
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Dynamic Subtask Dispersion Reduction in
Heterogeneous Parallel Queueing Systems

Tommi Pesu and William J. Knottenbelt1,2

Department of Computing, Imperial College London, South Kensington Campus, SW7 2AZ

Abstract

Fork-join and split-merge queueing systems are mathematical abstractions of parallel task processing systems
in which entering tasks are split into N subtasks which are served by a set of heterogeneous servers.
The original task is considered completed once all the subtasks associated with it have been serviced.
Performance of split-merge and fork-join systems are often quantified with respect to two metrics: task
response time and subtask dispersion. Recent research effort has been focused on ways to reduce subtask
dispersion, or the product of task response time and subtask dispersion, by applying delays to selected
subtasks. Such delays may be pre-computed statically, or varied dynamically. Dynamic in our context
refers to the ability to vary the delay applied to a subtask according to the state of the system, at any time
before the service of that subtask has begun. We assume that subtasks in service cannot be preempted.
A key dynamic optimisation that benefits both metrics of interest is to remove delays on any subtask with a
sibling that has already completed service. This paper incorporates such a policy into existing methods for
computing optimal subtask delays in split-merge and fork-join systems. In the context of two case studies,
we show that doing so affects the optimal delays computed, and leads to improved subtask dispersion values
when compared with existing techniques. Indeed, in some cases, it turns out to be beneficial to initially
postpone the processing of non-bottleneck subtasks until the bottleneck subtask has completed service.

Keywords: dynamic dispersion reduction, fork-join, split merge, queueing networks

1 Introduction

Due to an ever increasing demand for performance and speed in the modern world

and the eventual exhaustion of possible optimisations to single server systems, more

and more of the world is turning towards parallel and distributed systems. This

trend is especially apparent in the IT world where companies are adopting dis-

tributed storage facilities, multi-core processors, RAID systems [11,10] and huge

distributed computing platforms. However, IT is not the only area where such

demand is needed. For example, in finance equities are nowadays traded on a grow-

ing amount of distributed exchanges, manufacturers are making complex products

with ever-growing distributed supply chains and in hospitals patient care involves

a variety of parallel service stations [1].

1 Email: ttp09@imperial.ac.uk
2 Email: wjk@doc.ic.ac.uk

c©2017 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs
ttp09@imperial.ac.uk
mailto:wjk@doc.ic.ac.uk

Pesu and Knottenbelt

Split-merge and fork-systems are parallel queueing network abstractions which

describe task flow and processing in parallel networks. In such systems incoming

tasks are split into a number of subtasks, each of which must be served before

the whole task can be regarded as completed. Two primary performance metrics

are of interest in such systems. Task response time is the time it takes from the

point when a task enters the system to the point where all of the subtasks have

been fully serviced. Response time has been a very intensively researched topic in

queueing systems over the last 50 or so years, see e.g. [2,8,9]. Subtask dispersion is

the difference in time between the completion of the first and last subtask. Sub-

task dispersion has not received much attention in the literature until recently, see

e.g. [14,15,13]. Due to their synchronous nature, split-merge systems tend to have

high task response time but low subtask dispersion. On the other hand, being asyn-

chronous, fork-join systems tend to have low task response time but high subtask

dispersion.

This paper examines split-merge and fork-join systems that use delays on the

processing of subtasks to reduce subtask dispersion or the product of task response

time and subtask dispersion. We make a distinction between two types of delay

adjusting systems that in the past have not be clearly distinguished. In the first

type of system once a delay is set, it cannot be changed. The processing of the

subtask is begun only once the delay assigned to it has expired. We refer to these

as static delay systems. In the second class of systems, it is possible to preemptively

modify (or cancel) the delay of a subtask at any time before it has begun service.

However, once service has begun it is not possible to interrupt the service. We

refer to these as dynamic delay systems. We additionally assume the availability of

instant notifications of events of interest, e.g. when any subtask finishes service.

In dynamic delay systems, it is beneficial in terms of both task response time

and subtask dispersion to remove delays on any subtask that has a sibling that has

already completed service. This paper defines a new way to calculate subtask delays

in split-merge and fork-join systems that is able to incorporate this optimisation. We

begin by exploring 2-server split-merge systems with deterministic and exponential

service to offer some intuition behind our technique. We then proceed to a 3-server

test case to demonstrate that our technique is able to deliver substantial reduction

in subtask dispersion compared to existing methods.

2 Preliminaries

This section contains a brief introduction to terms that are fundamental to the

understanding of this paper. The section includes an introduction to split-merge

and fork-join systems. Both systems are queueing network models for describing

the processing of a set of subtasks in parallel. In addition it describes related

quantitative metrics, including response time, subtask dispersion and a trade-off

metric. The trade-off metric can be used to make decisions when both subtask

dispersion and task response time are regarded as important.

2

Pesu and Knottenbelt

Fig. 1. A split-merge system [12].

Fig. 2. A fork-join system [12].

2.1 Parallel Queueing Systems

2.1.1 Split-Merge

In the split-merge system considered in this paper arriving tasks have an interarrival

rate that is exponentially distributed with a rate of λ. The system structure is shown

in Figure 1. If no task is currently in service an arriving task enters service straight

away. Otherwise it enters a queue to wait for its turn. When a task completes

service it leaves the system.

When a task enters service it is split into N subtasks. Each of these subtasks is

then processed by its own server. The service time of each server is characterised

by a probability distribution. The task is considered to be done with service once

all N subtasks have been serviced by their respective servers.

2.1.2 Fork-Join

As shown in Figure 2, the fork-join system is quite similar in structure to the split-

merge system, but buffering of incoming tasks takes place at subtask-level instead

of at task-level. The tasks again have an interarrival rate that is exponentially

distributed with a rate of λ. Arriving tasks are immediately split into N subtasks.

Each individual server serving the subtasks then has its own queue. The subtask

servers independently process all subtasks waiting in their own queue. Once all

the subtasks of a task have been serviced by their corresponding server the task is

considered complete.

2.2 Performance Metrics

2.2.1 Task Response Time

Task Response time is the length of time it takes for a task to get processed. The

clock is started when the task first enters the system. Once all the subtasks belong-

ing to that task have been completely serviced the clock stops.

3

Pesu and Knottenbelt

For split-merge systems it is possible to calculate task response time analyti-

cally. In particular, the split-merge system can be thought of as an M/G/1 queue

where the probability distribution for task service time is defined by the probability

distribution of last subtask’s finishing time. The latter can be straightforwardly cal-

culated using the theory of heterogeneous order statistics, as shown in Equation (3).

From this distribution it is then possible to calculate the mean and variance of the

distribution, which can then be used in the Pollaczek–Khinchine formula for com-

puting mean response time in M/G/1 queues:

E[Rλ(t)] =
ρ+ µλV ar[X(N)]

2(µ− λ)
+ µ−1 (1)

Here µ = E[X(N)] is the service rate, λ is the task arrival rate and ρ = λ/µ is the

utilization of the server.

For fork-join systems there currently exists no analytical formula to calculate

task response time except for simple cases [4,5]. Simulation does, however, provide

a route to approximating task response time with an arbitrary degree of accuracy.

2.2.2 Subtask Dispersion

For a given task, subtask dispersion is the difference between the finishing times of

its first and last subtasks. If N subtasks begin service simultaneously, the expected

finishing times of the first and last subtask can be calculated by using the theory

of heterogeneous order statistics [3]. The cumulative distribution function for the

time of the first subtask to finish is given by Equation (2) and for the time of the

last by Equation (3).

F1(t) = Pr{X(1) < t} = 1−
N∏
i=1

[1− Fi(t)] (2)

FN (t) = Pr{X(N) < t} =
N∏
i=1

[Fi(t)] (3)

Heterogeneous order statistics be used to define expected subtask dispersion

E[D] in the following way, which is shown in Equation (4) and (5).

E[D] =

∫ ∞
0

F1(t)− FN (t)dt (4)

E[D] =

∫ ∞
0

1−
N∏
i=1

(1− Fi(t))−
N∏
i=1

Fi(t)dt (5)

The way subtask dispersion is calculated here has been used to calculate subtask

dispersion of split-merge systems [15,13] and for analysing instantaneous configura-

tions of fork-join systems [14]. In the case of the fork-join algorithm in [14] subtasks

are set to start processing immediately after a sibling task finishes if they have not

started already. However, Equation 5 does not take this into account and is there-

fore unable to minimise the dispersion of a dynamic parallel system correctly. In

Section 3.1 a new formula is derived that is able to do this.

4

Pesu and Knottenbelt

2.2.3 Trade-Off Metric

Sometimes both subtask dispersion and task response time are important. In these

cases it is possible to measure the effectiveness of the system with a trade-off metric

defined as the product of subtask dispersion and task response time [15], i.e.

T (λ, t) = E[D(t)]E[Rλ(t)] (6)

A similar metric has been explored in the context of the energy–response time

product analysis of power policies for server farms [6,7]. For split-merge systems

the trade-off equation can be expressed as:

T (λ, t) =

[∫ ∞
0

1−
N∏
i=1

(1− Fi(t))−
N∏
i=1

Fi(t)dt

][
ρ+ µλV ar[X(n)]

2(µ− λ)
+ µ−1

]
(7)

For fork-join systems the trade-off metric has to be quantitatively estimated via

simulation , since – to the best of our knowledge – there are no closed form solutions

for either subtask dispersion or task response time.

3 Method

This section introduces a way to calculate subtask dispersion in split-merge systems

where a start work signal is sent to sibling subtasks once service of a subtask is

completed. The model assumes that a delay applied to a subtask can be arbitrarily

preempted at any point before service of the subtask has begun. However, once

a subtask has begun service it will be serviced uninterrupted until it completes

service. The start work signal is sent because removing delays after the first sibling

subtask finishes service reduces both subtask dispersion and task response time.

3.1 Calculating subtask dispersion in dynamic split-merge system

It is explained here how the minimum subtask dispersion of a dynamic split-merge

system can be obtained by choosing an appropriate delay vector d. Equation (8)

displays the formula that is minimised. The formula is split into two parts: T (i, t,d)

and Er(i, t,d).

The first function T (i, t,d) calculates the probability that server i is the first

server that finishes servicing its subtask at the time t, with the given delays d.

This result is calculated by multiplying the probability density function of server i

finishing at time t with the probability of all the other servers not finishing before

time t. The mathematical formulation of this can be seen in Equation (9).

The second function Er(i, t,d) calculates how long the rest of the servers will

take to complete their service, with the given delays d. The average time for the

rest of the servers to complete service is computed with the help of heterogeneous

order statistics presented in [15].

Gj(t, t
′, dj) represents the probability distribution function of the service time

of the jth server. If t′ < dj then the jth server has not yet begun service of

its subtask and servicing is begun immediately. Otherwise the server has already

started servicing its subtask. In this case the service time is renormalised to take

5

Pesu and Knottenbelt

into account that some service has already been performed and the service of the

subtask has not been completed. The two part G-function is the key difference

compared to previous work presented in [14,15,13].

That is, we seek:

dmin = arg min
d

N∑
i=1

∫ ∞
0

T (i, t,d)Er(i, t,d)dt (8)

where

T (i, t,d) = fi(t− di)
∏
j 6=i

[1− Fj(t− dj)] (9)

and

Er(i, t
′,d) =

∫ ∞
0

[1−
∏
j 6=i

Gj(t, t
′, dj)]dt (10)

with

Gj(t, t
′, dj) =

Fj(t) if t′ < dj

Fj(t− (t′ − dj)|t > 0) otherwise
(11)

subject to conditions
N∏
i=1

di = 0 (12)

and

∀i di ≥ 0 (13)

The two conditions on d guarantee that no unnecessary delays are added and

that delays are non-negative.

3.2 Deterministic 2-server dynamic split-merge example

In this section we will apply the subtask dispersion reduction formula above to a

split-merge system with 2 servers. The service time densities of the servers are:

X1 ∼ Det(1)

X2 ∼ Det(2)

Due to the deterministic function causing problems with integration our example

will use uniform functions with a small range to approximate it as:

Det(n) ≈ Uni(n− 0.001, n+ 0.001) (14)

The effect of varying d on subtask dispersion can be seen in Figure 3. The

optimal delay is naturally d = (1, 0) and when the delays deviate from the optimal

solution, subtask dispersion grows. Increasing server 1 delay past the optimal delay

causes an increase that caps at 1. The capping is due to the dynamic delay interrup-

tion. Server 2 behaves similarly with the delay capped at 2. Figure 4 demonstrates

how the system works with the optimal delay under a heavy load.

6

Pesu and Knottenbelt

0.0 0.5 1.0 1.5 2.0 2.5
Delay

0.0

0.5

1.0

1.5

2.0

2.5

Di
sp

er
si

on

Delay vector effect on dispersion

delay (X,0)
delay (0,X)

Fig. 3. Demonstration of how the delays affect dispersion in the two server deterministic example.

Fig. 4. Demonstration of how the deterministic two server case processes its tasks under heavy load.

3.3 Exponential dynamic 2-server split-merge example

In this section a split-merge system with exponentially distributed subtask service

times is analysed. The exponential distribution has a parameter λ which is the

inverse of average service time. The service time densities of the servers are:

X1 ∼ Exp(λ = 1)

X2 ∼ Exp(λ = 2)

Therefore the average service times of the two servers are 1 and 0.5 respectively.

The effect of varying d on subtask dispersion is shown in Figure 5. Intuitively,

when a large delay is set on server 1, the subtask dispersion should increase towards

1.0. This is, because then the probability of server 2 finishing first increases towards

1. A similar argument can be done for setting a large delay on server 2 instead.

As the delay grows towards infinity the chance of server 1 completing service first

grows. The average service time of server 2 is 0.5. Therefore dispersion with infinite

delay on server 2 is 0.5. The optimal delay that minimises dispersion is d = (0,∞),

as infinite delay on the server 2 guarantees that the server 1 will always finish first.

7

Pesu and Knottenbelt

0 1 2 3 4 5
Delay

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Di
sp

er
si

on

Delay vector effect on dispersion

delay (X,0)
delay (0,X)

Fig. 5. Demonstration of how the delays affect subtask dispersion in the two-server exponential example.

Fig. 6. Demonstration of how the exponential two-server case processes its tasks.

Figure 6 demonstrates how the delays are applied in the two server exponential

case. It can be seen that server 1 completes its service before service on server 2 is

begun.

3.4 Fork-join systems

The throughput of a parallel system is maximised when at least one of the servers

is performing work on a subtask throughout the time a task is being processed. If

this is not the case as is in the exponential case in Figure 6, it is possible to decrease

response time by removing idle time from the processing of each subtask. This is

possible if using the sort of asynchronous task scheduled found in fork-join systems.

This will, however, increase subtask dispersion. The effect of removing idling time

on subtasks servicing can be observed in Figure 7.

8

Pesu and Knottenbelt

Fig. 7. An example of how idling time can be squeezed.

4 Results

We present results of existing methods for subtask dispersion reduction in split-

merge and fork-join systems and compare them against the algorithms described in

this paper. The first case study uses the example from the paper [14] and the second

uses a different configuration. The metrics of split-merge Methods 1, 2 and 3 are

evaluated analytically. The metrics of fork-join Methods 4, 5 and 7 and split-merge

Method 6 are simulated with 5 replicas of 5 million tasks each. The average task

response time, subtask dispersion and trade-off metric were then calculated.

4.1 Case Study 1

The first test case sets the interarrival time of new tasks entering the system to

be exponentially distributed with λ = 0.78 tasks per time unit. The service time

densities of the parallel servers are:

X1 ∼ Exp(λ = 1)

X2 ∼ Exp(λ = 5)

X3 ∼ Exp(λ = 10)

The first five methods below are the same as in [14]. Methods 1–4 do not use

interrupt to begin service immediately after a sibling task has finished (i.e. they are

static delay methods) while Method 5 uses it (i.e. it is a dynamic delay method).

Method 1 represents a vanilla split-merge system where no delays are applied.

The tasks are processed one at a time. The service of the next task does not begin

before all the previous task’s subtasks have finished. Corresponding performance

metrics are:

Task response time: 5.195 time units

Subtask dispersion: 0.976 time units

Trade-off: 5.069 (time units)2

Method 2 [15] represents a split-merge system where dispersion is minimised

according to the formula described in Section 2.2.2. The resulting delays for subtasks

are: d = (0, 0.524, 0.585). Corresponding performance metrics are:

Task response time: 33.638 time units

Subtask dispersion: 0.783 time units

Trade-off: 26.345 (time units)2

Method 3 [13] represents a split-merge system where trade-off is minimised

9

Pesu and Knottenbelt

according to the formula described in Section 2.2.3. The resulting delays for subtasks

are: d = (0, 0, 0.068). Corresponding performance metrics are:

Task response time: 5.286 time units

Subtask dispersion: 0.946 time units

Trade-off: 4.999 (time units)2

Method 4 represents a vanilla fork-join system with no delays applied between

subtasks. Each task is split into 3 subtasks which then each individually queue for

their respective servers. Corresponding performance metrics are:

Task response time: 4.555 time units

Subtask dispersion: 4.480 time units

Trade-off: 20.406 (time units)2

Method 5 represents a fork-join system with a dynamic subtask reduction

algorithm [14]. This algorithm uses interruptions to start processing of sibling

subtasks once a subtask finishes. The system uses definition of dispersion from

Section 2.2.2. Corresponding performance metrics are:

Task response time: 4.675 time units

Subtask dispersion: 0.768 time units

Trade-off: 3.590 (time units)2

The methods described next are described in Section 3 of this paper. They use

interruptions to start processing of sibling tasks once a subtask finishes. The results

have been calculated with the same simulation framework as the fork-join systems

in the previous subsection.

Method 6 represents a split-merge system that uses the new dispersion calcula-

tion in Section 3.1 to calculate delays. The resulting initial delays for subtasks are:

d = (0,∞,∞). Once the first subtask has completed the two remaining subtasks

begin service immediately. Corresponding performance metrics are:

Task response time: 28.228 time units

Subtask dispersion: 0.233 time units

Trade-off: 6.581 (time units)2

Method 7 modifies the split-merge system found in Method 6 to derive a fork-

join system in which idling time is squeezed according to the principles of Section 3.4.

Corresponding performance metrics are:

Task response time: 4.818 time units

Subtask dispersion: 0.269 time units

Trade-off: 1.296 (time units)2

10

Pesu and Knottenbelt

4.2 Case Study 2

The methods used in this case study are the same as the methods used above. The

interarrival time of new tasks entering the system is exponentially distributed with

λ = 0.4 tasks per time unit. The service time densities of the parallel servers are:

X1 ∼ Exp(λ = 1)

X2 ∼ Exp(λ = 2)

X3 ∼ Exp(λ = 2)

Method 1 represents a vanilla split-merge system where no delays are applied.

Corresponding performance metrics are:

Task response time: 2.315 time units

Subtask dispersion: 1.083 time units

Trade-off: 2.508 (time units)2

Method 2 [15] represents a split-merge system where dispersion is minimised

according to the formula described in Section 2.2.2. The resulting delays for subtasks

are: d = (0, 0.288, 0.288). Corresponding performance metrics are:

Task response time: 2.777 time units

Subtask dispersion: 1.038 time units

Trade-off: 2.882 (time units)2

Method 3 [13] represents a split-merge system where trade-off is minimised

according to the formula described in Section 2.2.3. The resulting delays for subtasks

are: d = (0, 0, 0). Corresponding performance metrics are:

Task response time: 2.315 time units

Subtask dispersion: 1.083 time units

Trade-off: 2.508 (time units)2

Method 4 represents a vanilla fork-join system with no delays applied between

subtasks. Each task is split into 3 subtasks which then each individually queue for

their respective servers. Corresponding performance metrics are:

Task response time: 1.913 time units

Subtask dispersion: 1.627 time units

Trade-off: 3.114 (time units)2

Method 5 represents a fork-join system with a dynamic subtask reduction

algorithm [14]. This algorithm uses interruptions to start processing of sibling

subtasks once a subtask finishes. The system uses definition of dispersion from

Section 2.2.2. Corresponding performance metrics are:

11

Pesu and Knottenbelt

Task response time: 2.227 time units

Subtask dispersion: 1.099 time units

Trade-off: 3.114 (time units)2

Method 6 represents a split-merge system that uses the new dispersion calcu-

lation in Section 3.1 to calculate delays. This algorithm uses interruptions to start

processing of sibling tasks once a task finishes. The resulting initial delays for sub-

tasks are: d = (0,∞,∞). Once the first subtask has completed the two remaining

subtasks begin service immediately. Corresponding performance metrics are:

Task response time: 4.671 time units

Subtask dispersion: 0.750 time units

Trade-off: 3.502 (time units)2

Method 7 uses the split-merge system found in Method 6 to derive a fork-join

system in which idling time is squeezed according to the principles of Section 3.4.

Corresponding performance metrics are:

Task response time: 2.586 time units

Subtask dispersion: 0.921 time units

Trade-off: 2.381 (time units)2

5 Conclusions

Two main conclusions can be drawn from the results. First the start work interrupt

that removes delays on other subtasks preemptively once the first sibling subtask

finishes is able to reduce subtask dispersion greatly. This can be seen when the

subtask dispersion of Methods 1–5 and Method 6 and Method 7 are compared.

The improvement in subtask dispersion, however, comes at a cost to task re-

sponse time. Method 6 is better in terms of subtask dispersion compared to the

old dispersion minimisation technique Method 2, but it has a significantly higher

response time when compared to the trade-off technique (Method 3) and vanilla

technique (Method 1). However some of these issues can be corrected by Method 7

which is the fork-join version of Method 6. Method 7 does have a slightly increased

subtask dispersion when compared to Method 6. However, task response time is

still higher than found in the two other fork-join systems (Methods 4 and 5).

Secondly, the traditional method for calculating expected subtask dispersion is

not appropriate for systems where subtask delay preemption is applied. In the first

case study, the new method was able to reduce subtask dispersion by a factor of 3,

which can be considered a major improvement.

In terms of future work, for both split-merge and fork-join systems, we aim to

optimise for the trade-off metric and also investigate ways to support general service

time distributions.

12

Pesu and Knottenbelt

References

[1] S. W. M. Au-Yeung, P. G. Harrison, and W. J. Knottenbelt. Approximate queueing network analysis
of patient treatment times. In Proceedings of the 2nd International Conference on Performance
Evaluation Methodologies and Tools, ValueTools ’07, pages 45:1–45:12, ICST, Brussels, Belgium,
Belgium, 2007. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering).

[2] François Baccelli, Armand M. Makowski, and Adam Shwartz. The fork-join queue and related systems
with synchronization constraints: Stochastic ordering and computable bounds. Advances in Applied
Probability, 21(3):pp. 629–660, 1989.

[3] Herbert A. David and H. N. Nagaraja. Wiley Series in Probability and Statistics. John Wiley & Sons,
1980.

[4] L. Flatto and S. Hahn. Erratum: Two parallel queues created by arrivals with two demands I. SIAM
Journal on Applied Mathematics, 45(1):168–168, 1985.

[5] Leopold Flatto. Two parallel queues created by arrivals with two demands II. SIAM Journal on
Applied Mathematics, 45(5):pp. 861–878, 1985.

[6] Anshul Gandhi, Varun Gupta, Mor Harchol-Balter, and Michael A. Kozuch. Optimality analysis of
energy-performance trade-off for server farm management. Performance Evaluation, 67(11):1155 –
1171, 2010.

[7] Anshul Gandhi, Mor Harchol-Balter, and Ivo Adan. Server farms with setup costs. Performance
Evaluation, 67(11):1123 – 1138, 2010.

[8] Peter Harrison and Soraya Zertal. Queueing models of {RAID} systems with maxima of waiting times.
Performance Evaluation, 64(78):664–689, 2007.

[9] P. Heidelberger and K.S. Trivedi. Analytic queueing models for programs with internal concurrency.
IEEE Transactions on Computers, C-32(1):73–82, Jan 1983.

[10] Abigail Lebrecht, Nicholas J. Dingle, and William J. Knottenbelt. Modelling Zoned RAID Systems
using Fork-Join Queueing Simulation. In 6th European Performance Engineering Workshop (EPEW
2009), volume 5652 of Lecture Notes in Computer Science, pages 16–29, July 2009.

[11] Abigail S. Lebrecht, Nicholas J. Dingle, and William J. Knottenbelt. Analytical and simulation
modelling of zoned raid systems. Comput. J., 54(5):691–707, May 2011.

[12] Iryna Tsimashenka. Reducing Subtask Dispersion in Parallel Queueing Systems. PhD thesis, Imperial
College London, 2014.

[13] Iryna Tsimashenka, William Knottenbelt, and Peter Harrison. Controlling variability in split-merge
systems. In Khalid Al-Begain, Dieter Fiems, and Jean-Marc Vincent, editors, Analytical and Stochastic
Modeling Techniques and Applications, volume 7314 of Lecture Notes in Computer Science, pages 165–
177. Springer Berlin Heidelberg, 2012.

[14] Iryna Tsimashenka and William J. Knottenbelt. Reduction of subtask dispersion in fork-join systems.
In Simonetta Balsamo, William J. Knottenbelt, and Andrea Marin, editors, Computer Performance
Engineering, volume 8168 of Lecture Notes in Computer Science, pages 325–336. Springer Berlin
Heidelberg, 2013.

[15] Iryna Tsimashenka and William J. Knottenbelt. Trading off subtask dispersion and response time
in split-merge systems. In Alexander Dudin and Koen De Turck, editors, Analytical and Stochastic
Modeling Techniques and Applications, volume 7984 of Lecture Notes in Computer Science, pages
431–442. Springer Berlin Heidelberg, 2013.

13

	Introduction
	Preliminaries
	Parallel Queueing Systems
	Performance Metrics

	Method
	Calculating subtask dispersion in dynamic split-merge system
	Deterministic 2-server dynamic split-merge example
	Exponential dynamic 2-server split-merge example
	Fork-join systems

	Results
	Case Study 1
	Case Study 2

	Conclusions
	References

