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Abstract

Parallel Queueing Networks can be used to model and optimise systems in many different en-

vironments, such as distributed storage facilities, multi-core processors, RAID systems, supply

chains and public services such as hospitals. The various stakeholders involved with the systems

will often measure the performance of such systems using a wide range of metrics that often

conflict with each other. Metrics of interest include task response time, subtask dispersion and

energy consumption. Subtask dispersion is a recent metric, which is the difference in time of

the first and last subtask to complete.

The trade-offs between metrics can be controlled in various ways. Within this context, this

thesis makes four primary contributions, the first of which of is to compare various delay-

padding techniques in split–merge and fork–join parallel queueing models, with respect to

task response time and subtask dispersion. We compare seven techniques from the literature,

including some of our own, against each other across multiple case studies, in order to determine

their strengths and weaknesses. Our results indicate that dynamic delay padding in a fork–join

setting is currently the most promising technique for improving the trade-off between subtask

dispersion and task response time.

Our second contribution is to extend existing delay-padding techniques to work in a class of

multi-layered parallel queueing environments, specifically Hidden Stochastic PERT Networks.

We develop a technique which uses a state-of-the-art genetic algorithm to improve the trade-

off between task service time and subtask dispersion. The method is able to robustly control

subtask dispersion and task response time in a case study network.

The third contribution is a systematic survey, which investigates alternative approaches for

improving the performance of parallel queueing systems. Promising candidates include service

restart and service replication.

The final contribution is to combine multiple techniques: delay padding, state-dependent service

strategies, service restart and service replication to provide greatly improved performance in

terms of a three-way optimisation involving task response time, subtask dispersion and energy

consumption. In the best case we managed to reduce the cost function by over 90% compared

to an unoptimised system.
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Chapter 1

Introduction

In real world applications there are quite often multiple criteria one might like to be as good

as possible. There is also a catchphrase saying “choose two out of three: fast, good and

cheap”, indicating that it is very difficult to satisfy all the potentially conflicting criteria the

performance of a system is being judged by. This dissertation examines techniques in parallel

queueing systems to provide insights in how to optimally trade off a set of metrics against each

other so that the service level objectives of particular applications can be met.

1.1 Motivation

Due to an ever increasing demand for performance and speed in the modern world and the

eventual exhaustion of possible optimisations to single-process systems, more and more of the

world is turning towards parallel and distributed systems for its various processing needs. This

trend is especially apparent in the world of IT, where companies are building distributed storage

facilities, multi-core processors, RAID (redundant array of independent disks) systems [81, 80]

and huge distributed cloud computing platforms. However, computing is not the only area

where such demand is present. In finance, equities, options and futures are nowadays traded

at lightning speeds on a vast number of exchanges. High dispersion and response time in order

execution leads to monetary losses [23], while at the same time such systems are very expensive

24



1.1. Motivation 25

and consume a large amount of electricity. In addition, manufacturers are making complex

products with ever growing supply chains. In “just-in-time” manufacturing, companies wish to

have their supply chains to be as lean as possible, as it helps them eliminate waste and reduce

costs. This is accomplished by having the parts needed in production to arrive just moments

before assembly of the product begins. Even in hospitals patient care is being studied and

improved with the help of queueing models [13].

Parallel queueing network models are a mathematical tool to describe task flow in a system.

In parallel queueing networks the service of one big task is split into a number of subtasks,

where each subtask must be completed for the whole task to be completed. This dissertation

investigates how to reduce subtask dispersion, task response time and energy consumption in

a selected set of parallel queueing systems.

The three metrics used to evaluate the performance of parallel queueing networks are the

following:

• Subtask Dispersion is the difference in completion time of the first and last subtask to

finish.

• Task response time on the other hand is the time it takes from the point when a task

enters the queue to be processed to the point it has been fully serviced and exits the

process.

• Energy usage of a system is the amount of energy needed to operate it.

A simple example to conceptualize the benefit of reducing subtask dispersion is to think of

a game, where a user sends a message over a TCP connection to multiple participants. The

winner of the game is the player who receives the message first. The player who is closest to

the originating server is most likely to win, as the message sent to him has to travel the least

distance. Therefore, to make the game fair a time penalty should be added on players who

are near the central server and this penalty should be bigger the closer they are to the central

server.
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The next subsections introduce real-world examples where an improvement with respect to the

metrics mentioned above leads to an overall improvement in performance of the system.

1.1.1 Preventing Front-Running on the Stock Market

Subtask dispersion has recently become a topic that receives a lot of attention in the automated

world of high frequency trading taking place on the stock markets around the world [23, 5]. The

modern financial markets are distributed over a wide geographical area and multiple exchanges.

In them equities and bonds and a variety of products derived from them are traded between

market participants.

Whenever an investor wants to make a big buy order they send orders to multiple exchanges

so that they are able to take advantage of a larger pool of liquidity. However, this can create

a problem for the buyer: if the buy order arrival times on the various exchanges differ from

each other too much, a high frequency trader using microwave towers to communicate can learn

about the trade in one exchange and send a signal to another exchange. The high frequency

trader is then able to buy the stock available on that exchange before the incoming order arrives

via fibre optic cable. The high frequency trader can then resell the shares they just bought at

a slightly increased price to the incoming buy order, hence making an immediate profit at the

expense of the original investor.

The high frequency traders have connected their systems between the stock exchanges with

microwave connections, which can transfer data faster than fibre-optics. An example of these

microwave links between exchanges that have been setup by various high frequency companies

between London and Frankfurt can be seen in Fig 1.1. As a result traders who wish to avoid

paying a tariff each time they execute a big trade must be smart when they execute a buy order

and make sure that the subtask dispersion of multi-exchange orders is minimised.

Subtask dispersion is only one of the many issues that trading boutiques need to deal with.

Attractive buying opportunities in the market tend to be fleeting as it is often a race between

multiple parties trying to snatch up value. As a result of the arms race between high frequency
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Figure 1.1: Microwave pathways between southern England and Germany that are used by
various high frequency trading companies [6]

trading companies exchanges have multi-tiered pricing based on how much latency there is

between the exchange servers and the end user [105].

The problem of simultaneously optimising three metrics is quite a complicated ordeal in some

cases. Especially when subtask dispersion, task response time and energy usage/cost metrics

are conflict with each other.

1.1.2 Fairness in Online Gaming

Online games are often played between players located in different corners of the world. For

example, one player can be physically located in Europe and another in Asia. This introduces

lag into games as information describing the actions of a players will have to be transmitted

over large distances. It has been found that lag is detrimental to the performance of a player in

First Person Shooter games [144] as well as frustrating to players [124]. Also it should be noted

that the distribution of lag between players is not uniform. Players who are physically located

near to the hosting server experience less lag and players far away experience more. Therefore,

a subset of players will experience a larger lag throughout the whole game, while others do not.

The issue of lag in online games is becoming especially important, as electronic gaming has
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grown from a small niche form of entertainment in the 1970s to one of the largest forms of

entertainment along with movies and music. In addition, competitive gaming is booming and

becoming a multi billion dollar industry [51], with prize pools for the biggest competitions being

tens of millions of dollars [73].

Therefore, techniques to minimise subtask dispersion and task response time are useful in the

context of online gaming. This is because it will help make it possible to deliver a more pleasant

and fair gaming experience to players, which will support the financial growth of the industry

in the future and enable people to enjoy their free time more.

The delay strategy should not be calibrated in a way that all players get the same amount

of lag as the slowest player, but so that the few fastest players get a slightly increased lag to

bring them more in line with the average lag. This could be done by using a metric, which

optimises the product of subtask dispersion and task response time, with a higher weight on

task response time.

1.1.3 Delivery Processing at Online Retailers

Ideally, online retailers would like to first collect everything the customer has ordered and then

ship the items in one package. However, sometimes this is not possible due to time and space

constraints in shipping warehouses or customer demands. This then leads to multiple packages

being sent to the customer. Sending multiple packages instead of one increases the cost to the

online retailer as they are charged on a per package basis by the package delivery companies.

An example of such behaviour can be seen when Amazon asks the customer whether they wish

to receive all the items in a single package to save on shipping costs or if they should be sent

separately so that some of them can arrive faster. An example of this can be seen in Fig. 1.2.

The customer has a choice between two delivery techniques. If the customer chooses to receive

their items sent separately it means that the customer prefers to optimise the task response

time metric of the arriving goods. If the customer prefers to receive all their items at the same

time they prefer to optimise the subtask dispersion of their order.
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Figure 1.2: Example of Amazon delivery preference option

The retailer in the above scenario has to choose an optimal delivery method based on multiple

criteria. The retailer itself wishes to optimise the amount of profit it makes from the transaction.

The profit of the company depends on multiple factors. The company profits by being able

to send multiple items in a single package. However, it will have to balance this saving with

the prospect of an angry customer who does not want to wait too long for their items, which

could cause them to either order less items from the store in the future or even worse write a

complaint about the company on a feedback website. This in turn could cause multiple lost

sales from multiple customers in the future.

At the heart of this optimisation problem is the fact that the performance of package delivery

is being assessed in accordance to multiple metrics: subtask dispersion, task response time and

cost. In the example above, Amazon has decided to solve the problem by gauging the interests

of the customer, by placing a financial incentive for the customer to choose the cheaper delivery

option. If the customer strongly prefers to receive their goods faster, Amazon can then provide

a fast but expensive service. Otherwise it is able to provide the cheaper but slower service.

1.2 Aims and Objectives

The primary hypothesis of this thesis is that it is possible to control parallel queueing systems

in a way that improves the performance of the system with respect to an objective function that

reflects multiple conflicting performance metrics. The first project we undertook to complete
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the goal was to investigate existing methods of controlling subtask dispersion and task response

time in split–merge and fork–join queueing networks. Secondly, we analysed a more complicated

structure a multi-layered queueing structure, the hidden stochastic PERT system, where the

system needs good performance for both task response time and subtask dispersion. Thirdly, we

performed a survey of the field of using restart and replication mechanisms to improve system

performance. Finally, we combined existing techniques to reduce subtask dispersion with what

we discovered during our investigation on restart, replication as well as state-dependent service.

To achieve this the following steps need to be taken:

• Survey literature for existing research into optimising system performance and identify

key techniques that can be used to improve performance of parallel queueing systems

with regard to multiple metrics.

• Apply and modify accordingly the key techniques that were identified during the literature

survey phase in a way that they can be used to optimise performance of parallel queueing

systems with regards to multiple metrics.

• Build simulations to accurately model parallel queueing systems, which can be modified

according to techniques discovered during the literature survey phase. The simulations

should be flexible, as we want to optimise over multiple performance criteria and therefore

need the model to output a wide range of information about the system.

• It is also important that the developed techniques are tractable, as the goal of the thesis

is not only to develop theory of parallel queueing systems, but also optimise said systems

applicable to real-world problems.

• Construct suitable procedures for optimising the performance of parallel queueing system,

whose performance is being assessed with respect to multiple performance criteria.
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1.3 Contributions

This dissertation improves upon existing research in multiple ways. Firstly, it presents an

investigation on restart mechanisms to improve system efficiency in literature. Secondly, the

dissertation examines multiple existing techniques and studies how they can be combined to-

gether to improve queueing systems that have multiple conflicting performance metrics. Finally,

the dissertation expands upon existing techniques to work in more general situations.

1.3.1 Reducing Subtask Dispersion in Hidden Stochastic PERT Net-

works

The first contribution of the thesis is a numerical technique to both compute and optimise

subtask dispersion in Hidden Stochastic PERT networks. The task flow in the network can be

controlled through a series of delays, which are inserted to slow down the processing of activities

in the system.

The technique performs a black-box optimisation of the system. The black-box takes as input

a set of delays and returns as output information on how the system performed on various

optimisation metrics for a single task. The technique works by using a genetic optimisation

algorithm CMA-ES to find a globally-optimal set of delays, which optimise the system in terms

of subtask dispersion and task response time.

The work is relevant because existing subtask dispersion minimisation techniques are only

applicable to single-layered queueing networks such as the split–merge and fork–join systems,

meaning that work on all subtasks can be begun straight away. In contrast the PERT networks

define a partial order in which the activities it consists of need to be completed in.

The partial ordering of tasks, that PERT provides is important in many real world applications,

as there are often restrictions on the order tasks need to be completed in. For example, the

process of manufacturing a car you can’t put on the tires before the chassis has been built.
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1.3.2 Investigating Restart Mechanisms to Improve System Effi-

ciency

The second contribution of the thesis is an in-depth analysis and a literature survey into the

use of service restart to improve system performance.

The main three conclusions that we drew from the survey were the following:

• High coefficient of variation is needed for system restart.

• Many use cases in real world problems benefit from system restart

• Research is also being done on estimating degradation levels of systems, so that errors

can be detected before occur

1.3.3 Computing Probability Density Function of Dynamically Padded

Split–Merge System

Thirdly, this dissertation contains a derivation of the probability distribution of task service

times in split–merge systems, given that delays have been inserted pre-service and the delays are

cut short if a sibling subtask completes service. This derivation then enables us to analytically

calculate a task response time of a split–merge system, which use dynamic padding.

This is useful as previous work [103] only contains derivations for analytical computation of

subtask dispersion and not task response time. Being able to compute task response time of

systems mentioned above allows us to optimise such systems in terms of other. An example of

such a metric is the trade-off between task response time and subtask dispersion introduced in

paper [128].
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1.3.4 Trade-Off of Multiple Metrics in Split–Merge Queueing Sys-

tems

Fourthly, the work in this dissertation contains an investigation as to how the product of task

response time, subtask dispersion and energy consumption can be improved with the help of

multiple existing techniques from literature. The four techniques include: dynamic subtask

dispersion, state dependent delays, subtask service restart and subtask service duplication.

Key insights made during the work include:

• Product of service metrics can be improved by varying service standards depending on

the state of the system. For example, when utilisation of the system is very high it might

pay off to decrease service standard of subtask dispersion somewhat in order to provide

faster task response time.

• Duplication and service restart of bottleneck tasks, which have the tendency to hang

can have a huge impact on the overall performance of the system. However, research in

the thesis indicated that users should choose between restarting and duplication, as the

combination of both techniques was not able to improve performance further from just

using one technique.

1.4 Statement of Originality

I declare that this thesis was composed by me and that the work described in it is my own,

expect where stated otherwise.

1.5 Publications

The following publications are related to my PhD and they form the foundation of this disser-

tation:
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• Optimising Hidden Stochastic PERT Networks. Proc. 10th International Con-

ference on Performance Evaluation Methodologies and Tools (VALUETOOLS

2016). Taormina, Italy October 2016 This paper introduces a technique for min-

imising subtask dispersion in hidden stochastic PERT networks. The technique improves

on existing research in two ways. Firstly, it enables subtask dispersion reduction in DAG

structures, whereas previous techniques have only been applicable to single-layer split–

merge or fork–join systems. Secondly, the exact distributions of subtask processing times

do not need to be known, so long as there is some means of generating samples. The

technique is further extended to use a metric which trades off subtask dispersion and task

response time.

The work in this publication is solely my own work.

• Three-way Optimisation of Response Time, Subtask Dispersion and Energy

Consumption in Split–Merge Systems. Proc. 11th International Conference

on Performance Evaluation Methodologies and Tools (VALUETOOLS 2017).

Venice, Italy December 2017 This paper investigates various ways in which the triple

trade-off metrics between task response time, subtask dispersion and energy can be im-

proved in split–merge queueing systems. Four ideas, namely dynamic subtask dispersion

reduction, state-dependent service times, multiple redundant subtask service servers and

restarting subtask service, are examined in the paper. It transpires that all four tech-

niques can be used to improve the triple trade-off, while combinations of the techniques

are not necessarily beneficial.

This publication is joint work with Jani Kettunen and Katinka Wolter. I performed

most of the work in the paper. Kettunen implemented the state-dependent split–merge

optimisation using Bayesian Optimisation. Wolter suggested to use system restart to

improve system performance and also provided help with editing and proofreading the

paper.

A poster adaptation of this paper won first place at the Imperial Google Poster

Competition, in the 3rd and 4th year PhD student category in 2018.
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• Book Chapter: Model-Based Assessment and Optimisation of Restart and

Rejuvenation Strategies in Models for Restart and Rejuvenation. Handbook

of Software Aging and Rejuvenation World Scientific. 2018 This chapter con-

siders model-based assessment and optimisation of restart and rejuvenation strategies. It

provides an up-to-date survey of the research literature. Within the chapter, we first dis-

cuss how to determine the success of restart strategies by introducing appropriate metrics

for comparison. We then provide expressions of completion time for general completion

time distributions and provide examples of distributions for which restarts are particu-

larly effective (such as heavy-tail distributions). We discuss model-based approaches for

the optimisation of restart timing strategies, aiming to minimise moments of completion

time and probability to meet a deadline, respectively. We conclude the chapter with open

challenges in model-based assessment and optimisation of restart strategies.

This publication is joint work with Aad van Moorsel from Newcastle University and

Katinka Wolter from Freie Universität Berlin. I carried out the literature survey portion

of the paper.

1.6 Thesis Outline

The remainder of the thesis is organised as follows:

• Chapter 2 contains background information and related research as well as introduction

of terms and techniques referred to in the thesis. This chapter includes definitions for

multiple types of parallel queueing networks as well as multiple metrics, which are often

used to analyse the performance of said queueing networks. The chapter continues with

a review of existing related research. The chapter conludes with a literature survey of

papers, which investigate restart phenomena.

• Chapter 3 Takes an in-depth look at existing research that is relevant to this PhD.

The chapter first explains related techniques in detail and then compares the various
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techniques via three case studies. The metrics used in the comparisons are task response

time and subtask dispersion.

• Chapter 4 introduces a technique to optimise the trade-off between subtask dispersion

and task response time in hidden stochastic PERT networks. The technique works nu-

merically by using CMA-ES optimisation algorithm to optimise a cost function, which is

approximated via simulation of the system.

• Chapter 5 introduces the concepts of service restart and service replication. The chap-

ter investigates how both techniques can be used to improve service times of tasks. In

addition, we investigate how the restart interval of a task should be chosen.

• Chapter 6 brings together multiple existing techniques from literature to improve the

triple trade-off product of subtask dispersion, task response time and energy consumption.

The techniques we study include:

– Dynamically-adjusted delays inserted in front of subtasks

– State-dependent delays inserted in front of subtasks

– Use of service restart to improve service completion times of subtasks with heavy-

tailed service times.

– Use of service replication to speed up service of subtasks

• Chapter 7 concludes the thesis by summarising the research achievements of the disser-

tation, as well as discussing potential applications. Finally the chapter concludes with a

discussion of future research.



Chapter 2

Background

This chapter covers the most relevant aspects of queueing theory, which are needed to un-

derstand this thesis. Queueing theory is the mathematical study of waiting lines and their

associated phenomena. In these processes, information/products/people travel between service

centres of the system and the capacity of the system to transfer objects flowing from one state

to another is rate-limited. Aspects of queueing theory can be observed in many aspects of our

daily lives, such as when you queue to get to the counter in the supermarket or when you are

transferring data over the internet or when you are commuting back home after work.

The first part of the chapter discusses Kendall’s notation, which is a generalised marking

technique to label queueing nodes. Along with the describing some examples of queueing

models that are used in this thesis are discussed. The examples are the M/M/1 and M/G/1

queueing models.

The second part of this chapter covers parallel queueing models that are relevant to the work

performed later on. We first cover simpler single-layer systems: split–merge and fork–join

queueing systems and then proceed to introduce stochastic PERT networks, which is a more

general multi-layered queueing network model.

The third part of this chapter discusses multiple metrics that are often used to analyse the

performance of queueing networks. In many occasions the performance of the queueing system

37
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is analysed with respect to multiple criteria, and the different performance metrics often conflict

with each other, such as wanting to service each task to a high standard and wanting to deliver

service quickly.

The chapter also covers the performance metrics used to evaluate the performance of the queue-

ing systems. The first metric we discuss is the task response time metric. This metric measures

how quickly incoming tasks are processed by the system. The second metric is the subtask

dispersion of the system. This metric measures the difference in completion times between the

first and last subtasks. The final metric of discussion is the energy consumption/cost metric.

This metric represents the extra cost that is incurred when additional servers are added in

an attempt to improve the performance measured in terms of other metrics such as subtask

dispersion and task response time.

The chapter then continues to discuss numerical optimisation techniques such as Newton’s

method, CMA-ES and Bayesian Optimisation, which are used for tuning free parameters of the

queueing system optimisation techniques in later chapters.

The chapter concludes with a literature survey on task response time, subtask dispersion,

energy consumption and state-dependent service in queueing system, and a survey into trends

in restart relalated research in the past decade.

2.1 Queueing Models

In 1953 D.G Kendall proposed the A/S/c notation to classify queueing models. A defines the

interarrival time distribution of incoming tasks. S defines the distribution of the service time

of tasks and c is the number of parallel servers servicing tasks. Typical values for A and S are

M for Markovian, D for Deterministic and G General. c is a non-zero integer.

Sometimes a more descriptive A/S/c/K/N/D model is used, to define extra parameters of the

queueing system. In this model, the extra letters K/N/D define the capacity of the system, size

of the queueing population, and the scheduling discipline. In the context of this dissertation
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the extra parameters are not necessary to determine the type of queueing system. The systems

studied here always have an infinite capacity and queueing population, and the queueing systems

always use the First in First out as the service discipline.

2.1.1 M/M/1 Queue

M/M/1 is one of the simplest queueing systems, and as a result is an frequently-used model

in many applications. In M/M/1 queues, incoming tasks have an interarrival rate that is

exponentially distributed with a parameter λ, which determines the rate of arrivals [12]. The

service time of the tasks is also exponentially distributed with a parameter µ, which determines

service rate of the tasks in the system. The utilisation (or load factor) of a M/M/1 queue ρ is

equal to λ/µ. The system is stable when ρ < 1 [1]. By stability it is meant that the average

queue size of the system is finite.

The M/M/1 queue can be modelled as a continuous time Markov chain where the state of the

system is defined by queue length and whether a task is currently in service. The memoryless

property can often be exploited when analysing M/M/1 queues.

2.1.2 M/G/1 Queue

The M/G/1 queue is another important and well understood queueing system. The incoming

tasks have an interarrival rate that is exponentially distributed with a parameter λ to determine

the rate of arrivals. The service time of tasks in a M/G/1 queue is generally distributed [20].

Meaning that an arbitrary probability distribution can be used to describe the service time.

The support for general service time of tasks makes the model more applicable to real life

problems, but at the same time makes it harder to derive closed-form solutions for various

metrics of the M/G/1 system.

When analysing the M/G/1 queueing system, the PASTA (Poisson Arrivals See Time Averages)

property can be used. The PASTA property states that probability of the system being in a
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given state is the same when seen from the point of view of outside observer and an arriving

task [138]. The M/M/1 queue is a special case of the M/G/1 queue and therefore all results

for M/G/1 queue are also valid for M/M/1 queues.

An important formula in the study of the M/G/1 queue is the Pollaczek–Khinchine formula.

The formula states the task response time of a M/G/1 queue. λ is the parameter to the

exponential function, which determines tha task interarrival rate. µ is the service rate. ρ = λ/µ

is the utilisation (or load factor) of the system. G is the service time distribution.

E[Resp(λ, µ,G)] =
ρ+ µλVar[G]

2(µ− λ)
+ µ−1 (2.1)

2.2 Parallel Queueing Models

Parallel queueing networks are a branch of queueing networks. They describe the service of

a task whose service is split into subtasks that can be serviced in parallel. The subtasks can

either be totally disjoint as in the case of split–merge and fork–join systems, or partially depend

on each other as is the case in PERT networks.

This section contains a brief introduction to the parallel queueing models that are used through-

out the dissertation. It begins by discussing the split–merge model. Next it proceeds to discuss

the fork–join model, which is a less restricted version of the split–merge model. Finally, we

also introduce the Stochastic PERT network, which can be used to model more complex multi-

layered processing of tasks. In PERT networks tasks are first split into subtasks, and subtasks

can be further split-up into activities, which can depend on each other for completion as well

as being shared by different subtasks.

2.2.1 Split–Merge System

Split–merge systems are single-layer systems. By single-layer systems, we mean that work can

begin straight away on all parts of the task. Split–merge systems have task arrivals with an
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Figure 2.1: A split–merge system Queueing System, credit: [125], (CC BY-SA 3.0).

interarrival rate that is exponentially distributed with a rate of λ. The system structure is

shown in Fig. 2.1.

Arriving tasks will either enter service directly if the system is idle or join the queue to wait

for their turn. When the service of a task is completed it exits the system and service on the

next task in the queue begins. If the queue is empty the system will be idle until a new task

enters the system.

When a task enters service it gets split up into N subtasks. The system has a dedicated server

for each subtask of the task. Each subtask has a specific service time probability distribution

associated with it, where fi and Fi are the respective probability density function and cumu-

lative distribution function of service time of the ith subtask. A task is considered complete

once all of its subtasks have completed service.

2.2.2 Fork–Join System

The fork–join system is very similar to the split–merge system. Fork–join system is also a

single layer system, like the split–merge system. The main difference is that incoming tasks in

fork–join systems are split into subtasks on task arrival. In split–merge systems the splitting

is done when the service of a task begins. The structure of a fork–join system is shown in the

Fig. 2.2

New tasks enter the system with a exponential interarrival rate that is distributed exponentially
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Figure 2.2: A fork–join system credit: [125], (CC BY-SA 3.0).

with a rate of λ. Arriving tasks into the fork-join system are split into N subtasks on arrival,

before queueing occurs. Each server responsible for servicing a specific type of a subtask has

its own queue. The subtasks service servers pull tasks out of their own queue independently of

each other.

A task is considered complete once all the N subtasks it was split into have completed service.

As before fi and Fi are respectively the probability density function and cumulative distribution

function of service time of the server servicing the ith subtask.

2.2.3 Stochastic PERT Networks

The project evaluation and review technique, abbreviated as PERT, is used in project man-

agement to analyse statistical information related to the completion of a single one off project.

The PERT DAG (Directed Acyclic Graph) also provides a helpful visualisation of the individ-

ual activities and milestones that make up the project [26]. Fig. 2.3 shows an example of a

Stochastic PERT DAG.

The PERT system is a multi-layered system. This is because, there is a hierarchy which defines

a partial order, in which the activities need to be serviced in. The task service portion of split–

merge and fork–join systems can be thought of as a simple PERT system, with no restrictions

and one customer.

A PERT system only deals with individual tasks and has no queueing in the system. You could
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for example build a PERT DAG to model the construction of a building. Each node in the

DAG is related to a milestone of completing a set of activities in the system. An activity is

a directed edge connecting two nodes. The milestone where the directed edge begins must be

reached before the activity can begin service.

Service on activities that begin from a node with no incoming activities can begin straight away.

Each sink node in the PERT defines a subtask (9 and 10). A subtask is considered complete

once all activities that can be used to reach it from the source node are completed (e.g. f3, f7

and f9 for subtask defined by node 10). The task is completed when all activities in the PERT

DAG are completed (once all fi are completed in our example case).

A stochastic PERT DAG differs from a regular PERT DAG by having completion times of

activities be probability distributions instead of constants.

The service time of an activity in a stochastic PERT DAG is denoted by the probability density

function and cumulative distribution function as fn and Fn. Service of an activity cannot begin

before all activities pointing to the node where the activity starts from have been serviced.

1 2 3

4 5 6

7 8

9 10

f1 f2 f3

f4 f5

f6 f7

f8
f9

Figure 2.3: An example PERT Network with two subtasks, which complete 9 and 10
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2.3 Performance Metrics

This section discusses three performance metrics that are used in the thesis, namely task re-

sponse time, subtask dispersion and energy consumption.

2.3.1 Subtask Dispersion

Subtask dispersion is the difference in completion times between the first and last subtask

belonging to the same job. This subsection covers two existing techniques that can be used

to reduce subtask dispersion. The first technique was analysed in [127, 128, 126, 125] and a

second technique was presented in [103]. Both techniques add a delay di in-front of the service

of each subtask. The delays are used to align the subtask service completion times to minimise

subtask dispersion of the task.

Static Subtask Dispersion

Here, we present a technique using static delays to minimise subtask dispersion in split–merge

systems. Static in our context means that subtasks delays are not modified after a task enters

service.

With N subtasks the expected time of first and last subtask to finish can be calculated with

the theory of heterogeneous order statistics [34]. The cumulative distribution functions of first

and last subtask to finish can be seen in Eqn. (2.2) and (2.3). Both formulas use the Bayes

Theorem for independent events.

The cumulative distribution function for the completion time of the last subtask to finish can

be computed by multiplying all the individual cumulative distribution functions of subtasks

together. The completion time of the first subtask can be obtained with the use of similar logic

on the inverse probability of a subtask having not completed.
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X(1)(t) = Pr{X(1) < t} = 1−
N∏
i=1

[1− Fi(t)] (2.2)

X(N)(t) = Pr{X(N) < t} =
N∏
i=1

[Fi(t)] (2.3)

Static subtask dispersion can be derived with the help of X(1)(t) and X(N)(t). The probability

at time t that at least one and not all subtasks have completed service is X(N)(t)−X(1)(t).

E[Disp] =

∫ ∞
0

X(N)(t)−X(1)(t)dt (2.4)

E[Disp] =

∫ ∞
0

( N∏
i=1

[Fi(t)]
)
−
(

1−
N∏
i=1

[1− Fi(t)]
)

dt (2.5)

Dynamic Subtask Dispersion

Here, we present a technique using dynamic delays to minimise subtask dispersion in split–

merge systems. Dynamic in our context means that subtask delays might be modified after a

task has entered service. More specifically, delays added at the start of task service are removed

later on when a sibling subtask completes service.

Subtask dispersion can be improved by adding dynamic delays into the system. In our formu-

lation we have a delay vector d, which is used to delay the ith subtask by di amount.

When using dynamic delays any remaining delays on sibling subtasks are removed, once the

first subtask of the task completes. Dynamic delays improve subtask dispersion in cases where a

particular subtask has finished service quicker than expected, as it removes unnecessary delays

on sibling subtasks. Below we provide some insight into how dynamic subtask dispersion can

be measured.

Let T (i, t,d) be the probability that subtask i is the first to finish at time t. Then Er(i, t
′,d)
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is the expected completion time of the remaining subtasks, given that subtask i finished at

time t′. Gj(t, t
′, dj) is the probability distribution of a subtask, given that a sibling subtask

has finished already. Fi(t) and fi(t) are the cumulative distribution function and probability

density function of service time of ith subtask.

E[Disp(d)] =
N∑
i=1

∫ ∞
0

T (i, t,d)Er(i, t,d)dt (2.6)

where

T (i, t,d) = fi(t− di)
∏
j 6=i

[1− Fj(t− dj)] (2.7)

and

Er(i, t
′,d) =

∫ ∞
0

[1−
∏
j 6=i

Gj(t, t
′, dj)]dt (2.8)

with

Gj(t, t
′, dj) =

 Fj(t) if t′ < dj

Fj(t+ (t′ − dj)|t > 0) otherwise
(2.9)

subject to conditions
N∏
i=1

di = 0 (2.10)

and

∀i di ≥ 0 (2.11)

2.3.2 Task Response Time

Task response time is equal to the duration between a task entering the system and finishing

service. Much effort has been spent on researching task response time in various settings.

Examples of this can be seen in [15, 58, 61].

Task response time can be computed analytically for split–merge systems with the Pollaczek–

Khinchine formula that is defined for M/G/1 queues below:
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E[Resp(λ, µ,X(N))] =
ρ+ µλVar[X(N)]

2(µ− λ)
+ µ−1 (2.12)

Where µ is the service rate, λ is the arrival rate and ρ = λ/µ is the utilization of the server.

V ar[XN ] is the variance of service time of the last subtask to finish, as well as the variance of

service time of the task. The split–merge system is equivalent to a M/G/1 queue. The task

service time of the M/G/1 queue is equal to the completion time of the last subtask to finish

in a split–merge system as discussed in Sec. 2.3.1.

Fork–join systems currently have no general analytical formula to calculate response time. Some

simple cases with only two subtasks have been solved analytically [41, 40]. There also exists

work on approximating task response time in fork–join queues [95, 82, 113].

2.3.3 Trade-Off Metric

Sometimes performance is assessed from the perspective of multiple metrics simultaneously.

In such a case the individual performance metrics should be combined into a single metric.

This subsection discusses an existing metric by Tsimashenka [128]. The metric was originally

inspired by the energy–response time product analysis of power policies for server farms [48, 49].

The original paper combines the two metrics: task response time and subtask dispersion in the

following way:

T(λ, µ,X(N)) = E[Disp]× E[Resp(λ, µ,X(N))] (2.13)

In the later chapters, this dissertation extends on this metric in multiple ways. The extensions

include: (a) adding a energy metric as a third metric into the product, (b) using weights to

determine the importance of each metric, and (c) performing the necessary derivations to make

it possible to apply dynamic subtask dispersion from Sec. 2.3.1.

For split–merge systems a trade-off equation between subtask dispersion and task response time
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can be expressed in the following way:

T(λ, µ,X(N)) =

[ ∫ ∞
0

1−
N∏
i=1

Fi(t)−
N∏
i=1

(1− Fi(t))dt
][
ρ+ µλVar[X(N)]

2(µ− λ)
+ µ−1

]
(2.14)

where

Var[X(N)] = 2

∫ ∞
0

t(1−
N∏
i=1

Fi(t))dt−
(∫ ∞

0

1−
n∏
i=1

Fi(t)dt

)2

(2.15)

For fork–join systems the trade-off metric has to be quantitatively measured through simula-

tions, since – to the best of our knowledge – there are no closed form solutions for either subtask

dispersion or task response time for such systems.

2.4 Optimisation Algorithms

This section describes the various optimisation algorithms used throughout the thesis. Optimi-

sation algorithms are used to find the best element from the solution space. The best element is

determined by the objective function, which can be used to determine the value of each element

in the solution space. The section begins by introducing some classical optimisation algorithms,

namely Newton’s method and the Nelder–Mead algorithm. It then proceeds to discuss algo-

rithms more suited for noisy non-convex objective functions, which include CMA-ES [56] and

Bayesian Optimisation [101].

2.4.1 Newton’s Method

The Newton Method also known as Newton-Raphson method is an iterative technique to find

local extrema of function f(x). The starting point x0 can be picked arbitrarily. The technique

requires the the second derivative of the objective function. The advantage of the Newton
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Method is that it is quick to converge and therefore not many iterations of the algorithm are

needed.

One iteration of the multidimensional Newton method is performed in the following way:

xk+1 = xk − J(xk)
−1f(xk) (2.16)

where the multidimensional function is defined as follows:

f(x) = (fm(x1, . . . , xn)), for m = 1, . . . , N (2.17)

and the Jacobian matrix is defined as:

Jm,n(x) =
∂fm
∂xn

(2.18)

For the jacobian matrix to exist at a given point the, function f(x) needs to be differentiable

at x.

2.4.2 Nelder–Mead Method

The Nelder–Mead algorithm was developed in 1965 by John Nelder and Roger Mead. The

Nelder–Mead method is a numerical technique to find a local extreme of a function f(x) in a

multidimensional optimisation space. The Nelder–Mead method does not require the use of

derivatives. The algorithm keeps track of n + 1 points that form a simplex, where n is the

dimensionality of the problem.

During each iteration of the algorithm, the point with highest cost as measured by the objective

function is removed. A new point is then computed to form a new set of n + 1 points. This

is done by constructing a line between the point that was removed and the central point
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of the remaining set of points. The new point is either chosen via reflection, expansion or

contraction [14].

2.4.3 CMA-ES

CMA-ES is short form for Covariance Matrix Adaptation Evolution Strategy [54]. CMA-ES is

an evolutionary algorithm, which can be used to find local extreme of a non-convex continuous

function. CMA-ES does not use derivatives of the function that is being optimised.

The CMA-ES works iteratively. at the beginning of each iteration the algorithm starts by having

a solution candidate pool. CMA-ES then generates new candidates by ‘mutating’ existing

solution candidates. In the final step of a single iteration the algorithm removes the least fit

candidates from the pool and then begins a new round of iteration.

2.4.4 Bayesian Optimisation

Figure 2.4: Estimating the optimisation space by Bayesian Optimisation [120], (CC BSD 3).

Bayesian Optimisation is a technique to find local extrema of an function f(x), with the aim

of using as little function calls as possible on the function that is being optimised. As a result,
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it is suited for optimising functions, which are expensive to call [101].

The technique constructs an approximation of the optimisation space. The point, which is

queried next by the optimisation function is the point the model currently says is the most

promising candidate according to internal acquisition model of the optimiser. Next the algo-

rithm queries the point decided by the internal acquisition model and updates the internal

model. It then iteratively repeats the process. An Example of Bayesian optimisation can be

seen in Fig. 2.4,

2.5 Summary of Related Research

This section contains literature surveys on topics which are relevant to the research that is pre-

sented in the later chapters of this dissertation. The literature survey includes a subsections on

task response time, subtask dispersion, energy consumption optimisation and state-dependent

service in queueing systems.

2.5.1 Task Response Time

We’ve first included a few important historical developments that were necessary for the study

of task response time in parallel queueing networks. The whole field and many important

results are based on the work done by Markov in 1906 [90] on Markov Chains. The first results

in the field of queueing theory were derived by Erlang [39, 24]. The results included analysis

of basic queueing models such as the M/D/1 and M/D/k queueing models. Another early

breakthrough was the work by Pollaczek and Khinchine which resulted in the closed form

solution to the average waiting time of M/G/1 queueing system [104, 77].

The first results in the field of parallel queueing systems was by Heidelberger and Trivedi,

who came up with a very accurate approximation techniques for a mean queue length and

mean response time of an M/M/1-based queueing system where tasks are split into two or

more subtasks [61] in 1983. Flatto, Leopold and Hahn derived a stationary distribution for
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the number of queueing subtasks in a fork–join system with two subtasks, with the assumption

that interarrival task arrival times are exponentially distributed. [41, 40].

Over the years, a multitude of approximations and bounding results regarding fork–join systems

have been proposed by various researchers [95, 74, 112, 82, 132, 58]. However, no analytical

results for the stationary distribution for general fork–join queues are not known and it remains

an open problem.

2.5.2 Subtask Dispersion

The study of subtask dispersion has only recently garnered attention. The term subtask dis-

persion has first been introduced by Tsimashenka and Knottenbelt in papers [126, 128, 127]

and in Tsimashenka’s PhD thesis [125]. The first paper introduced a scheme for split–merge

systems, where static delays of varying length are selectively inserted in front of subtask service

to reduce subtask dispersion of the system [126]..

Their second paper [128] introduced a technique to improve the trade–off between subtask

dispersion and task response time of the system. As before, delays are inserted in front of

subtasks to control the subtask dispersion of the system. However, when the duration of the

pre-emptive delays is computed, they take into account the effect of the delays into both task

response time and subtask dispersion and minimise the ‘Resp×Disp’ product.

Their final paper [127] investigated how delays inserted in front of subtask service could be

used to reduce subtask dispersion in fork–join systems. Fork–join models are interesting as the

queueing in the system occurs at the subtask level, instead of the task level. The subtask level

queueing system allows fork–join systems more freedom in how they schedule subtasks, which

makes their response time better when compared to split–merge systems. Due to some con-

straints with the tractability of the model, it only works with subtasks which are exponentially

distributed.

In 2014 Pesu and Knottenbelt [103] demonstrated that subtask dispersion can be further re-

duced with dynamic delays. In their technique any remaining delays are cancelled when a
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sibling subtask completes service.

Zander, Leeder and Armitage investigated how unevenly distributed lag in online gaming affects

player performance. They discovered that higher lag has negative effect on player performance

and that online games can be made mode fair by inserting delays in front of the transmission

of data to players having comparatively small amount of lag [144].

2.5.3 Energy Consumption Optimisation

In 1996 in [71] Jennings, Mandelbaum, Massey and Whitt computer the number of servers

needed for service by taking into account expected future demand. They modelled the system

as a Markovian Mt/M/st model. The model includes a constraint to keep the probability

of all servers being busy under a given threshold. Work done in 1998 by Adan and van der

Wal [3] studied two models which combine make everything to order and make everything to

stock inventory control models. They suggest a combination of the two techniques, which

incorporates the good features of both models. In [21] Borst, Mandelbaum and Reiman studied

the operator staffing problem in large call centers. Such systems are modelled as a M/M/N

queueing system, where N is very large. The paper analyses how to minimise the weighted sum

of staffing costs and customer queueing time.

In [143] Yao, Demers and Shenker propose a scheduling model for jobs, which incorporates key

aspects of energy minimization. They present an off-line algorithm that computes the minimum

energy usage for a group of jobs, while assuming that energy usage per unit time is a convex

function. In [17] Bansal, Kimbrel and Pruhs represent a speed scaling model to manage device

temperatures, with the constraint that tasks meet their service deadlines. In [106] Pruhs,

Uthaisombut and Woeginger minimise average response time of a collection of dynamically

released jobs, given a constraint on the amount of energy used.

In [65] Irani, Shukla and Gupta presented two ways to save battery in embedded devices. The

first technique is to place the device to sleep. The second way is to use speed scaling. They

prove that their algorithm for the control of the system is within a factor of two of the optimal
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algorithm. In [48] Gandhi, Gupta, Harchol-Balter and Kozuch use the energy–response time

product to study the energy-performance trade-off. They studied the optimality of server farm

management policies and present first theoretical results. In [49] Gandhi, Harchol-Balter and

Adan consider server farms, which have setup costs in the form of power cost or time delay.

The paper derives closed form solutions for mean response time and mean power cost of server

farms with setup costs, which enables optimisation of the system.

In 2017 Marin and Rossi showed that power consumption can be reduced in saturated fork–

join systems by slowing down subtasks whose service is not time critical [88]. In 2018 Marin,

Rossi and Sottana studied how processing power should be split among the service of K tasks

in Fork–Join systems. Their overall aim was to minimise the join-queue lengths, which also

reduces the expected job service time [89].

2.5.4 State-dependent Service in Queueing Systems

The study of queueing systems that feature state-dependent arrival and services rates was

begun by Harris in 1967 [57]. Harris provides the steady state distribution for the number of

tasks in the system for a M/Mn/1 queueing system, given that the rate of service is µn = nµ1.

The paper also analysed a two state M/M/1 queue where the service rate depends on whether

the system is empty at the start of service. Shanthikumar derived the Laplace transform of

the steady-state waiting time distributions in a state-dependent two-state M/G/1 queueing

system [117].

Gupta and Rao studied a queueing system, where both rate of arrival and service are determined

by the number of tasks in the system. The queue has a finite buffer and they assume that service

times are only adjusted when a task begins service. They managed to obtain a distribution

for the number of the tasks in the system [53]. Kerner derived a closed form solution of the

probability distribution for the number tasks in the system, which takes the amount of time

the system is idle as input. The results apply for state-dependent Mn/G/1 queues [72].

Hossein and Opher generalised the results of Gupta, Rao and Kerner. In their results for the
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Mn/Gn/1 queueing system, both arrival and service rate of the system depend on the amount

of tasks in the queue. The paper derived both the steady-state and average waiting time for a

task in the system [2].

In this section, we conduct a systematic review of the literature of the past ten years. The Ha-

bilitation thesis of Wolter, on which this chapter is partly based, only considered the literature

until 2007. We therefore review recent trends in model-based analysis of restart, reboot and

rejuvenation that have taken place since Wolter’s review.

The collection of reference papers for the literature survey was obtained as follows. We searched

using the following keywords on Google Scholar: ‘restart’, ‘software rejuvenation’, ‘checkpoint-

ing’, and ‘reboot’. We went through the search results for each keyword we searched for web

page after web page. For each paper, we decided whether they were on-topic, and we continued

until relevant papers stopped appearing. We then did a similar exercise, searching for all papers

that cited the key literature relevant to this chapter, particularly the author’s papers on this

topic. In this manner we aimed to have captured the main literature relevant to this chapter

over the past decade.

2.6 Trends in Restart Related Research in the Past Decade

(2007 - 2017)

Applications [19, 83, 45, 50, 38, 18, 122, 145, 87, 75, 76, 100]
Implementation [141, 33]

Modeling & Analysis [109, 70, 110, 60, 137, 108, 85, 99, 115, 135, 69, 68, 66, 86, 93, 134,
133, 52, 37, 97, 9, 47, 43, 84, 63, 44, 98, 96, 119, 10, 136, 140, 16,
142, 94, 67, 62, 111, 102]

Real Data [31, 123, 78, 118, 27, 28, 92, 11, 22]
Survey [7, 29]

Table 2.1: Relevant literature since 2007, categorized.

Table 2.1 list all 63 papers we eventually considered, after a sifting process to be described

in the following paragraphs. We have classified the papers according to five broad categories

depending on the content of the paper. The categories we used for labeling are: ‘Applications’,
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‘Implementation’,‘Modeling & Analysis’, ‘Real Data’ and ‘Survey’. We chose these categories

because we felt that research papers can almost always be split into one of the categories, and

that there is little overlap between the categories.

Adaptivity Metric [108]
Black-box Restart [137, 99, 135, 134, 47, 44, 136, 133, 140, 102]
DNA Computing [60]

Markov Model [70, 69, 66, 68, 86, 52, 97, 63, 67]
Machine Learning [119, 10]

Petri Net [115, 16]
Queueing Model [109, 85, 43]

Semi–Markov Model [110, 98, 96, 94, 62, 111, 37]
Stochastic Reward Net [142, 84]

Supervisory Control Theory [9]

Table 2.2: Further categorization of papers in ‘Modelling & Analysis’ category of Table 2.1

The 38 ‘Modelling & Analysis’ papers from Table 2.1 were further divided to sub-categories

based on the type of model used in the paper, as shown in Table 2.2. For this table, we

constructed the set of labels through an iterative approach, until we felt that the categories

were useful in understanding the survey outcomes. First, we categorized based on the type

of model used in the paper. Then we included other themes, such as machine learning or the

application area, if these dominated the papers. We also removed a number of papers, especially

in checkpointing, in which the model actually was a system model, not a model for evaluation

or optimisation.

2.6.1 Survey of Research of the Past Decade

We subdivide between modeling and non-modeling papers, first reviewing the papers from

Table 2.1 that are in the category ‘Modeling & Analysis’, we have divided them in groups

as shown in Table 2.2. After this we review the non-modelling papers. We note that since

Wolter’s previous literature survey [139], we have come across two other related interesting

literature surveys [7, 30], both focused on rejuvenation. [7] provides a comprehensive system

perspective on rejuvenation techniques, while [30] provides a broad discussion on rejuvenation

and software aging. Our survey is complementary to the rejuvenation surveys since we include
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restart techniques and particularly emphasize modeling aspects.

Survey of Modeling & Analysis Papers

In this section, we consider the modeling and analysis papers from Table. 2.2.

Black box Models. Most directly relevant to this chapter are the ‘Black box Restart’

papers, in which there is no representation of system structure in the used model. A number of

interesting ways of expanding on the results in this chapter have emerged in the past decade.

The following papers and a PhD used black box restart to improving mobile offloading [134,

136, 135, 137, 133]. The papers describe a strategy, based only on time elapsed, where several

attempts are made to offload a intensive computation to a computing platform better adept

at computing the problem. Local computation of the problem is only done if the offloading

attempts fail. Okamura et al. optimise the restart interval with the help of empirical data [99].

Compared to [130], it relaxes the assumption of equidistant restart intervals and derives a

solution with the help of Laplace Transforms. Gagliolo et al. study the k-armed bandit problem

to decide how much information to gain about the service time distribution in order to determine

an optimal policy for restarting [47]. In other work, the metrics of interest are more complex

than in this chapter. [44, 140] investigate how system performance is affected when multiple

users in the system use restart to improve their own performance. [102] has a case study on

how the performance of a split–merge system can be improved with respect to task response

time, subtask dispersion and energy consumption.

Markov Models. Markov models have been used by a number of authors. As we have seen,

Markov models are limited in that exponential delays cannot represent aging, however, states

can be used to represent levels of degradation. For instance, [70] derives various performance

metrics for the machine repair problem with reboot and imperfect coverage under the care of a

single unreliable server, while [69, 68, 66] derive results for the availability characteristics of a

repairable system where time-to-failure, time-to-repair and time-to-delay are all exponentially

distributed. [63] computes steady state probabilities of a system with switching failure, reboot

delay and repair pressure. [67] presents a model for restart policies in cluster systems. The
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paper derives various performance indicators such as the availability, mean time to failure and

down time cost. [86] presents a rejuvenation strategy where both the virtual machine and the

virtual machine monitor are rejuvenated at the same time to minimise downtime. A different

use of states is seen in [52], which obtains an analytical model for the communication between

two machines with a finite buffer. When the buffer becomes full the machine is forced to remain

idle until the buffer becomes empty. [97] introduces a Markov Decision Process for rejuvenation,

which rewards long run-average of the running process.

Semi-Markov Models. The research in this category all expand on the semi–Markov model

to generate a software rejuvenation schedule first presented by [36]. [37] uses a semi–Markov

decision process and reinforcement learning to derive an optimal software rejuvenation policy

to maximise the steady-state system availability, whereas [110] develops a fast estimation al-

gorithm for the optimal periodic rejuvenation schedule. [98, 96] present an opportunity-based

software rejuvenation technique, which can only rejuvenate during given periods in time and [96]

investigates optimal rejuvenation policies when system failures are correlated. [62] expands the

semi–Markov decision process to take into account the unreliablility of the rejuvenation process

and [111] presents a statistically non-parametric adaptive algorithm to estimate the optimal

preventive rejuvenation schedule.

Queueing Models. A few papers studied the effects of restart using queuing models, to

analyze delays or blocking probabilities. [109] is a study of the effect of client-side restart and

server-side rejuvenation policies on system and service availability. [85] provides analysis of the

optimal stopping problem for software rejuvenation in a deteriorating job processing system

and [43] contains a theoretical investigation into a network of queues with multiples classes of

customers and restart signals.

Petri and Stochastic Reward Nets. To represent more complex system structure and

behaviour, Petri Nets and its variants are shown to be particularly intuitive in a number of

recent papers. [16] describes a model for a phased-mission system with software rejuvenation.

It analyses the impact of software rejuvenation on the success probability and completion time

distribution of the mission. An investigation of effects of the frequency of rejuvenation on
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system utilization and service availability can be founds in [115]. [142] investigates software

rejuvenation policies in cluster computing systems where dependency exists between nodes,

with the use of stochastic reward nets. [84] also uses Stochastic Reward Nets in a study on

three different types of rejuvenation policies in virtual machines.

Machine Learning and Other Developments. Machine learning approaches related have

also been pioneered in recent years. To inform proactive restarts, [119] uses machine learning to

detect anomalies, which cause crashes, while [10] uses machine learning to determine software

degradation levels of a system. Three other papers have a strong modeling flavor and do

not fit any of the above categories. [108] uses adaptivity metrics to determine the optimal

restart rate. [60] studies restarts in the context of DNA computing. [9] presents a method for

restarting manufacturing systems with the help of safe states to make sure production goals and

specifications are fulfilled during restarts, the paper uses supervisory control theory to model

the system.

Survey of Non-modeling Papers

Regarding the non-modeling papers we discuss three categories, namely applications, imple-

mentations and the use of real-life system data.

Applications. The most common application of system restart among the papers we reviewed

is to improve the performance of various search problem algorithms. Examples of such problems

include SAT solvers [19, 18], optimisation algorithms [83, 100, 50], statistics regarding random

walks [45, 122, 75, 76] and flow shop scheduling [38]. Shylo et al. performed a study on

optimising restarts in Las Vegas algorithms [118], also using real data.

Implementation. Yamakita et al. implemented a phased-reboot of Xen 3.4.1 running para-

virtualized Linux 2.6.18, where the aim is to reduce downtime of recovery-based rebooting [141].

Their experiments showed that downtime was 34.3 to 93.6% shorter compared to a normal

reboot. Danilkina et al. have created a project called Sfera, which provides a simulation frame-

work for restart algorithms in Service-Oriented Systems [33].
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Real Data. Multiple papers describe experiments performed on real systems, where they

analyse whether system suffers from software ageing: Android [27], operating systems [28], Java

virtual machine [31, 92], cloud computing systems [11, 78, 123]. The papers identified relevant

parameters to software ageing such as workload, device configuration, and resource utilization.

In addition they confirm that software ageing is a real phenomenon affecting modern software.

2.6.2 Main Points of Review

Plenty of real world use cases can be found for system restart in the real world as witnessed

by the examples in the black box model, implementation and application papers. In Sec. 5.2

we mentioned that good use cases for system restart have a high coefficient of variation. This

observation holds for the examples in our literature survey.

In addition to restart being helpful in a large amount of use cases, there are many ways to

decide when is the optimal time to restart. Many of the Markov model, semi-Markov model,

queueing model, Petri and stochastic reward net model papers slightly vary the underlying

modelling environment and cover different metrics, which can be used to assess the efficiency of

the system. They then introduce restart policies, which provide good results for the respective

metrics and models.

The third category of papers that stood out in the literature review were papers that try to

estimate the amount degradation of the system, as in try to estimate future errors in compu-

tation before the occur. Examples of such papers are found among the machine learning and

real data papers.



Chapter 3

Comparison of Existing Techniques to

Reduce Subtask Dispersion and Task

Response Time in Split–Merge and

Fork–Join Queueing Systems

This chapter provides an in-depth analysis of earlier work on minimising subtask dispersion

and task response time in split–merge and fork–join queueing systems. More specifically, it

provides an overview of the techniques described in the following papers: [126, 128, 127, 103].

Chapter 6 expands on some of the techniques discussed in this chapter.

In addition to introducing existing research to the reader, this chapter also contains three case

studies, which are used to evaluate the effectiveness of the techniques we introduce. Parts of

this chapter are based on the research performed by the author in [103].

61
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3.1 Minimising Subtask Dispersion in Split–Merge Queue-

ing Systems with Static Delays

This section summarises previous research on minimising subtask dispersion in split–merge sys-

tems. The technique was originally presented by Iryna Tsimashenka and William Knottenbelt

in [126].

3.1.1 Introduction

This section uses the definition of a split–merge system from Sec. 2.2.1. When tasks begin

service each task is split into N subtasks. Under the static delay policy considered here constant

precomputed delay is inserted in front of the service of each subtask. The delays are used to

minimise subtask dispersion by having longer delays in front of subtasks with shorter expected

service time, shorter delays in front of subtasks with longer expected service time, and no delays

in front of bottleneck subtasks.

The delays inserted before subtasks are defined by a delay vector d = [d1, . . . , dN ] with two

constraints: All delays are non-negative, that is di ≥ 0, and at least one delay is equal to zero,

that is
∏
di = 0. The second constraint is used to prevent the system from being unnecessarily

delayed.

3.1.2 Calculation of Subtask Delay Vector

The technique uses the subtask dispersion formula from Sec. 2.3.1 and adjusts the subtask

service time distributions by inserting delays. The delays are represented mathematically by

replacing t with t − di. The expectation of subtask dispersion for a given delay vector d can

then be calculated with the following formula:

E[Disp(d)] =

∫ ∞
0

[
1−

N∏
i=1

(1− Fi(t− di))
]
−
[ N∏
i=1

Fi(t− di)
]
dt (3.1)
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The first part of the equation is the probability that at least one subtask has completed service,

and the second part is the probability that all subtasks have completed service.

The next step is to find a optimal delay vector d, which minimises E[Disp(d)]. It has been

proven in [125] that the subtask dispersion function given in Eqn. (3.1) is convex. The convexity

of the underlying cost function guarantees that the local minimum produced by a minimisation

routine is also the globally optimal solution. The optimisation problem is defined as follows:

dmin = arg min
d≥0

E[Disp(d)] (3.2)

s.t.
N∏
i=1

di = 0

The optimal solution can be calculated with various classical optimisation methods such as

Nelder–Mead and Newton’s method [126].

3.2 Minimising Trade-Off between Subtask Dispersion

and Task Response Time in Split–Merge Queueing

Systems

This section summarises previous research on optimising split–merge systems in terms of both

task response time and subtask dispersion. The technique was originally introduced in the

paper [128] by Iryna Tsimashenka and William Knottenbelt.

3.2.1 Introduction

The technique for minimising the product of subtask dispersion and task response time builds

on the previous work in Sec. 3.1, as it uses the dispersion component introduced in it. The

task response time component of the cost function uses the theory laid out in Sec. 2.3.3. We

assume the definition of a split–merge system given in Sec. 2.2.1.
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While the optimisation part in what follows is similar to the technique in Sec. 3.1, the logic for

determining subtask delays differs. The way to optimise task response time alone is to use no

delays, but subtask dispersion alone is minimised with non-zero delays. As a result, there is

contention between the two metrics and the optimal solution minimises the product of the two

metrics represents a compromise between the two extremes.

As before, the delays inserted in front of subtasks are defined by a delay vector d = [d1, ..., dN ]

with two constraints: All delays are non-negative di ≥ 0 and at least one delay is equal to zero∏
di = 0 to prevent unnecessary idle time.

3.2.2 Calculation of Subtask Delay Vector

The technique combines the ideas presented in Sec. 2.3.1, 2.3.2 and 2.3.3, adjusting the subtask

service time distributions by inserting the predefined delays into the system. The expectation

of the trade–off product between subtask dispersion and task response time for a given delay

vector d can be computed as:

T(λ, µ,X(N),d) = E[Disp(d)]× E[Resp(λ, µ,X(N))] (3.3)

which, when expanded, becomes:

T(λ, µ,X(N),d) =

[ ∫ ∞
0

1−
N∏
i=1

Fi(t−di)−
N∏
i=1

(1−Fi(t−di))dt
][
ρ+ µλVar[X(N)]

2(µ− λ)
+µ−1

]
(3.4)

where

Var[X(N)] = 2

(∫ ∞
0

t(1−
N∏
i=1

Fi(t− di))dt
)
−
(∫ ∞

0

1−
n∏
i=1

Fi(t− di)dt
)2

(3.5)

Task response time of the system is computed with the Pollaczek-Khintchine formula. Var[X(N)]

is the variance of task completion time, which is also equal to the variance of completion time

of the last subtask.
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The next step is to find a delay vector d which finds a good local minimum for the cost function

shown in Eqn. (3.4). Unfortunately, the trade–off product between subtask dispersion and task

response time in Eqn. (3.4) is not necessarily convex and therefore it is not always possible to

find the global minimum (at least not in a straightforward manner). The minimisation problem

can be expressed as an optimisation problem in the following way:

dmin = arg min
d≥0

T(λ, µ,X(N),d) (3.6)

s.t.
N∏
i=1

di = 0

We remark that this technique can be further optimised by varying the set of delays added

before service of subtasks based on the current queue length. Further details can be found in

Chapter 6, where a queue-dependent delay optimisation of the split–merge system is presented.

3.3 Minimising Subtask Dispersion in Fork–Join Queue-

ing Systems with Dynamic Delays

This section summarises previous research into minimising dispersion in fork–join systems with

dynamically-controlled delays. The method was originally introduced in the paper [127] by

Iryna Tsimashenka and William Knottenbelt.

3.3.1 Introduction

This section describes a technique for minimising subtask dispersion and task response time in

fork–join queueing systems. More information on fork–join systems can be found in Sec. 2.2.2.

The technique uses the subtask dispersion formula that was also used in the previous two

methods. However, it is applied in a slightly different way. This is, because queueing in a

fork–join system happens at the subtask level. As opposed to at the task level as is the case in

split–merge systems.
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There are two reasons as to why this technique is able to produce better performance. In

the fork–join system subtasks of the next task can begin service before the previous task has

fully completed service, hence speeding up processing. Secondly, the dynamic nature of the

algorithm allows subtasks to begin service immediately after one of their sibling subtasks has

finished service, which also speeds up processing and improves subtask dispersion. Subtask

dispersion is improved, because delaying is harmful to subtask dispersion once a sibling-subtask

has finished service.

The performance of fork-join systems are harder to optimise mathematically. There are no

known formulas for computing subtask dispersion and task response time of fork–join systems

in the general case. As a result the work assumes exponentially distributed subtask service

times.

3.3.2 Computation of Subtask Delay Vectors

The fork–join system consists of N parallel heterogeneous servers. We assume that the interar-

rival time distribution of incoming tasks and subtask service times are exponentially distributed.

The cumulative probability distribution of subtask service times are as follows:

Fi(t) = 1− e−λit (3.7)

The completion time of q + 1 exponentially distributed subtasks is given by the Erlang distri-

bution ErlX(q + 1, λ), if the exponential tasks all have the same λ. The Erlang distribution is

the result of convolving the expX(λi) distribution qi + 1 times.

Each time a subtask completes service the following procedure is used to reassign delays of

subtasks that have not begun service:

1. If one or more sibling subtasks has completed service, the subtask begins service straight-

away.

2. The delay for ith subtask is calculated as follows:
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(a) Construct a vector q, where elements are equal to the queueing positions of sibling

subtasks (0: in service, 1: first in the queue and so on)

(b) Fill in Eqn. (3.9), where Fi is the cumulative probability distribution function of

Erl(λi, qi).

(c) Finally, to compute the optimal delay vector d solve the minimisation problem pre-

sented in Eqn. (3.8)

dmin = arg min
d′≥0

E[Disp(d′)] (3.8)

s.t.
N∏
i=1

di = 0

where

E[Disp(d)] =

∫ ∞
0

1−
N∏
i=1

(1− Fi(t− di))−
N∏
i=1

Fi(t− di)dt (3.9)

The memoryless property of the exponential distribution can be used to save on computation

time. As a result of the memoryless property, the exponential distribution does not change

when first n time units of the distribution are removed and the remaining parts are scaled to

have the probability to be equal to one.

The memoryless property in our case means that, the optimal delays are the same irrespective

of if some subtasks have begun service or not and the only variable that matters is the queue

position of each subtask. Therefore it is possible to have a cache in the form q→ d′. We remark

that this delay scheme could be improved in optimising subtask dispersion and task response

time in fork–join queues. The delay scheme utilises the knowledge of subtasks finishing, by

cutting delays of sibling subtasks to zero. However, this knowledge is not used when computing

the optimal delays. This is taken into account in the technique presented below in Sec. 3.4.

The technique also fails to fully utilise the flexibility fork–join systems, which allows service of

subtasks from different tasks in parallel. This is done better in the technique presented below

in Sec. 3.4.3.
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3.4 Dynamic Subtask Dispersion Reduction in Split–Merge

Queueing Systems

This section summarises previous research in minimising subtask dispersion in split–merge

systems with dynamically adjusted delays. The method was first presented in the MSc thesis

of the author and in the paper [103] by Tommi Pesu and William Knottenbelt.

3.4.1 Introduction

Here we introduce a improved technique for reducing subtask dispersion in split–merge systems.

To improve performance with regard to subtask dispersion and task response time a start work

signal is sent to the sibling subtasks when a subtask completes service. By dynamically adjusted

delays we mean that subtask delays can be changed until the subtask begins service. Once

servicing of a subtask has started it will proceed uninterrupted until completion. The start

work signal is able to reduce both task response time and subtask dispersion when compared

against algorithms described in earlier sections.

3.4.2 Calculating Subtask Dispersion in Dynamic Split–Merge Sys-

tems

The technique described here readjusts sibling subtask delays to zero when a subtask completes

service. As a result, it is not possible to use equation from Sec. 2.3.1 to accurately compute

subtask dispersion of the system. A new formula was derived in [103] is shown below:

E[Disp(d)] =
N∑
i=1

∫ ∞
0

T (i, t,d)Er(i, t,d)dt (3.10)

where

T (i, t,d) = fi(t− di)
∏
j 6=i

[1− Fj(t− dj)] (3.11)
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and

Er(i, t
′,d) =

∫ ∞
0

[1−
∏
j 6=i

Gj(t, t
′, dj)]dt (3.12)

with

Gj(t, t
′, dj) =

 Fj(t) if t′ < dj

Fj(t− (t′ − dj)|t > 0) otherwise
(3.13)

The rest of the optimisation proceeds in the same way as the previously described techniques.

The final step of the procedure is to perform a search in the optimisation space to discover a

suitable delay vector d, which minimises subtask dispersion.

The delay vector d indicates how long the service of subtasks are delayed at each server.

Eqn. (3.10) is used to compute the subtask dispersion of the system for the delay vector d. The

formula is composed of two main terms: T (i, t,d) and Er(i, t,d).

The function T (i, t,d) returns the probability that server i is the first server to finish service

at time t when using delay vector d. The definition of the function T (i, t,d) can be seen in

Equation (3.11). The second function Er(i, t,d) computes the expected time required to service

all the remaining subtasks, given that the first task i completed service at time t and the system

is using the delay vector d.

Gj(t, t
′, dj) is the probability distribution of completion time of server j. If t′ < dj the first

subtask finished before the delay dj ran out and service is begun immediately as a result of the

start work signal. Otherwise, the distribution is readjusted to take into account that service

did not complete in the first t− dj (time units).

The optimal delay vector dmin can be found by solving the following equation:

dmin = arg min
d′≥0

E[Disp(d′)] (3.14)

s.t.
∏
i

d′i = 0
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Figure 3.1: Dynamic subtask dispersion in a two server example with service time distributions
being: Exp(λ = 1),Exp(λ = 2)

3.4.3 Fork–Join Extension for Exponentially-Distributed Service Times

The technique presented right above in Sec. 3.4.2 is in general very effective in reducing subtask

dispersion. However, an optimisation can be spotted when service times are exponentially

distributed. In our test cases the algorithm begins service on a subset of subtasks straight away

and the rest of the subtasks will wait until one subtask completes. This can be observed in

Fig. 3.1, and as a result the technique could be improved in terms of task response time. The

task response time of the system can be improved significantly if the processing of subtasks is

“squashed” to be performed in a fork–join fashion. In practice this happens by starting the

bottleneck subtask(s) and simultaneously processing all the unfinished subtasks of the previous

task. An example of “squashing” is shown in Fig: 3.2.

Figure 3.2: Squashing subtasks in a two server example with service distributions being:
Exp(λ = 1),Exp(λ = 2)

We remark that the technique described above does not cover all the possible cases. For

example, if the expected service time of the remaining subtasks is larger than the expected

service time of the first subtask to complete, the process can add a large penalty to subtask

dispersion. A better strategy might be to delay the service of the bottleneck subtask(s) of the

next task until the expected task completion time of the current task has dropped below a

specific threshold.



3.5. Numerical Comparison of Techniques 71

3.5 Numerical Comparison of Techniques

This section presents three case studies, which compare the efficiency of the different algorithms

to reduce subtask dispersion and task response times of split–merge and fork–join systems.

The optimisation algorithms were implemented by the author; some of the results have been

presented before in [103], which is a paper by the author written before the PhD thesis.

The metrics for split–merge based techniques 1, 2, 3 and 6 are evaluated analytically. The

metrics for fork–join based techniques 4, 5 and 7 are simulated with 5 replicas of 5 million tasks

each. The performance of each system was measured in terms of task response time, subtask

dispersion and the trade-off metric which is a product of the two.

3.5.1 Analysed Techniques

Method 1 represents a vanilla split–merge system where no subtask delays are applied. The

tasks are processed one at a time, meaning the service of the next task does not begin before

all the previous task’s subtasks have finished.

Method 2 represents a split–merge system where subtask dispersion is minimised according

to the technique described in Sec. 3.1.

Method 3 represents a split–merge system where trade-off is minimised according to the

technique described in Sec. 3.2.

Method 4 represents a vanilla fork–join system with no delays applied in front of subtasks.

Each task is split into subtasks and the subtasks queue individually for their respective server.

Method 5 represents a fork–join system with dynamically controlled delays algorithm [127].

This algorithm uses interruptions to start processing of sibling subtasks once a subtask finishes.

The system uses the formula for subtask dispersion given in Sec. 3.3.

Method 6 represents a split–merge system that uses dynamic subtask dispersion technique

from Sec. 3.4.2 to calculate initial delays, which are then removed once a sibling subtask fin-
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ishes service. Once the first subtask has completed the two remaining subtasks begin service

immediately.

Method 7 modifies the split–merge system found in method 6 to derive a fork–join system in

which idling time is squeezed according to the principles of Sec. 3.4.3.

3.5.2 Case Study 1

The methods used in this case study are the same as the methods used above. The interarrival

time of new tasks entering the system is exponentially distributed with λ = 0.4 tasks per time

unit. The service time densities of the parallel servers are independent of each other and are

given below:

X1 ∼ Exp(λ = 1)

X2 ∼ Exp(λ = 2)

X3 ∼ Exp(λ = 2)

Task response time Subtask dispersion Trade-off

Method (time units) (time units) (time units)2

1 2.315 1.083 2.508

2 2.777 1.038 2.882

3 2.315 1.083 2.508

4 1.913 1.627 3.114

5 2.227 1.099 2.447

6 4.667 0.750 3.500

7 2.586 0.921 2.381

3.5.3 Case Study 2

Here the interarrival time of new tasks entering the system is exponentially distributed with

λ = 0.75 tasks per time unit. The service time densities of the parallel servers are independent
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of each other and are given below:

X2 ∼ Erl(n = 5, λ = 5)

X3 ∼ Uni(a = 0.2, b = 0.5)

X1 ∼ Exp(λ = 3)

Methods 5 and 7 used in the first two case studies only support exponentially distributed

service times and are therefore left out of this case study.

Task response time Subtask dispersion Trade-off

Method (time units) (time units) (time units)2

1 3.144 0.823 2.587

2 11.154 0.511 5.698

3 3.645 0.654 2.385

4 2.922 2.702 7.896

5 N/A N/A N/A

6 ∞ 0.460 ∞

7 N/A N/A N/A

3.5.4 Discussion

Method 6, which utilises the start work signal is the best method for minimising subtask

dispersion in the two case studies. The use of the start work signal is especially efficient at

minimising subtask dispersion when there is one large bottleneck subtask and the other subtasks

have a short service time, As can be seen in the Case Study 1.

In Case Study 2 (Sec. 3.5.3) the task interarrival rate λ is bigger than the task service rate µ of

Method 6 and therefore the task response time and trade-off metrics receive infinite values.

To be able to use the technique with a finite service time interarrival rate λ needs to be either

lowered or techniques further discussed in Chapte. 6 could be used.
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When the end user wants to minimise the trade-off between subtask dispersion and task response

time the best method according to our first case study is Method 7. The technique is able

to leverage both the start work signal to improve subtask dispersion and the squeezing of

service to improve task response time of the system. However, the technique does not work

with non-exponential service times. The best technique to use in case study 2, which includes

non-exponential service times Method 3.

Method 7 points at an interesting research avenue into developing a technique to minimise the

trade-off product in general fork–join systems. This is because the method shows that the fork–

join system can be combined with the start work signal to produce superior results. Especially

as Method 7 is just a rough concept to demonstrate that this can be done in fork–join systems

with exponentially distributed service times, Instead of a fully fledged optimal algorithm.

It can be sen from the case studies, that task response time is increased when delays are

added to task service and sometimes the systems become unstable as a result. The system is

stable when λ < µ. More ways to further improve the performance of split–merge systems are

introduced in Chapter 6. In context of system stability the work on state-dependent delays

are especially useful. As they provide a smarter way to add delays so that the stability of the

system is preserved.



Chapter 4

Optimising Hidden Stochastic PERT

Networks

This chapter introduces a technique for minimising subtask dispersion in hidden stochastic

PERT networks. The technique improves on existing research in two ways. Firstly, it enables

subtask dispersion reduction in DAG structures, whereas previous techniques have only been

applicable to single-layer split–merge and/or fork–join systems. Secondly, the exact distribu-

tions of subtask processing times do not need to be known, so long as there is some means of

generating samples. The technique is further extended to use a metric, which trades off subtask

dispersion and task response time.

4.1 Introduction

Project Evaluation and Review Technique (PERT) is a widely used scheduling technique in

industry [4, 116, 46]. PERT networks are DAG (Directed Acyclic Graph) structures. The

DAG defines restrictions on the order which activities must be serviced in. In stochastic PERT,

the service times of activities are represented by probability distributions instead of numerical

constants. Hidden in our context indicates that the user does not know the graph of the

PERT network. A more thorough introduction to PERT Networks can be found earlier in the

75
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dissertation in Sec. 2.2.3.

In this chapter, effectiveness of PERT networks are analysed with respect to two criteria:

subtask dispersion [126, 103] (difference in time between the subtask that completes first and

the subtask that completes last) and task response time [58, 131] (time for all the subtasks of

the task to complete). In the case where an end user considers both subtask dispersion and task

response time to be important, a trade-off metric can be used [128]. Task response time and

subtask dispersion were chosen as metrics to analyse the performance of our system, because

the combination of the two metrics match quite closely with what the end user finds important

in the examples below.

Minimising subtask dispersion in hidden stochastic PERT networks is useful in scenarios where

information is distributed to multiple competing parties and receiving the information before

others gives an advantage to one party. An example of this happens in online games that

require fast reflexes. Players who have a lower than average lag have an advantage, as they are

able to react first to in-game events [144].

In the financial markets it is advantageous to buy from multiple exchanges when executing

large orders, as this allows one to tap into more liquidity. However, if the order execution is

done in a way that causes high subtask dispersion, then high frequency traders are able to

transmit the order details between exchanges, buy up the stock and then moments later resell

it at a slightly higher price to the original buyer [23].

Network protocols TCP and UDP, which are the underpinnings of the modern internet do not

provide time guarantees for packet delivery. For example, UDP packets might never arrive.

On the other hand the arrival of TCP packets might be delayed due to error correction and

congestion control [42].

As a result, it makes sense to treat the routing structure between computers in a network as a

hidden stochastic PERT network due to the inability of TCP and UDP to offer time guarantees.

In this case, the user is typically not aware of its structure or the performance characteristics of

individual activities (in this case sending a message between two routers). Here the server’s task
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is to broadcast a message to the clients. This comprises in turn several subtasks, each of which

involves the delivery of the message to one of the clients. The server wishes that all the clients

receive the information with a low subtask dispersion and a low task response time. The server

can control subtask dispersion and task response time by adding delays to the transmission of

messages. However, as the server does not have control of the whole network, it can only add

delays to a limited set of routers.

This chapter presents a new technique for minimising subtask dispersion – or a trade-off prod-

uct metric involving subtask dispersion and task response time – in hidden stochastic PERT

networks. The technique approximates subtask dispersion and task response time by simulation

for a given set of added delays – a decision made because analytical techniques such as [59] can-

not be applied when specifics of the underlying PERT network are unknown. The Covariance

Matrix Adaptation Evolution Strategy (CMA-ES) algorithm [56] further discussed in Sec. 2.4.3,

which is noted for its ability to cope with noise, is used to minimise the approximation function.

4.2 Preliminaries

This section contains a brief explanation of how the performance of PERT networks is measured.

4.2.1 Task Response Time

Task response time measures the time it takes to service all activities. As the user often does

not know exact details of the topology or service time distributions of activities in the PERT

network, the user is not able to construct a analytical solution to the problem. Therefore,

in this chapter, task response time is calculated via Monte Carlo simulation. As there is no

queueing in PERT networks, the task response time of a system is the same as the task service

time.
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4.2.2 Subtask Dispersion

For a stochastic PERT network, subtask dispersion is defined as the difference in time between

the subtask that was last to complete and the subtask that was first to complete. It is possible

to calculate subtask dispersion analytically, if the exact details of the PERT network are known,

as shown in [103, 59].

However, we consider settings where the exact topology and service time distributions are not

known. Therefore, calculation of subtask dispersion is simulated via Monte Carlo method, as

was the case for task response time.

4.2.3 Trade-off Metric

It is possible to measure the overall performance of the system with a trade-off metric defined

as the product of subtask dispersion and task response time [128], i.e.

T (d) = Disp(d)Resp(d) (4.1)

Here, we extend this with a weight 0 ≤ α ≤ 1, which indicates the relative importance of the

two metrics:

T(d, α) = Disp(d)1−αResp(d)α, 0 ≤ α ≤ 1 (4.2)

4.3 Method to Optimise PERT Networks

The approach to use simulations to optimise the trade-off between subtask dispersion and task

response time differs from past research. Past research has focused on single-level parallel pro-

cessing systems and have assumed full knowledge of system parameters to construct analytical

functions, which are minimised [126, 128, 127, 103]. However, these techniques are manifestly

unsuitable for application in the context of hidden PERT networks.
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Our new technique not only works on more general tasks, which have a graph structure, whereas

the existing techniques only work on simple structures such as split–merge and for–join systems.

Also the technique does not require knowledge of the underlying probability distributions of

activity service times. Instead, this technique only needs to be able to randomly sample the

probability density function. It is assumed that the user has control over a subset of the

activities in the system Sc and the user is able to apply non-negative delays before the processing

of these activities.

4.3.1 Optimisation Procedure

The optimisation procedure has two main phases. Firstly, subtask dispersion – for a given set

of n subtasks and delays for activities in Sc – is calculated via repeated simulation of t tasks.

When t is increased, accuracy increases at the expense of computation effort and vice versa

when it is reduced. Secondly, CMA-ES is applied on the approximation function to find optimal

delays. CMA-ES was chosen due to it being considered something of a standard in black box

optimisation [55], which performs better in the context of non-convex optimisation than many

classical methods. This is an important feature as the estimates generated via random sampling

contain noise.

Where it is desired to trade off subtask dispersion and task response time, we can similarly

apply CMA-ES to minimise the penalty function T(d, α), i.e.

dmin = arg min
d≥0

T(d, α) (4.3)

s.t.
N∏
i=1

di = 0

in which the two main components of T (d) are generated as averages of Monte Carlo simulations

of t tasks.

The function is used to generate subtask dispersion and task response time estimates for the

CMA-ES. The PERT network can be seen in Fig. 4.1. In practice, this function would be
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generated by repeatedly trying to send a messages between a server and clients and then

measuring subtask dispersion and task response time. The penalty function is then minimised.

4.3.2 Validation of Optimisation Procedure

The method described above was validated by simulating delays for various split merge-systems,

which can be solved analytically [126]. The CMA-ES was supplied with a black-box function

that estimated the task response time and subtask dispersion of the split merge-systems for a

given set of delays. The CMA-ES was then able to replicate the analytical results with a good

degree of accuracy.

Only subtask dispersion is validated as split–merge systems potentially have to queue to enter

service. The task response time of a PERT network would be equal to the task service time of

a split–merge system.

Case Study 1

Consider a system where subtask service times are distributed in the following way:

X1 ∼ Exp(λ = 5)

X2 ∼ Erl(n = 2, λ = 3)

X3 ∼ Uni(a = 0.2, b = 0.5)

given t = 103 and 10 repeats results in a subtask dispersion of 0.451 with a variance of 3.6705×

10−6, while the optimal subtask dispersion is 0.448. A smaller t = 100 resulted in a subtask

dispersion of 0.452 and a variance of 8.443× 10−6.
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Case Study 2

Consider an another system where subtask service times are distributed in the following way:

X1 ∼ Exp(λ = 1)

X2 ∼ Exp(λ = 5)

X3 ∼ Exp((λ = 10)

given t = 103 and 10 repeats results in a subtask dispersion of 0.788 with a variance of 9.195×

10−6, while the optimal subtask dispersion is 0.783. A smaller t = 100 resulted in a subtask

dispersion of 0.795 and a variance of 7.922× 10−5.

Validity of Results

The optimisation routine we presented above achieves similar results as the original analytical

technique [125, 128, 127]. The results also become more accurate as t is increased, as seen when

comparing t = 100 and t = 103.

4.4 Results

In this subsection we apply the technique introduced above in the context of the hidden stochas-

tic PERT network of Figure 4.1. It has three sources (1, 2, 3) and two sinks (9, 10). The

user-controlled activities have distributions f1, f2 and f3. Information regarding the various

probability distributions can be found in Sec. A. The service time of activities fi are distributed
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as follows:

fi =



Exp(λ = 0.2) i = 1

Exp(λ = 0.5) i = 2

NF (µ = 1, σ2 = 0.5)| i = 3

Uni(a = 0.2, b = 0.7) i = 4

Pow(a = 3) i = 5

NF (µ = 0.5, σ2 = 1) i = 6

Pow(a = 2) i = 7

Uni(a = 0.75, b = 0.8) i = 8

NF (µ = 5, σ2 = 1) i = 9

The service time duration of the two subtasks T9 and T10 can be derived from the component

activities as follows:

T9 = max(max(X1, X2) +X4, X3 +X5) +X6 +X8 (4.4)

T10 = X3 +X7 +X9 (4.5)

Where Xi is a random variable generated from the function fi.

Method 1 Optimised task response time

The results for no delays were calculated using a zero delay vector for 107 tasks. Metrics were

averaged over 10 runs, which resulted in the following:

Subtask dispersion: 2.841 time units

Task response time: 6.689 time units

Trade-off, α = 0.5: 4.358 time units

Method 2 Optimised subtask dispersion.

Here 1 000 samples per measurement point were taken. We ran the CMA-ES algorithm 10

times and the subtask dispersion and task response time for each set of delays was calculated

via simulation of 107 tasks.
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Figure 4.1: PERT network used to analyse results

This resulted in the following:

Subtask dispersion: 1.096 time units

Task response time: 7.833 time units

Trade-off, α = 0.5: 2.921 time units

Method 3 Optimised trade-off with α = 0.5.

Again 1 000 samples per measurement point were taken. The we ran the CMA-ES algorithm 10

times and the subtask dispersion and task response time for each set of delays was calculated

via simulation of 107 tasks.

This resulted in the following:

Subtask dispersion: 1.105 time units

Task response time: 7.166 time units

Trade-off, α = 0.5: 2.814 time units

Figures 4.2, 4.5 and 4.8 display how task response time, subtask dispersion and trade-off (α =
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0.5) behave as the set of delay vectors is varied. In each picture one of the three delays of the

controlling set Sc is set to 0 and the two others are allowed to vary between 0 and 15 with a

stepsize of 0.1. The colouring of the image represents the resulting subtask dispersion (averaged

over 1 000 samples) given the corresponding delay vector.

The black dots in the figures show the solutions produced by the CMA-ES technique. In each

figure, we show the value of the cost function for the configuration that two of the delays are

varied and one is set to zero. Hundred simulations were ran for each two variable space and

the results show that the CMA-ES is consistently able to find good candidate solutions for the

optimum. This is shown by the fact that the black dots are consistently located in the middle

of the red band.

Figure 4.11 shows how metrics vary as α is varied. The trade-off metric approaches near-

optimal value when α is between 0.2 and 0.8. When α approaches 1 the lowest possible task

response time is found; however, this comes at the expense of subtask dispersion. Similarly,

when α approaches 0 the lowest possible subtask dispersion is found; however, this comes at

the expense of task response time. This is how you’d expect the three optimisation metrics to

behave.

In our example, node 5 is the critical node. It acts as a cork that prevents the completion

of T9 until both sides of the PERT network have started service. Therefore, if the task f3 is

completed much earlier than the tasks f1, f2 and f4, a high subtask dispersion occurs as a

result. This is caused by subtask T10 completing earlier than subtask T9.

The top two figures in Fig. 4.2 on the other hand show that a fairly good result of subtask

dispersion of around three can be expected if the group of tasks f1, f2 and f4 is serviced before

the task f3.

The graphs suggest that either f1 and/or f2 should be delayed for approximately 4 (time units)

longer than f3 to achieve optimal subtask dispersion. The Fig. 4.5 suggests that the bottleneck

subtask for task response time is T10 as all three figures seem to suggest that dropping delays

below four in tasks f1 and f2 has no noticeable improved effect on task response time.
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Therefore to find a optimal solution under the trade-off metric either f1 or f2 should have

roughly a four second delay and task f3 should have no delay.

4.5 Conclusion

In this chapter, we have developed techniques to analyse and optimise parallel queueing systems

under real world conditions where it is often difficult to gather precise data about network

topology, routing probabilities and service time distributions. The particular formalism we

have adopted is the hidden stochastic PERT network. In this context, we have shown how

beneficial it can be to apply optimisation algorithms that can cope with non-convex noise data,

such as the CMA-ES algorithm.

Our method to optimise hidden stochastic PERT networks appear to find robustly near-optimal

solutions for our test cases when optimising for subtask dispersion alone or for a trade-off metric,

which balances subtask dispersion and task response time. Figures 4.2, 4.3, 4.4, 4.8, 4.9, 4.10

in total show 600 trial runs, 100 for each figure. Out of the 600 runs there seems to be just

one case – in Fig. 4.3 – where the simulation appears to have failed and produced the solution

(0,0,0), which is not in the middle of the red band of best solutions. We suspect that this is an

issue in the Python implementation of CMA-ES.

There is still lots of research to be performed on the topic. For example, the technique could be

improved to obtain confidence intervals for the cost function. Another improvement could be

to investigate procedures that use minimal amount of sampling of the underlying probability

distribution, as it can be expensive to query it.
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Figure 4.2: Subtask dispersion for delays (0, x, y)
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Figure 4.3: Subtask dispersion for delays (x, 0, y)
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Figure 4.4: Subtask dispersion for delays (x, y, 0)
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Figure 4.5: Task response time for delays (0, x, y)
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Figure 4.6: Task response time for delays (x, 0, y)
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Figure 4.7: Task response time for delays (x, y, 0)
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Figure 4.8: Trade-off (α = 0.5) for delays (0, x, y)
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Figure 4.9: Trade-off (α = 0.5) for delays (x, 0, y)
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Figure 4.10: Trade-off (α = 0.5) for delays (x, y, 0)
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Figure 4.11: Influence of α on optimisation metrics



Chapter 5

Models for Restart and Replication

Thus far the only technique we have considered to improve the overall performance of parallel

queueing systems has been delay padding, which is the addition of delays in front of subtasks

to improve metrics involving subtask dispersion. In this chapter, we investigate alternative

techniques that could be used in conjunction with delay padding. Specifically, the chapter

provides an overview of analysis and optimisation of ‘restart’ and ‘replication’ strategies, as

well as providing an up-to-date survey of the research literature of restart models in general.

This chapter is an extension of the book chapter written by Katinka Wolter, Tommi Pesu, Aad

Van Moorsel and William Knottenbelt for the Handbook of Software Aging and Rejuvenation

(To appear).

The work in this chapter is a prelude to the next chapter. In this chapter we explore restart

and replication and how to perform them optimally. In the next chapter results are applied in

the context of split–merge queueing systems.

5.1 Introduction

Service restart is the act of abandoning the current service attempt and starting again. Service

restart can help reduce the overall service time of a task. For example, when it is believed

90
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that something has gone wrong with the original service attempt. A machine crashing or being

overloaded could be considered as an example of a failure.

Service replication is the act of performing the service multiple times in parallel and then

picking the fastest service. Service replication can help reduce the overall service time of a

task. For example, when a random element is involved with the service of task you are more

likely get lucky faster if you are doing multiple attempts simultaneously.

Service replication and restart are not the only possible ways to improve task service time. For

example, work has been done on studying speed-scaling as a way to improve task service time.

The first few sections of this chapter, which discuss models, metrics and related quantitative

methods for using restart to improve service time, are a much-abridged version of [139].

The chapter is organised as follows. First in Sec. 5.2 we discuss the Hazard Rate, which defines

the intensity of completion of a task at time t. Secondly, we discuss the following metrics to

assess effectiveness of restart: moments of completion time and the probability of meeting a

deadline. Finally we discuss restart through the lens of some example probability distributions,

which include exponential, hyper- and hypo-exponential and heavy-tailed distributions.

Sec. 5.3 derives expressions for the moments of completion time under restarts, as well as

deriving expressions for the probability of making a deadline.

Sec. 5.4 studies the optimal restart time for both these metrics, again subdivided in optimising

moments and deadline probabilities, respectively.

Sec. 5.5 discusses replication strategies, which can be used to reduce service duration of lag-

ging tasks. The three strategies covered include: n-fold replication, hedged requests and tied

requests.

Finally Sec. 5.6 concludes the chapter by summarising key aspects of it.
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5.2 Metrics to Assess the Benefits of Restarts

It might not seem very obvious that restart could be a way to improve performance. However,

many readers have likely used restart to improve performance when browsing the internet.

When a web page takes a long time to load, users tend to hit the refresh button to reload the

page, because if they do not click refresh the page might never appear. The paper [79] discusses

the technical reasons behind the phenomenon and explains that refreshing the page ‘overrules’

the TCP retransmission timer, which often improves the overall download time.

Tasks that restart is applied to usually complete after a certain time, but the completion time

is not fixed. The restart tasks can be formed in several ways. For example, the old instance

might or might not be aborted. Similarly, sometimes the task perform after a restart is identical

to first attempt, but sometimes parameters or even requirements might change.

The models discussed in this chapter make two assumptions. Firstly, a restart of a task ter-

minates the previous attempt. Secondly, the service time of successive service attempts are

statistically independent and identically distributed. The second assumption has been found

to match well with reality in the case of downloading web pages [91, 107].

The restart problem is formulated as follows. Let the random variable T define the task service

time, with probability distribution function F (t), t ∈ [0,∞), and probability density function

f(t), t ∈ [0,∞). For convenience, but without loss of generality1 we assume that F (t) is

continuous and defined for t ∈ [0,∞) and F (t) > 0 if t > 0. τ defines the restart time2, and the

random variable Tτ denotes the task completion time when an unbounded number of retries is

allowed, which means a retry takes place every τ time units until a deadline (if set) has passed

or the job has completed. fτ (t) and Fτ (t) are the density and distribution of Tτ .

1With more notation and a in-depth investigation of special cases the results of this section can be applied
to distributions in finite domains, defective distributions and distributions with jumps.

2τ can also refer to restart interval.
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5.2.1 Hazard Rate

The hazard rate defines the intensity of completion at time t. To complete a task quickly

the hazard rate should be high. A decaying hazard rate suggests restart is beneficial and a

increasing hazard rate suggests restart is harmful. The Hazard rate is defined as follows:

h(t) =
f(t)

1− F (t)
(5.1)

5.2.2 Moments of Service Time

The first metrics we discuss are the moments of the completion time of the task E [T n], for

n ∈ N . We assume independent identically-distributed service time for each successive retry.

When considering the first moment, it is beneficial to restart at time τ when:

E [T ] < E [T − τ | T > τ ] . (5.2)

In practice, this means expected completion time of the task E [T ] is less than E [T − τ | T > τ ],

which is the remaining completion time without restart. Eqn (5.2) is only concerned with one

restart. In Sec. 5.3 it is shown that Eqn (5.2) is a necessary and sufficient condition for any

number of restarts to improve the first moment (mean) of service time.

A similar expression can also be defined for higher moments of task completion time E [T n]:

E [T n] < E [(T − τ)n | T > τ ] . (5.3)

In Sec. 5.3 it is shown that for higher moments, the implication that ‘a single restart is better

than no restart then an unbounded amount of restarts is even better’ is not valid. Therefore

it is not possible to use condition shown in Eqn. (5.3). For higher moments, repeated restarts
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are beneficial if the condition below holds:

E [T n] < E [T nτ ] . (5.4)

5.2.3 Probability of Meeting Deadlines

The second interesting metric is the probability to meet a deadline. The completion time

distribution with restarts can be treated as a repeated Bernoulli trial. Between successive

restarts there is a probability F (τ) that service is completed. If the deadline d is a multiple of

the restart time τ the probability of missing the deadline with restart is given below:

1− Fτ (d) = (1− F (τ))
d
τ . (5.5)

Then, the probability of meeting the deadline under restart is

Fτ (d) = 1− (1− F (τ))
d
τ (5.6)

The system should only be restarted if the probability of meeting the deadline is higher with

restart than without. That is, if

Fτ (d) > F (d). (5.7)

5.2.4 Example Distributions

In this subsection, we study various probability distributions and analyse whether they benefit

from service restart. We investigate the exponential distribution and two variants of it, namely

the hypo- and hyper-exponential distribution, all of which have an exponential tail. In addition

we investigate the Pareto distribution, which has a heavy tail.
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Exponential Completion Time Distribution

For exponentially-distributed task service times the expected completion times are the following:

E [T ] =

∫ ∞
0

tλ · e−λt dt =
1

λ

E [T − τ | T > τ ] =

∫ ∞
τ

(t− τ)λ · e−λ(t−τ) dt =
1

λ

As a result the exponential distribution is neutral in terms of restart. In Section 5.2.1 we

discussed the hazard rate. The hazard rate can be used to tell if a restart is helpful. The

hazard rate function h(t) = λ for exponential distributions indicates that restart has no impact

on the exponential distribution, as the function is just constant. For exponentially-distributed

service completion time the Eqn. (5.7) is equal to:

Fτ (d) = F (d)

Hyper-Exponential Completion Time Distribution

A hyper-exponential distribution is a mixture of exponential distributions. Further information

can be found in Sec. A.2. The hyper-exponential distribution has a higher coefficient of variation

than the exponential distribution and as a result benefits from service restart [114].

Intuitively, distributions which pick values from distinct random variables with a given proba-

bility are possibly good candidates for restarting. In other words distribution Xi is picked with

probability pi, where
∑
pi = 1. In such distributions as time passes it becomes more likely

that you were unusually unlucky and were assigned a distribution with a larger than average

mean. Restarting service then allows for a new chance to be more in line with the average of

the distribution.
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Hypo-exponential Completion Time Distribution

A hypo-exponential distribution is the sum of multiple exponentially-distributed functions

where the parameter λ of each individual exponential distributions can vary. More details

can be found in Sec. A.4. Hypo-exponential distributions (such as the Erlang distribution)

have a lower coefficient of variation than the exponential distribution and never benefit from

restarts since the condition Eqn. (5.7) never holds.

This is because, multiple subtasks need to be completed sequentially to finish service, where

none of the individual subtasks benefit from restart. If you were to restart your amount of

completed subtasks would go back to 0, which is equal or worse to the current state. In

addition, you would not be in a better position in terms of servicing a specific subtask faster.

This is, because they are distributed exponentially and abide by the memoryless property.

Heavy Tails: Pareto Completion Time Distribution

The Pareto distribution is an example of a heavy-tailed distribution. More details on the Pareto

distribution can be found in Sec. A.5.

For a 6= 1, the expected completion times are the following:

E [T ] =
a · b
a− 1

E [T − τ | T > τ ] =

∫ ∞
τ

(t− τ)
b

(t− τ)2
dt

= [b ln(t− τ)]∞τ =∞.

The expected completion time after waiting for time τ does not converge. Therefore it is always

useful to restart a task which has a Pareto-distributed task service time. Indeed unlimited

number of restarts is an especially attractive, as it makes the expected service time be finite

instead of infinite.
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Conclusion

To summarise, distributions with heavy tails often benefit from restart. In such distributions,

the tail decreases polynomially in such a way as to leave a large probability mass for the

high values of T . Heavy-tailed and related distributions commonly appear when studying

applications communicating over the internet [79]. Distributions with exponentially decaying

tails in some cases can also exhibit behaviour that benefits from restart, for example hyper-

exponential distributions. By contrast, it is never beneficial to restart in the context of hypo-

exponential distributions.

5.3 Expressions for Completion Time under Restarts

This section covers the mathematical formulation for moments of task service time and the

probability of missing a deadline under restarts. Firstly, for moments of task completion time

we study the case of an unbounded number of restarts in Sec. 5.3.1, where restarts occur after

a fixed interval. Secondly, we consider the case where restart intervals can vary and be finite

in number in Sec. 5.3.2. Finally, we take a look at how the probability of missing a deadline is

expressed mathematically in Sec. 5.3.3.

5.3.1 Moments of Completion Time: Unbounded Number of Restarts

We first study the task completion time distribution with an unbounded number of restarts.

Meaning that the system will be restarted once every τ time units until the task has completed.

We use notation from Sec. 5.2 and introduce an overhead cost c, which is the duration of the

restart process. Fτ (t), the service time distribution with restarts can be presented in terms of

F (t) (the service time distribution without restarts) and c as follows:
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1− Fτ (t) =



(1− F (τ))k(1− F (t− k(τ + c)))

if k(τ + c) ≤ t < k(τ + c) + τ

(1− F (τ))k+1

if k(τ + c) + τ ≤ t < (k + 1)(τ + c)

(5.8)

for k = 0, 1, 2, . . .. The lower branch of Eqn: (5.8) refers to the idle period c, caused by the cost

of restart. The probability density function is given below:

fτ (t) =



(1− F (τ))kf(t− k(τ + c))

if k(τ + c) ≤ t < k(τ + c) + τ

0

if k(τ + c) + τ ≤ t < (k + 1)(τ + c)

(5.9)
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Figure 5.1: The probability density function of the mixed
hyper/hypo-exponential distribution. For a single restart the opti-
mal restart interval is 0.25 and for unbounded number of restarts
the optimal restart interval is 0.19.
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Figure 5.2: The probability density function fτ (x) task ser-
vice completion time with unbounded number of restarts (based
on hyper/hypo-exponentially distributed completion time without
restarts, with restart time τ = 0.1 and cost c = 0.02).

For visualisation of a probability density function Tτ , see Fig. 5.1 and 5.2, for a mixed hyper/hypo-

exponentially distributed T . The hyper/hypo-exponential is defined as follows:

f(x) =

 Erl(n = 2, λ = 10) p1 = 0.9

Erl(n = 2, λ = 1) p2 = 0.1

Fig. 5.1 represents the no restart probability density function of the hyper/hypo-exponential dis-

tribution and Fig. 5.2 represents the restart probability density function fτ of the hyper/hypo-

exponential.

Later on we show that for a single restart the optimal restart time is τ = 0.25 and for unbounded

restarts the optimal restart interval is τ = 0.19. The expectation of service time with no restarts

is 0.190, with a single restart 0.136 and with unbounded number of restarts 0.127.

The moments of service time are defined as follows:

Mn(τ) =

∫ τ

0

tnf(t)dt =

∫ τ

0

tnfτ (t)dt. (5.10)

The partial moments of T and Tτ are identical between 0 and τ , because the probability density
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functions are identical before a restart has taken place.

Theorem 5.1. The moments E [T nτ ] =
∫∞
0
tnfτ (t)dt, n = 1, 2, . . . , of the task service time with

unbounded number of restarts, restart interval τ > 0, and restart penalty time c, is shown below:

E [T nτ ] =
Mn(τ)

F (τ)
+

1− F (τ)

F (τ)

n−1∑
l=0

(
n

l

)
(τ + c)n−lE

[
T lτ
]
, (5.11)

where E [T 0
τ ] = 1.

Proof. For details of the proof see [130].

The expected task service time is given by:

E [Tτ ] =
M1(τ)

F (τ)
+

1− F (τ)

F (τ)
(τ + c). (5.12)

The first term of Eqn. (5.12) is the expected service time on the interval where service completes.

The second term sums up the intervals where service failed to complete. The expression for the

other moments can be computed with Eqn. (5.11). For example, n = 2 is variance of service

time.

0.25 0.5 0.75 1 1.25 1.5 1.75 2
Τ

0.5

1

1.5

2

2.5

E@TΤ
kD�E@TkD,k=1,2,3

E@TΤD�E@TD

E@TΤ
2D�E@T2D

E@TΤ
3D�E@T3D

Figure 5.3: Restart time versus the normalised difference between
unbounded restarts and no restarts, for the first three moments.
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Fig. 5.3 displays the relative improvement when the restart interval is varied in terms of the

first three moments of service time. When the number of the measured moments is increased

the relative improvement achieved by restart also increases. In addition, it can be seen that

if the restart interval is too short it can be costly, but having a longer than optimal restart

interval only causes a modest increase in service time.

As a corollary of Theorem 5.1 we present an important result, which was observed in [25] in

the context of failure detectors.

Corollary 5.1.1. When using an unbounded amount of restarts, expectations and higher mo-

ment of service time Tτ with restart interval τ > 0 (and F (τ) > 0), are always finite regardless

of the original distribution.

This is especially useful when there is a non-zero probability of the task failing service (infinite

service time).

5.3.2 Moments of Completion Time: Finite Number of Restarts,

Restart with Non-Identical Intervals

Sometimes it is useful to have a finite number of restarts, or a non-constant restart interval.

In Sec. 5.3.1, the hyper/hypo-exponential example shows a low restart interval can increase

the service time greatly if there is no bound on the number of restarts. However, for many

distributions it can be beneficial to limit the number of restarts, or increase the restart interval,

because there is a large penalty for having a restart interval that is too short. For an extreme

example, assume a distribution where there is 99% chance to complete after 1 second and

otherwise completion happens after 10 seconds. Now assume that we have a slight measurement

error and we decide to restart after 0.99 seconds, which results in terrible performance.

In Fig 5.4 we assume the number of restarts is K, the restart intervals are τ1, τ2, . . . , τK and

i-th interval start time is si =
∑K

k=1(τk + c). The service time given K restarts is the random

variable Tτ1,...,τK .
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Figure 5.4: Illustration of the restart process.

The cumulative distribution function of service time Fτ1,...,τK and probability density function

fτ1,...,τK are derived in a similar way as the unbounded case, shown in Eqn. (5.8) and (5.9).

When defining τK+1 = ∞ we can define the density and distribution function in a piecewise

manner as follows:

1− Fτ1,...,τK (t) =



∏k−1
i=1 (1− F (τi))(1− F (t− sk))

if sk ≤ t < sk + τ, k = 1, . . . , K + 1∏k
i=1(1− F (τi))

if sk + τk ≤ t < sk+1, k = 1, 2, . . . , K

fτ1,...,τK (t) =


∏k−1

i=1 (1− F (τi))f(t− sk)

if sk ≤ t < sk + τ, k = 1, . . . , K + 1

0 if sk + τk ≤ t < sk−1, k = 1, 2, . . . , K

(5.13)

The expression for moments in the case of finite restart with varying restart intervals are given

in the following theorem.

Theorem 5.2. The moments E
[
T nτ1,...,τK

]
=
∫∞
0
tnfτK ,...,τ1(t)dt, n = 1, 2, . . . , of the completion

time with K restarts, restart interval lengths τ1, τ2, . . . , τK , and time c consumed by each restart,

can be expressed as:

E
[
T nτ1,...,τK

]
= Mn(τ1) + (1− F (τ1))

n∑
l=0

(
n

l

)
(τ1 + c)n−lE

[
T lτ2,...,τK

]
, (5.14)

where E
[
T 0
τ2,...,τK

]
= 1.
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The proof of the Theorem 5.2 can be found in [130]. The theorem also allows for the efficient

numerical computation of the moments. The first moment is given below as an example:

E [Tτ1,...,τK ] = M1(τ1) + (1− F (τ1))(τ1 + c+ E [Tτ2,...,τK ]). (5.15)

5.3.3 Expressions for Probability of Meeting Deadlines

If deadline d is a whole number multiple of the restart interval τ , the probability of missing a

deadline is computed as follows:

1− Fτ (d) = (1− F (τ))
d
τ . (5.16)

The general case of using non-constant restart intervals and deadline d, where d is not a whole

number sum of τ is more complicated:

1− Fτ (d) =



k∏
i=1

(1− F (τi)) · (1− F (d−
k∑
i=1

(τi + c)))

if
k∑
i=1

(τi + c) ≤ d <
k+1∑
i=1

τi + kc

k+1∏
i=1

(1− F (τi))

if
k+1∑
i=1

τi + kc ≤ t <
k+1∑
i=1

(τi + c).

(5.17)

5.4 Optimization of Restart Strategies

This section investigates how to compute optimal restart intervals. It covers the first moment

of completion time in Sec. 5.4.1, higher moments in Sec. 5.4.2 and deadline probabilities in

Sec. 5.4.3. In each category the optimal restart interval depends on number of restarts and

whether intervals are of equal length.
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5.4.1 Optimal Restart Times for Expected Service Time

Theorem 5.3. The optimal restart time τ ∗ > 0 that minimises the expected completion time

E [Tτ ] is such that:

1− F (τ ∗)

f(τ ∗)
= E [Tτ∗ ] + c. (5.18)

That is, if c = 0, the inverse of the hazard rate at τ ∗ equals the expected completion time under

unbounded restarts.

Proof. To obtain this result, we equate to zero the derivative with respect to τ of E [Tτ ] =

M1(τ)
F (τ)

+ 1−F (τ)
F (τ)

(τ + c) (the base relation (5.12)). After some manipulation we find:

h−1(t) =
d

dτ
E [Tτ ] = 0 ⇐⇒ 1− F (τ)

f(τ)
= E [Tτ ] + c.

Eqn. (5.18) may hold for more than one restart value, including τ →∞, and therefore can hold

for any local minima and maxima and not just the global optimum.

Paper [130] states that any number of restarts is beneficial to completion time if and only if

a single restart improves completion time. If a single restart improves the mean service time,

then increasing the amount of restarts will improve it further all the way to an unbounded

number of restarts, as illustrated in Fig. 5.5. Any amount of restarts improves the expected

service time once a threshold (approx t > 0.05) is crossed.

The theorem presented in this section applies for unbounded restarts, where restart is repeated

every τ time units. In the paper [130], an iterative algorithm is provided for computing optimal

finite number of varying restart intervals.

Table 5.1 displays the optimal restart interval given that a number of restarts can still be

performed after the current restart. The service time distribution is the mixed hyper/hypo-

exponential distribution that has been discussed earlier, with the same parameters as were used

in Fig. 5.2.
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Figure 5.5: Expected service time for different amount of restarts

amount of restarts left optimal length of next restart interval
unbounded 0.198254

10 0.198254
9 0.198254
8 0.198254
7 0.198256
6 0.198265
5 0.1983
4 0.199
3 0.200
2 0.209
1 0.249

Table 5.1: Optimal restart intervals for finite and unbounded number of
restarts.

From table 5.1 it can be observed that the optimal restart interval grows, when the amount

of future restarts decreases. When there are still many restarts to come afterwards the restart

interval is very close to the unbounded value of 0.198254 time units. In contrast, last two

restart intervals, which are 0.209 and 0.249 time units.

5.4.2 Optimal Restart Times for Higher Moments

Optimising higher moments is a more complicated, as each moment has its own optimal restart

interval. Also there can be situations such as t < 0.05 in Figure 5.6 when two restarts improve

the second moment, but an unbounded number of restarts makes it worse. This means that
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Figure 5.6: Second moment of service time for different amount of restarts.

increasing the number of restarts is not always beneficial when optimising higher moments. Also

it is normally not optimal to apply a constant restart interval to optimise a higher moment,

even if you allow an unbounded amount of restarts.

Therefore optimal restart interval computation needs to consider the following: the specific

moment being optimised, number of restarts and whether intervals should be identical. The

paper [130] has more information on optimising under such conditions.

In this section we limit the discussion to optimising the restart intervals to the case where

service time T is distributed log-normally, with parameters µ = −2.31 and σ = 0.97. The

log-normal distribution is a heavy-tailed and therefore benefits from restarts. The parameter

values were fitted from experimental data of HTTP GET service times in [107].

TK denotes service time with K restarts. We will calculate for K = 15 the restart intervals

that minimise the first, second and third moments of service time. The restart times (with an

interpolating curve) are shown in Fig. 5.7. The figure also displays the optimal restart time for

τ∞ of the first moment.

Fig. 5.7 shows that when the first moment is minimised restart time τk|K converges monotoni-

cally when k approaches the unique optimum τ∞, given that K is large enough. This behaviour

can also be observed in Table. 5.1. The convergence for higher moments is not as simple, but it

can be noted that using the restart times that minimise the first moment are an approximate
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Figure 5.7: Optimal restart times, for the moments E [T15], E [T 2
15]

and E [T 3
15].

indicator of optimal restart intervals for higher moments when K is large enough.

5.4.3 Using Restart to Optimise Deadline Probability

This section discusses the equihazard and equidistant strategies for maximising the probability

of meeting a deadline. The equihazard strategy strategy picks restart intervals which correspond

to the local extrema of the hazard rate. The equidistant strategy uses the same restart interval

for restarts.

Using a single retry with a finite interval [0, d) with a retry time of τ < d the probability of

completion before the deadline d is:

Fτ (d) = 1− (1− F (τ))(1− F (d− τ)). (5.19)

The local extrema of the Eqn. 5.19 can be found with the help of derivatives and is the following:

f(τ)

1− F (τ)
=

f(d− τ)

1− F (d− τ)
,

which is equivalent to:

h(t) = h(d− t). (5.20)
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Figure 5.8: The probability of service completion before the deadline when using one restart
(d = 0.7, µ = −2.3, σ = 0.97).

The above can be interpreted to mean that minimum and maximum probability of meeting the

deadline is achieved with equihazard restart intervals. The equidistant restart intervals τ = d
2

are a special case of equihazard intervals, and therefore form a local extremum

With multiple retries, similar logic can be applied. Given restarts at τ1, τ1 + τ2, . . . ,
∑N

n=1 τn

and assuming without a loss of generality that
∑N

n=1 τn = d, the optimum with respect to all

retry intervals τ1, . . . , τN happens when:

h(τ1) = h(τ2) = . . . = h(τN). (5.21)

As before, the extrema occur at equihazard intervals, with as special case the equidistant restart

intervals τn = d
N

.

Fig. 5.8 demonstrates typical behaviour when using one restart. The results are for a log-normal

distribution with the same parameters as in Fig. 5.7 and a deadline of d = 0.7. The equidistant

restart (at τ = 0.35) is the maximum, and other equihazard points are minima (τ = 0.013 and

τ = 0.687). When using the deadline d = 0.7 the probability of making the deadline improves

from 0.977 to 0.990. Table 5.2 displays all sets extremal equihazard intervals for different restart

periods. It can be seen that for the example equidistant hazard rates always outperform other

equihazard points.
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# restarts equihazard intervals P (T{τ} < d)
0 — 0.978
1 0.35, 0.35 0.990
1 0.013, 0.687 0.977
2 0.23, 0.23, 0.23 0.993
2 0.019, 0.34, 0.34 0.990
2 0.013, 0.013, 0.674 0.976
3 0.175, 0.175, 0.175, 0.175 0.99374
3 0.024, 0.225, 0.225, 0.225 0.993
3 0.019, 0.019, 0.331, 0.331 0.989
3 0.013, 0.013, 0.013, 0.660 0.976
4 0.14, 0.14, 0.14, 0.14, 0.14 0.99366
...

...
...

Table 5.2: Equihazard restart intervals and associated probability of meeting the deadline
(d = 0.7, µ = −2.3, σ = 0.97).

Equidistant restarts are optimal for all experiments with log-normal distributions. It is possi-

ble to construct an example where two non-equidistant points outperform equidistant points;

however, it only seems possible if not restarting is even better non-equidistant points. However,

this remains as a conjecture, as we don’t have a proof for this.

5.5 Replication Strategies

CPU cores, processor caches, memory bandwidth and network bandwidth are often shared

when multiple programs share resources. In addition, background daemons can cause delays

in job processing if they are scheduled in between processes [35]. These issues are especially

problematic, if a task consists of hundreds of small subtasks. Since even low probability events

become likely to disrupt the service of at least one subtask, which then delays the service of

the whole job.

One promising technique to avoid excessive wait times is to replicate subtasks. Replication is

frequently both possible and feasible, because utilisation is often low. For example, at Facebook

the median utilisation of resources is low: time slots 21%, CPU 19% and memory 17% [8].

Secondly a large share of the energy costs are caused by short periods of peak consumption and
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data centres have not found it worth their time to have processes to shut down idling machines.

As a result lots of idle computing capacity exists in data centres [8].

This section will explain why service replication is a good strategy for improving task response

time and discuss reasons as to why consuming extra resources can be justified in certain cir-

cumstances. In addition, we also discuss three different replication strategies.

The first strategy is n-fold replication, which is just running n copies of the program. Second

strategy is hedged requests, which spawns a restart strategy only after the first run under

normal conditions should have finished. The final strategy is tied requests, which sends n

replicas to be serviced. However, once one tasks begins service the replicas are canceled.

5.5.1 n-fold Replication

The simplest replication strategy is to clone a job n times and pick the job that completes first.

n-fold replication will be effective if the service time of jobs has a high variance. However, if

there is little variance, replication will offer little benefit. The downside of n-fold replication is

the n-fold increase in resource usage.

The cumulative distribution function of the minimum service time of n independent subtasks

can be calculated in the following way:

Fn(t) = 1− (1− F (t))n (5.22)

The corresponding probability density function is:

fn(t) = n(1− F (t))n−1f(t). (5.23)
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5.5.2 Hedged Requests

The idea behind hedged requests is to gain some of the speed advantages of replication, while

at the same time minimising the amount of extra resources [35]. In hedged requests, service

replication happens only after the task should have completed service under normal condi-

tions. For example, in Google data centres tasks are replicated after 95% of similar tasks have

completed [35].

It should be noted that hedging requests is very similar to using service restart to improve

performance and indeed the formulas from Sec. 5.4 can be directly applied and used to optimise

the hedging interval. Eqn. (5.8) and (5.9) define the cumulative distribution function and

probability density function when the previous job is cancelled upon hedging.

5.5.3 Tied Requests

Another technique to further reduce the amount of extra computational resources needed due

to replication is to send replicated jobs and then cancel the duplicates once a sibling job begins

service [35]. This is beneficial, because majority of the variation of service time is often caused

by the time spent in the queue and the service of a job has little variation. The advantage of

tied requests compared to hedged requests, is that sending a cancel message is less resource

intensive than servicing the job. Another benefit is derived from the fact that the multiple

copies begin queueing straight away. Instead of waiting for a while before extra copies are

dispatched.

5.6 Conclusion

This chapter covered how service restart and service replication can be used to improve task

service time.

The chapter began by discussing the effectiveness of restart and analysed it with various exam-
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ples such as the exponential, hypo- and hyper-exponential and heavy-tailed distributions. Next

we derived expressions for the moments of completion time with restarts and the probability of

service completion before a deadline. The next part of the chapter focused on how the service

restart interval should be chosen to optimise the performance of task service.

The chapter finishes by presenting three replication strategies namely: n-fold replication,

hedged requests and tied requests.



Chapter 6

Three-way Optimisation of Response

Time, Subtask Dispersion and Energy

Consumption in Split–Merge Systems

This chapter investigates various ways in which the triple trade-off metrics between task re-

sponse time, subtask dispersion and energy can be improved in split–merge queueing systems.

Four ideas, namely dynamic subtask dispersion reduction, state-dependent service times, mul-

tiple redundant subtask service servers and restarting subtask service, are examined in the

chapter. It transpires that all four techniques can be used to improve the triple trade-off, while

combinations of the techniques are not necessarily beneficial.

6.1 Introduction

In real world applications quite often there are multiple criteria by which one may wish to

be as good as possible. There is also a catchphrase saying “choose two out of three: fast,

good and cheap”, indicating that it is very difficult to satisfy all criteria. In this chapter,

we investigate split–merge systems, a particular variety of parallel queueing systems that have

three desired qualities. First we wish the system has a low subtask dispersion [88, 103, 128, 126]

113
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(difference in completion time between first and last subtasks to complete), low task response

time (difference between task arrival and completion of service) and low energy usage. This

chapter also discusses four techniques, which are compared with the method from [128].

Sec. 6.2 and 6.3 focus on two techniques, which are both based on dynamically adding delays

so as to reduce the variation between the fastest and the slowest subtasks. The first technique

inserts delays before the service of fast subtasks to make them take longer to complete with the

ideal outcome that all subtasks complete at the same time. We will first show the mathematical

formulation for dynamic subtask dispersion as introduced in [103]. The second technique is to

select the delays inserted in front of subtasks based on the queue length of the system. Delays

are determined with the help of Bayesian optimisation.

Sec. 6.4 introduces two techniques that use replication of subtask servers and service restart of

subtasks. These techniques work best when the underlying subtask service time distribution

has high coefficient of variation, more precisely subtask service restart is beneficial if the service

time distribution has large variance compared to the mean. In addition, such tasks must be

idempotent, i.e. replication, abortion and restart of the task must not have undesired side

effects, such as a duplicated trade or transaction. Both methods are applicable only if tasks

can be shifted, duplicated and repeated with no harm.

It is possible to use dynamic subtask dispersion if the time to transmit information that a sibling

subtask has finished is small compared to the service time of subtasks. State-dependent delays

have very little prerequisites and can be used almost always as they only require knowledge of

the queue length.

We find that restarting subtasks and replicating service of subtasks is very helpful in cases where

the subtask service time has high coefficient of variation. However, formulating guidelines as

to which of the methods to use best is not straightforward as it will depend on the system-

specific parameters. Our results indicate that combining the two redundancy techniques is not

necessarily able to further improve results. We attribute this to the fact that both techniques

work by reducing the variance of the subtask service time distribution.
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6.2 Trade–offs Using Dynamic Subtask Dispersion

In this section, we first introduce the split–merge queueing model and then investigate how

the trade-off delay scheme introduced in [128] can be improved by substituting the subtask-

dispersion technique with the improved delay scheme introduced in [103].

Figure 6.1: Split–merge system, credit: [125], (CC BY-SA 3.0).

In a split-merge system each time a new task enters service it is split into N subtasks. Those

subtasks are served by N different parallel servers. Upon completion, the subtasks are re-

assembled into one task for further processing. This situation is illustrated in Fig. 6.1, more

information on the split–merge system can be found in Sec. 2.2.1. Some of the parallel servers

will finish processing their subtask much earlier than others which leads to undesired disper-

sion in the completion time of the subtasks. To avoid this, different measures can be taken.

The most straightforward solution is to insert a delay before each subtask. These delays are

specified in a delay vector d.

The dynamic version of the algorithm removes any leftover delay, once a sibling subtask has

completed service. In the static algorithm delays are kept constant once they are defined.

Sec. 6.2.1 and 6.2.2 discuss the dynamic algorithm. More information on dynamic subtask

dispersion can be found in Sec. 2.3.1. For the dynamic algorithm intuition dictates that subtask

dispersion should be reduced if delays are cut after a sibling subtask has completed. Similarly

it dictates that task response time should decreases when delays are decreased.

An example of a potential operation by the algorithm is shown in Fig. 6.2. The advantage of
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Figure 6.2: An example of processing a task in a three server split–merge system
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dynamic subtask padding is shown by the results for an example in Fig. 6.3. We observe that

removing delays once a sibling subtask finishes can dramatically reduce subtask dispersion.

The next subsection defines the optimisation problem that must be solved to determine suit-

able delays that minimise subtask dispersion. In Sec. 6.2.2 we formulate the corresponding

optimisation problem for minimising the task response time. Finally, at the end of Sec. 6.2.2

we combine both into the formulation of the trade-off between task response time and subtask

dispersion. The trade-off is specified in Eqn. (6.14).

6.2.1 Dynamic Subtask Dispersion

A technique to minimise dynamic subtask dispersion has been introduced in the paper [103].

The paper is summarised in Sec. 3.4, more information on subtask dispersion can be found in

Sec. 2.3.1. We briefly revisit the result here, as we extend upon in Sec. 6.2.2. This section

introduces how subtask dispersion of a split-merge system can be computed for a given set of

delays d.

Let T (i, t,d) be the probability that subtask i is the first to finish at time t. Then Er(i, t
′,d)

is the expected completion time of the remaining subtasks, given that subtask i finished at

time t′. Gj(t, t
′,dj) is the probability distribution of a subtask, given that a sibling subtask

has finished already. Fi(t) and fi(t) are the cumulative distribution function and probability

density function of service time of ith subtask.

Those terms can be used to compute subtask dispersion for a given set of delays d. To minimise

dispersion a set of delays d must be found that minimise the Disp(d) function.

Disp(d) =
N∑
i=1

∫ ∞
0

T (i, t,d)Er(i, t,d)dt (6.1)

where

T (i, t,d) = fi(t− di)
∏
j 6=i

[1− Fj(t− dj)] (6.2)
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and

Er(i, t
′,d) =

∫ ∞
0

[1−
∏
j 6=i

Gj(t, t
′, dj)]dt (6.3)

with

Gj(t, t
′, dj) =

 Fj(t) if t′ < dj

Fj(t+ (t′ − dj)|t > 0) otherwise
(6.4)

subject to conditions
N∏
i=1

di = 0 (6.5)

and

∀i di ≥ 0 (6.6)

The Disp(d) function is used in the next section in the trade-off definition in Eqn. (6.14).

6.2.2 Using Dynamic delays to Optimise Task Response Time and

Subtask Dispersion

In this section, we first derive an expression for the task response time in a split-merge system

when using dynamic delay padding. Then we combine this result with the expression for subtask

dispersion derived in the previous section to formulate the trade-off between task response time

and subtask dispersion, which is one of the main results introduced in this chapter.

The task response time of a split–merge system can be computed using the Pollaczek–Khinchine

(PK) formula known for M/G/1 queues. The split–merge queue is very similar to a M/G/1

queue, because the time to complete all N subtasks can be seen as the service time of a task

in the M/G/1 queue as shown below:

Resp(λ,d) =
ρ+ µλVar[X(N)]

2(µ− λ)
+ µ−1 (6.7)

Here, the arrival rate of incoming tasks is λ when the time between arrival of tasks is expo-

nentially distributed, the task service rate is µ, ρ is the utilisation of the system given by λ/µ,
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and Var[X(N)] is the variance of the service time of last subtask to complete, equivalently the

variance of the service time of the task.

We will now derive the mean and variance of the task service time. The first step is to derive

a probability distribution for the service time of a task, which is shown below:

f(t,d) =
N∑
i=1

∫ t

0

T (i, t′,d)E(i, t′, t− t′,d)dt′ (6.8)

Function T (i, t,d) calculates the probability that subtask i is the first subtask to finish at time

t given the subtask delay vector d.

T (i, t,d) = fi(t− di)
∏
j 6=i

[1− Fj(t− dj)] (6.9)

Function E(i, t′, t,d) describes the probability that the remaining subtasks finish in time t. It

takes as priori i, which is the number of the subtask that finished first and the time t′ when it

finished.

E(i, t′, t,d) =
d

dt

∏
j 6=i

Gj(t, t
′, dj) =

∑
j 6=i

gj(t, t
′, dj)

∏
k 6=i|j

Gk(t, t
′, dj) (6.10)

Function Gj(t, t
′, dj) renormalises the jth subtask service distribution to take into account that

a sibling subtask has finished at time t′. If no other subtask has started service it immediately

starts service. If the subtask has begun service the service time probability distribution is

renormalised to take into account that it did not finish before time t′.

Gj(t, t
′, dj) =

 Fj(t) if t′ < dj

Fj(t+ (t′ − dj) | t > 0) otherwise
(6.11)

Once the probability distribution of the service time of a task has been defined its mean and

variance can be derived in a standard way. The standard expressions for mean and variance

are given below:
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E(X(N)(d)) =

∫ ∞
0

tf(t,d)dt (6.12)

Var[X(N)](d) =

∫ ∞
0

(t− E[X(N)](d))2f(t,d)dt (6.13)

Service time is given by the following relation µ−1 = E(X(N)(d))

After deriving the service time and variance of the response time the algorithm from paper [128]

and Sec. 2.3.3 can be applied. The optimal delay vector dmin can be found by solving the

following optimisation problem:

dmin = arg min
d′≥0

Resp(λ,d′)Disp(d′) (6.14)

s.t.
N∏
i=1

di = 0

When solving the equation in practice, the integrals are solved using numerical integration

techniques and the minimisation of Eqn. (6.14) can be done using an optimisation algorithm

such as Nelder–Mead.

Details on how to numerically solve Eqn (6.14) are discussed in Sec. 6.5.1. This trade-off is

evaluated in Sec. 6.6.1.

6.3 State-Dependent Delay Vectors

While Sec. 6.2 has focused on how the trade-off between subtask dispersion and task response

time can be optimised using a technique which ignores system load, this section introduces the

concept of state-dependent delay vectors, i.e. where the delay vector is determined based on

how many tasks are currently in the queue waiting to be served.
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6.3.1 Background

There is a large body of research on state-dependent M/G/1 and M/M/1 queues [2, 57, 117], as

well as analytical solutions. However, the analytical solution of the response time distribution

is defined in terms of Laplace transforms, infinite sums and recursive equations, which make

computation of accurate results quickly unfeasible. We were unable to produce a stable and fast

computations to perform a optimality search over the function in sufficiently high dimensional

space. We therefore adopted numerical techniques.

Our intuition is that delays should be small when the queue length is large and delays should

be larger for a short queue. Reducing delays of subtasks may increase subtask dispersion for

the corresponding task, but it benefits the response time of all subsequent tasks in the queue.

In addition this will make the system more tolerant of fitting errors (such as inaccuracies in the

interarrival rate or service time functions) and a change of step in the task interarrival rate λ.

Change in λ will reflect on the average queue length of the system. The system will pick up on

and be able to automatically adjust itself.

Next we present a two-step technique to find optimal delays for different queue lengths. A

näıve search would optimise on an O(N ×m) dimensional search space, where N is number of

subtasks and m is the number of tasks in the queue for which a unique delay vector is specified.

Our technique reduces this to a O(max(n,m)) dimensional search space. The search space

reduction is especially necessary as our objective function evaluations are expensive.

6.3.2 The Algorithm

With the first step of the algorithm we wish to construct a function that maps from a one

dimensional parameter onto a delay vector, which optimises the product of expected subtask

dispersion and expected task response time:

f(λ,d) = Resp(λ,d)Disp(d) (6.15)
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Tsimashenka’s trade-off technique [128] can be used to determine an optimal delay vector for

a given λ. Varying λ from 0 until utilisation of the system is 1 gives us a parametric curve

of delays, as shown in Fig. 6.4. We can see that at low utilisations relatively large delays are

added in order to reduce subtask dispersion, while at high utilisations, the system concentrates

on the protection of response time by minimising delays. If the technique does not produce a

clear line, regression analysis can be applied, as it is in the case of dynamic subtask dispersion.

Figure 6.4: Showing the parametric curve of delays of the form (0,x,y). Formed by application
of Tsimashenka’s trade-off technique [128] for varying range of utilisation, on a three server
split–merge system Exp(λ = 1),Exp(λ = 5),Exp(λ = 10)

The second step of our algorithm makes application of delay vectors state-dependent by map-

ping queue length thresholds onto points on the parametric curve of delays. The objective

function of our optimisation takes as input an m element vector. The ith element of the vector

is a real number in the same range as λ in the previous step. The ith element maps to a delay

vector via the parametric curve of delays, using interpolation between evaluated points where

necessary. This delay vector is applied when there are i tasks waiting in the queue. If there are

more than m tasks in the queue, the last element of the vector is used.

In the objective function, the split–merge system is simulated with a large number of tasks to
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obtain an estimate of the product of mean subtask dispersion and mean task response time

when applying state-dependent subtask delays using the m element vector.

Due to the noisy nature of the optimisation function we chose Bayesian optimization, a well-

established technique for optimizing noisy, non-convex functions. GpyOpt [120] was used for

implementing the Bayesian optimisation.

Experimental setup and results for this technique are presented in Sec. 6.5.1 and 6.6.1, where

it used in Methods 3 and 4.

6.4 Energy Metric and Service Time Manipulations

This section introduces subtask service restart and subtask service replication as potential

techniques for improving trade-offs between performance metrics in parallel queueing systems.

It also introduces the energy metric as a necessary addition to the previously-used metrics for

two reasons. Firstly, energy consumption considerations are typically a critical consideration

in large scale service delivery. Secondly, if there is no cost associated with service restart and

replication, it is often possible to arbitrarily improve performance in terms of subtask dispersion

and task response time by increasing the number of server replications without a limit.

6.4.1 Server Replication

Given a non-deterministic service time distribution with high variance and assuming no correla-

tion between consecutive service attempts, it is possible to improve the service time of a subtask

using multiple servers. Several copies of the subtask are served in parallel by these servers and

the result of the fastest server is used. An example of how server replication improves service

time can be see in Fig. 6.5.

The cumulative distribution function of the minimum service time of n subtasks can be calcu-

lated in the following way:

Fn(t) = 1− (1− F (t))n (6.16)
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Figure 6.5: Changes in cumulative probability distribution of subtask service time when the
number of servers is varied from 1 to 6.

The corresponding probability density function is the following:

fn(t) = n(1− F (t))n−1f(t). (6.17)

Details on how server replication is used are discussed in Sec. 6.5.3. This technique is evaluated

in Sec. 6.6.2.

6.4.2 Service Restart

An alternative to serving redundant copies of subtasks is to use service restart if service has not

completed by a given target time τ . Restart comes with a time cost c. Restart will not always

provide an improvement in terms of service time. However, there exists a class of service time

distributions where the conditional remaining service time of a job increases as time progresses,

more on this can be read in Sec. 5.2.4. It has been shown that the average service time of

such tasks can be decreased by periodically restarting service [129]. More information on using
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unbounded number of restarts to improve task service time can be found in Sec 5.3.1.

Figure 6.6: Comparison of a hyper-exponential distribution with/without service restart. τ =
0.2, c = 0.05, f(x) = 1

2
exp(λ = 1.0) + 1

2
exp(λ = 0.2)

The new probability density function of service time is:

fτ (t) =

 (1− F (τ))kf(t− k(τ + c)) if k(τ + c) ≤ t < k(τ + c) + τ

0 otherwise
(6.18)

for k = 0, 1, 2, . . ..

The corresponding cumulative distribution function is:

Fτ (t) =


1− (1− F (τ))k(1− F (t− k(τ + c))) if k(τ + c) ≤ t

< k(τ + c) + τ

1− (1− F (τ))k+1 otherwise

, (6.19)

for k = 0, 1, 2, . . ..

The higher moments of a probability distribution with heavy tail can be decreased when service
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restart is incorporated. The new distribution will then be similar to a geometric distribution.

This improves both task response time of the system and subtask dispersion. An example of

the effect of service restart on a distribution can be seen in Fig. 6.6.

Details on how server restart is used are also discussed in Sec. 6.5.3. This technique is evaluated

in Sec. 6.6.2.

6.4.3 Energy Metric

This section introduces the energy metric, which measures how much energy is consumed by a

split–merge system. Split–merge systems in practice come at the energy cost of running several

servers. Improving performance may likely increase the energy cost. This chapter uses the

following cost function:

Energy(n) =
N∑
i=1

ni(λ/µiCH + (1− λ/µi)CL) (6.20)

The constants defined in the equation are as follows. The rate of incoming tasks is λ, the service

rate of subtask i is µi. The idle operational cost of a server is CL, while the cost for service,

restart and cool down is CH . The number of servers serving the ith subtask is ni, the number

of subtasks each task is split into is N .

6.4.4 Trade-off Metric

Energy trade-off metrics have been investigated in the past [48, 32]. For computing the triple

trade-off between subtask dispersion, task response time and energy the third power of the

product, the RDE3 metric is used. This is because we found that the RDE and RDE2 metrics

sometimes indicate that an infinite replication would be optimal. Further details can be found

in Sec. 6.4.5. Additionally, having a superlinear energy usage often happens in physical systems

as well. For example, power usage and voltage in CPU’s are related in the following way due

to Ohm’s law P ∝ V 2[64].
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The trade-off is computed by first applying the multiple servers and/or restart transforms to

the subtask service time distributions. Then the subtask dispersion, task response time and

energy cost are derived. The optimal delay vector d, server replication factors n and server

restart intervals τ can be found by solving the following optimisation problem:

arg min
d≥0,n,τ

Resp(λ,d)Disp(d)Energy3(n), (6.21)

In our example we allow each subtask to have up to 10 replicated servers (including the original).

For each possible server configuration (i.e. for every permutation of n) we ran the Nelder–Mead

algorithm 50 times, using random start vectors for τ and d. Finally, we selected the n,τ and d

that minimised Eqn. (6.21).

Details on how the triple trade-off is used in our experiments are presented in Sec. 6.5.3. The

trade-off is evaluated in Sec. 6.6.2.

6.4.5 Problems defining the Task Response Time, Subtask Disper-

sion and Energy Consumption Trade-Off Metric

This section shows that RE and DE metrics sometimes have trivial solutions indicating an

infinite number of servers. As a consequence RDE2 will also suffer from the same problem,

as it is RE and DE multiplied together. Therefore, our experiments use the product RDE3.

To demonstrate these problems we analyse a two server split–merge system with exponentially

distributed service times.

Task Response Time and Energy Consumption Trade-Off as n approaches ∞

The minimum of two exponentially distributed random variables is exponentially distributed

with the µs given below:

µmin = µ1 + µ2 (6.22)
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Duplicating service server n times results in a service rate of nµ. Given that the variance of an

exponential distribution is µ−2, the variance with n duplicated servers is (nµ)−2.

Substituting nµ for µ into the Pollaczek–Khinchine formula results in the following Task Re-

sponse Time and Energy trade-off:

Resp(λ) =
λ/(nµ) + nµλ(nµ)−2

2(nµ− λ)
+ (nµ)−1 (6.23)

Energy(n) = kn (6.24)

Multiplying the two metrics and simplifying we obtain:

Resp(λ)Energy(n) =
kλµ−1

(nµ− λ)
+
k

µ
(6.25)

From this it is apparent that when the number of servers n → ∞ the Trade–Off approaches

k/µ, which is the optimal.

Subtask Dispersion and Energy Consumption Trade-Off as n approaches ∞

When using dispersion technique from [103] the optimal strategy is to have the slower subtask

server finish service first and only then begin work on the second subtask. Assuming we

duplicate the faster server n times results in the following subtask dispersion and energy usage:

Disp(n) =
1

nµ
(6.26)

Energy(n) = 1 + n (6.27)
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Multiplying the two metrics and simplifying we obtain:

Disp(n)Energy(n) =
1 + n

nµ
=

1

nµ
+

1

µ
(6.28)

From the above it can be seen, that when the number of servers n → ∞ the Trade–Off ap-

proaches µ−1, which is the optimal.

6.5 Experimental Setup

This section introduces the experimental setup for our two case studies. The first case study

explores how dynamic subtask dispersion and queue dependent delays affect subtask dispersion

and task response time. The second case study explores how service duplication and restart

affect subtask dispersion, task response time and energy consumption.

6.5.1 Exploring Response Time and Subtask Dispersion

This section has a short note on computation resources used and also explains the methods

used in the results of Sec. 6.6.1.

6.5.2 Computational Resources

It took approximately one day on one core of an Amazon Web Services C4 computer to compute

the final results for Method 3 and 4 for each data point. The total computation time was

roughly two days of computation on the 8 core C4 machine. A 8 core C4 computer costs $0.464

per hour to operate resulting in a total cost of $23.
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Method 1

For this method, analytical formulas (6.29) and (6.7) were used to find the delay vector which

optimises the product of subtask dispersion and task response time, according to the method

presented in [128].

Method 2

This method uses the concept of dynamic subtask dispersion from Sec. 6.2.1 and dynamic

delay padding from Sec. 6.2.2 to find the delay vector which optimises the trade-off between

task response time and subtask dispersion. For computation of subtask dispersion and task

response time we use Eqn. (6.1) and (6.7).

Method 3

This method uses the state-dependent delay vectors introduced in Sec. 6.3 to optimise the

trade-off between subtask dispersion and task response time. No dynamic delay padding is

used.

Method 4

This method uses the state-dependent delay vectors introduced in Sec. 6.3 to optimise the

trade-off between subtask dispersion and task response time. In this method dynamic delay

padding is applied.

6.5.3 Exploring Response Time, Subtask Dispersion and Energy

This section explains the methods used in the results of Sec. 6.6.2.
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All methods the results were computed analytically. For computing subtask dispersion we used

the formula from [128]:

Disp(d) =

∫ ∞
0

1−
N∏
i=1

Fi(x− di)−
N∏
i=1

(1− Fi(x− di))dx (6.29)

Task response time is computed with the PK formula of Eqn (6.7).

The optimisation is done by applying the formulas from [128] for subtask dispersion and task

response time. For the computation of energy metric we used the results from Sec. 6.4.3. If

service restart was used we transformed the distributions with the formula in Sec. 6.4.2. If

server replication was used we transformed the distributions with the formula in Sec. 6.4.1.

Method 1

In this method with no restart or server replication the optimisation was done by only optimising

with respect to the delay vector d.

Method 2

In this method with server replication the delay was optimised individually for each server

configuration, where 0 < ni ≤ 10. After this we picked the server configuration which minimised

the cost function.

Method 3

In this method with server restart the optimisation the search space was increased into a four

dimensional space. Three dimensions for the delay vector d and an extra dimension for server

restart interval in subtask 3 τ3. Which can potentially benefit from service restart, as it is a

heavy tail distribution.
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Method 4

In this method with both server restart and server replication the four dimensional delay +

server restart interval for subtask 3 was computed individually for each server configuration,

where 0 < ni ≤ 10. After this we picked the server configuration which minimised the cost

function.

6.6 Results

We performed two experiments, the first using the Subtask Dispersion vs. Response Time

trade-off, and the second using the Response Time vs. Subtask Dispersion vs. Energy trade-off.

6.6.1 Subtask Dispersion vs. Response Time trade-off

We use a three-server split–merge system with exponentially distributed incoming tasks that

have an arrival rate of λ = 0.78 tasks per time unit. The subtask service times are distributed

as:

X1 ∼ Exp(λ = 1)

X2 ∼ Exp(λ = 5)

X3 ∼ Exp(λ = 10)

Method 1 The resulting delays for the subtasks are: d = (0, 0, 0.068). Corresponding perfor-

mance metrics are:

Task response time: 5.286 time units

Subtask dispersion: 0.946 time units

Trade-off: 4.999 (time units)2

Method 2 The resulting delays for subtasks are: d = (0, 0.019, 1.879). Corresponding perfor-

mance metrics are:
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Task response time: 5.437 time units

Subtask dispersion: 0.867 time units

Trade-off: 4.718 (time units)2

Method 3 and 4 The results can be seen in Fig. 6.7, 6.8 and 6.9. The number of delays in

the figures indicate how many delays there are to choose from when picking the delay based on

a queue length.

Figure 6.7: Trade-Off Results of Methods 3 and 4

The results indicate that the dynamic subtask dispersion technique introduced in Sec. 6.2 is

better than the technique introduced by Tsimashenka [128]. Method 2 is able to produce a

6% decrease in the trade-off cost function when compared against Method 1. When Methods

3 and 4 were compared against their single delay vector counterparts Methods 1 and 2, the

state-dependent delay vectors introduced in Sec. 6.3 reduced the trade-off cost functions by 4%

and 25% respectively.

Fig. 6.8 shows that task response time of dynamic subtask dispersion technique increases as

the number of delays is increased. This is caused by the algorithm finding it more worthwhile
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Figure 6.8: Task Response time of Methods 3 and 4

Figure 6.9: Subtask Dispersion of Methods 3 and 4
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to concentrate on improving subtask dispersion at the expense of task response time, as the

percentage wise improvement of subtask dispersion is greater. This then leads to the overall

best result in terms of the trade of metric shown Fig. 6.7.

6.6.2 Response Time vs. Subtask Dispersion vs. Energy Trade-Off

In our example case we have a split–merge system with Poisson task arrivals at rate λ = 1.05

tasks per time unit. The energy metric cost for high utilisation is 1.0 energy units and low

utilisation cost is 0.15 energy units. The cost of a restart is 0.1 time units. Subtask service

times are distributed as:

X1 ∼ Erl(k = 5, λ = 10)

X2 ∼ Uni(a = 0.25, b = 0.3)

X3 ∼ 1

2
Exp(λ = 1) +

1

2
Exp(λ = 5)

Method 1 No service restart or multiple servers were used. The resulting delays for subtasks

are: d = (0.0, 002, 0). Corresponding performance metrics are:

Task response time: 5.729 time units

Subtask dispersion: 0.637 time units

Energy Cost: 1.677 energy units

RDE3 Trade-off: 17.226 units

Method 2 Subtask server replication factors n = (2, 1, 4) and no subtask restart was used. The

resulting delays for subtasks are: d = (0, 0.028, 0.233). Corresponding performance metrics are:

Task response time: 0.633 time units

Subtask dispersion: 0.174 time units

Energy Cost: 2.314 energy units

RDE3 Trade-off: 1.362 units

Method 3 No multiple subtask service servers were used. Optimal restart subtask service
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for subtask 3 was (τ3 = 0.363). The resulting delays for subtasks are: d = (0, 0.046, 0).

Corresponding performance metrics are:

Task response time: 2.241 time units

Subtask dispersion: 0.511 time units

Energy Cost: 1.577 energy units

RDE3 Trade-off: 4.495 units

Method 4 Subtask server replication factors n = (2, 1, 4). The optimal restart subtask service

for subtask 3 was (τ3 = ∞). The resulting delays for subtasks are: d = (0, 0.028, 0.233). The

corresponding performance metrics are:

Task response time: 0.633 time units

Subtask dispersion: 0.174 time units

Energy Cost: 2.314 energy units

RDE3 Trade-off: 1.362 units

The results indicate that multiple servers can be used to improves subtask dispersion, task

response time, and energy consumption. Our results show a huge 92% drop in cost associated

with the triple trade-off metric as shown by comparison of Method 1 and Method 2. It can

also be seen, that the subtask service restart improves the trade-off by 73% when comparing

Method 1 and Method 3. However no further improvement was to be gained with the

combination of restart and replication. This is shown by Method 2 and Method 4 having

the same trade-off result, as Method 4 did not utilise the restart option.

6.7 Conclusion

This chapter used three metrics for measuring the performance of a split–merge system and

four techniques that can be used to improve the trade-off of those systems.

Our first set of results demonstrate the superiority of dynamic delays over static delays. Also

from first set of results it can be observed that the state-dependent delays introduced in Sec. 6.3
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decrease the trade-off cost when compared with a single delay model. The state-dependent

delays result in particular is promising as it can be applied in many contexts when optimising

between two or more metrics.

From the second set of results, it can be seen that using multiple servers and subtask service

reduction are both able to reduce the cost of the trade-off metric defined in Sec. 6.4.4. However,

their combination is not able to further reduce the cost, as the combination of the techniques

failed to deliver an improvement when compared to subtask service replication alone. This is

likely due to both techniques depending on high coefficient of correlation.

An interesting avenue of further research will be to investigate extending our techniques from

split–merge queueing systems to fork–join queueing systems. In fork–join systems tasks are

queued at the subtask level, which improves task response time, as subtasks from the next task

can begin service before all the sibling subtasks of the current task have finished. However, their

analysis is generally acknowledged to be considerably harder, due to a lack of a synchronisation

point at the start of every task.



Chapter 7

Conclusion

The primary hypothesis of the thesis was that it is possible to control parallel queueing system

in a way that improves the performance of the system with respect to an objective function

that reflects multiple conflicting performance metrics. In the thesis we took small bite sized

chunks of this giant task, and did case analysis on these tractable problems.

We investigated a number of techniques to improve performance and metrics to measure per-

formance and the richness of different approaches has been surprising to us. We believe there is

enough evidence to justify the hypothesis that performance of modern systems can and should

be measured with respect to multiple metrics, and that performance when compared to exist-

ing optimisation routines, which often only optimise with respect to one metric can be greatly

improved.

7.1 Key Highlights

We showed that, dynamic delays provide a great performance improvement to systems compared

to static delays. The improvement is both in terms of subtask dispersion and task response

time. If you have a system with static delays, you can instantly switch it to work with dynamic

138
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delays to gain an improvement1. The system can also be re-analysed to take into account the

dynamic delay structure, which will result in further performance gains.

We presented a variety of techniques that can essentially talked as the same thing. If you have

a task that has a very high coefficient of variance or service potentially never completes, it is

better to use restart or replication. This is, because having a fixed server restart interval τ

transforms the probability distribution to behave like repeated Bernoulli trial. Meaning, that

potentially an ∞ average waiting time becomes finite.

We presented a state-dependent delays as a solution to improve overall performance, a concept

which can be easily generalised to be state-dependent service. State-dependent service incorpo-

rates the simple idea that during periods of time with heavy load, you should focus on meeting

speed of service requirements, as improving speed of service of a single task will improve the

speed of service of all tasks currently in the queue (and some that haven’t even joined). While

doing a good job on the service of the current task will not help you with the service of the

incoming tasks.

State-dependent service also has another great advantage, as it makes the system more stable.

With non-varying service your service structure will collapse if service arrivals outnumber the

amount of tasks you can service. However, if you have a number of varying service levels,

where you choose on based on the amount of temporary load the system will automatically self

balance itself. In times of high load the system will perform lower quality service, but serve

more customers. In times of low load the system will perform service with high quality and

speed.

7.2 Future Work

The research carried out during the duration of this thesis has lead to multiple avenues of future

research. Below we will list out some of the more promising avenues.

1In some special cases (such as very heavy load and deterministic service times), there are no performance
gains. As, the dynamic system will perform exactly like the static system.
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7.2.1 Optimising Trade-Offs in Fork-Join Systems

In Chapter 3 we compared existing techniques to reduce subtask dispersion in split–merge and

fork–join systems. During this comparison two trends stood out. First of all that subtask

dispersion is best reduced by dynamic subtask dispersion and secondly task response time is

best reduced by utilising a fork–join structure. There was even a small demonstration towards

such a technique briefly discussed in Sec. 3.4.3, which demonstrated it can be quite effective.

In addition, a combination of the individual techniques presented in Chapter 6 could be ap-

plied on fork–join systems, which would then greatly improve the performance of parallel task

processing.

7.2.2 Trade-Offs in Stochastic PERT Networks

In Chapter 4 we investigated Hidden Stochastic PERT networks and did not utilise the knowl-

edge about the inner workings of the PERT network. The optimisation of PERT networks

could be of great use in many fields such as supply chain management and high frequency

trading. Therefore, it would be of great importance to investigate how the inner workings of

Stochastic PERT networks could be used to further optimise systems in the real world.

7.2.3 Making Service Restart More Tolerant to Modelling Error

In the first few sections of Chapter 5 we discuss the current state of the art in determining

the service restart interval. However, the model does not take into account potential measure-

ment inaccuracies when determining the underlying distribution, nor does it consider that the

underlying distribution might change during operation.

It would be beneficial to introduce a sliding scale for the restart interval, similar to how delays

are adjusted depending on the queue length of the system in Sec. 6.3. The technique would

compare the expected service time distribution and actual task completions and adjust it if

necessary.
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This could be done by collecting statistics of service completion for the restart interval and

then comparing it against the results the model expects. Then the algorithm could adjust the

restart interval if necessary.

7.3 Concluding Remarks

The thesis explored only a small subset of the wast amount of possibilities out there in parallel

queueing systems and there is still loads of more research to be done in the industry, for others

to carry on with.

Improving Parallel Queueing Networks is becoming an interesting area of research, as the

processes of the large technology companies of our day such as Google, Amazon, Facebook...

perform the the service of an individual customer in parallel. When a user requests data, each

company will needs to perform some of the following tasks: analyse the customer, decide what

to display to them, which ads do we display, and so on. There is also an additional requirement

that all these jobs need to be performed with a sub second latency to give the customer a fluent

experience.

In addition to improving parallel queueing networks being important to optimise, it is also

important to develop analysis of associated metrics, which performance is measured by. In the

modern world it is becoming more and more important to take into account environmental and

other ethical impacts. As well as the varied needs of the customer.
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Appendix A

Probability Distributions

This section contains the formal definitions of all probability distributions used in this thesis.

A.1 Exponential Distribution

The exponential distribution is a continuous distribution with an interesting property called the

memoryless property. That is, when the distribution is renormalised to take into account that

time has passed without completion, the distribution looks identical to the original distribution.

The exponential distribution has one parameter λ > 0, which determines the distribution. The

average value of an exponentially distributed random variable is 1
λ
.

The probability density function is seen below:

Exp(λ) =

 λe−λx x ≥ 0,

0 x < 0

The cumulative distribution function is:

∫ x

−∞
Exp(λ)dx =

 1− e−λx x ≥ 0

0 x < 0

159



160 Chapter A. Probability Distributions

A.2 Hyper-Exponential Distribution

The hyper-exponential distribution is a continuous distribution. The distribution consists of

n (n ⊂ N) exponential distributions, each of which has a pi and a λi associated with it. pi

is the probability that the exponential function i is picked (
∑
pi = 1), and λi > 0 is the

corresponding λ of the ith exponential function. When sampling a hyper-exponential random

variable you first pick one of the exponential distributions and then use the distribution to

generate a random variable. The average of a hyper-exponential distribution is
∑ pi

λi
.

The probability density function is:

HyperExp(n, λ) =
n∑
i=1

piExp(λi)

The cumulative distribution function is:

∫ x

−∞
HyperExp(n, λ)dx =

∫ x

−∞

n∑
i=1

piExp(λi)dx

A.3 Erlang Distribution

The Erlang distribution is a continuous distribution, which is equal to the sum of n ⊂ N

sequentially-completed exponentially-distributed tasks, where each task has a service rate of

λ, where λ > 0. The distribution is the result of convolving the distribution Exp(λ) n-times.

The Erlang distribution has two parameters: n ⊂ N and λ > 0. The average value of a Erlang

distributed random variable is n
λ
.

The probability density function is:

Erl(n, λ) =


1−e−λx
(n−1)! x ≥ 0

0 x < 0
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The cumulative distribution function is:

∫ x

−∞
Erl(n, λ)dx =

 1−
∑n−1

k=0
e−λx(λx)n

n!
x ≥ 0

0 x < 0

A.4 Hypo-Exponential Distribution

The hypo-exponential function is a continuous distribution and also happens to be a generali-

sation of the Erlang distribution. In the Erlang distribution the n ⊂ N sequentially completed

exponential tasks all have the same λ. In the Hypo-exponential distribution, each task has

a unique λi corresponding to the ith task, where λi > 0. The Hypo-exponential probability

density function is computed by convolving all the individual exponential density functions

together. The average of a hypo-exponential distribution is
∑

1
λi

.

The probability density function is:

HypoExp(n, λ) =
n

~
i=1

piExp(λi)

The cumulative distribution function is:

∫ x

−∞
HypoExp(n, λ)dx =

∫ x

−∞

n

~
i=1

piExp(λi)dx

The ~n
i=1 symbol denotes convolving together n functions.

A.5 Pareto Distribution

The Pareto distribution is a continuous distribution, which takes as input a > 0 and b > 0.

a is referred to as the shape and b as the rate of the distribution. The Pareto distribution is

a power-law distribution that describes many types of observable phenomena such as wealth
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distribution. The Pareto distribution is often referred to by the 80–20 rule. For example, it is

said that 20% of people control 80% of the wealth.

The probability density function is:

Par(a, b) =


a·ba
xa+1 , for x ≥ b

0 otherwise

The cumulative distribution function is:

∫ x

−∞
Par(a, b)dx =

 1−
(
b
x

)a
, for x ≥ b

0 otherwise

A.6 Normal distribution

The Normal distribution takes µ ⊂ R and σ2 > 0 as parameters. The normal distribution is an

important function in statistics. The central limit theorem states that the distribution of the

sum of n independent identically distributed random variables converges towards the normal

distribution (given finite mean and variance). Given a distribution with mean m and variance

v and n trials, the corresponding normal distribution is N (µ = mn, σ2 = nv). A normally

distributed random variable has a mean of µ and variance of σ2.

The probability density function is:

N (µ, σ2) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)

The cumulative distribution function of the Normal distribution is not representable in terms of

elementary functions, and needs to be numerically approximated. The cumulative distribution

function is usually represented as:

∫ x

−∞
N (µ, σ2)dx = Φ

(x− µ
σ

)
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where Φ(x) is the cumulative distribution function of the normal distribution with parameters

µ = 0 and σ = 1

A.7 Folded Normal Distribution

The folded Normal distribution takes µ ⊂ R and σ2 > 0 as parameters. The folded Normal

distribution corresponds to the absolute value of Normal distribution. The average value of

a Folded Normal distributed random value is µY = σ
√

2
π

exp
(
− µ2

2σ2

)
+ µ(1 − 2Φ(−µ

σ
)) and

variance is σ2
Y = µ2 + σ2 + µY .

The probability density function is:

NF (µ, σ2) =


1√

2πσ2
exp

(
− (x−µ)2

2σ2

)
+ 1√

2πσ2
exp

(
− (x+µ)2

2σ2

)
x ≥ 0

0 x < 0

The cumulative distribution function of the folded Normal distribution is not re-presentable

in terms of elementary functions, and needs to be numerically approximated. The cumulative

distribution function is usually represented as:

∫ x

−∞
NF (µ, σ2)dx =

 Φ(x−µ
σ

) + Φ(x+µ
σ

)− 1 x ≥ 0

0 x < 0

where Φ(x) is the cumulative distribution function of the normal distribution with parameters

µ = 0 and σ = 1

A.8 Log-normal distribution

The log-normal distribution takes µ ⊂ R and σ2 > 0 as parameters. The log-normal distribu-

tion is defined on a range of x ∈ (0,∞). The logarithm of the random variable is normally
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distributed. The log-normal distribution is the product of n identically distributed random

variables (given finite mean and variance). A log-normally distributed random variable has a

average of exp(µ+ σ2

2
) and variance of (exp(σ2)− 1) exp(2µ+ σ2).

The probability density function is:

NL(µ, σ2) =
1

xσ
√

2π
exp

(
− (ln(x)− µ)2

2σ2

)

The cumulative distribution function of the log-normal distribution is not representable in

terms of elementary functions, and needs to be numerically approximated. The cumulative

distribution function is usually represented as:

∫ x

0

NL(µ, σ2)dx = Φ
( ln(x)− µ

σ

)

A.9 Uniform Distribution

The uniform distribution is continuous distribution, which takes a and b as parameters, with

a < b. A uniformly distributed random variable has a constant probability to be any value

between a and b and zero probability to be any other value. The average value of a uniformly

distributed random variable is a+b
2

.

The probability density function is:

Uni(a, b) =

 (b− a)−1 a ≤ x ≤ b,

0 otherwise

The cumulative distribution function is:

∫ x

−∞
Uni(a, b)dx =


0 x < a

x−a
b−a a ≤ x ≤ b

1 x > b
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A.10 Power Distribution

The power distribution is a continuous distribution, which takes a > 0 as a parameter. a

defines the exponent of decay for the function. The power distribution is the inverse of the

Pareto distribution [121], with the x and y switched. The average value of a power distributed

random variable is a/(a+ 1).

The probability density function is:

Pow(a) =

 axa−1 0 ≤ x ≤ 1

0 otherwise

The cumulative distribution function is:

∫ x

−∞
Pow(a)dx =


0 x < 0

xa 0 ≤ x ≤ 1

1 x > 1


