluded that psychological momentum depends
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on individual players and that gender and ability does not make a significant dif-
ference.

Bosscherr et al. [52] present an analysis of the correlation between the country
of origin of the player and their success, achieving a greater understanding of the
socio-economic impact on the sport.

A different type of solution to the problem of predicting tennis results, is using
neural modelling, as introduced by Somboonphokkaphan et al. [53]. They use a
multi-layer perceptron to predict the match result with three different techniques,
each progressively better than the last one. Their results are impressive as their
TimeSeries model can predict from 70% to 81% of the matches of each tournament
tested. The downside of this “black-box” approach is that it contributes little to the
mathematical understanding of the game of tennis and in the case it under-performs
it offers no conceptual explanation as to why it would be the case.

Scarf and Shi [54] measure the importance of a match quantitatively for any
sport. They do this in a similar way to the methodology Morris [26] uses measure
the importance of points in tennis (i.e. by measuring the impact of winning the
match has on the probability of achieving a goal). This is done using Monte Carlo
simulations because of the complexity.

Djurovic et al. [55] utilise statistical tennis match data of 128 matches played
on hard courts to perform factor analysis based on a component model. They iden-
tify five significant factors which account for 83.38% of the variability of matches.
Those factors are the total number of break points, total number of first serve points
won, the average and fastest serve speeds, the number of net approaches and win
percentage of net approaches and finally unforced errors and double faults. Iden-
tifying the contributing factors to the variability of match results is useful in pre-
diction as it can simplify models. These results are reasonable but the sample of
data used to come to these conclusions is insufficient and biased (as it is only for
hard courts). Ma et al. [56] also published a paper presenting a logistic regression
model with 16 variables, constructed using match statistics, player characteristics
and match characteristics. Their data included statistics from 9144 matches and
their model explains 79.4% of the variance. Their results also confirm the impor-
tance of serving, receiving and break-points to the final outcome of matches.

Gilsdorf and Sukhatmeb [57] use Rosen’s tournament model [58], which in-
cludes tournament incentives among other parameters, in an attempt to measure
the impact the prize money of a tournament has on the probability that the favourite
player will win. They found that for WTA tournaments, the prize money has a pos-
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itive impact on the favourite’s probability of victory. The reason for this could be
that more skilled players participate in the tournaments with higher incentives. As
a result there is a wider gap between the seeded players and the unseeded ones and
as a result there is an overall greater chance of the favourites to win matches in the
tournament as a whole.

Leitner et al. [59] investigate the effect of Rafael Nadal’s absence from tourna-
ments on Roger Federer. In particular, they use bookmaker’s expectations on the
winner of Wimbledon 2009 and analyse how these change given Rafael Nadal’s
sudden withdrawal. They find that the probability of Roger Federer, Andy Murray
and Tommy Haas winning the tournament increase disproportionately compared
to everyone else. Although an apparently interesting discovery, there appears to be
little data to support a pattern.

Malueg and Yates [60] construct an economic model and use data from equally
matched players to understand and measure the effort exerted by tennis players
in a best-of-three match. They find that the winner of the first set exerts greater
effort in the second set because the reward is greater and thus a best-of-three set
is more likely to end in 2 straight sets. This discovery goes against the idea of
momentum which is a widely accepted concept and further investigation into this
type of analysis would be interesting.

Vis et al. [61] apply pattern mining to tennis. They succeed in identifying se-
quences of strokes that occur frequently during rallies for both individual players
and in general. This paper sets up a framework for further analysis into pattern
detection for tennis.

Scheibehenne and Broder [62] created a study to measure the recognition of
tennis players’ names and used their recognition ranking results to predict match
outcomes. Herzog and Hertwig present an interesting paper [63] in which they use
the “wisdom of ignorant crowds” to predict outcomes of various sports, including
tennis. They use crowd recognition of players to forecast the outcomes of matches
and they found that ranking players by recognition can have the same predictive
power as official rankings. Crowd recognition could be a powerful predictor but
could also offer pitfalls for specific players, as recognition does not distinguish the
reasons for players’ fame or infamy.

Nevill et al. [64] and later on Holder and Nevill [65] compare world rankings
with Grand Slam rankings using logistic regression to investigate whether playing
at home affects the performance of players, only to find little evidence that it does.
Koning [66] approaches the same problem with a probit model to quantify the
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home advantage in tennis matches. He discovered that playing at home affects
men’s performance but does not significantly affect women’s performance.

Knight and O’Donoghue [67] analyse the probability of winning break-points in
Grand Slams and compare it to the probability of winning other non-break points.
They find that there is a significant increase in the probability of the receiver win-
ning a break-point when compared to other points and as a result they conclude
that the probability of winning a point depends on the match score at the time.

Competitive Balance

Klaassen and Magnus [68] investigate how to reduce the dominance of serve in
tennis to make matches more interesting and more competitive. Their analysis
indicates that abolishing the second serve altogether will eliminate the serving
advantage and will make the server and receiver more equal.

Du Bois and Heyndels [69] investigate competitive balance in women’s and
men’s professional tennis. According to their findings, there is higher inter-seasonal
as well as long term uncertainty in men’s tennis suggesting that the ATP Tour is
more competitive.

Corral [70] also investigates competitiveness in tennis. He composed a paper
investigating the effect seeded tournaments have on the competitiveness of tennis
in both men and women. He proposes a method of measuring competitiveness
in tournaments based on the seed position of players and how far along they pro-
ceed in tournaments. The conclusion presented is that seeded tournaments reduce
competitive balance in men but do not make a significant difference in women’s
tennis.

Sunde [71] explores whether heterogeneity in tennis tournaments affects the
effort exerted by competing players. The heterogeneity of players is measured in
terms of their difference in ATP Ranking before the match. The findings in this pa-
per suggest that players exert greater effort when facing opponents who are closer
to them in ranking. This is a reasonable conclusion and it would be interesting
to investigate the underlying cause. For example, it could be because players will
face other players who are closer to them in ranking more often in tournament fi-
nals (because of seeded tournaments), so perhaps the underlying cause of greater
effort is that they are closer to their goal.

Halkos and Tzeremes [72] calculate an efficiency indicator which includes 9
performance indicators to evaluate the efficiency of 229 professional players over
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their entire career. They find that tennis is highly competitive with 39 players
appearing to be efficient.

Optimising Player Strategies

Gale [73] was one of the earliest authors to touch on using models to improve
strategy. He published a simple model for the probability of winning a point by
splitting the point into first and second serves. He then used that model to com-
ment on the optimum serving strategy. George [74] also comments on the serving
strategy by developing a similar conditional model on first and second serves, dis-
covering, using real data from tournaments, that the usual strategy of strong then
weak serve may not be optimal. Norman [75] uses a dynamic programming ap-
proach to address the serving strategy problem and provide the conditions of when
to serve fast and when to serve slow in both serves. Pollard [76] comes to the
conclusion that the risk taken during serve has a quadratic relationship with the
chance of winning the point and hence players should manage service risk accord-
ingly. Pollard et al. [77] also composed an article outlining how match statistics
can be used during play by players to manage that risk.

Klaassen and Magnus [78] also touch on the issue of serving and service strategy
using more recent data from Wimbledon. They found that in general the serving
strategy of top players is not optimal but inefficiencies are small. They expand
these results to estimate the effect service inefficiency has on the probability of
players winning matches and (for Wimbledon) the monetary loss that they cause
players.

O’Donoghue and Ingram [79] analyse singles events to determine the impact
player sex and the surface of the court have on the top players’ strategy in terms of
rally length and the quantity of baseline rallies. Their results show that both param-
eters have a significant influence on the players’ strategy. O’Donoghue [80] also
mentions the significance of including those same parameters in the measurement
of the importance of points.

Chiu and Chiao [81] mathematically analyse positioning of players and the de-
fence space with the purpose of creating mathematical models to optimise player
positioning before the stroke.

Since the introduction of the “Hawkeye” system in tennis, players have been
able to challenge umpire calls. Pollard et al. [82] discuss how this problem opens
up potential analysis for efficient use of player challenges. Using the importance
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of points, the expected number points remaining in the set, and the player’s prob-
ability of getting challenges right, one could develop a model to assist players in
the decision of when to challenge. Nadimplali and Hasenbein [83] suggest a strat-
egy about when players should challenge a call in tennis using a simple Markov
decision process. The parameters which define the decision to challenge are: the
number of challenges remaining, the confidence of the player that the call was
wrong, the current score, the outcome of a successful challenge and the outcome
of the point.

Equipment Improvement and Injury Prevention

Some literature deals with measuring impacts on tennis equipment and players
with the aim of preventing injuries and creating new and better equipment such
as rackets and shoes. Brody [84] published one of the earliest papers measuring
impacts on rackets using a piezoelectric foil on the racket’s handle converting force
into an electric signal.

Cross [85] mathematically models the swing of a racket and the forearm as
a double pendulum and proves that the speed of the racket swing is dependent
primarily on the racket’s moment of inertia.

Cutmore [86] develops a tennis match model which takes into account the risk
of retirement of the players at any point in the game. This risk is modelled as a
function of the gap between bookmakers set markets and the match market.

Automated Annotation by Video and Audio Analysis

A great deal of work has been done in automating the retrieval of statistics using
video and audio analysis of tennis broadcasts. As the results of this line of research
become more and more reliable, it will enable more detailed statistics to be gath-
ered and publicised which will in turn make tennis models even more powerful.

Using court dimensions and camera geometry, Sudhir et al. [87], were able to
create an algorithm that is able to detect court lines and track tennis players from
video feeds. This information is then analysed and linked to high-level tennis
events such as the detection of baseline shots, passing-shots, serve-and-volley and
net-games.

Petkovic et al. [88] introduce another method of analysing TV broadcast videos
using Hidden Markov Models and an image segmentation algorithm to recognise
tennis strokes in an attempt automate retrieval of tennis statistics. Bloom and
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Bradley [89] attempted to solve the same problem by tracking tennis players and
recognising different strokes. This kind of research can automate tennis metadata
capture and provide detailed data for statistical analysis.

Kolonias, Christmas et al. [90, 91, 92] also describe a system for automated
tennis match annotation from video. Their system uses a hidden Markov model,
the evolution of a point and other higher level models to detect the outcome of
individual shots and annotate video with fair accuracy. It achieves this using court
reconstruction, player and ball-tracking and following the grammar rules set by
the restricted state machine in the background.

Hunter et al. [93, 94] analyse the audio from tennis feeds and using a Markov
chain to simulate points, they are able to detect events and predict in-point se-
quences based on stroke sounds alone.

Jiang et al. [95] developed a system which will automatically detect and recon-
struct a tennis court based on the court lines, it will then detect and track players
knowing the colours of their uniform. The system also extracts the player figure
completely and includes a shadow removal algorithm which opens research possi-
bilities for stroke type detection.

Dang et al. [96] develop a robust framework of real-time video analysis for
tennis player detection and tracking. This framework boasts court line detection
and a player tracking system which uses an underlying tennis model. Another
system designed by Connaghan et al. [97] can automatically detect the beginning
of a tennis game, a change of ends by the players and a tennis serve. It does this by
using player position and visual characteristics of the players to recognise them.
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3. Expanding the Hierarchical Tennis
Model

Our research builds on Barnett’s research [98], by modelling the point itself in
more detail. Modelling the point as a Markov chain allows us to combine statistics
individually at a lower level than the point itself; e.g. combine the server’s ace
ability with the receiver’s vulnerability to aces or the server’s second serve win %
with the receiver’s second serve return win %. We then demonstrate how one can
use player statistics to calculate the probability of a player winning a point on
serve and how to combine player statistics to account for the returning skills of the
opposing player.

The first part of this chapter describes how the match, set, game and point are
modelled hierarchically as Markov Chains and how conditional probability for-
mulae can be generated. The match chain model uses the probabilities derived
from the set chain model, the set chain model uses the probabilities derived from
the game and tiebreaker chain models and finally the game and tiebreaker chain
models use the probabilities derived from the point chain model. The match, set
and game models presented here are identical to the ones presented by Barnett et
al. [98] with the exception of slight modifications on the order of serve within the
tiebreaker and the order of serve within the set model.

3.1. Match Markov Chain

The match chain model is a very simple Markov Chain as shown in Figure 3.1. To
improve readability of the diagram the probabilities are not shown on the lines but
the layout has been designed such that any movement to a state which is higher
in the diagram happens when Player A wins a set and movement to a lower state
happens when Player A loses a set.

The players alternate serve with each passing game so we must also keep in
mind who serves first in each set. To illustrate how this affects the probabilities
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Tennis Match (Best of 5 Sets)

0, 0

1, 0

2, 0

Player A
Wins

Player B
Wins0, 1

0, 2

1, 1

2, 1

1, 2

2, 2

Figure 3.1.: Markov Chain of a Tennis Match

used we will explain using an example. If we assume that Player A starts to serve
first then from state (0,0) we will move to state (1,0) with a probability p⇤⇤A (the
probability that Player A wins a set in which he serves the first game) and we will
move to state (0,1) with a probability of 1� p⇤⇤A . In the second set that is played,
the receiver of the last game serves the first game. Assuming Player A has won the
first set and player B received last in the first set and we are now in state (1,0), then
we can move to state (1,1) with a probability of p⇤⇤B (the probability that Player B
wins a set in which he serves the first game) and to state (2,0) with a probability
of 1� p⇤⇤B . In the case the last set ended with a tiebreaker, then the player who
received the first point of that tiebreaker will be the server of the first game in
following set.

A best-of-3 sets match model can be designed in a similar way by removing the
third column of states and moving directly from the second column to the winning
states. The probabilities p⇤⇤A and p⇤⇤B can be calculated from the Set chain model
which is described in the next section.

Assuming that Player A is the player who serves the first game of the match, the
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following conditional probabilities hold.

Pm(x,y) = p⇤⇤A Pm(x+1,y)+(1� p⇤⇤A )Pm(x,y+1) when A serves 1st (3.1)

Pm(x,y) = p⇤⇤B Pm(x,y+1)+(1� p⇤⇤B )Pm(x+1,y) when B serves 1st (3.2)

Where Pm(x,y) is the probability that Player A wins the match from match score
x, y.

The boundary values of Pm(x,y) for a best-of-5 set match are:
Pm(x,y) = 1 for x = 3, y < 3
Pm(x,y) = 0 for y = 3, x < 3
Pm(x,y) = p⇤⇤A for x = 2, y = 2

Similarly for a best-of-3 set match:
Pm(x,y) = 1 for x = 2, y < 2
Pm(x,y) = 0 for y = 2, x < 2
Pm(x,y) = p⇤⇤A for x = 1, y = 1

3.2. Set Markov Chain

There are two types of sets in tennis, the advantage set and the tiebreaker set.
An advantage set ends only when some player has a score of 6 or higher and a
difference of at least 2 games from his opponent. The tiebreaker set is similar
to an advantage set with the difference that the game at 6-6 is a tiebreaker game
which settles the set. A tiebreaker set is shown in Figure 3.2.

In the same way as in the match model we will move to a higher state if Player
A wins the game and to a lower state if Player A loses the game. Assuming that
Player A is the player who serves in the first game, then we will use p⇤A when
even number of games have been played and p⇤B when odd number of games have
been played. In the case of a tiebreaker we use pT⇤

A which is the probability that
Player A wins a tiebreaker game in which he starts serving first. p⇤A and p⇤B are
the probabilities that Player A wins a game as a server and Player B wins a game
as a server respectively. p⇤A and p⇤B are calculated using the game chain model
whereas pT⇤

A can be calculated using the tiebreaker chain model both described in
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Tennis Set - Tiebreaker
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Figure 3.2.: Markov Chain of a Tennis Tiebreaker Set (the tiebreaker game is de-
fined in Figure 3.4)

subsequent sections.
Assuming that Player A is the first player to serve in the set then the equations

for the probability of winning a set are:

PS(x,y) = p⇤APS(x+1,y)+(1� p⇤A)P
S(x,y+1) for even (x+ y) (3.3)

PS(x,y) = p⇤BPS(x,y+1)+(1� p⇤B)P
S(x+1,y) for odd (x+ y) (3.4)

The boundary values for PS(x,y) in the case of a tiebreaker set are:
PS(x,y) = 1 if x � 6,x� y � 2
PS(x,y) = 0 if y � 6,y� x � 2
PS(x,y) = pT⇤

A if x = 6,y = 6

The boundary values in the case of an advantage set are:
PS(x,y) = 1 if x � 6,x� y � 2
PS(x,y) = 0 if y � 6,y� x � 2
PS(x,y) = p⇤A(1�p⇤B)

p⇤A(1�p⇤B)+(1�p⇤A)p⇤B
if x = 5,y = 5
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The same equations can apply when Player B is serving first in the set by simply
substituting p⇤A with p⇤B and p⇤B with p⇤A.

An interesting state to further investigate, in the case of the advantage set, is
the 5-5 state. The probability of winning the set from this state is the same as
the probability of winning the set from any tied score greater than 5. In order to
calculate this probability, one only needs to consider the problem as a random walk
with two states. Player A can win the set by winning two games in a row with a
probability of (P⇤

A)(1�P⇤
B). Keeping in mind that the probability of going back to a

tie is P⇤
AP⇤

B +(1�P⇤
A)(1�P⇤

B), one can find the probability of Player A winning the
set from this state is PS(5,5) = (P⇤

A)(1�P⇤
B)+(P⇤

AP⇤
B +(1�P⇤

A)(1�P⇤
B))P

S(5,5).
Solving for PS(5,5) gives the boundary value described above [99].

3.3. Game Markov Chain

Tennis Game

0, 0

15, 0

30, 0

40, 0
Server
Wins

Server
Loses

0, 15

0, 30

0, 40

15, 15

30, 15

15, 30

30, 30

40, 15

15, 40

40, 30

30, 40

Deuce

Adv A

Adv B

We travel up in the state diagram
with  P(A) and down with 1-P(A)

Where:
P(A) = Prob. Server Wins the Point

Figure 3.3.: Markov Chain of a Tennis Game

Figure 3.3 shows the Markov chain of a tennis game. Similarly to the previous
chains we move to a higher state in the diagram when the server wins the point and
to a lower one when the server loses a point. In a game the server is always the
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person serving first, therefore we only need the probability of the server winning a
point to evaluate the game probability. We define pA and pB to be the probabilities
of Player A winning a point while serving and Player B winning a point while
serving respectively. pA and pB can be calculated in a variety of ways depending
on how the point itself is modelled.

PG(x,y) denotes the probability of the server winning the game from score x, y.
For simplification, we will use the value 1 for x and y when the score is 15 , the
value 2 for a score of 30 and the value 3 for a score of 40. Assuming Player A is
serving for the duration of a game PG(x,y) can be calculated as follows:

PG(x,y) = pAPG(x+1,y)+(1� pA)PG(x,y+1) (3.5)

The boundary values are:
PG(x,y) = 1 when x = 4, x� y � 2
PG(x,y) = 0 when y = 4, y� x � 2
PG(x,y) = p2

A
p2

A+(1�pA)2 when x = 3, y = 3
These equations are also valid for Player B serving first by substituting pA with
pB.

The boundary value for deuce is approached similarly to the method used to
calculate the PS(5,5) boundary value in the previous section. Using the method
proposed by Haigh [99] one can jump directly from Deuce to either victory or
loss, skipping the advantage states. Using this approach then the probability to
win directly from deuce is p2

A, to lose directly from deuce is (1 � pA)2 and to
go from deuce back to deuce is 2⇥ pA(1� pA). This means that the probability
PG(3,3) = p2

A +2pA(1� pA)PG(3,3). Solving for PG(3,3) gives us the result we
have above.

3.4. Tiebreaker Markov Chain

Like the previous chain models this one has also been designed such that whenever
Player A wins a point we follow the model upwards and whenever Player B wins a
point we follow the model downwards. Tiebreakers have a complication however,
as players serve alternatively every two points. In fact assuming Player A serves
first, Player B will serve the following two points, then Player A will start serving
and they will alternate serving every two points. (i.e. the sequence of serving will
be ABBAABBAA...BBAA). This complicates the equations for PT (x,y) which
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Figure 3.4.: Markov Chain of a Tiebreaker Game

denotes the conditional probability of the player who serves first in a tiebreaker to
win the tiebreaker from score x, y.

Assuming Player A serves first, the formula for PT (x,y) is as follows:

PT (x,y) = pAPT (x+1,y)+(1� pA)PT (x,y+1) for 2  (x+ y+3) mod 4  3
(3.6)

PT (x,y) = pBPT (x,y+1)+(1� pB)PT (x+1,y) for 0  (x+ y+3) mod 4  1
(3.7)

The boundaries are:
PT (x,y) = 1 when x = 7, x� y � 2
PT (x,y) = 0 when y = 7, y� x � 2
PT (x,y) = pA(1�pB)

pA(1�pB)+(1�pA)pB
when x = 6, y = 6

These equations are also valid for Player B serving first by substituting pA with
pB and pB with pA. The approach used to calculate the boundary PT (6,6) is the
same as the one used to calculate the boundary PS(5,5) of the advantage set. Also
worth noting is that PT (5,5) = PT (6,6) therefore one could move the boundary
value to the score 5-5 and simplify the model further. We chose to leave it at the
score point 6-6 for greater clarity.
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3.5. Point Markov Chain
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Key:
1SN  = 1st Service Net
2SN  = 2nd Service Net
1SF = 1st Service Fault
2SF = 2nd Service Fault
1SA = 1st Service Ace
2SA = 2nd Service Ace
1SR = 1st Service Rally
2SR = 2nd Service Rally
1SRW = 1st Service Rally Win
2SRW = 2nd Service Rally Win
1SRL = 1st Service Rally Loss
2SRL = 2nd Service Rally Loss

Assuming P(1SN)=P(2SN) =0

P(Point Loss) = P(1SRL)*P(1SR) +
                              P(2SRL)*P(2SR)*P(1SF) +
                              P(2SF)*P(1SF)

P(Point Win) = P(1SA) +
                             P(2SA)*P(1SF) +
                             P(1SRW)*P(1SR) +
                             P(2SRW)*P(2SR)*P(1SF)

Figure 3.5.: Markov Chain of a Tennis Point

The single player point model is our approach to calculating the probabilities
pA and pB as used in the previous models and this is where our research expands
existing literature. From the perspective of the server, a point in tennis can be
broken down into a set of states. A tennis point starts with the first serve. From
the first serve, the server can either repeat first serve by getting a net (let) call,
proceed into a second serve by a fault, proceed into a rally by successfully placing
the serve and be returned or directly win the point with an ace. Similarly, while in
the second serve the server can either repeat second serve by getting a net (let) call,
lose the point by another fault, go into a rally by successfully placing the serve or
win the point with an ace. Following a rally, the server can either win or lose the
point. This translates into the Markov chain shown in Figure 3.5. For the duration
of this chapter we will use the following abbreviations: SN for Service Net, SF for
Service Fault, SA for Service Ace, SR for Service Rally, SRW and SRL for Service
Rally Win and Service Rally Loss respectively. A number before an abbreviation
denotes whether the event has occurred during a first or second service. e.g. 1SF
denotes 1st Service Fault.
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From the Markov chain we can easily compose equations for the probabil-
ity of the server winning the point. Due to lack of statistical data on net calls
and because they occur rarely, we assume that P(1SN) = 0 and P(2SN) = 0.
This results in the simplified Equations 3.8 and 3.9 which are the probabilities
of the server winning and losing the point respectively. It must also hold that
P(PointWin) = 1�P(PointLoss) as they are mutually exclusive events.

P(PointWin) =P(1SA)+P(1SR)P(1SRW)+P(1SF)P(2SA)

+P(1SF)P(2SR)P(2SRW)
(3.8)

P(PointLoss) =P(1SR)P(1SRL)+P(1SF)P(2SF)

+P(1SF)P(2SR)P(2SRL)
(3.9)

The probability P(PointWin) can be embedded in higher level Markov chains
for games, sets and matches as pA or pB depending on which player is the server of
the point. Equation 3.8 however is of little use without knowing how to estimate
the probabilities that it takes as input. We can estimate these input probabilities
in a number of ways, whether it is a method that only uses the average long-term
statistics of the server against the average player he has faced, one which combines
the long-term average statistics of both server and receiver or even an approach
which combines the statistics of four players for a doubles match. Whichever
approach is adopted, the quality of the results will depend on the availability of
accurate statistical values.

3.6. Service and Rally Markov Chains

Although at this time, the statistical data required for even deeper modelling of a
point is not available to the public, it is very possible that advances in computer
vision like the work of Kolonias et al. [100] and the wider spread of the Hawkeye
system in tennis courts, will provide a means to collect them in the future. In such
a case models which analyses stroke placement and type for both services and
rallies will become very useful as they will model the strengths and weaknesses of
players in particular strokes.

A model similar to the one in Figure 3.6 can be used to estimate the probabilities
P(1SR), P(1SA), P(1SF), P(2SR), P(2SA) and P(2SF) (given adequate data on the
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Probabilities of Choices can be calculated using statistical data from previous matches for each player.
Probabilities of outcomes may also be calculated using statistical data of both server and receiver.

Fast Serve Slow Serve

Figure 3.6.: Markov Chain of a Serve

speed of each serve, the type of serve, the service positional choices of players and
the Win/Loss percentages of each combination of the above). The model firstly
splits into two different power levels (fast and slow serves), then into possible types
of service shot (a flat shot, a slice, a twist, a topspin slice and finally a topspin).
Statistics for the choice of service can possibly be collected by tracking the motion
of the player’s racket while hitting the ball or alternatively by following the ball
and depending on the curve it follows assign a shot type. The shot is then further
categorised in terms of where it lands on the court. By splitting the service box to
three equal vertical sections we can categorise the shots’ target as box corner, box
center and court center. Finally the service shot has three outcomes. It can either
be an ace, a fault or it can be returned resulting in a rally. This allows for detailed
analysis of the player’s serving habits and strengths in the first serve and in the
second serve. This can also be further combined with the opponent’s returning
strengths for each particular type of serving shots to estimate the probabilities of
the outcomes of service against particular opponents.

Expanding this type of analysis to a rally, a model similar to the one in Fig-
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ure 3.7 can be used to estimate the probabilities P(1SRW), P(1SRL), P(2SRW) and
P(2SRL) given adequate data on stroke choices of players and positions of stroke
as well as return win percentages of each type of stroke within a rally. The shot
has been divided into six different strokes: forehand, backhand, volley, half-volley,
drop-shot and lob. Each of these strokes can have one of three court targets – it
can either be on the left court, the center or the right court. Gathering statistics for
a player’s winning and returning abilities in every one of these combinations of
shot choice and shot placement, can allow one calculate the probability of a player
winning a rally against a particular opponent.

Rally

Server
Loses Rally

Server
Returns

Backhand

Forehand

Drop Shot

Volley

Half Volley

Left

Center

Right

Receiver
Returns

Lob

Server
Wins Rally

Left to right we use Choice probabilities of Receiver
Right to Left we use Choice probabilities of Server

Shot Choice Position Choice

Figure 3.7.: Markov Chain of a Rally
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3.7. Forecasting the Outcome of a Match

3.7.1. Collecting the Data

At present, detailed statistical data about individual strokes are not available to the
public. Basic statistical information regarding player performance in individual
matches, however, is available to the public through a number of online services.

Figure 3.8.: A screenshot of the statistics of a single match between Jo-Wilfried
Tsonga and Andy Murray as presented by the ATP World Tour
website.

The ATP World Tour website is a useful source of statistics as they provide
individual match statistics for almost all the matches played in ATP 250, ATP 500,
Masters and Grand Slam tournaments since 1999. The statistics they provide are
number of aces and double faults, first service % when serving, first service point
win % when serving, second service point win % when serving, first service point
win % when returning and second service point win % when returning. Also their
Live Scores applet will display the score, aces, double faults, 1st serve %, 1st
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and 2nd serve point win % for each player in a live match or in any match of the
active tournament. Figure 3.8 shows a screenshot of a single match as provided by
the ATP World Tour website. Unfortunately these statistics are not presented in a
useful collective way.

TennisInsight.com on the other hand readily provide collective statistics on the
Top 200 ATP players which can be filtered by date and surface type. Additionally,
their statistics include a measure for Aces per game and Double Faults (DF) per
game as well as Opponent Aces per game and Opponent DF per game which are
not provided by the ATP World Tour website. Figure 3.9 demonstrates the interface
used to retrieve these statistics from the TennisInsight.com website.

Figure 3.9.: A screenshot of the collective statistics of Jo-Wilfried Tsonga as pre-
sented by the TennisInsight.com website.

We have built tools which retrieve the statistics from TennisInsight.com for any
requested player. We have also created a tool which constructs and maintains
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a database of the statistics of individual matches which can be used locally to
generate player statistics on demand. The database currently holds over 35000
individual ATP matches. This allows us to perform extensive analysis and tests on
our models.

The following variables are calculated from the publicly available statistical data
and are used in the experiments to follow.

a =
Total Aces

Total Serves
= Ace probability (3.10)

b = 1st Serve % (3.11)

c = 1st Serve Win % (3.12)

d =
Total Double Faults

Total Serves
= Double fault probability (3.13)

e = 2nd Serve Win % (3.14)

f =
Total Opp. Aces

Total Returns
= Opp. Ace Probability (3.15)

g = Opp. 1st Serve % (3.16)

h = 1st Serve Return Win % (3.17)

i = 2nd Serve Return Win % (3.18)

j =
Total Opp. Double Faults

Total Returns
= Opp. Double Fault probability (3.19)

3.7.2. A Closer Look at the Data

Our detailed database of matches allows us to study the distributions of the de-
tails of match statistics. In this section, we will use an approach similar to the
one presented by Newton and Aslam [36] and we will model individual statisti-
cal attributes as normally distributed variables commenting on the variance of the
distributions as a measure of the stability of players.

Throughout this section we will work with matches played during the two year
period starting on the 1st of January 2012 to the 31st of December 2013. Firstly, we
will discuss the distributions of statistics of Novak Djokovic and Roger Federer,
two players who are considered extremely stable in their performance. We will
then analyse the distributions of statistics of players like Marcos Baghdatis and
Gael Monfils whose performance is known to fluctuate. Finally we will consider
John Isner, known for his strong first serve.
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Figure 3.10.: Distributions of Roger Federer’s statistics of 127 matches played in
a two year period.

Figures 3.10 and 3.11 show the frequency of occurrence of different statistics of
Federer and Djokovic, two players who at the end of 2013 were ranked in positions
6 and 2 of the official ATP Rankings respectively. The Normal distribution appears
to approximate these distributions well. For every statistic, the mean and variance
is calculated and used to plot a Normal distribution over the bar charts to demon-
strate this. The smaller the variance the more consistent the player is at the aspect
of the game represented by the statistic. For example we can see in Figure 3.10
that Federer can hit an Ace with a mean probability of 0.09 and standard deviation
of 0.061. Djokovic is slightly more stable at hitting aces but not necessarily better.
As it is evident from Figure 3.11 Djokovic has a mean probability of 0.08 of hit-
ting aces with a standard deviation 0.056. Federer also appears to be slightly more
consistent and better at winning first and second serve points although a true com-
parison of these statistics should be done with significance testing. As the purpose
of this section is to demonstrate the amount of information we can get when we
examine the distribution of statistics we will not proceed along that path.
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Figure 3.11.: Distributions of Novak Djokovic’s statistics of 147 matches played
in a two year period.

To demonstrate the notion of how the variance of the distribution represents the
instability of the players we chose two players who are notorious for their instabil-
ity. Firstly, Gael Monfils who has a number of victories against the likes of Roger
Federer and Rafael Nadal, both No.1 players at some point in their career, and at
the same time has suffered loses from Lukasz Kubot (ranked 42 at the time). Fig-
ure 3.12 demonstrates this instability with the wide Normal curves in all statistics.
Comparing the Monfils’ first serve percentage with Djokovic’s we can see that in
the latter case the standard deviation is 0.06 whereas in the first case it is 0.088
making the Normal curve wider. This is the case with all the distributions of Mon-
fils’ statistics. We can also use the variance of these statistics as a measure of how
predictable the performance of a player will be during a match.

Another example of a player with erratic performance is Marcos Baghdatis, who
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Figure 3.12.: Distributions of Gael Monfils’ statistics of 83 matches played in a
two year period.

at the very beginning of his professional career in the ATP reached the final of the
Australian Open and also has victories against Rafael Nadal and Roger Federer
and loses against low ranked players. Figure 3.13 seems to agree with this as in all
statistics except the first serve percentage we see high variance.

To demonstrate the advantage of disaggregation (using all statistics) as opposed
to just using a generalised statistic of Service Point Win Percentage and Return
Point Win Percentage – as most models in literature suggest – we will include a
special player. John Isner has a very powerful weapon in his arsenal – his first
serve. Being a very tall player he is able to hit angles and speeds which are very
uncommon during serve and as a result he serves a lot of Aces and has a high prob-
ability of winning first serve points. This can clearly be seen from the distributions
of his statistics in Figure 3.14. The ace probability has a mean of 0.14 (compare
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Figure 3.13.: Distributions of Marcos Baghdatis’ statistics of 91 matches played in
a two year period.

that to Federer which is 0.09) and a relatively high variance. Also, Isner is very
consistent with achieving and winning first serves but his second serve winning
capability and returns of serve seem very unstable and lower than the top play-
ers’. Being able to compare statistics at this level, has the added advantage that
individual attributes of players can be compared with returning attributes of their
opponents. For example, if John Isner is pitted against another very strong server
but poor receiver, one can expect very few breaks of serve. Referring back to the
match of John Isner vs. Nicolas Mahut match during the 2010 Wimbledon which
ended with a final set score of 70-68 as just such an example. Simply using the
probabilities of winning points on serve would not include such information in the
model. Another scenario to consider is the case of a good returner being the oppo-
nent of Isner. It can be expected, in such a case, that the good returner will have
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Figure 3.14.: Distributions of John Isner’s statistics of 115 matches played in a two
year period.

Isner’s main weapon effectively neutralised. This should affect the probabilities of
him winning such a match.

3.7.3. Estimating the Probability of Winning Service Points

The missing piece of the puzzle in estimating the probability of a tennis player
winning a point while serving is the connection between the statistics available and
the point model provided in Section 3.5. This section suggests various approaches
that can be used to estimate the probabilities required by the point model, given
data available to us.
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Using ‘Uncombined’ Average Historical Data

A simple way of calculating the probability of a player winning a service point
is to use the player’s average statistics, as described in Section 3.7.1, over a set
of matches. From Equation 3.8 an estimation of, P(1SA), P(1SR), P(1SRW ),
P(1SF), P(2SA), P(2SR) and P(2SRW ), is required in order to find the probabil-
ity of winning a point while serving. As demonstrated in Equations 3.20 through
to 3.27, these probabilities can be derived from the available statistics. Since our
data does not clarify whether an ace has occurred in the first or second serve, we
are forced to make the assumption that all aces occur during the first serve. This
is not an unreasonable assumption as a second serve is usually more cautiously
struck.

P(1SA) = a (3.20)

P(1SR) = b�a (3.21)

P(1SRW) =
bc�a
b�a

(3.22)

P(1SF) = 1�b (3.23)

P(2SA) = 0 (3.24)

P(2SF) = d (3.25)

P(2SR) = 1�d (3.26)

P(2SRW) = e (3.27)

Variables a, b, c, d and e are as shown in Equations 3.10 through to 3.19. An
interesting equation to focus on is 3.22 which may require further clarification.
As the available statistics only provide us with the first service win percentage
(which includes aces), it does not reflect the probability of winning a first ser-
vice rally (given we are already in a rally). In order to calculate this probability
we need to mathematically arrive to P(1SRW ) = P(Win | 1SR). Therefore, since
P(Win | 1SR) = P(Win \ 1SR)

P(1SR) and since we know P(1SR) = b�a the only unknown
is P(Win \ 1SR). We also know that all points won in the first serve are ei-
ther aces or first service rally wins, which means that P(Win \ First Serve) =
P(Win \ 1SA) + P(Win \ 1SR) = P(Win | FirstServe)P(First Serve) = cb.
Also knowing that P(Win|1SA) = 1, then P(Win\ 1SA) = P(1SA) = a. There-

79



fore, P(Win \ 1SR) = bc�a and hence P(Win | 1SR) = bc�a
b�a .

The data used to generate these statistical probabilities greatly affect the result-
ing probability of winning a point on serve. The data can be filtered to include
subsets of the available matches to controllably affect the outcome. Filtering avail-
able matches according to the period of time they were played in, or according
to surface type they were played on can influence how well certain aspects of the
players are represented in the average statistics retrieved and it warrants extensive
research. Taking it even further, one can take weighted averages of statistics ac-
cording to predefined parameters such as how recently the match was played or
how many sets were played or even the ranking of the opponent. For the produc-
tion of the results presented in subsequent sections, we used averaged data over
various period lengths and also tested filtering the data according to their surface.

Combining Historical Data – ‘Combined’ Model

The ‘uncombined’ method just discussed has a significant drawback since it mod-
els how the server would play against the average player he has faced, rather than
the specific opponent being modelled. In order to correct this and improve our
model further, the opponent’s returning capabilities need to be included somehow
in our probabilities.

Barnett [33] estimates the overall probability of a player winning a service point
over the average player and then compares this with the average ATP player and ad-
justs for the opponent’s probability of winning a point while returning in compari-
son to the average player. We use a similar approach to estimate P(1SA), P(1SR),
P(1SRW ), P(1SF), P(2SA), P(2SR) and P(2SRW ) as used in Equation 3.8. This
allows us to compare individual strengths of the two opponents and thus model the
point more accurately. We will demonstrate the concept we used to estimate these
probabilities by showing how to estimate the combined probability of hitting an
ace, P(1SA).

Let P(1SAA) be the probability of player A serving an ace against the aver-
age opponent and P(1OSAB) be the probability that player B will receive an ace
from the average opponent. Also let P(1SAav) be the probability an average player
serves and receives an ace (by definition must be equal). By these terms P(1SAA)�
P(1SAav) defines how much more probable Player A is to serve an ace than the av-
erage player and similarly P(1OSAB)�P(1SAav) defines how much more probable
player B is to receive an ace from the average player. Adding these two differences
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to the average ace probability approximates the probability of Player A serving an
ace against Player B as shown below:

P(1SA) = P(1SAav)+((P(1SAA)�P(1SAav))+(P(1OSAB)�P(1SAav))) (3.28)

which simplifies to:

P(1SA) = P(1SAA)+P(1OSAB)�P(1SAav) (3.29)

where P(1SAA), P(1OSAB) and P(1SAav) can be calculated using the available
statistics. Using a similar method, the rest of the combined probabilities used
in our model can be retrieved from the combined statistics of the two opponents.
Equations 3.30 through to 3.34 define our new combined statistic variables marked
with a subscripted c.

ac = aA + fB �aav (3.30)

bc = bA +gB �bav (3.31)

cc = 1+ cA �hB � cav (3.32)

dc = dA + jB �dav (3.33)

ec = 1+ eA � iB � eav (3.34)

Equations 3.35 through to 3.42 show how these combined statistics can be used
in our tennis point model.

P(1SA) = ac (3.35)

P(1SR) = bc �ac (3.36)

P(1SRW) =
bccc �ac

bc �ac
(3.37)

P(1SF) = 1�bc (3.38)

P(2SA) = 0 (3.39)

P(2SF) = dc (3.40)

P(2SR) = 1�dc (3.41)

P(2SRW) = ec (3.42)
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3.7.4. Combining Historical Data for Doubles

Modelling the outcome of a doubles match is considerably more complicated than
for a singles match for several reasons. Firstly, there are different variations of
rules for doubles matches which depend on the tournament. Additionally, the
serving and receiving order of the players has to be considered in the game, set
and match Markov chains. The serving team chooses who will be the player who
serves in the first game of the set and they then alternate turns every new game the
team is serving for the entire set. Similarly the receiving team chooses who will
receive in the first game and must alternate with receiving games within the set.
The player who receives in the current game will be the player who will serve in
the next game. This section only touches upon the point model and for this purpose
we will suppose that Player AA is the server of the point, Player AB is the server’s
partner, Player BA is the receiver of the service and Player BB is the partner of the
receiver.

Traditionally doubles tournaments and singles tournaments had distinct sets of
players. As a more recent trend however, top singles tennis players are joining
forces and are forming teams for doubles tournaments. The media has raised the
question whether traditional teams like the Bryan brothers are better than newly
formed teams made up of the top singles players. These newly formed teams are
causing problems when modelling because of the lack of data of playing together
as a team. Doubles modelling so far has treated a doubles team similarly to a
singles player and not as two distinct players. For traditional teams on the other
hand there are no statistics available for individual players. This section demon-
strates how to adapt the probabilities in Equation 3.8 developed earlier to estimate
the probability of winning a doubles point for both traditional doubles teams and
newly formed ones by combining player statistics.

Of course a big part of the effectiveness of doubles teams is the teamwork of the
players and how well they cooperate. This section does not touch upon this and
only uses individual performance of players in the model.

Modelling Newly Formed Teams

A point in a doubles match begins with Player AA serving, Player BA receiving
and then proceeding into a rally where both players of both teams can strike the
ball. From this we can conclude that in order to estimate the probability of winning
the point on serve we need to combine the abilities of our players. We need to
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combine Player AA’s serving ability with Player BA’s receiving ability and then
also combine Player AA’s and AB’s ability to win points within a serving rally
with Player BA’s and BB’s ability to win points within a receiving rally.

With reference to Equation 3.8 we can approximate our probabilities in a way
such that it accounts for this. In order to do this we need to make the assumption
that when the ball is in-play, each player within a team has a probability of 0.5 to
be the one that returns the ball to the opponent. By this assumption the following
Equations 3.43 to 3.47 describe the new combined probabilities which can be used
with Equations 3.35 to 3.42.

ac = aAA + fBA �aav (3.43)

bc = bAA +gBA �bav (3.44)

cc = 1+0.5(cAA + cAB)�0.5(hBA +hBB)� cav (3.45)

dc = dAA + iBA �dav (3.46)

ec = 1+0.5(eAA + eAB)�0.5(iBA + iBB)� eav (3.47)

Modelling Traditional Doubles Teams

For traditional doubles teams there is a wealth of statistics of the players playing
together as a team. Unfortunately, individual player performances are not available
but it is usually assumed that the team statistics reflect the average of the abilities
of the two players. Taking this into account, we can substitute the individual player
statistics of both team players with the statistics of the team and thus estimate our
probabilities as mentioned in Equations 3.43 to 3.47 above. For example, if team A
is a traditional team and team B is a newly formed team, players AA and AB will
use identical statistical data which match the statistical data of team A and players
BA and BB will use their individual statistical data from the singles tournaments.

3.8. Selecting Historical Data

The quality of historical data used to estimate the parameters of a tennis model can
greatly impact the resulting predictions. For tennis in particular we can identify
two important factors which affect the quality of the data – age and match sur-
face. The parameters of the models discussed in this chapter are estimated using
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historical statistics averaged over a set of matches. In this section we discuss how
choosing different subsets of the available data can impact the accuracy of model
predictions.

3.8.1. Age of Match Played

Player performance varies over time. This is a fact as players can improve their
stamina and skills as they practise more or see their abilities decay as they get
older. To take this into account, more recently played matches should be used
to parametrise models as it can be assumed that recent matches better represent
current form than older matches. Using recent matches though, introduces a trade-
off in the sense that as more weight is given to recent matches, the risk of the model
parameters being affected by recent outlier matches increases. On top of that, the
more restricted the data is on age, the smaller the sample size will be and therefore
the average statistics will be further away from the true average performance of
the player. Therefore the trade-off, data age versus data sample size, must be
considered with care and be taken into account when parametrising our models.

3.8.2. Surface of Match Played

Professional tennis is played on a variety of court surfaces. The most commonly
used surfaces are clay, grass, and hard courts where hard courts can either be in-
door or outdoor. The court surface can affect ball speed and bounce which in turn
favours some players and makes things more difficult for others. This has a di-
rect impact on the performance of individual players on particular court surfaces,
which is something which is reflected in the statistics of the matches played on
those courts. When selecting the dataset which will be used to parametrise our
model, one can restrict the sample to include matches played on the same surface
as the match being modelled. Similarly to restricting the match age, a trade-off is
introduced between representing the surface bias and decreasing the accuracy by
shrinking the sample size.
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3.9. Evaluating the Performance of Tennis Models

3.9.1. A Tennis Model Performance Rating, r

In a quest to evaluate how accurately various models perform in predicting tennis
outcomes, we have defined a performance rating value, r . r can take values be-
tween -1 and 1 and is a measure of the average information a model reveals about
the outcomes of a set of matches. A perfect model would have a value of r = 1,
whereas a model which reveals no information yields a r = 0. For example a com-
pletely random model is expected to have a r close to 0. A model with a r =�1
is a model which always predicts the winner to be the actual loser of a match with
absolute certainty therefore is as good a model as the model with r = 1.

In order to evaluate r , a set of N matches, M, for which there is a known out-
come is used. For each of these matches, Mi, where 1  i  N, a model is used
to predict the outcome of Mi using only the historical data which would be known
immediately prior to the match. This process is known as back-testing in financial
terms. Assuming the model outputs the predicted winner of the match along with
a probability of winning, pi, then one can penalise the model for getting a wrong
prediction by subtracting the probability provided from a total, T , and reward it
for getting a correct prediction by adding the probability of winning to the same
total. In cases where the model does not make a prediction (i.e. pi = 0.5 for either
player) then a value of 0 is added to the total.

T =
i=N

Â
i=1

8
>>><

>>>:

0, if pi = 0.5

pi, if pi 6= 0.5 and prediction correct

�pi, if pi 6= 0.5 and prediction incorrect

(3.48)

Using this approach, T would be equal to N in the case where the model is
perfect (i.e. predicts all outcomes with a probability of 1) and T =�N for a model
which predicts all results wrong with probability 1. In the case where the model
offers no information for any match T would be equal to 0. Therefore T, offers all
that is needed to know about the predicting power of tennis models except in cases
where models have been tested on different sets of matches which have different
sizes. This is where r is useful which is simply T scaled down by the factor N.

r =
T
N

(3.49)
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To demonstrate how r is evaluated lets assume we have 4 players, A, B, C and
D. These players have played 4 matches between them and for which we used 3
different models, X, Y and Z, to predict the outcomes of their matches. The results
are presented in the following table.

Match Winner Winner X/Prob Winner Y/Prob Winner Z/Prob
A vs B A A / 1.0 A / 0.8 A / 0.65
A vs C C C / 1.0 C / 0.55 C / 0.6
B vs C B B / 1.0 B / 0.6 C / 0.55
C vs D C C / 1.0 D / 0.55 C / 0.55

Model X is the perfect model therefore r is expected to be equal to 1 which is
true as rX = 1+1+1+1

4 = 1. Models Y and Z both get one prediction wrong with
Model Y giving slightly better probabilities in the correct predictions. One can
say that Model Y performs slightly better than Model Z even though they predict
the same number of correct results. Evaluating the performance rating for each of
these models, rY = 0.8+0.55+0.6�0.55

4 = 0.7 and rZ = 0.65+0.6�0.55+0.55
4 = 0.625, we

can confirm that model Y has in fact a larger value of r and is deemed a better
performing model than Z.

3.9.2. The Random Model

In order to assess whether our models provide us with any useful information about
an upcoming match, we devised a model which is random and provides absolutely
no information about the match. This Random Model will be used as a comparison
to other models in conjunction with split testing as described in Section 2.2.3.

The Random model provides the probability of Player A winning the match us-
ing samples from a uniform distribution with parameters a = 0 and b = 1. This
uniform distribution is identical to the one described in Figure 2.3. This model
uses no information in modelling the match and simply provides a random prob-
ability. We will later on generate samples from this distribution to compare with
the probabilities generated using the models described in this chapter.

3.9.3. Back-testing Using Real Data

In order to test the performance of our models we will perform a process known, in
the financial world, as back-testing. For a number of already known real matches
we will attempt to predict their result using our models as if we only have data up
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to and not including the match modelled. This way we avoid over-estimating our
models and knowing the result of the match we can assess whether the prediction
was successful.

All the back-tests presented in the following sections were done on a total
of 7938 ATP Tour matches played in the period beginning from 01/01/2011 to
31/12/2013. We present several different back-testing runs on this data, each time
varying the subset of data which was used to generate the parameters of the mod-
els. More specifically we vary the period over which statistics are averaged for
players as well as filter the statistics according to surface in an attempt to observe
the effects on the results as discussed in Section 3.8.

Tables 3.1, 3.2 and 3.3 show the back-testing results using 3, 6 and 12 months
of available data respectively. It is noticeable that even though 7938 matches were
played in the period tested, our models only attempted to predict a fraction of those
matches. For example, when using 3 months of statistical data going back from
the match tested, only 6551 matches were tested. While testing, matches may be
skipped for two main reasons. Firstly, if a match being tested is a match that was
terminated abnormally, i.e. by a retirement or a walkover, that match is skipped.
Secondly, if any of the two players have not played and finished matches in the
period assigned before the match (i.e. 3 months) then no statistics are available for
those players and thus testing is not possible. In fact it can be observed that as
the period of background data is extended, more and more matches are attempted
(for 3 months 6551 matches, for 6 months 7184 matches and for 12 months 7211
matches). Therefore the first advantage of using more data to model matches is
immediately apparent – the more data we have the more matches we can model.

For every back-testing run, we observe four results as shown in the columns of
Tables 3.1, 3.2 and 3.3:

• The success percentage, which is the percentage of correct predictions each
model makes (a prediction is considered correct when the winner of the
match is given a probability of winning greater than 0.5).

• The average probability of a model which is the average probability the
model gives for predicted winners over all the predictions. This is a use-
ful measure as it can help understand why the prediction percentage is low.
For example if the model outputs a 0.6 probability of someone winning, then
one can expect that it will fail in its prediction 40% of the time.

• The total, T, which is described in Section 3.9.1 and is used to evaluate the
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performance of the model. The bigger T is, the better the model.

• The value r , which is T divided by the number of matches tested, to account
for differences in sample sizes. The closer r is to 1 the better the model, as
explained in Section 3.9.1

Table 3.1.: Results from a 3-month all surface back-test using the ‘uncombined’,
‘combined’ and Barnett’s models to predict 6551 ATP Tour matches
played between the 1st of January 2011 and the 31st of December 2013.

Model Success % Avg. Prob. Total, T r
Uncombined 61.8226 0.5782 1324.51 0.2022
Combined 64.8451 0.6074 1709.85 0.2610

Barnett 64.7535 0.6070 1701.55 0.2597

To generate results for Table 3.1 6551 ATP Tour matches were predicted using
three different models, using as input statistics from matches played in the period
between three months prior the match being predicted and up to but not including
the match itself. This way we ensure that there is no over-estimating of the data and
that in fact we only use data that would be known at the time the match was played.
The three models used is Barnett’s model [33], and the ‘uncombined’ and ‘com-
bined’ point models presented in this chapter. Using three months of background
statistics affects results greatly. As most average statistics (used as input to the
models) are based on few matches they do not approximate the population means
well. This is evident in the results where we see low success percentages in all
models. We can also observe that the performance in terms of success percentage
and r is lower for the ‘uncombined’ model than the other two models. Barnett’s
model and the ‘combined’ point model seem to be performing on a similar level.

Table 3.2.: Results from a 6-month all surface back-test using the ‘uncombined’,
‘combined’ and Barnett’s models to predict 7184 ATP Tour matches
played between the 1st of January 2011 and the 31st of December 2013.

Model Success % Avg. Prob. Total, T r
Uncombined 62.7506 0.5766 1520.98 0.2117
Combined 65.4649 0.6054 1907.83 0.2656

Barnett 65.4092 0.6051 1910.19 0.2659

Increasing the period of data the back-testing algorithm is allowed to use, from
three months to six months prior the match simulated, makes a big difference on
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the amount of matches that can be tested (increasing from 6551 to 7184). Table 3.2
summarises the results of the 6 month all surface back-test. It can be observed
that performance increases slightly for all three models but the performance of
the ‘uncombined’ model compared to the other two models remains significantly
lower.

Table 3.3.: Results from a 12-month all surface back-test using the ‘uncombined’,
‘combined’ and Barnett’s models to predict 7211 ATP Tour matches
played between the 1st of January 2011 and the 31st of December 2013.

Model Success % Avg. Prob. Total, T r
Uncombined 63.2506 0.5757 1558.29 0.2161
Combined 66.5511 0.6049 2002.12 0.2776

Barnett 67.2722 0.6046 2047.43 0.2839

Further increasing the period of statistics used to twelve months prior to the
match being simulated, further increases the performance of all models. The ‘un-
combined’ model still performs worse than the other two models and Barnett’s
model seems to be outperforming the ‘combined’ model in both success percent-
age and r measure. In reality though the increase in success percentage is not sta-
tistically significant using a 95% confidence level two-sample z-test which yields
a p-value of 82.13%.

From the results, it is evident that the quantity of data available plays a vital
role in the efficiency of the models. We may even go as far as to say that having
more data is more important than filtering data by surface to capture the surface
specific performance of players or limiting the back-period of data to capture the
more recent fluctuations in the performance of players. It seems that accurate
representation of the mean statistics of the population is more important.

Further expanding the period of data to 24 and 36 months decreases r more and
more therefore it appears a good time period to use for data is in fact the full year
of statistics before the match being simulated. The results of unfiltered 24 month
and 36 month back-testing for these models are presented in the results section of
Chapter 4 where they are compared with the Common-Opponent model. Instead,
here we will present 12, 24 and 36 months surface filtered back-testing runs.

Tables 3.4, 3.5 and 3.6 show the results retrieved when running back-tests with
12, 24 and 36 months of match statistical background filtered according to the
surface of the match being modelled. For example, to model a match which was
played on grass on the 01/06/2012 using a 12 month surface filtered back-test,
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the statistics of all matches in which the two players being modelled have played
on grass during the period 01/06/2011 to 31/05/2012 will be used to generate the
averaged statistics feeding the models.

Table 3.4.: Results from a 12-month surface filtered back-test using the ‘uncom-
bined’, ‘combined’ and Barnett’s models to predict 6501 ATP Tour
matches played between the 1st of January 2011 and the 31st of De-
cember 2013.

Model Success % Avg. Prob. Total, T r
Uncombined 62.4658 0.5793 1388.49 0.2111
Combined 65.7191 0.6119 1809.35 0.2751

Barnett 65.5366 0.6108 1787.68 0.2718

In the case of 12 month surface filtered tests, the amount of matches tested was
fairly low at 6501 compared to the 12 month unfiltered test which was 7211. The
success percentages of the models also suffer from filtering the data according
to surface as it can be observed in Table 3.4. Both results suffer because of the
reduced number of available matches to average over, resulting in a poor represen-
tation of the population means of the players’ statistics, once again confirming that
quantity of background matches is important.

Table 3.5.: Results from a 24-month surface filtered back-test using the ‘uncom-
bined’, ‘combined’ and Barnett’s models to predict 6916 ATP Tour
matches played between the 1st of January 2011 and the 31st of De-
cember 2013.

Model Success % Avg. Prob. Total, T r
Uncombined 63.1001 0.5778 1493.51 0.2159
Combined 66.3245 0.6119 1950.32 0.2820

Barnett 66.4546 0.6112 1953.13 0.2824

In an attempt to maintain the surface filtering to capture surface specific per-
formance of players, the period which was used to average matches over was in-
creased to 24 months. Table 3.5 show the results. The amount of matches tested
was increased significantly as more players now have background data and the
success percentages also seem to increase for all three models.

Further increasing the time period of surface filtered back-tests to 36 months
made little difference in both the amount of matches tested and the success per-
centages of the models themselves. Regardless, the results of all three models are,
even in the slightest, improved and are now comparable to the 12 month unfiltered
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Table 3.6.: Results from a 36-month surface filtered back-test using the ‘uncom-
bined’, ‘combined’ and Barnett’s models to predict 7051 ATP Tour
matches played between the 1st of January 2011 and the 31st of De-
cember 2013.

Model Success % Avg. Prob. Total, T r
Uncombined 63.7356 0.5765 1562.63 0.2216
Combined 66.8274 0.6100 2001.05 0.2838

Barnett 66.4870 0.6088 1968.77 0.2792

backtests. In all three cases, the behaviour of the models relative to each other
remain the same, the ‘uncombined’ model seems to be trailing behind in terms of
predictive performances when compared to the ‘combined’ and Barnett’s model
which seem to be closely matched.

3.9.4. Comparing Models Against the Random Model

In this section we will compare the ‘uncombined’ model, the ‘combined’ model
(both described in Section 3.7.3) and Barnett’s model [33] against the random
model using back-testing methodology. We will then demonstrate with signifi-
cance testing that all models offer some information towards predicting the out-
come of matches.

Using a two-sample Z-test as described in Section 2.2.3 we test whether the
success rate of the Random model, which as expected is near 0.5, is different from
the success rates of the 12 month all surface back-tests of our three models.

Table 3.7.: A two-sample Z-test using results from a 12-month all surface back-
test of a random model and the uncombined model for 7211 ATP Tour
matches played from 1st of January 2011 to the 31st of December 2013.
Model n p Standard Error p-value
Random 7938 0.49358 0.005611 -
Uncombined 7211 0.63251 0.005678 0.000

Table 3.7 shows the results of a split test using as a control the success rate
of the Random model and as the treatment the success rate of the ‘uncombined’
model. It is obvious that the difference is significant with a p-value very close to
0. The test therefore suggests that the average success rates of the two samples
are in fact different with a probability near 1. This means that without a doubt the
‘uncombined’ model is a better predictor of match results than the random model.
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Table 3.8.: A two-sample Z-test using results from 12-month all surface back-
test of a random model and the combined model for 7211 ATP Tour
matches played from 1st of January 2011 to the 31st of December 2013.
Model n p Standard Error p-value
Random 7938 0.49358 0.005611 -
Combined 7211 0.66551 0.005556 0.000

Table 3.9.: A two-sample Z-test using results from 12-month all surface back-test
of a random model and Barnett’s model for 7211 ATP Tour matches
played from 1st of January 2011 to the 31st of December 2013.

Model n p Standard Error p-value
Random 7938 0.49358 0.005611 -
Barnett 7211 0.67272 0.005526 0.000

Tables 3.8 and 3.9 show a similar analysis for the ‘combined’ model and Bar-
nett’s model respectively. Both tests result in a confirmation that both models
display increased success rate in predicting match results in comparison to the
Random model.

This serves as a confirmation that models work regardless of how they compare
to one another, but the question of which model performs better still remains.

3.9.5. Uncombined Model vs. Combined Model

In an attempt to test whether the apparent performance advantage of the ‘com-
bined’ model in relation to the ‘uncombined’ model is statistically significant we
perform yet another two-sample Z-test.

Table 3.10.: A two-sample Z-test using results from 12-month all surface back-test
of the uncombined model and the combined model for 7211 ATP Tour
matches played from 1st of January 2011 to the 31st of December
2013.

Model n p Standard Error p-value
Uncombined 7211 0.63251 0.0056775 -
Combined 7211 0.66551 0.0055561 0.000016

Table 3.10 shows the results of this test on the success rates of the two mod-
els’ 12 month all surface back-tests. The ‘combined’ model success rate is better
than the success rate of the ‘uncombined’ model with 0.99984 confidence which
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satisfies the 95% confidence level. Therefore we can conclude that the combined
statistics point model in fact performs better than the uncombined one.

3.9.6. Barnett Model vs. Combined Model

In Table 3.3 we can observe that while back-testing Barnett’s model we achieved
a success percentage in predicting the results of matches of the order of approxi-
mately 0.7% higher than our ‘Combined’ model. In this section we test this higher
percentage for significance.

Table 3.11 shows analytically the two-sample Z-test that was used to test whether
success percentages of the two models are in fact different with a confidence level
of 95%. In fact the test shows that there is a probability of 0.17872 that the two
sample averages are the same. Therefore the test does not satisfy the confidence
level of 95% and we must in fact accept that the two models have the same level
performance.

Table 3.11.: A two-sample Z-test using results from 12-month all surface back-
test of Barnett’s model and the ‘combined’ model for 7211 ATP Tour
matches played from 1st of January 2011 to the 31st of December
2013.

Model n p Standard Error p-value
Barnett 7211 0.67272 0.005526 -
Combined 7211 0.66551 0.005556 0.17872

Despite the fact that the two models appear to perform on the same level, the
‘combined’ model still has the advantage of further detail. It improves upon it’s
predecessor the Barnett model in the sense that it can resolve probabilities within
point play. For example the model can output a probability of an ace being struck
at any particular serve or it can adjust the output probability based on the fact that
the first serve was lost and the point is now in play with a rally. The ‘combined’
model also sets up the ground for further in-point analysis which will be made
possible with increased availability of more detailed statistics.

3.9.7. Combined Model vs. Bookmaker Models

Bookmakers make it their business to generate odds to provide to punters for the
purpose of betting. The models that generate those odds can be considered as tried
and tested from the wide audience that they receive. For professional tennis, these
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odds, which are published prior to the match (opening odds), can be converted into
probabilities of players winning tennis matches but unfortunately would not pro-
vide a useful comparison for the performance of models in the same way as other
models. The odds published include a profit margin for the bookmaker which can
be as high as 10%. For example in the 2011 Brisbane first round match between
Michael Berrer and Dudi Sela the bookmaker Bet365 had opening decimal odds of
1.83 for both players when in fact for equal decimal odds one would expect odds
of 2 for each player. Odds of 1.83 translate to a probability of 0.546 for both play-
ers winning due to the fact that Bet365 added approximately 9.2% profit margin
to their odds depending on volumes bet on each player outcome. This percentage
over the “true” odds is known as the bookmaker’s over-round.
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Figure 3.15.: The cumulative profit of 7132 bets with exposure 1 unit against
the best match opening odds from 5 bookmakers and 4 other book-
maker’s over-round-corrected opening odds.

In order to fairly measure how our ‘combined’ model would perform against
bookmaker models, we used two different methods. Firstly, we combined the
opening odds of 5 leading bookmakers (Bet365, Ladbrokes, Expekt, Pinnacle
Sports and Stan James) to retrieve the best (maximum) decimal odds available and
simulated betting with those odds on the predicted winner of the match. Secondly,
we generated new over-round-corrected odds for each of four popular bookmakers
and proceeded to simulate the same bets for each individual bookmaker. To correct
for this over-round which is included in the bookmakers odds, one can adjust these
odds proportionally so that the implied probabilities of both winner and loser of a
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match add up to 1. The initial odds were provided by tennis-data.co.uk who hold
a record in .csv files of a great wealth of ATP Tour tournaments and their opening
odds.

Our betting simulation wagers bets of value 1 unit on all available predictions
from a 12 month, all surface back-test run. The cumulative profit after 7132 bets
on best odds was 23.98 units, a value which represents 0.28% return on invest-
ment. The outcome of simulating bets against the over-round-corrected odds of
individual bookmakers, ranges from 0.432% loss (Pinnacle Sports) to 1.03% profit
(Expekt). The differences in these results is can be attributed to the varying profit
margins each bookmaker uses. It is evident from the results that Expekt use higher
profit margins and when correcting the odds for over-round this affects the cumu-
lative profit in a positive manner, as the odds are increased more to correct for this
profit margin. Figure 3.15 shows the cumulative profit plotted against the number
of bets in chronological order for the best odds, as well as for the four over-round-
corrected bookmaker’s odds.
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Figure 3.16.: The cumulative profit of 6973 bets with exposure 1 unit against the
best match opening odds from 5 bookmakers.

The best odds seem to provide a good comparison that is not affected by the
bookmakers’ profit margins. In the case of the best odds, the ‘combined’ model
was able to achieve a small profit with no betting strategy. It is therefore reason-
able to assume that the model is of at least comparable performance as the models
that are active in the professional world. In fact, by using the predicted winners
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of the 36 month surface filtered back-test with the same simulated betting strat-
egy against best opening odds, we were able to achieve a return on investment
of 1.45%. Figure 3.16 shows how the cumulative profit develops over 6973 bets,
ordered chronologically.

3.10. Conclusions

In this chapter, we introduced a Markov chain model for the probability of a ten-
nis server winning a point. This model is parameterised using two different ap-
proaches. In the first approach, average statistics, from the past performance of the
player serving the point, are used to calculate the parameters of the point model.
In the second approach, average statistics from both the server and the receiver are
combined and used to calculate the parameters of the point model. The resulting
tennis match models from these two approaches were named the ‘uncombined’
model and the ‘combined’ model respectively.

We then discussed the statistics themselves and how using different subsets of
matches over which averaged statistics are estimated can affect the outcome of
the point model. We focused on two factors which affect the selected subsets of
historical matches – the age and the surface of the historical matches with respect
to the modelled match. We concluded that the subset of matches used to generate
average statistics must firstly have a sufficient quantity of matches to ensure that
sample averages approach the population means of statistics. If that is achieved
then and only then should match age and surface filters be applied.

Retrieving different subsets of historical matches, we tested the performance of
our two models against a random model, a recent literature model and industry
standard models. It was found that all the models significantly outperform the
random model. This means that all the models contribute some information to-
wards the outcomes of matches. The ‘combined’ model significantly outperforms
the ‘uncombined’ model but has no significant improvement in performance from
Barnett’s model or from the industry models.

We have therefore introduced a model which analyses the tennis point and pro-
vides the user with the capability to retrieve detailed in-point probabilities which
other models in literature do not touch upon. Additionally, our ‘combined’ model
performs as well as other models in literature and in the industry.

Having said that, there is a lot of room for improvement and future work. For ex-
ample, instead of using averaged statistics one can use weighted statistics, weigh-
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ing them in terms of recency (to account for player form), surface (to account for
surface relevance) or even according to opponent’s ranking (to account for poorer
performance when facing harder opponents or better performance when facing
easy opponents).

In the future, the model can be further developed to estimate rally victory and
serving probabilities. With all the research time dedicated to automated annota-
tion and statistics generation from video feeds and tools like Hawkeye which are
installed in tennis courts all over the world, more detailed statistics are around the
corner. These can be utilised in the future to break down the point model even fur-
ther. More work should also be involved with analysing the model’s performance
in women’s professional tennis and in doubles matches.
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4. A Common-Opponent Based Model

4.1. Introduction

In Chapter 3, an approach for estimating the probability of a player winning a
service point was introduced. This approach makes use of a Markov model to
analyse the point as it evolves. The state transition probabilities of this Markov
model are estimated using average historical player statistics adapted according to
the opponent faced.

Although this approach is intuitively appealing, it is not perfect. Average his-
torical statistics are likely to contain a bias because of the way tournaments are
structured. A good player is more likely to advance in a given tournament and
face other strong players. Additionally, a strong player is more likely to be ranked
in the top of the rankings and thus have a seeded position in tournament draws.
This means that in the early rounds of tournaments, a strong player is likely to
face a much weaker player. At the same time a weaker player will tend to drop
out early in tournaments as the early opponents are more likely to be top perform-
ing players. This distorts average historical statistics over a set of matches in the
sense that weaker players tend to face very strong players in the majority of their
matches which on average makes them perform more poorly. Strong players face
players from the entire spectrum of player ability. From this it can be concluded
that for weak players the notion of the “average opponent” can be quite different
than for strong players because the “average opponent” a weak player will face
will be more skilled than the “average opponent” of a strong player.

The Common-Opponent model introduced in this chapter attempts to overcome
exactly this problem. The model is designed to take advantage of the transitive
element of tennis and work with data which is common to both players modelled.
It achieves this by finding opponents faced by both players being modelled and
then use statistical data from matches that were played against those common op-
ponents. This automatically ensures that the level of the “average opponent” faced
by both players is approximately equal.
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4.2. The Concept of Transitivity

The Common-Opponent model utilises the transitive component of tennis. Tennis
though is not a completely transitive sport. Complete transitivity in any competi-
tive activity would assume that if a player can beat another player in a competition
and that other player can beat a third player in the same competition, then it must
hold that the first player can beat the third player. In other words, had there been
a perfect ranking of players with the first player being the best and the last player
being the worst at the activity, in a completely transitive activity it must always
hold that the better ranked player will always win a lower ranked player.

It is obvious that tennis is not an absolutely transitive sport as there are a lot of
examples where Player A has won a match against Player B, Player B has won a
match against Player C and Player C has won a match against Player A, but it is
safe to assume that there is a transitive element to the game. It is this transitive
element that conceptually allows us to compare the performance of two players
against a common third one and come to a conclusion as to which of the two
players has a better chance of winning when facing each other. This intuition is
the basis of the Common-Opponent model.

In the case of professional singles tennis matches, this reasoning has the poten-
tial to be especially fruitful, because of the limited number of players involved.
There are roughly only 150 active professional tennis players in each of the ATP
and WTA tours. Within each tour, players frequently play against each other in
a variety of tournaments. Although there are a limited number of head-to-head
encounters for any two given players, many pairs of players share a rich set of
common opponents.

4.3. Relationship between the probabilistic difference of
winning service points and winning the match

A brief discussion of a concept introduced by Klaassen and Magnus [29] and later
further investigated by O’Malley [35], is essential in order to comprehend the
reasoning behind the Common-Opponent algorithm. In this section, we briefly
discuss the important insight that the probability of a player winning a match is
closely related to the difference of the two players’ probability of winning a point
while serving.

Using O’Malley’s equations which estimate the probability of winning a match
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Figure 4.1.: Probability of the dominant player winning a best-of-three-sets tennis
match with fixed differences of 0.01, 0.02, 0.05 and 0.10 in the two
players’ probability of winning a point on serve.

using the player’s probabilities of winning points on serve, we replicated a graph
presented in his paper (Figure 4.1). This graph demonstrates the relationship be-
tween the difference in the probability of winning points on serve of the two play-
ers and the probability of the dominant player winning the match. By plotting
the dominant player’s probability of winning the match while varying the player’s
probability of winning a point on serve, we show different plots for various fixed
differences in the two players’ probability of winning a point on serve. Note the
x-axis runs from 0.2 to 0.8 corresponding to the domain of values likely to be
encountered in professional tennis.

It is evident from this plot that there is only a small deviation from the initial
probability of winning the match, even if the probabilities of winning a point on
serve are varied, as long as the difference between the dominant player’s probabil-
ity of winning a point on serve and his opponent’s probability of winning a point on
serve remains constant. It is this relationship that allows to generate Equation 4.2
later on.

4.4. Match Probabilities Using Common-Opponent Model

Let players A and B be the two players playing in the match we wish to model.
Also, let Ci for 1  i  N be the N common opponents they have faced in the
past. For each Ci we denote spw(A,Ci) as the proportion of service points won by
A against Ci and spw(B,Ci) as the proportion of service points won by B against
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Ci. Similarly, rpw(A,Ci) is the proportion of returning points won by A against
Ci and rpw(B,Ci) is the proportion of returning points won by B against Ci. This
is illustrated in Figure 4.2. In cases where either A or B has faced the common
opponent Ci in multiple matches during the period of the data set, then spw(A,Ci),
rpw(A,Ci), spw(B,Ci) and rpw(B,Ci) can either represent the averages over those
matches or they can be added as different common-opponent contributions (more
in the example which follows in Table 4.1).
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Figure 4.2.: Parameters of the Common-Opponent Model.

As discussed earlier, following O’Malley’s findings [35], the difference in ser-
vice points won can be used as an indicative measure of the probability of a player
winning the match against an opponent. In order to model how A and B would
play against each other through their common opponents, Ci, we first need to cal-
culate the differences in service points won by A and B against those opponents.
We can then additively combine those differences to come up with an indication
of how well A would perform against B.

For each common opponent, Ci, we compute DAB
i which represents a measure of

the advantage (or if negative, disadvantage) Player A has over Player B in terms of
the proportion of service points won against opponent Ci, as follows:

DAB
i = (spw(A,Ci)� (1� rpw(A,Ci)))� (spw(B,Ci)� (1� rpw(B,Ci))) (4.1)

This value can be used to additively influence an arbitrary probability of winning
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a point on serve for player A or player B in any hierarchical model. Let M3(p,q)
represent a function which estimates the probability of a player winning a best-
of-three tennis match, using parameters p and q where p is the probability of the
player winning points while serving, and q is the probability of the player winning
points while returning. Using this function we show how one can approximate the
probability of Player A winning a best-of-three-sets match against Player B based
on their past performances against common opponent Ci:

Pr(A beats B via Ci)⇡
M3(0.6+DAB

i ,(1�0.6))+M3(0.6,(1� (0.6�DAB
i )))

2
(4.2)

In Equation 4.2, we calculate the match probabilities twice: once by positively
influencing Player A’s probability of winning a service point and once by nega-
tively influencing Player B’s probability of winning a service point. Subsequently,
we average the two values. We arbitrarily use the value 0.6 because it is the ap-
proximate average probability of a professional player winning a point on serve
when playing against another professional player (recall that, as shown in Fig-
ure 4.1, the exact value is not critical). Also, note that in cases where DAB

i is less
than �0.6 or either greater than 0.4 the input values to Equation 4.2 become in-
valid. To make sure this does not happen, we need to cap the values within the
boundaries �0.6  DAB

i  0.4 for all i.
To combine all the available data from all common opponents, we calculate the

average of Pr(A beats B via Ci) over all common opponents, Ci, to estimate the
probability of player A winning the match as follows:

PAB
avg =

ÂN
i=1 Pr(A beats B via Ci)

N
(4.3)

To illustrate the Common-Opponent approach we will model an example from
the second round of the 2013 US Open played by Andy Murray vs. Leonardo
Mayer.

Table 4.1 presents the percentage spw and rpw against the opponents for each
player. You will notice that in this particular example the names of Mikhail Youzhny
and Marcel Granollers appear twice as common opponents. The reason for this is
that Andy Murray has played two matches with those two particular opponents in
the past 12 months each match having a different spw and rpw for Andy Murray.
There are two approaches to deal with cases like this. This first approach involves
averaging the statistics of Andy Murray over all the matches where he faced the

102



Common Murray Murray Mayer Mayer
Opponent spw rpw spw rpw

Kei Nishikori 73% 50% 56% 34%
Robin Haase 66% 54% 65% 35%

Carlos Berlocq 62% 46% 44% 7%
Juan Martin Del Potro 59% 33% 59% 27%

Bernard Tomic 74% 51% 57% 19%
Andreas Seppi 76% 44% 59% 36%
Florian Mayer 71% 36% 48% 29%

Tommy Robredo 75% 41% 70% 38%
Mikhail Youzhny 66% 44% 63% 53%
Mikhail Youzhny 67% 52% 63% 53%
Marcel Granollers 64% 42% 49% 28%
Marcel Granollers 51% 44% 49% 28%

Table 4.1.: Statistical data on matches played with common opponents for Andy
Murray and Leonardo Mayer in the second round of 2013 US Open.
The data includes all common opponent ATP matches played within 12
months of the modelled match.

same common opponent and using those as the spw and rpw readings in our model.
The second approach would be to combine each match with all possible combina-
tions of the second player’s matches with that particular common opponent which
is what is shown in Table 4.1. Mikhail Youzhny occupies two rows, each with
different spw and rpw values for Andy Murray but the same values for Leonardo
Mayer since there was only one match of Youzhny vs Mayer. Each of these two
rows will contribute its own component towards the probability of Andy Murray
winning Leonardo Mayer.

We combine the above to estimate the advantage or disadvantage, D, Murray
has over Mayer using Equation 4.1. Subsequently we calculate the probability of
Murray winning a match with Mayer, given the information inferred from each of
the rows in Table 4.1. These results are presented in Table 4.2.

Averaging out the results in Table 4.2 using Equation 4.3 gives us an estimated
probability of 0.8825 of Andy Murray winning the match. In the event Murray
won by 3 sets to 1, (7-5, 6-1, 3-6, 6-1) which was a comfortable victory.

One might note that there can be quite some variation between the probabilities
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Opponent D Probability of Murray beating Mayer
Kei Nishikori 0.34 1
Robin Haase 0.2 1

Carlos Berlocq 0.57 1
Juan Martin Del Potro 0.06 0.83

Bernard Tomic 0.49 1
Andreas Seppi 0.25 1
Florian Mayer 0.29 1

Tommy Robredo 0.09 0.92
Mikhail Youzhny �0.06 0.15
Mikhail Youzhny 0.03 0.69
Marcel Granollers 0.29 1
Marcel Granollers 0.18 1

Overall average 0.8825

Table 4.2.: Probability of Andy Murray winning against Leonardo Mayer, given
data on each of the common opponent match combinations separately.

of winning in Table 4.2, as estimated from different common opponents. This
suggests that predictions made with only a small number of common opponents
should be treated with caution. However, our experience is that matches between
active professional tennis players usually feature a sufficiently rich set of common
opponents to yield a stable estimate. Also, notice that the D values for Carlos
Berlocq and Bernard Tomic exceed the boundary value of 0.4. In the equation
which calculates match probability (Equation 4.2), the value is capped to 0.4 to
avoid invalid calculations.

Note that this approach can use any underlying function which estimates the
probability of winning a match using the two probabilities of players winning ser-
vice points (whether that is O’Malley’s equations, or any other model in literature).
In fact, Table 4.2, as well as all results later on, were generated using Barnett’s con-
ditional equations (described in Chapter 3) in combination with our estimation of
the players’ probabilities of winning a point on serve.
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4.5. Evaluating Model Performance

In Chapter 3 we introduced three models, Barnett’s tennis model, the ‘uncom-
bined’ statistics point model and finally the ‘combined’ statistics point model. We
compared the models and concluded that even though there is no statistically sig-
nificant improvement from Barnett’s model, the higher analytical power of the
‘combined’ model is an improvement by itself. We presented back-testing results
for various subsets of historical data and showed that the models themselves pro-
vide some insight towards predicting the results of matches by comparing them to
the random model. In this section we will do the same with the Common-Opponent
model as well as present new back-tests for previous models.

4.5.1. Back-testing Results

Firstly, we run back-tests using the Common-Opponent approach searching for
common opponent matches from 3, 6 and 12 month, all-surface, background data.
That means that from the date of the match, we compile a list of all matches the
two players have participated in the past 3, 6 or 12 months and search for matches
where they faced common opponents. We then execute the Common-Opponent
algorithm using statistics from those matches.

Table 4.3.: Results from 3, 6 and 12 month all surface back-tests using the
Common-Opponent model to predict the outcome of 7938 ATP Tour
matches played between the 1st of January 2011 and the 31st of De-
cember 2013.

Back-test Prediction Success Average Total, T r
data period Attempts Percentage Probability
3 months 3484 60.2181 0.5839 674.14 0.1935
6 months 6540 61.3456 0.5786 1312.75 0.2007
12 months 6578 64.3509 0.5774 1507.30 0.2291

Table 4.3 shows the results of these three back-test runs. What is notable is
that when using 3 months of background data, only for 3484 matches (out of a
total of 7938) a prediction was even attempted. For the majority of matches there
were no common opponents in the past three months therefore the algorithm could
not even be executed. The number of attempted predictions increases significantly
when we increase the background period to 6 and 12 months but the prediction
success percentage remains quite low when compared to the performances in Ta-
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bles 3.2 and 3.3. The performance of the Common-Opponent model is actually
comparable to the ‘uncombined’ model. The reason for this is that even though
we use data which go back to 12 months in time, the amount of matches which we
actually use is mostly quite limited and as we showed in the last chapter, a critical
amount of matches need to be collected for the models to reach their highest level
of performance.

Table 4.4.: Results from a 24-month all surface back-test using the uncombined,
combined, Barnett’s and Common-Opponent models to predict 7938
ATP Tour matches played between the 1st of January 2011 and the 31st
of December 2013.

Back-test Prediction Success Average Total, T r
data period Attempts Percentage Probability

Uncombined 7316 63.4090 0.5743 1589.00 0.2172
Combined 7316 66.8125 0.6043 2043.68 0.2793

Barnett 7316 67.1679 0.6037 2064.36 0.2822
Com. Opp. 7000 65.8000 0.5754 1700.23 0.2429

Following our own advice, we decided to increase the period, over which we
allow data to be collected, to 24 months and all surfaces. Table 4.4 shows the
results of running back-tests for all four models using 24 months of background
data including all surfaces. It is evident from this table that increasing the back-
ground data increases the performance of the Common-Opponent model signifi-
cantly while the other models have similar performances as in the 12 month all-
surface back-tests. We also see a significant increase in attempted predictions in
the case of the Common-Opponent model.

Table 4.5.: Results from a 36-month all surface back-test using the uncombined,
combined, Barnett’s and Common-Opponent models to predict 7938
ATP Tour matches played between the 1st of January 2011 and the 31st
of December 2013.

Back-test Prediction Success Average Total, T r
data period Attempts Percentage Probability

Uncombined 7348 63.0920 0.5730 1559.71 0.2123
Combined 7348 66.7665 0.6028 2044.92 0.2783

Barnett 7348 67.2156 0.6019 2064.56 0.2810
Com. Opp. 7095 65.5814 0.5722 1698.91 0.2395

Increasing the historical data even more to 36 months with all surfaces, we no-
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tice a fairly stable behaviour from all models with insignificant variations in suc-
cess percentages. These results are shown in Table 4.5.

Table 4.6.: Results from 12, 24 and 36 month surface filtered back-tests using the
Common-Opponent model to predict the outcome of 7938 ATP Tour
matches played between the 1st of January 2011 and the 31st of De-
cember 2013.

Back-test Prediction Success Average Total, T r
data period Attempts Percentage Probability
12 months 4102 62.5792 0.5886 907.38 0.2212
24 months 5285 63.4437 0.5832 1193.11 0.2258
36 months 5765 63.3131 0.5794 1276.04 0.2213

Finally, we test what happens to the Common-Opponent model when we limit
the historical data subset according to the surface of the match being modelled. It is
understandable that by filtering the data according to the surface, limits the number
of historical matches that can be used. When using the Common-Opponent model,
this limits them even more as we search for common opponent matches played
on the same surface as the match being modelled. It is because of this, that the
number of attempts as shown in Table 4.6, are quite few. Even more, the model
performs poorly and when compared to the performances of the back-tests shown
in Table 3.6 it is again comparable to the ‘uncombined’ model performance.

4.5.2. Common-Opponent Model vs. Random Model

The first question that needs to be answered is whether the Common-Opponent
model offers some insight towards the prediction of match results. This, as in the
past, can be answered by comparing the Common-Opponent model performance
with the performance of samples generated by the random model (defined in Sec-
tion 3.9.2). To do this we chose the best Common-Opponent back-test (i.e the
one with 24 months background from all surfaces) and we compared the success
percentage it achieved with the success percentage of the random model.

Table 4.7 shows the calculation of a two-sample Z-test to compare the mean per-
formance of the 24 month Common-Opponent back-test with the random model.The
two samples have a probability close to zero of having the same means, something
that can be interpreted as the fact that the Common-Opponent model does offer
significant insight towards the outcome of matches.
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Table 4.7.: A two-sample Z-test using results from a 24-month all surface back-test
of a random model and the Common-Opponent model for 7000 ATP
Tour matches played from 1st of January 2011 to the 31st of December
2013.
Model n p Standard Error p-value
Random 7938 0.4936 0.005611 -
Com. Opp. 7000 0.6580 0.005670 0.000

4.5.3. Common-Opponent Model vs. Uncombined Model

The uncombined statistics model introduced in Section 3.7.3 was the lowest per-
forming of the models we tested. We will check whether the Common-Opponent
model has achieved some improvement in performance from the ‘uncombined’
model by performing a Split test on back-testing runs of the two models which
used background data of 24 months and all surfaces.

Table 4.8.: A two-sample Z-test using results from a 24-month all surface back-
test of the ‘uncombined’ model and the Common-Opponent model for
7000 ATP Tour matches played from 1st of January 2011 to the 31st of
December 2013.
Model n p Standard Error p-value
Uncombined 7316 0.6309 0.005632 -
Com. Opp. 7000 0.6580 0.005670 0.00139

Table 4.8 shows the results of this split test. We can observe that the p-value
is 0.00139 which satisfies the 95% threshold set for this test. Therefore we can
with 99.9% certainty say that the Common-Opponent model is an improvement
in performance from the ‘uncombined’ model. This demonstrates that the novel
approach behind the Common-Opponent model has some merit to it.

4.5.4. Common-Opponent Model vs. Combined Model

When we compared the 24-month, all-surface Common-Opponent back-test with
the same back-test of the combined statistics point model (introduced in Sec-
tion 3.7.3), we discovered that the models to have no significant difference in
performance.

Table 4.9 shows the results of a two-sample Z-test comparing the success per-
centages retrieved from a 24-month all surface back-test run using the Common-
Opponent approach and the combined statistics approach. The ‘combined’ model
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Table 4.9.: A two-sample Z-test using results from a 24-month all surface back-
test of the ‘combined’ model and the Common-Opponent model for
7000 ATP Tour matches played from 1st of January 2011 to the 31st of
December 2013.
Model n p Standard Error p-value
Combined 7316 0.6681 0.005505 -
Com. Opp. 7000 0.6580 0.005670 0.1001

had 7316 attempts at prediction with success percentage at 66.8% whereas the
Common-Opponent model had 7000 attempts with success percentage 65.8%. For
those results the p-value is calculated to be 0.1001 which does not satisfy the 95%
threshold and therefore we must consider the two models of equal performance.

4.5.5. Common-Opponent Model vs. Bookmaker Models

Finally, we investigate how the Common-Opponent approach to predicting profes-
sional tennis match outcomes compares to industry standard models. Similarly to
the approach adopted in Section 3.9.7, we chose to place a 1 unit virtual bet, for
every prediction the model outputs, against the best pre-match opening odds pro-
vided by 5 large bookmakers and finally aggregate the total winnings over three
years of bets. Additionally, we also placed virtual bets of 1 unit, against over-
round-corrected odds of 4 popular bookmakers.

The results obtained here were similar to the results presented in Section 3.9.7
in the sense that the model does the worse against the odds retrieved from Pinnacle
Sports and best against the odds offered by Expekt. Once again this variation in
the apparent cumulative profit can be attributed to the varying profit margins of the
different bookmakers.

Figure 4.3 shows the cumulative profits from 6923 bets placed over 3 years
using pre-match predictions of the Common-Opponent model having 24 months
of historical data spanning over all surfaces. In the case of best odds, the Common-
Opponent model ends up with a profit of 18.51 units and a return on investment of
0.27%. The final profit against the individual, over-round-corrected, bookmaker
odds ranges from -36.34 units (Pinnacle Sports) to 61.04 units (Expekt).

The conclusion that can be drawn from this test is that the Common-Opponent
model is at least comparable to the current industry standard models being able to
compete and even achieve a small profit over 6923 bets.
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Figure 4.3.: The cumulative profit of 6923 bets with exposure 1 unit each, against
the best match opening odds from 5 bookmakers and against the over-
round-corrected odds of 4 individual bookmakers over all ATP Tour
matches in the years 2011–2013.

4.6. Conclusion

In an attempt to improve on models which use averaged statistics to predict ten-
nis results, we invented the Common-Opponent model. The Common-Opponent
model exploits the transitive component inherent in tennis by comparing how play-
ers perform against opponents, which they both faced in the past, to come to a
conclusion how the players will fare against each other in the present.

The Common-Opponent model, therefore, increases the relevance of historical
data with the downside of decreasing the quantity of data. This is apparent from the
results retrieved from back-tests, where using 3 month and 6 month background
periods for historical data has a detrimental effect on prediction attempts and suc-
cess rate. A period of 24 months had to be used to have comparable performance
with other models.

Even though the results of this model were not as impressive as the ‘combined’
model’s when increasing the background period the difference between the two
models was insignificant. Therefore the idea behind the model appears to be solid
but needs to be improved by solving the problem diminishing background data.

This is what our suggestions of future work will focus on. As the results seem
to be dependent on the number of common opponents in the sample investigated,
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it might be interesting to investigate a recursive approach to the problem to expand
that number of common opponents. In this case, we would extend the algorithm
by considering common opponents between both modelled players, as well as the
common opponents of those common opponents. There is scope for research with
respect to determining the optimal depth of recursion as well as an appropriate
limit on the number of common opponents considered at each stage. There is
also room for investigation into using indirect common opponents, or second tier
common opponents, to expand the data-set used for analysis. That is, opponents of
the two main players who are linked via common opponents only and not directly.

Adding exponential time weights to the statistics of common opponents might
also be an option to help increase the background data set. One could expand
the background period to include more matches but weigh favourably on the more
recent matches.

To conclude, evidence was provided to show that the Common-Opponent idea
has merit as well as room for improvement. The novelty of the approach has
attracted some attention and has even been implemented on a popular community
website (namely http:/www.tennisinsight.com).
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5. Ranking Systems for Tennis Players

5.1. Introduction

Having discussed two different approaches to model the outcome of professional
tennis matches in the last two chapters, this chapter shifts the topic of the thesis
towards a new direction – that of player rankings. Official player rankings play a
vital role in the perception the wider public has on player performance. Climb-
ing to the top of the professional rankings is a very sought-after achievement for
the players themselves. Reaching the top positions of professional rankings auto-
matically gives an advantage to the players in terms of gaining seeded positions in
tournaments. This is in addition to the fact that, by the end of the tennis season, the
the top eight male tennis players qualify to play in the very prestigious events of
the ATP World Tour Finals respectively, for hefty cash prizes and ranking points.

This chapter introduces various algorithmic approaches to generating profes-
sional player rankings and compares them with the official ATP rankings in an
attempt to understand how well the rankings represent the set of matches used to
generate them. We introduce three distinct approaches of generating player rank-
ings (PageRank, SortRank and LadderRank) each with a few variations.

5.2. The PageRank Approach

The PageRank tennis ranking system was first introduced by Radicchi in 2011 [8]
and further investigated by Dingle, et al. [7]. It is an effective ranking system for
tennis players, which, in this dissertation, we vary in an attempt to improve it and
use it as a good comparison for other ranking systems introduced. The system is
based on the Google PageRank algorithm summarised by Brin & Page [41] which
is used for ranking websites. This section explains the original formulation of the
PageRank equation for the case of web-graphs and then explains how Radicchi
applied it to the calculation of tennis rankings.

The original formulation of PageRank uses a random surfer model to measure
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the relative importance of web-pages. The central idea of the algorithm is that
pages which have a large number of incoming links from other pages are regarded
as being more important than those with fewer incoming links; a surfer clicking
through links on web-pages at random is therefore more likely to land on the more
important web-pages. What is more, a link coming from an already important
website “carries” more weight to the receiving site in the sense that if a popular
site links to another site, then that means that the other site must be important as
well.

For a web-graph with N pages, PageRank constructs an N ⇥N matrix R that
encodes a surfer’s behaviour in terms of the matrices W , D and E, which are now
described.

The first behaviour modelled is a surfer who randomly clicks on links on a given
page to move to another page. The corresponding matrix W has elements wi j given
by:

wi j =

(
1

deg(i) if there is a link from page i to page j

0 otherwise

where deg(i) denotes the total number of links out of page i. Therefore, wi j is the
probability of randomly picking a link which links page i to page j.

The second behaviour modelled is when a surfer encounters a page that has no
outgoing links. In this case the surfer will randomly jump to any other page in the
web-graph. This is described by the matrix D = duT , where d and u are column
vectors:

di =

(
1 if deg(i) = 0
0 otherwise

ui = 1/N 8i,1  i  N

We note that other probability distributions for u are possible; here we consider
only a uniformly distributed choice. The two behaviours are then combined into a
single-step transition matrix W 0 =W +D.

The third and final behaviour modelled, is that of a surfer deciding to ignore the
links on the current page and to surf instead to some other random page. This is
captured in a dense matrix E with elements ei j = u j 8i, j.

The surfer’s overall behaviour is determined by whether or not they choose to
follow the link structure of the web-graph or to jump about at random. The balance
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between the two is controlled by the scalar parameter a (0  a  1). The overall
one-step PageRank Discrete-Time Markov Chain (DTMC) transition matrix R is
therefore defined as:

R = (1�a)W 0+aE (5.1)

which is a dense matrix due to the presence of E. The PageRank of the web-graph
can be calculated by solving the DTMC steady-state problem:

x = xR (5.2)

Radicchi’s formulation of the problem is equivalent to the matrix-based descrip-
tion of PageRank given above. When using PageRank to model tennis, the pages
in the web-graph now become records of the players and the outgoing links are
now represented by defeats in head-to-head encounters of the players. Therefore
instead of N pages as nodes, the graph in the Radicchi implementation has N play-
ers. The major difference in the tennis PageRank model from the original is that
the original disregards multiple outgoing links from a single source page to a given
target page, while in the tennis model the number of times a single player loses to
each of their opponents is counted and used as a weight on the edges of the graph.

Each player (node) in the network is assigned a “prestige score” which is passed
on to other players through weighted edges. The prestige scores, Pi in a network of
N nodes, can be found by solving the system of equations given by Equation 5.3.

Pi = (1�a)Â
j

Pj
w ji

sout
j

+
a
N
+

(1�a)

N Â
j

Pjd (sout
j ) (5.3)

for i = 1, ...,N with the constraint Âi(Pi) = 1.
In Equation 5.3:

• w ji is the outgoing weight from player j to player i (i.e. the number of
defeats player j has suffered against player i),

• sout
j is the total out-strength of player j (i.e. sout

j = Âi w ji),

• a is a damping parameter where 0  a  1 and

• N is the total number of players in the network.

The d function takes a value of 1 for an input of 0 and a value of 0 otherwise.
Creating an equivalent matrix representation of Radicchi’s equation we can re-

define Equation 5.1 by defining the (i, j)th entry of W , denoted wi j, as the number of
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matches player i has lost to player j normalised over the total number of matches
player i has lost. Just as web-pages linked to by a large number of other pages will
achieve a high PageRank score, so too will players who defeat a large number of
other players.

The definitions of D, E and a are unchanged but we interpret them differently.
We need D in the cases where a player has no defeats recorded against them – in
reality this is unlikely to occur, but it may be the case in our data-sets given that
we only have access to results from a limited time period. In this case, we assume
the player is equally likely to lose to all other players given the absence of any
information to the contrary.

Just as a surfer may disregard the links on a current page and surf to a random
page, we believe that it is possible for any player to lose to any other (due to
a variety of unpredictable external factors) and this is how we interpret E. The
scalar parameter a lets us decide how likely we think it is that this will happen. In
the experiments that follow in this chapter we set a to 0.01 unless stated otherwise.

5.3. Set, Game and Point PageRank Approach

As described in the last section, Radicchi’s PageRank for tennis algorithm utilises
a count of match defeats as the weights for the outgoing edges of the player graph.
In this section we propose to alter this to use counts of sets, games or even points
lost to another player as the outgoing weight. In other words instead of having w ji

represent the amount of matches player j lost to player i, it will now represent the
amount of sets, games and points player j lost to player i.

One of the problems of PageRank for ranking players occurs when there is a
limited number of matches for particular players. In the case where those players
have no victories over other players, they have no incoming links. This automat-
ically causes the prestige score of those players to be equally distributed between
them and results in having a number of players at the bottom of the rankings with
equal rank (for example in rankings generated for 2013 the last 104 players are all
equally ranked). In an attempt to correct this, a measure of the number of sets,
games or even points lost to other players helps expand the data-set and as a result
there are far fewer players with no incoming edges at the bottom of the rankings.
When using Sets lost as the weights in PageRank 2013 rankings, the number of
equally ranked players is reduced to 60 from 104. When using Games lost as a
weight in the same period the number is further reduced to 0 and the problem is
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eradicated.
This is not without disadvantages though. As we move to more granular weights

(i.e. to using games and points lost) to generate the prestige rankings a side-effect
emerges. Players who, in the case of matches and sets, did not receive any prestige
from the high ranked players because simply they did not achieve match and set
victories against them, suddenly are able to receive some prestige because they
have, most probably, won games and points against them. This results in low
ranked players being boosted to better rankings simply because they played against
top ranked players. On the other hand, players who have achieved a single victory
against top ranked players but nothing else, are now losing positions in the rank-
ings. As the data-set increases, the importance of that one victory decreases. A
balance needs to be achieved between the two, keeping in mind that winning points
does not necessarily translate to a better quality of player.

As it becomes evident from the results of experimentation with the various types
of PageRank approaches, using sets lost as a measure of weight seems to be the
best approach. This makes sense as it is a player’s ability to win sets which defines
his ability to win matches. The ability to win individual games and points does not
reflect attributes such as the player’s response to crucial points and breaking serve
ability.

5.4. Comparing PageRank Approaches

In order to evaluate how well the rankings represent the set of matches which
where used to generate them we propose a simple test. For each of the matches we
count the number of times a winner is better ranked than the loser of the match.
Such a match is successfully represented by the ranking system and the success
percentage over all matches will offer a measure of the performance of the rank-
ing system. We will also use the official ATP Tour rankings as a control ranking
system.

Tables 5.1 and 5.2 show the success percentages achieved by the different PageR-
ank approaches described, for the years of 2012 and 2013.

In Table 5.1 the success percentages were generated using the rankings as they
were generated in the end of the year 2012. Since the ATP Official Rankings are
generated using the last 52 weeks of play, the data-set which was used to generate
the PageRank tennis rankings were also of the same time period. The success
percentage is the percentage of matches within that period, whose winners were
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Table 5.1.: Comparing different PageRank tennis ranking approaches to the official
ATP Tour rankings as they were on 01/01/2013. The rankings contain
a total 303 players who participated in ATP Tour matches over the year
of 2012.

Ranking Match Success DataSet Standard p-value
System Attempts Percentage Error from ATP

ATP 2538 69.6612 - 0.009125 -
Match PR 2673 71.9416 2673 0.008690 0.0352

Set PR 2673 71.9791 6647 0.008687 0.0329
Game PR 2673 70.4826 65017 0.008822 0.2588
Point PR 2673 69.5847 409906 0.008898 0.5239

Table 5.2.: Comparing different PageRank tennis ranking approaches to the official
ATP Tour rankings as they were on 01/01/2014. The rankings contain
a total 305 players who participated in ATP Tour matches over the year
of 2013.

Ranking Match Success DataSet Standard p-value
System Attempts Percentage Error from ATP

ATP 2488 70.2572 - 0.009165 -
Match PR 2615 70.4398 2615 0.008923 0.4433

Set PR 2615 71.1281 6326 0.008862 0.2473
Game PR 2615 71.0134 61916 0.008872 0.2767
Point PR 2615 70.3251 389927 0.008933 0.4789
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ranked higher than the loser by each ranking system. The DataSet column displays
the total number of outgoing edges each PageRank system uses demonstrating
how the use of more granular scoring increases the available data. Finally the
Table shows a p-value from a two-sample Z-test from the control ranking system
(the Official ATP Ranking). We can see in Table 5.1 that the Match PageRank
system and the Set PageRank system both significantly improve the representation
of matches when compared to the ATP Rankings of 2012. The Game PageRank
and the Point PageRank generated rankings seem to perform similarly to the ATP
Official rankings with no significant difference observed.

In 2013 results are very different as demonstrated in Table 5.2. It appears that in
2013 there is no significant improvement in model representation from any ranking
system when compared to the ATP Official Rankings even thought the highest
percentage was still achieved by the Set PageRank system.

To improve our understanding of how the different ranking systems affect indi-
vidual player rankings we constructed Figures 5.1, 5.2, 5.3 and 5.4. These figures
show the Match, Set, Game and Point PageRank generated rankings of the Top
100 ATP Players as ranked by the end of 2013 plotted against their respective ATP
Rankings at the time. This enables us to spot differences in rankings easily. Play-
ers who appear below the Y=X line are players who PageRank considers should
be ranked better than their ATP Ranking. Players who appear above the line are
players for which PageRank suggests a worse ranking than the one assigned by
the ATP. The greater the distance from the line the bigger the difference of the
PageRank suggested ranking and the ATP Ranking.

As a generic observation, in all PageRank systems it appears that the distances
from the line increase with increasing ATP Ranking. There is more disagreement
in the correct rank of players who are poorly ranked by the ATP. This is to be
expected and there are two main reasons for this.

The most prominent reason is that, in the official ATP Rankings, points from
Challenger tournaments also count which make a big difference to low perfor-
mance players. The data-set we use, unfortunately, does not include Challenger
matches as a result the PageRank system uses only ATP Tour tournaments to gen-
erate rankings.

Another possible reason is the fact that tournaments are seeded. Seeded tour-
naments create a bias which works in the advantage of top players. Since worse
ranked players are matched up with the top players in the first rounds of the tour-
naments, it makes it very difficult for those players to proceed in the latter rounds
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to gain the points needed to climb the rankings. This also means that worse ranked
players, play with top players in the majority of their matches and have fewer
matches with players of their own calibre. Because very few matches exist in the
ATP Tour with players ranked greater than 64 facing each other, it is hard to com-
pare the performance between them and as a result the generated rankings vary
greatly. Since in most tournaments either the top 16 or top 32 players are seeded,
these players face-off relatively frequently. This is the reason why the Match and
Set PageRank systems are in rough agreement with the ATP for the rankings of the
Top 32 players. From an ATP Rank of 32 onwards the disagreement increases.

An example of how using Matches, Sets and Games to generate PageRankings
affects the result is Horacio Zeballos. In Match PageRank he was ranked in po-
sition 27, in Set PageRank he was ranked in position 55 and in Game PageRank
in position 67. It so happens, that Horacio Zeballos managed to achieve a victory
against Rafael Nadal during the final of Vina del Mar, Chile in early 2013. This
is the reason he was boosted up to position 27 in the Match PageRank system.
ATP Ranked him in position 56 at the end of 2013, a ranking very similar to the
Set PageRank system (position 55). The reason Set PageRank gives a worse rank-
ing than Match PageRank is that, because of the increased number of incoming
and outgoing links in the network, the 2 sets that Horacio won against Nadal have
shrunk in significance. Also, Horacio conceded a set to Rafael during that same
match. Game PageRank ranks Horacio even lower for the same reasons as the
Set PageRank, i.e. in a greater data-set, a single victory against a top player loses
significance. The actual score of the match was 6-7(2), 7-6(6), 6-4. A tight vic-
tory where the number of games almost balance out (with only 2 games in favour
of Zeballos). This further decreases the importance of this victory. This exam-
ple demonstrates the trade-offs of using more and more granular data to generate
PageRankings. It is our opinion that the best ranking system out of the 4 PageR-
ank systems introduced here is the Set PageRank. It expands the data-set without
greatly impacting the importance of victories and without penalising players for
not playing a lot of matches.

Another example is Lleyton Hewitt who appears to be ranked lower than he
deserves by the ATP Rankings. Investigating further into the history of the matches
he played in 2013, Hewitt has achieved a number of victories over top 20 ATP
Ranked players. In fact out of the 24 victories he had over the year, 7 of them were
against players ranked in the top 20. The ATP ranks Hewitt lower than he deserves
merely because he did not proceed to the latter stages of tournaments and this does
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not reflect the player’s true skill but rather the player’s ability to play well within
the rules of the ranking system.

Finally, to demonstrate how winning points does not necessarily translate to a
higher quality player we use the example of David Ferrer. David Ferrer was ranked
as number 3 by the ATP and number 1 by the Point PageRank system. The Set and
Game PageRank systems also rank David Ferrer as number 3 and agree with the
ATP. In the case of points, David Ferrer has won a total of 6822 points over 2013
but only 1146 games and 143 sets. When compared to Novak Djokovic, who has
won 6483 points, 1133 games and 156 sets in the same period, it becomes clear
that winning points does not mean winning sets and matches. Novak Djokovic
is ranked as number 1 by Set and Game PageRank systems and number 2 by the
Point PageRank system. David Ferrer was able to overtake Novak Djokovic in the
point PageRank rankings because he has won more points against highly ranked
players, thus getting a better prestige score.

It can be observed that in Figures 5.3 and 5.4, which compare Game and Point
PageRank systems with the ATP Rankings, there is a greater amount of players
which appear above the line. As discussed earlier, Game and Point PageRank
systems are vulnerable to rank players higher just because these low ranked players
receive PageRank contributions from top ranked players since they can win games
and points against them but not necessarily sets and matches. The reason why
more players are ranked worse than they should is because a lot of players, having
a ranking greater than 100 by the ATP, are ranked in the Top 100 positions by
Game and Point PageRank pushing the rest lower in the rankings.
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Figure 5.1.: The rankings of the Top 100 ATP players at the end of 2013 compared
to their ranking generated using the Match PageRank system.

121



Figure 5.2.: The rankings of the Top 100 ATP players at the end of 2013 compared
to their ranking generated using the Set PageRank system.
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Figure 5.3.: The rankings of the Top 100 ATP players at the end of 2013 compared
to their ranking generated using the Game PageRank system.
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Figure 5.4.: The rankings of the Top 100 ATP players at the end of 2013 compared
to their ranking generated using the Point PageRank system.
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5.5. SortRank

SortRank and LadderRank are two novel ideas which were born in an attempt
to use knowledge gained from tennis models to generate player rankings. The
concept behind SortRank is very simple: take any tennis model, convert it into a
binary model and then use it as the comparison criterion of a sorting algorithm. For
example: lets assume that we have a list of players to rank. A sorting algorithm
such as QuickSort, as described by Hoare [101], can be used to sort this list of
players by using a binary model which outputs a comparison criterion between
players.

A limitation of any sorting algorithm is that it assumes absolute transitivity.
This means that if Player A can beat Player B and Player B can beat Player C
then it must always hold that Player A can beat Player C. As a consequence, any
model that is used as the comparison criterion should also be absolutely transitive
to ensure replicable results.

An example of a fully transitive model is the “uncombined” model mentioned
in Chapter 3. This model is transitive by definition as the opponent is not taken
into consideration when estimating the parameter of a player winning a point while
serving. Therefore, the output of any probability from the model is always com-
pared against the constant “average” player. This “uncombined” model can be
converted into a binary model by using the resulting probability of Player A win-
ning a match against Player B. If this probability is greater than 0.5 then the binary
model returns “true”, if the probability is less than or equal to 0.5 then it returns
“false”.

This binary model can be joined with any sorting algorithm to generate a rank-
ing. For this to happen, the sorting algorithm, when comparing two players, A and
B, should use the binary model as the comparison criterion. That is, if the binary
model returns “true” for Player A winning a match against Player B, the sorting
algorithm places Player A above Player B in the rankings. By completing the al-
gorithm for the entire list of players, the end result is a sorted list of players based
on their performance, with the best player at the top of the list – thus a ranking.

5.6. The LadderRank Algorithm

To overcome the limitation of absolute transitivity, SortRank was evolved to a new
algorithm that does not assume the comparison criterion is absolutely transitive.
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This algorithm is inspired by normal “sports-ladders”. In a “sports-ladder” there is
an initial ranked list of players, and each of those players is allowed to challenge
another player that is ranked up to X positions higher. If the challenger is victorious
in the challenge, then he/she overtakes the player challenged and pushes everyone
in-between one position down. The resulting algorithm is described by the pseudo-
code in Figure 5.5.

For this algorithm to function correctly it must be provided with these crucial
variables: the ‘iterations’, the ‘challenge offset’ and the ‘ranking list’. To ensure
complete ranking of the players the ‘iterations’ must always be larger than the
number of players being ranked. The ‘challenge offset’ defines the number of
positions in the ranking list that any player is allowed to jump after any challenge.
Finally the ‘ranking list’ is the list of players ranked in an initial order.

for (int i = 0; i < iterations; i++) {
foreach (current player in ranking list) {

if (current player.ranking > 0) {
x = challenge offset
if (x < current player.ranking) { x = current player.ranking }
for(int position = x; position > 0; position��) {

PlayerA = PlayerWithRanking(current player.ranking � position)
PlayerB = current player
if (Compare(PlayerA, PlayerB) == false) {

//if player A loses the match-up move player B
//above A and push all players in-between 1 spot down
MovePlayerToRanking(PlayerB, PlayerA.ranking)
position = 0 //stop challenging

}
}

}
}

}

Figure 5.5.: LadderRank pseudocode

The function PlayerWithRank(integer) which appears in the algorithm retrieves
the player which has the ranking provided by the integer parameter. The function
MovePlayerToRanking(player, integer) changes the ranking of the player to the
integer value provided and shifts all rankings of players which were between the
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player and the new ranking by 1 position towards the direction of the players cur-
rent ranking. For example in a list of three players, A, B and C ranked as 1, 2 and
3 respectively, the function MovePlayerToRanking(C, 1) will change the rankings
of A, B and C to 2, 3, 1 respectively.

5.7. SortRank and LadderRank Performance

Using using the SortRank and LadderRank algorithms we generated a few varia-
tions of rankings for the years 2012 and 2013. We used the SortRank algorithm
together with the only fully transitive model we described – the uncombined statis-
tics model to generate rankings for both years. Figure 5.6 shows the rankings as-
signed by the SortRank ‘uncombined’ to the Top 100 ATP Players of 2013 using
statistical averages over all the matches of the same year.

The LadderRank algorithm with parameter X=1 (i.e. the number of positions
players are allowed to “move” above their rank is 1) was used in combination
with the combined statistics model to generate rankings for years 2012 and 2013.
Figure 5.7 shows the resulting rankings generated using this algorithm for the Top
100 players, as ranked by the ATP at the end of 2013. It is noticeable that, like the
Point PageRank graph, there are a lot more players above the Y=X line than below.
Also, they tend to be further away from the Y=X line, the further along we are on
the ATP rankings axis. This, as discussed in an earlier section, is a sign that poorly
ranked players, by the ATP, tend to climb the rankings generated by the algorithm.
Further investigation revealed that players who had limited matches during the year
and performed well in those matches resulted in very good statistical averages and
were interpreted by the ‘combined’ model as high performance players. Once
again, the problem of small samples resulting in averaged statistical data which do
not represent the population means adequately, was the source of this problem.

Increasing the number of positions players were able to challenge above their
ranking did not solve this problem. Figure 5.8 demonstrates how the rankings,
generated for those same players, change when the parameter X is increased to 3.
We can observe that some players have moved closer to the Y=X line but others in
fact moved further away. Again, the overall tendency is for more players to appear
above the Y=X line.

Finally, Figure 5.9 shows the rankings assigned to the Top 100 ATP Players
using LadderRank with parameter X=3 and the ‘combined’ model, while removing
players with 4 or fewer matches played in 2013 (i.e. having parameter D=5). By
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Figure 5.6.: The rankings of the Top 100 ATP players at the end of 2013 compared
to their ranking generated using the QuickSort Uncombined system.

128



Figure 5.7.: The rankings of the Top 100 ATP players at the end of 2013 com-
pared to their ranking generated using the LadderSort Combined sys-
tem with X=1.
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Figure 5.8.: The rankings of the Top 100 ATP players at the end of 2013 com-
pared to their ranking generated using the LadderSort Combined sys-
tem with X=3.
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Figure 5.9.: The rankings of the Top 100 ATP players at the end of 2013 com-
pared to their ranking generated using the LadderSort Combined sys-
tem with X=3 and minimum of 5 matches played.
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removing these players, we eliminate ‘outliers’ who had high performances in a
few matches and were highly ranked by the ‘combined’ model. As a result, we
observe a much more condensed graph with players being much closer to the Y=X
line. Also, players are now more evenly spread above and below the Y=X line.

To understand how the different ranking systems really perform, we tested them
by counting the percentage of matches in the year 2012 whose winners were ac-
tually better ranked by the system than the losers of the match. We generated
rankings for the year 2012 using matches from the same year, and then compared
how well those rankings represented the same set of matches.

Table 5.3.: Comparing different SortRank and LadderRank tennis ranking ap-
proaches to the official ATP Tour rankings as they were on 31/12/2012.
The rankings contain players who participated in ATP Tour matches
over the year of 2012.

Ranking Match Success Players Standard p-value
System Attempts Percentage Error from ATP

ATP 2538 69.661 300 0.009125 -
SR-Uncom. 2673 68.575 303 0.008979 0.80198

LR-Com. X=1 2673 72.204 303 0.008665 0.02168
LR-Com. X=3 2673 72.241 303 0.008662 0.02016

LR-Com. X=3 D=5 2470 71.457 177 0.009087 0.08153

Table 5.3 shows the results of these tests. In the case of the ATP Official rank-
ings at the end 2012, out of the 2538 matches for which we had rankings for both
players, a percentage of 69.7% had winners whose rankings were better than the
losers. The SortRank ‘uncombined’ had a smaller percentage at 68.6% and the
three variations of LadderRank ‘combined’ systems had higher success percent-
ages.

Performing a split test comparison between the success percentage of the official
ATP Rankings and the rest of the models, we discovered that the improvement of
success percentage the LadderRank, with the ‘combined’ statistics model, achieves
is, in fact, significant when there is no limitation on the number of matches played
by the players. What is more, LadderRank ‘combined’ with X=3 is the best per-
forming algorithm even when compared to the Set PageRank algorithm which was
presented in Table 5.1. Even though LadderRank ‘combined’ appears to be per-
forming better than the rest, a closer look at the rankings indicates a problem where
low performing players appear in the top rankings simply because of outlier statis-
tics. The requirement of having a minimum of 5 matches to be included in the

132



rankings seems to solve this problem and the rankings generated by it appears to
be much more reasonable. This is evident in the tables presented in Appendix A.
The Appendix also includes a closer look at the Top 32 players of 2013.

5.8. Forecasting Match Outcomes Using Ranking Systems

Comparing the ranking systems for their ability to represent the data sets, which
were used to create them, does not necessarily reflect on their ability to predict new
matches. One should expect worse results when predicting matches as the ranking
systems will no longer be overfitted.

To check the performance of ranking systems in predicting matches we propose
a simple approach. We will generate two rankings using the algorithms. One at the
end of 2012 and one exactly 6 months after that. Using the first ranking we will
attempt to predict the matches played in the first 6 months of 2013 and using the
second ranking we will predict the final 6 months of 2013 and finally aggregate
the results. This way reduce the risk of over-fitting and we gain an understand-
ing of how successful the ranking systems are at predicting match results. Another
approach, which we reserve for future research, would be to generate weekly rank-
ings and predict the following week’s matches over the entire year.

The predictions we generate do not involve a probability but only a binary value
(i.e. the player with the better ranking is the winner). Such a probability can be
retrieved from rankings using a simple logit model with a method similar to the
one described by Clarke and Dyte [46]. This method is discussed in the subsequent
section.

Table 5.4 presents the results of all rankings algorithms presented in this chapter.
In this table, PR abbreviates PageRank, QSU abbreviates QuickSort Uncombined,
and LRC abbreviates LadderRank Combined. X and D are the LadderRank vari-
ables as described in Section 5.6. The first row of the table shows the number
of matches available for 2013, the second row shows the number of matches that
were tested for prediction, the third row shows the number of successful predic-
tions which were made by the algorithm, the fourth row shows the Standard Error
calculated using the Bernoulli approach and finally the last row shows the percent-
age of success of the ranking algorithms.

Some matches were skipped because of missing player rankings. Our database
holds only the Top 300 players of the ATP Rankings and we can only generate
rankings for players who have had activity 12 months prior to the date of the rank-
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ings, therefore not all players have an available ranking.
The results in Table 5.4 show that the best performing algorithms in terms of

successfully predicting match results are the PageRank Match and Set algorithms
with 67.624% over 2508 tested matches. The ATP scores the second lowest per-
centage in successful predictions with 64.931%. To analyse whether these differ-
ences in success percentages are actually significant statistically, we analyse the
results using two-sample Z-tests. The p-values of these tests are presented in Ta-
ble 5.5 where all algorithms are compared to each other. The significant results are
highlighted with bold lettering.

It is evident from Table 5.5, that PageRank Match and Set are significantly better
at predicting match results than the ATP Rankings, PageRank Game and Point
and QuickSort Uncombined. Also, LadderRank Combined with X=1 and X=3
performs significantly better from the QuickSort Uncombined approach. These
results provide further evidence that the PageRank Set algorithm represents player
performance better than the ATP Official Rankings.

5.9. Match Probabilities from Rankings

In their paper, Clarke and Dyte [46] discuss how a logit model can be used to
estimate the probability of a player winning a tennis match against another player
using their official ATP Ranking difference. In this section, we apply the same
technique to the PageRank Set rankings.

Firstly, we generated a PageRank Set ranking at the end of 2012. Then we ag-
gregated, over all matches in 2012, the number of wins the best ranked player has
for each difference in rankings to find the probability of the best ranked player
to win given a particular difference in ranking with his opponent. Having all the
required data all that is left is to fit the logit model (shown in Equation 5.4). To
model the probability of the best ranked player winning a match, p, given a differ-
ence in ranking, x, the log of the odds ratio (logit) of p can be modelled linearly as
follows.

ln
✓

p
1� p

◆
= a+bx (5.4)

For an equal ranking (therefore a difference, x = 0), p should be equal to 0.5.
This directly gives an answer for the parameter a = 0, since ln(0.5/0.5) = a.
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Therefore,
p =

1
1+ e�bx (5.5)

A value for b was fitted using Microsoft Solver and Microsoft Excel by max-
imising the log-likelihood between the real 2012 data and the estimated values of
the logit model. This resulted in the value of b = 0.010808 which completes the
model. For any difference in PageRank Set Rankings, x, the probability that the
best ranked player will emerge victorious, p, is 1

1+e�0.010808x .

5.10. PageRank Set rankings vs. Bookmakers

Using the same technique to develop the forecasts of match outcomes in Section
5.8, we will now simulate 1 unit match bets against the best pre-match odds of
5 different bookmakers (Bet 365, Expekt, Pinnacle Sports, Ladbrokes and Stan
James). Additionally, we will simulate the same bets against the individual over-
round-corrected odds of Bet 365, Expekt, Pinnacle Sports and Ladbrokes.
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Figure 5.10.: The cumulative profit of 2364 bets with exposure 1 unit each, against
the best match opening odds from 5 bookmakers and against the
over-round-corrected odds of 4 individual bookmakers over 2562
ATP Tour matches in the year 2013.

Figure 5.10 shows the cumulative profit for each of these simulations. Approx-
imately 2360 bets were placed in each simulation depending on the availability
of the odds of each bookmaker. It can be observed that all simulations return a
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positive return on investment (ROI). The results range from 0.9% ROI (Pinna-
cle Sports) to 2.6% ROI (Expekt), something which, as discussed in the previous
chapters, can be attributed to the variation of the profit margins of the bookmakers.

These results serve as strong evidence towards the idea that PageRank Set rank-
ings are as effective in predicting tennis results as professional models which are
used by bookmakers.

5.11. Conclusion

In this chapter, we presented four different variations of Google’s PageRank al-
gorithm for generating professional tennis player rankings. By substituting web-
pages by players and outgoing links by matches lost (as originally demonstrated
by Radicchi), we were able to convert the original PageRank algorithm to a rank-
ing system for professional tennis players. Radicchi’s [8] PageRank algorithm for
tennis was examined and modified to create a more efficient algorithm and then
tested using Sets, Games and Points lost as outgoing links between players. We
found that when using Sets lost as the weights of the PageRank edges, the final
rankings system is a better alternative to Matches since it does not alter how well
player ability is represented but it increases the data-set upon which the rankings
are based. As a result of the increased data-set, there is a significant reduction in
the number of ties at the bottom of the rankings.

We also introduced a novel and flexible concept for ranking professional ten-
nis players which can convert any tennis match model to a ranking. This algo-
rithm, which we called ‘LadderRank’, simulates a common ‘sports-ladder’ using
any tennis model to determine the winner of a contest. We found that, using the
‘combined’ model introduced in Chapter 3, with ‘LadderRank’ we get comparable
performance when it comes to player ability representation as in the PageRank Set
approach but not as good a performance on match prediction.

We further tested the prediction capabilities of all presented ranking algorithms
and found that the PageRank Match and Set algorithms have significantly better
performance at predicting matches than the ATP Official Rankings whereas all
other algorithms failed to show any significant improvement over the ATP Rank-
ings.
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6. Conclusions and Further Research

6.1. Achievements

This thesis has addressed the problem of modelling and predicting professional
tennis matches. The problem has been approached using three distinct methods:
a hierarchical Markov Chain approach, a novel transitive approach and via the
generation of player rankings.

6.1.1. Tennis Point Markov Model

The first model that was introduced achieved the expansion of current hierarchical
models. Hierarchical models in literature have been using the probability of win-
ning a point while serving as a parameter to a game model which in turn was the
parameter to a set model and finally, that was the parameter to a match model.

The problem of calculating this probability of winning a point on serve was
scarcely addressed in the literature. The first part of our research was focused on
exactly this problem. We have therefore contributed a Markov Chain model of a
tennis point and we have shown how to adapt publicly available statistical data to
calculate this probability.

We have tested this model using thousands of real world matches and found that
the final model produced, which we named the ‘combined’ model, performs as
well as models which have been deployed to the industry. We also investigated the
effect of using different subsets of statistical data on the results and identified the
problems of using averaged statistical data.

6.1.2. Common-Opponent Model

Most models in the literature make use of averaged statistics over various classes
of opponents to estimate the probability of winning points while serving. Some
exceptions address the problem of varying skill levels of opponents by adding
weights to the statistics.

139



We wanted to contribute a new approach to modelling tennis matches which
also solved the problems of using averaged statistical data across different skill
levels of opponents. Our novel model exploits the transitive component inherent
in tennis, by using the probability of winning service and return points against
common opponents alone. Finding the differences that the two modelled players
have in those probabilities, we combine them to get the probabilities of the players
winning a match between them.

This rather unorthodox approach was tested against thousands of real data matches
and was found to perform as well as other approaches when there is a sufficient
amount of background information. One of the problems which was apparent with
this Common-Opponent model was a diminishing set of background matches.

6.1.3. Ranking Systems and Forecasting

A selection of publications address the problem of forecasting tennis results using
traditional or generated rankings together with logit and probit models. For the
final chapter of our research we turned to the investigation of tennis rankings and
their ability to predict tennis match results.

During our research we identified a problem with the existing PageRank tennis
ranking system which was published by Radicchi [8]. The system would tie at
the bottom of the rankings all players who had no victories over the period which
was modelled. We therefore proposed the alternative of using Set losses as the
weights in the PageRank algorithm, something which improved on the problem
without affecting the quality of the rankings. We also experimented with using
more granular scoring as weights, such as games and points lost, but determined
these to deteriorate the quality of the rankings.

We also introduced an algorithm, based on the traditional sports-ladder, which
enables one to convert any predictive tennis model to a ranking. We named this the
‘LadderRank’ algorithm. Using the ‘LadderRank’ algorithm in combination with
the ‘combined’ tennis model we developed, we were able to generate rankings
which are of better quality compared to the official ATP Ranking system.

Using the ranking systems described, we tested their ability to predict match
results, using real ATP matches from 2013 and found that the PageRank Match
and Set systems significantly outperform the official ATP Rankings. In fact they
were able to achieve a successful prediction percentage similar to the ‘combined’
model.
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6.2. Applications

This thesis presents research dedicated to the prediction of professional tennis
match results. For this purpose we developed various quantitative models as well
as ranking systems.

The prediction of tennis results is directly applicable to investors seeking finan-
cial gain from sports betting exchanges. By making informed decisions based on
model predictions, investors can exploit market inefficiencies for a profit. Both the
quantitative models and rankings are useful for this purpose.

The ‘combined’ and Common-Opponent models both provide probabilities of
tennis players winning matches. These can be of use to bookmakers in the process
of generating the odds they offer to punters. These same probabilities can be used
to detect foul play, by detecting extreme upsets. Probabilities of winning matches
may also be calculated from the ranking algorithms we presented using a simple
logit model as presented in Clarke and Dyte [46].

The ‘combined’ model uses a point model to estimate the outcome of points.
Players’ coaches may use this model to assess how a change in a player’s statistic
will affect the probability of winning matches against particular opponents. There-
fore it is applicable to deciding training and playing strategies for players.

The analysis provided by the ‘combined’ model may also be used to find the
most likely score-lines, giving broadcasting stations an idea on the duration of
matches. Tennis commentators may use the model during an in-play match to
make informed comments on the match outcome as well as how a player can
change strategy to affect the game.

The ’combined’ model, employing a point model, may also be used in the deci-
sion process of systems analysing video and audio feeds for automated annotation
in tennis, improving them by using probabilities retrieved from historical statistics.

The ranking systems themselves are applicable to quick comparison of player
performance as their quality is superior to official ATP Rankings. This does not
suggest, though, that they may be used to replace the ATP Rankings. ATP Rank-
ings are simple and understandable to the general public and to the players. Com-
plicated systems such as PageRank or LadderRank may cause disputes and are
also eligible to exploitation by players. Also the ranking systems presented in this
dissertation are designed to measure player ability alone. Other factors, such as
the ability to win prestigious tournaments, are not included. These factors are part
of what makes the sport interesting to the public.
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6.3. Further Research

Future research based on the algorithms and models presented in this thesis may
further improve their performance and increase their effectiveness in the aforemen-
tioned applications. This section is a discussion of possible directions the research
may take in the future.

6.3.1. Analysis of Data

Quantitative models for tennis have been the focus of research in the field for many
years. Little research has been devoted, on the other hand, to analysing historical
data in tennis. The results of quantitative models are very much dependent on the
quality of the input parameters.

It is therefore prudent to analyse the historical data which is used to generate
those parameters to ensure more accurate estimation of their true values. An ex-
ample of this would be an investigation of the effect of using weighted averages
of match statistics on the performance of models. The weights of matches could
be generated in various methods: exponentially decaying the importance of the
statistics in time, or according to the relevance of the surface on which the match
was played on, or even the difference in ranking of the two players in the match.

Giving greater weight to statistics of matches which are more relevant to the
match being modelled may increase the performance of the model using them,
whether that is the ‘uncombined, ‘combined’ or even the Common-Opponent model.

6.3.2. Application on Doubles Matches

Section 3.7.4 has introduced the possible application of the ‘combined’ model in
modelling doubles tennis matches. This was merely and introduction and further
research can be undertaken towards that direction. Additionally, this research will
need to be backed up by evidence using a similar approach of back-testing with
real doubles matches.

6.3.3. Analysis of Rallies and Serving

As more and more detailed historical data become available to the public, research
may be undertaken regarding the effectiveness of further analysing a tennis point,
This can be done by deeper analysis of rallies and serving. Section 3.6 hints to-
wards possible Markov Chains that can be used to estimate the probabilities of
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various outcomes of serve as well as the two outcomes of a rally. In the future, it
may become possible to test these theories and further develop the point model.

6.3.4. Back-testing with WTA Matches

This thesis has not tested the applicability of our models in women’s professional
tennis. In the future, retrieval of a WTA match database with statistics will allow
an investigation on the performance that can be achieved in women’s tennis by our
introduced models and rankings.

6.3.5. 2-tier Common-Opponent Model

One of the problems that was mentioned with the Common-Opponent model was
the reduction in available historical data due to the strict use of relevant matches.
A possible solution to this problem would be the expansion of the Common-
Opponent model to a recursive Common-Opponent model.

Figure 6.1.: Two tier common opponent example.

There is a variety of ways to do this and they all justify research time. In this
section, we will propose one possible method as an example. Figure 6.1 demon-
strates how one may expand the Common-Opponent model to include a second
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level of common opponents. In this example, player OA1 is player A’s opponent
which has not been faced by player B but has common opponents with player OB1

which has been faced by player B. This is repeated for all players player A has
faced but have not been faced by player B. This creates a second tier of common
opponents which can be related via two level transitive results. What we mean by
two level transitive results is best demonstrated by an example: if player A can
beat player OA1 who can beat player OB1 and player OB1 can beat player B then
player A can beat player B. Of course this is not always true but some component
of it exists in tennis. It is this component which the 2-tier Common-Opponent
model proposed will attempt to exploit.

Further research is needed to understand how to relate second tier opponents to
the players being modelled and whether adding even more tiers makes sense. This
method has potential to increase the data-set, which is available, greatly but testing
needs to be done to investigate whether this will diminish the model’s performance.

6.3.6. Expand Data-set to Include Challenger Data

In Chapter 5, we mentioned that our database only includes matches played in the
ATP tour. Official ATP Rankings use points retrieved from matches played in the
Challenger and Futures tournaments which are not included in our database and
also not used to generate rankings using the PageRank systems and LadderRank
algorithms. It would be interesting to include these matches in our database and
generate new rankings for comparison to the ATP Rankings. This will most likely
increase the fidelity in the rankings of poorly ranked players.
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A. Selected Ranking Figures and Tables

Table A.1.: Top 100 players as ranked by Match PageRank using matches from
2013.

Rank ATP Name PageRank Sout Sin

1 1 Rafael Nadal 4.7885E-2 6 76
2 2 Novak Djokovic 4.4906E-2 9 62
3 5 Juan Martin Del Potro 2.9202E-2 14 51
4 3 David Ferrer 2.7513E-2 21 61
5 7 Tomas Berdych 2.1155E-2 21 46
6 8 Stanislas Wawrinka 2.0300E-2 20 50
7 12 Tommy Haas 1.8569E-2 23 46
8 4 Andy Murray 1.8409E-2 9 38
9 6 Roger Federer 1.7147E-2 16 46
10 14 John Isner 1.6698E-2 22 38
11 9 Richard Gasquet 1.5470E-2 20 42
12 16 Fabio Fognini 1.4405E-2 26 41
13 60 Lleyton Hewitt 1.3161E-2 17 26
14 11 Milos Raonic 1.3035E-2 20 37
15 15 Mikhail Youzhny 1.2641E-2 23 36
16 23 Grigor Dimitrov 1.2614E-2 23 32
17 24 Ernests Gulbis 1.1905E-2 19 34
18 10 Jo-Wilfried Tsonga 1.1810E-2 16 36
19 13 Nicolas Almagro 1.1736E-2 23 42
20 18 Tommy Robredo 1.1675E-2 19 35
21 31 Gael Monfils 1.1502E-2 22 35
22 19 Gilles Simon 1.1255E-2 21 33
23 26 Benoit Paire 1.0830E-2 30 30
24 20 Kevin Anderson 1.0765E-2 23 37
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25 22 Philipp Kohlschreiber 1.0240E-2 24 33
26 17 Kei Nishikori 1.0091E-2 19 33
27 56 Horacio Zeballos 1.0007E-2 23 14
28 38 Marcel Granollers 9.6768E-3 24 30
29 40 Florian Mayer 8.9761E-3 25 29
30 28 Feliciano Lopez 8.9270E-3 19 29
31 29 Dmitry Tursunov 8.7817E-3 22 30
32 37 Marin Cilic 8.7627E-3 13 25
33 34 Jeremy Chardy 8.6249E-3 25 25
34 33 Ivan Dodig 8.4331E-3 23 31
35 35 Julien Benneteau 8.4000E-3 25 27
36 39 Jarkko Nieminen 8.1114E-3 25 27
37 45 Denis Istomin 8.0557E-3 28 27
38 30 Fernando Verdasco 7.8099E-3 25 28
39 32 Vasek Pospisil 7.6993E-3 16 20
40 25 Andreas Seppi 7.6819E-3 27 28
41 164 Steve Darcis 7.5069E-3 7 2
42 46 Sam Querrey 7.4686E-3 22 26
43 52 Edouard Roger-Vasselin 7.3976E-3 26 26
44 43 Robin Haase 7.0370E-3 25 26
45 27 Jurgen Melzer 7.0081E-3 22 23
46 21 Jerzy Janowicz 6.8848E-3 20 23
47 54 Daniel Brands 6.4087E-3 22 21
48 41 Carlos Berlocq 6.3537E-3 24 26
49 48 Pablo Andujar 6.3332E-3 31 18
50 78 Ivo Karlovic 6.3136E-3 13 16
51 80 Victor Hanescu 6.1048E-3 25 20
52 58 Roberto Bautista Agut 6.0361E-3 20 20
53 61 Marinko Matosevic 5.9837E-3 23 19
54 62 Guillermo Garcia-Lopez 5.8457E-3 21 21
55 42 Juan Monaco 5.3583E-3 21 18
56 47 Lukas Rosol 5.2576E-3 23 19
57 74 Tobias Kamke 5.1458E-3 20 15
58 57 Alexandr Dolgopolov 5.1043E-3 26 20

157



59 51 Bernard Tomic 5.0600E-3 21 20
60 49 Joao Sousa 4.9022E-3 13 14
61 83 Albert Ramos 4.7104E-3 22 19
62 113 Evgeny Donskoy 4.6916E-3 16 12
63 63 Albert Montanes 4.6646E-3 19 18
64 36 Janko Tipsarevic 4.5889E-3 22 15
65 50 Nicolas Mahut 4.5795E-3 8 18
66 44 Radek Stepanek 4.5436E-3 16 14
67 105 Michael Llodra 4.5351E-3 15 12
68 53 Nikolay Davydenko 4.4179E-3 22 18
69 55 Federico Delbonis 4.3952E-3 8 12
70 59 Adrian Mannarino 4.3546E-3 16 10
71 70 Igor Sijsling 4.0587E-3 23 13
72 65 Yen-Hsun Lu 3.9727E-3 17 16
73 77 Daniel Gimeno-Traver 3.8833E-3 26 14
74 69 Santiago Giraldo 3.8317E-3 23 14
75 72 Lukasz Kubot 3.7265E-3 15 10
76 135 Xavier Malisse 3.6604E-3 19 13
77 84 Kenny De Schepper 3.5962E-3 15 9
78 75 Viktor Troicki 3.4812E-3 16 15
79 87 Marcos Baghdatis 3.3773E-3 21 11
80 131 Ricardas Berankis 3.3222E-3 16 11
81 102 Jack Sock 3.2477E-3 13 10
82 98 Sergiy Stakhovsky 3.2388E-3 14 9
83 109 Paolo Lorenzi 3.2331E-3 22 11
84 94 Leonardo Mayer 3.2249E-3 18 12
85 66 Michal Przysiezny 3.1381E-3 12 10
86 100 Ryan Harrison 3.1218E-3 21 11
87 110 David Goffin 2.9945E-3 20 9
88 99 Alejandro Falla 2.9325E-3 18 12
89 95 Aljaz Bedene 2.8932E-3 17 9
90 121 Grega Zemlja 2.8358E-3 17 11
91 146 Thiemo de Bakker 2.7335E-3 10 7
92 88 Alex Bogomolov Jr. 2.6974E-3 9 5
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93 90 Somdev Devvarman 2.6669E-3 12 10
94 133 Martin Alund 2.5628E-3 8 6
95 153 James Blake 2.4977E-3 14 9
96 79 Benjamin Becker 2.4650E-3 19 10
97 104 Blaz Kavcic 2.3907E-3 12 10
98 125 Thomaz Bellucci 2.3373E-3 16 7
99 108 Martin Klizan 2.3058E-3 23 12
100 89 Tim Smyczek 2.3004E-3 12 8

Table A.2.: Top 100 players as ranked by Set PageRank using matches from 2013.
Rank ATP Name PageRank Sout Sin

1 2 Novak Djokovic 4.5689E-2 40 156
2 1 Rafael Nadal 4.3766E-2 34 163
3 3 David Ferrer 2.9025E-2 75 143
4 5 Juan Martin Del Potro 2.7559E-2 46 110
5 8 Stan Wawrinka 2.5392E-2 58 114
6 7 Tomas Berdych 2.3029E-2 54 112
7 6 Roger Federer 2.2938E-2 51 115
8 4 Andy Murray 2.1029E-2 30 93
9 12 Tommy Haas 2.0257E-2 58 107
10 14 John Isner 1.8270E-2 64 94
11 15 Mikhail Youzhny 1.7153E-2 61 90
12 9 Richard Gasquet 1.6978E-2 60 102
13 16 Fabio Fognini 1.6222E-2 66 94
14 31 Gael Monfils 1.5980E-2 54 88
15 24 Ernests Gulbis 1.5156E-2 54 80
16 10 Jo-Wilfried Tsonga 1.4847E-2 42 86
17 60 Lleyton Hewitt 1.3889E-2 54 67
18 18 Tommy Robredo 1.3858E-2 59 85
19 23 Grigor Dimitrov 1.3337E-2 60 71
20 11 Milos Raonic 1.2920E-2 51 79
21 19 Gilles Simon 1.2910E-2 59 76
22 13 Nicolas Almagro 1.2732E-2 58 93
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23 30 Fernando Verdasco 1.2493E-2 65 78
24 22 Philipp Kohlschreiber 1.2320E-2 56 75
25 20 Kevin Anderson 1.1759E-2 64 90
26 26 Benoit Paire 1.1178E-2 70 77
27 45 Denis Istomin 1.0751E-2 73 70
28 33 Ivan Dodig 1.0097E-2 59 67
29 35 Julien Benneteau 1.0050E-2 62 68
30 37 Marin Cilic 9.8859E-3 34 61
31 17 Kei Nishikori 9.7791E-3 47 73
32 25 Andreas Seppi 9.6439E-3 77 71
33 21 Jerzy Janowicz 9.3959E-3 52 62
34 34 Jeremy Chardy 9.1694E-3 63 66
35 29 Dmitry Tursunov 9.1338E-3 47 66
36 28 Feliciano Lopez 8.9297E-3 52 62
37 39 Jarkko Nieminen 8.9278E-3 62 63
38 54 Daniel Brands 8.3980E-3 54 50
39 52 Edouard Roger-Vasselin 8.0617E-3 63 58
40 40 Florian Mayer 7.9505E-3 65 64
41 38 Marcel Granollers 7.8247E-3 66 64
42 46 Sam Querrey 7.7114E-3 59 60
43 32 Vasek Pospisil 7.6446E-3 40 50
44 43 Robin Haase 7.5688E-3 72 61
45 42 Juan Monaco 7.2768E-3 46 49
46 41 Carlos Berlocq 7.2436E-3 56 56
47 27 Jurgen Melzer 7.1380E-3 59 53
48 113 Evgeny Donskoy 6.8826E-3 43 38
49 51 Bernard Tomic 6.6193E-3 50 53
50 58 Roberto Bautista Agut 6.5629E-3 45 51
51 74 Tobias Kamke 6.4930E-3 45 42
52 70 Igor Sijsling 6.2098E-3 44 40
53 48 Pablo Andujar 6.0514E-3 73 42
54 57 Alexandr Dolgopolov 5.9617E-3 58 46
55 56 Horacio Zeballos 5.9139E-3 52 34
56 62 Guillermo Garcia-Lopez 5.7936E-3 57 48
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57 61 Marinko Matosevic 5.6637E-3 51 44
58 78 Ivo Karlovic 5.6621E-3 33 36
59 83 Albert Ramos 5.5182E-3 53 50
60 36 Janko Tipsarevic 5.4516E-3 50 38
61 105 Michael Llodra 5.4294E-3 28 31
62 87 Marcos Baghdatis 5.3624E-3 49 33
63 77 Daniel Gimeno-Traver 5.2005E-3 61 43
64 47 Lukas Rosol 5.1765E-3 55 52
65 80 Victor Hanescu 5.1196E-3 55 38
66 108 Martin Klizan 5.1024E-3 52 35
67 63 Albert Montanes 4.8919E-3 50 41
68 50 Nicolas Mahut 4.7517E-3 21 40
69 44 Radek Stepanek 4.6174E-3 36 34
70 65 Yen-Hsun Lu 4.5999E-3 38 41
71 135 Xavier Malisse 4.4204E-3 45 34
72 164 Steve Darcis 4.3691E-3 14 7
73 49 Joao Sousa 4.3673E-3 37 34
74 53 Nikolay Davydenko 4.1740E-3 51 41
75 131 Ricardas Berankis 4.0687E-3 39 31
76 55 Federico Delbonis 4.0573E-3 21 27
77 102 Jack Sock 3.8856E-3 28 25
78 100 Ryan Harrison 3.8707E-3 49 30
79 75 Viktor Troicki 3.8524E-3 37 39
80 69 Santiago Giraldo 3.6837E-3 56 36
81 98 Sergiy Stakhovsky 3.6260E-3 34 28
82 162 Peter Gojowczyk 3.3142E-3 7 12
83 89 Tim Smyczek 3.2985E-3 31 26
84 59 Adrian Mannarino 3.2957E-3 40 28
85 104 Blaz Kavcic 3.2013E-3 33 29
86 99 Alejandro Falla 3.1643E-3 37 28
87 94 Leonardo Mayer 3.1335E-3 37 31
88 133 Martin Alund 3.0862E-3 21 17
89 153 James Blake 2.9512E-3 33 24
90 109 Paolo Lorenzi 2.8814E-3 50 27
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91 110 David Goffin 2.8705E-3 49 24
92 79 Benjamin Becker 2.8145E-3 45 26
93 121 Grega Zemlja 2.6949E-3 36 28
94 72 Lukasz Kubot 2.6577E-3 39 28
95 88 Alex Bogomolov Jr. 2.5635E-3 24 16
96 95 Aljaz Bedene 2.5185E-3 41 26
97 66 Michal Przysiezny 2.4470E-3 30 22
98 125 Thomaz Bellucci 2.4352E-3 37 21
99 146 Thiemo de Bakker 2.4316E-3 23 14
100 137 Guillaume Rufin 2.4053E-3 31 23

Table A.3.: Top 100 players as ranked by Game PageRank using matches from
2013.

Rank ATP Name PageRank Sout Sin

1 2 Novak Djokovic 2.1346E-2 717 1133
2 1 Rafael Nadal 2.1047E-2 720 1148
3 3 David Ferrer 1.9674E-2 880 1146
4 8 Stan Wawrinka 1.6637E-2 758 933
5 7 Tomas Berdych 1.6444E-2 733 928
6 6 Roger Federer 1.5594E-2 678 906
7 12 Tommy Haas 1.5593E-2 747 889
8 5 Juan Martin Del Potro 1.5283E-2 687 855
9 14 John Isner 1.5005E-2 829 886
10 9 Richard Gasquet 1.4469E-2 716 860
11 13 Nicolas Almagro 1.3120E-2 675 815
12 15 Mikhail Youzhny 1.3038E-2 691 772
13 16 Fabio Fognini 1.2929E-2 719 780
14 20 Kevin Anderson 1.2861E-2 737 803
15 31 Gael Monfils 1.2482E-2 647 748
16 4 Andy Murray 1.2229E-2 498 689
17 10 Jo-Wilfried Tsonga 1.2072E-2 575 705
18 11 Milos Raonic 1.2038E-2 625 712
19 24 Ernests Gulbis 1.1925E-2 585 703
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20 30 Fernando Verdasco 1.1806E-2 695 726
21 18 Tommy Robredo 1.1777E-2 643 727
22 25 Andreas Seppi 1.1445E-2 733 717
23 23 Grigor Dimitrov 1.1426E-2 611 671
24 26 Benoit Paire 1.1348E-2 724 733
25 45 Denis Istomin 1.1284E-2 708 700
26 22 Philipp Kohlschreiber 1.1245E-2 632 683
27 19 Gilles Simon 1.0649E-2 641 658
28 35 Julien Benneteau 1.0596E-2 649 658
29 33 Ivan Dodig 1.0383E-2 598 633
30 34 Jeremy Chardy 1.0280E-2 641 651
31 60 Lleyton Hewitt 1.0178E-2 569 612
32 43 Robin Haase 1.0042E-2 663 656
33 21 Jerzy Janowicz 9.9527E-3 580 593
34 40 Florian Mayer 9.9059E-3 628 621
35 39 Jarkko Nieminen 9.8632E-3 596 615
36 52 Edouard Roger-Vasselin 9.5655E-3 600 617
37 46 Sam Querrey 9.5321E-3 621 616
38 38 Marcel Granollers 9.4855E-3 628 602
39 28 Feliciano Lopez 9.4190E-3 569 582
40 17 Kei Nishikori 9.2931E-3 519 595
41 29 Dmitry Tursunov 9.0732E-3 542 590
42 41 Carlos Berlocq 8.6027E-3 526 546
43 37 Marin Cilic 8.5344E-3 440 520
44 51 Bernard Tomic 8.5012E-3 534 529
45 54 Daniel Brands 8.2956E-3 524 512
46 27 Jurgen Melzer 8.1849E-3 547 522
47 57 Alexandr Dolgopolov 7.9264E-3 529 491
48 48 Pablo Andujar 7.8521E-3 600 497
49 32 Vasek Pospisil 7.6217E-3 442 486
50 83 Albert Ramos 7.4139E-3 503 486
51 47 Lukas Rosol 7.3808E-3 519 504
52 77 Daniel Gimeno-Traver 7.3772E-3 538 476
53 42 Juan Monaco 7.3721E-3 431 471
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54 58 Roberto Bautista Agut 7.3508E-3 456 467
55 62 Guillermo Garcia-Lopez 7.1979E-3 508 482
56 61 Marinko Matosevic 7.1006E-3 490 451
57 80 Victor Hanescu 6.8469E-3 486 443
58 53 Nikolay Davydenko 6.7576E-3 443 439
59 36 Janko Tipsarevic 6.7257E-3 448 422
60 70 Igor Sijsling 6.5175E-3 432 409
61 69 Santiago Giraldo 6.4514E-3 473 430
62 87 Marcos Baghdatis 6.4137E-3 416 388
63 78 Ivo Karlovic 6.3844E-3 381 387
64 74 Tobias Kamke 6.3727E-3 415 411
65 113 Evgeny Donskoy 6.2918E-3 407 388
66 63 Albert Montanes 6.2461E-3 451 413
67 56 Horacio Zeballos 6.1768E-3 447 401
68 108 Martin Klizan 6.1344E-3 445 388
69 65 Yen-Hsun Lu 6.0250E-3 371 389
70 100 Ryan Harrison 5.8409E-3 429 363
71 44 Radek Stepanek 5.7901E-3 344 356
72 135 Xavier Malisse 5.5707E-3 403 365
73 75 Viktor Troicki 5.5625E-3 371 364
74 79 Benjamin Becker 5.2909E-3 389 326
75 131 Ricardas Berankis 5.1890E-3 350 333
76 50 Nicolas Mahut 5.1307E-3 277 335
77 110 David Goffin 5.0283E-3 381 311
78 109 Paolo Lorenzi 4.8767E-3 397 328
79 105 Michael Llodra 4.7889E-3 287 290
80 59 Adrian Mannarino 4.7681E-3 339 311
81 49 Joao Sousa 4.7663E-3 336 312
82 94 Leonardo Mayer 4.5996E-3 347 316
83 153 James Blake 4.5097E-3 284 286
84 121 Grega Zemlja 4.4896E-3 342 294
85 99 Alejandro Falla 4.4515E-3 328 303
86 72 Lukasz Kubot 4.4419E-3 351 310
87 95 Aljaz Bedene 4.3396E-3 346 298
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88 98 Sergiy Stakhovsky 4.3395E-3 316 296
89 104 Blaz Kavcic 4.3297E-3 296 289
90 129 Paul-Henri Mathieu 4.3275E-3 326 268
91 102 Jack Sock 4.2836E-3 270 257
92 89 Tim Smyczek 4.2178E-3 281 273
93 134 Andrey Kuznetsov 4.0823E-3 333 275
94 137 Guillaume Rufin 4.0235E-3 272 258
95 90 Somdev Devvarman 4.0028E-3 289 272
96 66 Michal Przysiezny 3.9362E-3 274 254
97 125 Thomaz Bellucci 3.8917E-3 320 264
98 55 Federico Delbonis 3.7525E-3 238 239
99 84 Kenny De Schepper 3.7153E-3 296 263
100 149 Jesse Levine 3.2164E-3 252 206

Table A.4.: Top 100 players as ranked by Point PageRank using matches from
2013.

Rank ATP Name PageRank Sout Sin

1 3 David Ferrer 1.7901E-2 6005 6822
2 2 Novak Djokovic 1.7689E-2 5156 6483
3 1 Rafael Nadal 1.7363E-2 5250 6409
4 7 Tomas Berdych 1.4789E-2 4975 5560
5 8 Stan Wawrinka 1.4764E-2 5037 5527
6 12 Tommy Haas 1.4110E-2 4934 5312
7 6 Roger Federer 1.4071E-2 4561 5348
8 14 John Isner 1.3780E-2 5063 5288
9 9 Richard Gasquet 1.3417E-2 4725 5167
10 5 Juan Martin Del Potro 1.3402E-2 4537 5025
11 16 Fabio Fognini 1.2776E-2 4780 4910
12 20 Kevin Anderson 1.2567E-2 4639 4923
13 13 Nicolas Almagro 1.2296E-2 4380 4815
14 15 Mikhail Youzhny 1.2189E-2 4514 4682
15 26 Benoit Paire 1.1760E-2 4689 4689
16 31 Gael Monfils 1.1742E-2 4268 4529
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17 30 Fernando Verdasco 1.1598E-2 4380 4528
18 25 Andreas Seppi 1.1531E-2 4591 4533
19 18 Tommy Robredo 1.1405E-2 4208 4446
20 45 Denis Istomin 1.1158E-2 4399 4367
21 11 Milos Raonic 1.1094E-2 3936 4244
22 24 Ernests Gulbis 1.1065E-2 3876 4245
23 19 Gilles Simon 1.0869E-2 4217 4257
24 10 Jo-Wilfried Tsonga 1.0786E-2 3765 4110
25 4 Andy Murray 1.0774E-2 3449 4025
26 22 Philipp Kohlschreiber 1.0758E-2 3956 4159
27 35 Julien Benneteau 1.0585E-2 4141 4163
28 23 Grigor Dimitrov 1.0584E-2 3827 4040
29 43 Robin Haase 1.0481E-2 4244 4208
30 34 Jeremy Chardy 1.0287E-2 4000 4065
31 33 Ivan Dodig 1.0007E-2 3776 3886
32 40 Florian Mayer 9.9367E-3 3974 3894
33 60 Lleyton Hewitt 9.9029E-3 3692 3813
34 52 Edouard Roger-Vasselin 9.7149E-3 3843 3864
35 39 Jarkko Nieminen 9.6874E-3 3811 3799
36 38 Marcel Granollers 9.6501E-3 3878 3807
37 46 Sam Querrey 9.6471E-3 3823 3844
38 21 Jerzy Janowicz 9.5212E-3 3614 3668
39 17 Kei Nishikori 9.4164E-3 3483 3706
40 28 Feliciano Lopez 9.1996E-3 3560 3595
41 29 Dmitry Tursunov 9.1135E-3 3564 3655
42 48 Pablo Andujar 8.8209E-3 3776 3484
43 41 Carlos Berlocq 8.6605E-3 3307 3419
44 27 Jurgen Melzer 8.3699E-3 3456 3312
45 51 Bernard Tomic 8.3451E-3 3356 3263
46 57 Alexandr Dolgopolov 8.0596E-3 3231 3143
47 37 Marin Cilic 8.0531E-3 2866 3126
48 54 Daniel Brands 7.9900E-3 3174 3144
49 47 Lukas Rosol 7.9702E-3 3297 3223
50 62 Guillermo Garcia-Lopez 7.8461E-3 3245 3167
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51 77 Daniel Gimeno-Traver 7.7905E-3 3282 3103
52 83 Albert Ramos 7.7028E-3 3132 3097
53 61 Marinko Matosevic 7.6591E-3 3103 3019
54 58 Roberto Bautista Agut 7.5991E-3 2930 2964
55 32 Vasek Pospisil 7.5240E-3 2867 3007
56 42 Juan Monaco 7.3775E-3 2787 2929
57 80 Victor Hanescu 7.2316E-3 3021 2866
58 53 Nikolay Davydenko 7.1191E-3 2836 2825
59 36 Janko Tipsarevic 6.9318E-3 2799 2722
60 69 Santiago Giraldo 6.7924E-3 2888 2729
61 63 Albert Montanes 6.6073E-3 2786 2669
62 74 Tobias Kamke 6.5670E-3 2680 2632
63 70 Igor Sijsling 6.5005E-3 2671 2568
64 108 Martin Klizan 6.4549E-3 2748 2561
65 113 Evgeny Donskoy 6.4207E-3 2593 2508
66 87 Marcos Baghdatis 6.3961E-3 2596 2473
67 56 Horacio Zeballos 6.2631E-3 2708 2510
68 65 Yen-Hsun Lu 6.2500E-3 2412 2471
69 100 Ryan Harrison 6.1114E-3 2604 2395
70 135 Xavier Malisse 5.9556E-3 2453 2389
71 44 Radek Stepanek 5.8632E-3 2240 2283
72 75 Viktor Troicki 5.8236E-3 2335 2322
73 78 Ivo Karlovic 5.7923E-3 2248 2254
74 109 Paolo Lorenzi 5.6136E-3 2425 2267
75 110 David Goffin 5.5171E-3 2314 2153
76 79 Benjamin Becker 5.4277E-3 2278 2115
77 131 Ricardas Berankis 5.4034E-3 2217 2160
78 59 Adrian Mannarino 5.1149E-3 2142 2027
79 49 Joao Sousa 5.054E-3 2099 2017
80 94 Leonardo Mayer 4.9758E-3 2142 2027
81 72 Lukasz Kubot 4.9727E-3 2156 2044
82 50 Nicolas Mahut 4.9368E-3 1818 1971
83 99 Alejandro Falla 4.8872E-3 2068 1970
84 121 Grega Zemlja 4.8715E-3 2083 1937
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85 95 Aljaz Bedene 4.7678E-3 2038 1939
86 134 Andrey Kuznetsov 4.6436E-3 2032 1875
87 98 Sergiy Stakhovsky 4.6000E-3 1931 1874
88 104 Blaz Kavcic 4.5861E-3 1820 1841
89 153 James Blake 4.5737E-3 1818 1813
90 105 Michael Llodra 4.5662E-3 1771 1763
91 90 Somdev Devvarman 4.5526E-3 1883 1837
92 89 Tim Smyczek 4.5323E-3 1807 1801
93 129 Paul-Henri Mathieu 4.4492E-3 1964 1763
94 125 Thomaz Bellucci 4.3814E-3 1913 1783
95 137 Guillaume Rufin 4.2892E-3 1741 1690
96 102 Jack Sock 4.0899E-3 1618 1573
97 84 Kenny De Schepper 4.0707E-3 1790 1676
98 66 Michal Przysiezny 3.9782E-3 1654 1579
99 55 Federico Delbonis 3.9598E-3 1530 1552
100 149 Jesse Levine 3.5948E-3 1555 1413

Table A.5.: Top 100 players as ranked by LadderRank Combined system with pa-
rameter X=1 using matches from 2013.

Rank ATP Name Matches Lost Matches Won
1 2 Novak Djokovic 9 62
2 1 Rafael Nadal 6 76
3 6 Roger Federer 16 46
4 4 Andy Murray 9 38
5 3 David Ferrer 21 61
6 5 Juan Martin Del Potro 14 51
7 NA Chris Guccione 1 1
8 223 Miloslav Mecir 1 1
9 7 Tomas Berdych 21 46
10 11 Milos Raonic 20 37
11 NA Christian Harrison 1 1
12 13 Nicolas Almagro 23 42
13 9 Richard Gasquet 20 42
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14 8 Stan Wawrinka 20 50
15 37 Marin Cilic 13 25
16 91 Alejandro Gonzalez 1 0
17 24 Ernests Gulbis 19 34
18 157 Maximo Gonzalez 1 1
19 10 Jo-Wilfried Tsonga 16 36
20 227 Greg Jones 1 1
21 50 Nicolas Mahut 8 18
22 20 Kevin Anderson 23 37
23 17 Kei Nishikori 19 33
24 97 Bradley Klahn 3 1
25 14 John Isner 22 38
26 154 Paul Capdeville 1 1
27 31 Gael Monfils 22 35
28 270 Alexander Kudryavtsev 1 1
29 23 Grigor Dimitrov 23 32
30 143 Michael Berrer 3 2
31 42 Juan Monaco 21 18
32 115 Stephane Robert 2 2
33 41 Carlos Berlocq 24 26
34 NA Emilio Gomez 1 1
35 NA Prakash Amritraj 1 1
36 12 Tommy Haas 23 46
37 162 Peter Gojowczyk 2 4
38 222 Gerard Granollers 1 0
39 32 Vasek Pospisil 16 20
40 18 Tommy Robredo 19 35
41 65 Yen-Hsun Lu 17 16
42 22 Philipp Kohlschreiber 24 33
43 148 Ruben Bemelmans 4 3
44 30 Fernando Verdasco 25 28
45 33 Ivan Dodig 23 31
46 NA Christian Garin 1 1
47 111 Dustin Brown 3 4
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48 44 Radek Stepanek 16 14
49 229 David Nalbandian 5 6
50 82 Andrey Golubev 4 3
51 139 Dominic Thiem 3 4
52 58 Roberto Bautista Agut 20 20
53 181 Marton Fucsovics 1 1
54 15 Mikhail Youzhny 23 36
55 35 Julien Benneteau 25 27
56 16 Fabio Fognini 26 41
57 104 Blaz Kavcic 12 10
58 89 Tim Smyczek 12 8
59 19 Gilles Simon 21 33
60 52 Edouard Roger-Vasselin 26 26
61 25 Andreas Seppi 27 28
62 28 Feliciano Lopez 19 29
63 21 Jerzy Janowicz 20 23
64 78 Ivo Karlovic 13 16
65 55 Federico Delbonis 8 12
66 NA Brian Baker 4 3
67 45 Denis Istomin 28 27
68 54 Daniel Brands 22 21
69 39 Jarkko Nieminen 25 27
70 60 Lleyton Hewitt 17 26
71 46 Sam Querrey 22 26
72 195 Yuki Bhambri 1 2
73 105 Michael Llodra 15 12
74 38 Marcel Granollers 24 30
75 34 Jeremy Chardy 25 25
76 172 Samuel Groth 4 3
77 NA Riccardo Ghedin 1 0
78 96 Donald Young 3 2
79 83 Albert Ramos 22 19
80 150 Daniel Evans 3 4
81 29 Dmitry Tursunov 22 30
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82 57 Alexandr Dolgopolov 26 20
83 26 Benoit Paire 30 30
84 40 Florian Mayer 25 29
85 53 Nikolay Davydenko 22 18
86 107 Jan-Lennard Struff 9 4
87 122 Frank Dancevic 3 2
88 153 James Blake 14 9
89 75 Viktor Troicki 16 15
90 51 Bernard Tomic 21 20
91 NA Joachim Johansson 1 1
92 61 Marinko Matosevic 23 19
93 43 Robin Haase 25 26
94 113 Evgeny Donskoy 16 12
95 62 Guillermo Garcia-Lopez 21 21
96 27 Jurgen Melzer 22 23
97 36 Janko Tipsarevic 22 15
98 190 John Millman 3 1
99 49 Joao Sousa 13 14
100 NA Karen Khachanov 2 3

Table A.6.: Top 100 players as ranked by LadderRank Combined system with pa-
rameter X=3 using matches from 2013.

Rank ATP Name Matches Lost Matches Won
1 2 Novak Djokovic 9 62
2 1 Rafael Nadal 6 76
3 6 Roger Federer 16 46
4 4 Andy Murray 9 38
5 3 David Ferrer 21 61
6 5 Juan Martin Del Potro 14 51
7 NA Chris Guccione 1 1
8 223 Miloslav Mecir 1 1
9 7 Tomas Berdych 21 46
10 11 Milos Raonic 20 37
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11 NA Christian Harrison 1 1
12 13 Nicolas Almagro 23 42
13 9 Richard Gasquet 20 42
14 8 Stan Wawrinka 20 50
15 37 Marin Cilic 13 25
16 91 Alejandro Gonzalez 1 0
17 24 Ernests Gulbis 19 34
18 222 Gerard Granollers 1 0
19 157 Maximo Gonzalez 1 1
20 10 Jo-Wilfried Tsonga 16 36
21 227 Greg Jones 1 1
22 50 Nicolas Mahut 8 18
23 12 Tommy Haas 23 46
24 20 Kevin Anderson 23 37
25 154 Paul Capdeville 1 1
26 17 Kei Nishikori 19 33
27 97 Bradley Klahn 3 1
28 14 John Isner 22 38
29 115 Stephane Robert 2 2
30 NA Prakash Amritraj 1 1
31 270 Alexander Kudryavtsev 1 1
32 162 Peter Gojowczyk 2 4
33 32 Vasek Pospisil 16 20
34 23 Grigor Dimitrov 23 32
35 18 Tommy Robredo 19 35
36 31 Gael Monfils 22 35
37 42 Juan Monaco 21 18
38 65 Yen-Hsun Lu 17 16
39 22 Philipp Kohlschreiber 24 33
40 143 Michael Berrer 3 2
41 148 Ruben Bemelmans 4 3
42 30 Fernando Verdasco 25 28
43 41 Carlos Berlocq 24 26
44 NA Emilio Gomez 1 1
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45 33 Ivan Dodig 23 31
46 NA Christian Garin 1 1
47 111 Dustin Brown 3 4
48 44 Radek Stepanek 16 14
49 229 David Nalbandian 5 6
50 82 Andrey Golubev 4 3
51 139 Dominic Thiem 3 4
52 58 Roberto Bautista Agut 20 20
53 181 Marton Fucsovics 1 1
54 15 Mikhail Youzhny 23 36
55 35 Julien Benneteau 25 27
56 16 Fabio Fognini 26 41
57 NA Riccardo Ghedin 1 0
58 195 Yuki Bhambri 1 2
59 104 Blaz Kavcic 12 10
60 89 Tim Smyczek 12 8
61 60 Lleyton Hewitt 17 26
62 46 Sam Querrey 22 26
63 19 Gilles Simon 21 33
64 38 Marcel Granollers 24 30
65 52 Edouard Roger-Vasselin 26 26
66 25 Andreas Seppi 27 28
67 34 Jeremy Chardy 25 25
68 28 Feliciano Lopez 19 29
69 21 Jerzy Janowicz 20 23
70 105 Michael Llodra 15 12
71 78 Ivo Karlovic 13 16
72 172 Samuel Groth 4 3
73 263 Rui Machado 1 0
74 55 Federico Delbonis 8 12
75 NA Brian Baker 4 3
76 45 Denis Istomin 28 27
77 75 Viktor Troicki 16 15
78 54 Daniel Brands 22 21
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79 39 Jarkko Nieminen 25 27
80 96 Donald Young 3 2
81 83 Albert Ramos 22 19
82 40 Florian Mayer 25 29
83 53 Nikolay Davydenko 22 18
84 107 Jan-Lennard Struff 9 4
85 150 Daniel Evans 3 4
86 NA Joachim Johansson 1 1
87 153 James Blake 14 9
88 29 Dmitry Tursunov 22 30
89 61 Marinko Matosevic 23 19
90 57 Alexandr Dolgopolov 26 20
91 26 Benoit Paire 30 30
92 43 Robin Haase 25 26
93 NA Stephane Bohli 1 0
94 98 Sergiy Stakhovsky 14 9
95 122 Frank Dancevic 3 2
96 51 Bernard Tomic 21 20
97 90 Somdev Devvarman 12 10
98 74 Tobias Kamke 20 15
99 131 Ricardas Berankis 16 11
100 113 Evgeny Donskoy 16 12

Table A.7.: Top 100 players as ranked by LadderRank Combined system with pa-
rameter X=3 and a minimum of 5 matches played using historical data
from 2013.

Rank ATP Name Matches Lost Matches Won
1 2 Novak Djokovic 9 62
2 1 Rafael Nadal 6 76
3 6 Roger Federer 16 46
4 4 Andy Murray 9 38
5 3 David Ferrer 21 61
6 5 Juan Martin Del Potro 14 51
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7 7 Tomas Berdych 21 46
8 13 Nicolas Almagro 23 42
9 11 Milos Raonic 20 37
10 9 Richard Gasquet 20 42
11 8 Stan Wawrinka 20 50
12 37 Marin Cilic 13 25
13 24 Ernests Gulbis 19 34
14 50 Nicolas Mahut 8 18
15 10 Jo-Wilfried Tsonga 16 36
16 12 Tommy Haas 23 46
17 20 Kevin Anderson 23 37
18 17 Kei Nishikori 19 33
19 14 John Isner 22 38
20 162 Peter Gojowczyk 2 4
21 32 Vasek Pospisil 16 20
22 23 Grigor Dimitrov 23 32
23 18 Tommy Robredo 19 35
24 31 Gael Monfils 22 35
25 42 Juan Monaco 21 18
26 65 Yen-Hsun Lu 17 16
27 22 Philipp Kohlschreiber 24 33
28 143 Michael Berrer 3 2
29 148 Ruben Bemelmans 4 3
30 30 Fernando Verdasco 25 28
31 41 Carlos Berlocq 24 26
32 33 Ivan Dodig 23 31
33 111 Dustin Brown 3 4
34 44 Radek Stepanek 16 14
35 229 David Nalbandian 5 6
36 58 Roberto Bautista Agut 20 20
37 15 Mikhail Youzhny 23 36
38 82 Andrey Golubev 4 3
39 60 Lleyton Hewitt 17 26
40 139 Dominic Thiem 3 4
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41 35 Julien Benneteau 25 27
42 16 Fabio Fognini 26 41
43 104 Blaz Kavcic 12 10
44 89 Tim Smyczek 12 8
45 46 Sam Querrey 22 26
46 19 Gilles Simon 21 33
47 38 Marcel Granollers 24 30
48 52 Edouard Roger-Vasselin 26 26
49 25 Andreas Seppi 27 28
50 21 Jerzy Janowicz 20 23
51 105 Michael Llodra 15 12
52 34 Jeremy Chardy 25 25
53 28 Feliciano Lopez 19 29
54 78 Ivo Karlovic 13 16
55 55 Federico Delbonis 8 12
56 75 Viktor Troicki 16 15
57 172 Samuel Groth 4 3
58 NA Brian Baker 4 3
59 39 Jarkko Nieminen 25 27
60 45 Denis Istomin 28 27
61 54 Daniel Brands 22 21
62 96 Donald Young 3 2
63 83 Albert Ramos 22 19
64 40 Florian Mayer 25 29
65 53 Nikolay Davydenko 22 18
66 107 Jan-Lennard Struff 9 4
67 150 Daniel Evans 3 4
68 153 James Blake 14 9
69 29 Dmitry Tursunov 22 30
70 61 Marinko Matosevic 23 19
71 57 Alexandr Dolgopolov 26 20
72 26 Benoit Paire 30 30
73 43 Robin Haase 25 26
74 98 Sergiy Stakhovsky 14 9

176



75 80 Victor Hanescu 25 20
76 122 Frank Dancevic 3 2
77 51 Bernard Tomic 21 20
78 90 Somdev Devvarman 12 10
79 74 Tobias Kamke 20 15
80 NA Karen Khachanov 2 3
81 NA Mardy Fish 5 4
82 131 Ricardas Berankis 16 11
83 113 Evgeny Donskoy 16 12
84 135 Xavier Malisse 19 13
85 62 Guillermo Garcia-Lopez 21 21
86 47 Lukas Rosol 23 19
87 27 Jurgen Melzer 22 23
88 36 Janko Tipsarevic 22 15
89 69 Santiago Giraldo 23 14
90 49 Joao Sousa 13 14
91 137 Guillaume Rufin 13 8
92 71 Filippo Volandri 12 5
93 142 Alex Kuznetsov 5 2
94 88 Alex Bogomolov Jr. 9 5
95 219 Jan Hernych 4 5
96 102 Jack Sock 13 10
97 99 Alejandro Falla 18 12
98 95 Aljaz Bedene 17 9
99 87 Marcos Baghdatis 21 11
100 66 Michal Przysiezny 12 10
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Figure A.1.: The rankings of the Top 32 ATP players at the end of 2013 compared
to their ranking generated using the Match PageRank system.
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Figure A.2.: The rankings of the Top 32 ATP players at the end of 2013 compared
to their ranking generated using the Set PageRank system.
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Figure A.3.: The rankings of the Top 32 ATP players at the end of 2013 compared
to their ranking generated using the Game PageRank system.
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Figure A.4.: The rankings of the Top 32 ATP players at the end of 2013 compared
to their ranking generated using the Point PageRank system.
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Figure A.5.: The rankings of the Top 32 ATP players at the end of 2013 compared
to their ranking generated using the LadderRank Combined system
with X=1.
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Figure A.6.: The rankings of the Top 32 ATP players at the end of 2013 compared
to their ranking generated using the LadderRank Combined system
with X=3.
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Figure A.7.: The rankings of the Top 32 ATP players at the end of 2013 compared
to their ranking generated using the LadderRank Combined system
with X=3 and a minimum of 5 matches.
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