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Abstract

We present and validate an enhanced analytical queueing
network model of zoned RAID. The model focuses on RAID
levels 01 and 5, and yields the distribution of I/O request
response time. Whereas our previous work could only sup-
port arrival streams of I/O requests of the same type, the
model presented here supports heterogeneous streams with
a mixture of read and write requests. This improved realism
is made possible through multiclass extensions to our ex-
isting model. When combined with priority queueing, this
development also enables more accurate modelling of the
way subtasks of RAID 5 write requests are scheduled. In
all cases we derive analytical results for calculating not
only the mean but also higher moments and the full distri-
bution of I/O request response time. We validate our model
against measurements from a real RAID system.

1. Introduction

RAID systems are fundamental components of almost
all modern data storage systems due to their ability to in-
crease storage infrastructure performance and reliability in
a cost-effective manner. As a result they are now widely de-
ployed at every level from personal home storage devices
to enterprise-scale storage area networks.

Choice of RAID level can critically affect the perfor-
mance delivered by a storage system. It is therefore im-
portant to be able to predict performance of a given RAID
configuration for various I/O workloads. The present paper
aims to achieve this using an analytical queueing network-
based model that extends our work in [10].

In the context of modern Service Level Agreements, ef-
fective performance prediction must provide the ability to
reason not only about mean response times, but also higher
moments and percentiles of response time. Therefore, our
target in this work is the full cumulative distribution func-
tion of I/O request response time, from which all of the pre-

vious measures can be easily derived. Analytical queueing
network models of RAID performance [4,9,12,18,19] de-
veloped prior to [10] approximate only the mean response
time of the system. We note that RAID performance can
also be modelled using other techniques including simula-
tion [4,12], table-based [2] and black-box modelling [13].

Our RAID model is developed in a bottom-up hierarchi-
cal fashion. We begin by modelling each disk drive in the
array as a single M/G/1 queue. We then abstract the RAID
as a fork-join queueing network [3] in which each disk in
the array is represented by an M/G/1 queue. In anN-queue
fork-join network (see Fig. 1) each incoming job is split
into N subtasks at the fork point. Each of these subtasks
queues for service at a parallel service node before joining
a queue for the join point. When allN subtasks in the job
are at the head of their respective join queues, they rejoin
(synchronise) at the join point.

Figure 1. Fork-join queueing model

The standard fork-join network directly models the be-
haviour of a RAID system in only a small number of
cases (e.g. full stripe I/O operations in RAID 0). Conse-
quently, the fork-join model must be tailored to support the
full range of I/O access patterns that occur when perform-
ing read or write operations of different sizes on different
RAID levels. In [10] we used this approach to develop
a preliminary analytical queueing model of RAID 01 and
5 for homogeneous Poisson arrival streams. By homoge-
neous we mean that all I/O requests are assumed to be ran-



dom accesses of the same type (read/write) and size. Our
focus at present is modelling RAID 01 and RAID 5 as these
are the two most commonly used RAID levels.

This paper presents a number of improvements to our
initial work which take us closer to modelling real-life
workloads. In particular, by introducing multiple classes
into our model, we allow support for heterogeneous Pois-
son arrival streams in which I/O requests can have different
types (read or write). By also introducing priority, we im-
prove our RAID 5 write model to more authentically reflect
subtask scheduling within each RAID 5 write request.

The remainder of this paper is organised as follows. Sec-
tion 2 briefly summarises the zoned disk drive and fork-join
queueing model previously presented in [10]. It also de-
scribes the mathematical background needed to introduce
multiclass and priority queueing networks into our models.
Section 3 presents our improved RAID 5 write model, as
well as extensions for heterogeneous arrival streams. Sec-
tion 4 validates all models against device measurements.

2. Background

2.1. Zoned Disk Model

The service time density of an access to a random lo-
cation on a single disk drive is the convolution of the seek
time, rotational latency and data transfer time probability
density functions. An important subtlety that needs to be
taken into account is that modern disks arezoned, with
more sectors on the outer tracks than inner tracks. There-
fore, a random request is more likely to be directed to a
sector on an outer track. Similarly, zoning means that it is
faster to transfer data on a track close to the circumference
than the centre of the disk. The seek time and data transfer
models must take these factors into account.

In our model we use the seek time and rotational latency
probability distributions defined in [20] and the data trans-
fer time distribution from [10]. We denote the random vari-
ables of seek time, rotational latency andk-block transfer
time asS, R andTk respectively. We represent a disk as an
M/G/1 queue and, in keeping with our prior work, derive
its response time distribution by numerically inverting its
Pollaczek-Khintchine transform [1,8].

2.2. Fork-Join Model

Our RAID model is based on a fork-join queueing net-
work composed of M/G/1 queues. However, it is difficult
to model job response times in a fork-join synchronisation
analytically. Indeed, exact analytical results only exist for
the mean response time of a two server system consist-
ing of homogeneous M/M/1 queues [14]. Approximations
for mean response times for M/M/1 and M/G/1 fork-join

queues are more abundant [14, 17, 18] but such results do
not permit higher moments or full response time distribu-
tions to be calculated. Therefore, we have previously pre-
sented [10] an approach using the maximum order statis-
tic [6,11] to derive an approximation to the cumulative dis-
tribution function of a fork-join queue’s response time.

2.3. RAID Model

A fork-join queue does not model all the intricacies of
a RAID system. The fork-join analysis defined above can
calculate the response time cdf for read or write requests
to ann-disk RAID 0 system in which each request consists
of a multiple ofn blocks. However, not every I/O request
leads to an access to all disks, being influenced by I/O re-
quest size and type, and also by RAID level. In [10], we tai-
lor the fork-join approximation to model I/O operations on
mirrored stripes (RAID 01) and distributed parity (RAID
5). We summarise these models in the Appendix.

2.4. Multiclass Queues

To extend our prior work to include multiclass queues,
we define an expression for the cumulative distribution of
the response time of a request in a multiclass model. In a
system where arrivals have classi, i = 1, . . . ,m, let W be
a random variable representing a request’s response time.
The cumulative distribution function ofW, FW(t), is:

FW(t) = P(W ≤ t)

=
m

∑
i=1

P(W ≤ t | classi)P(classi) (1)

2.5. Priority

We also need to introduce priorities for I/O requests for
the specific purpose of improving our RAID 5 write model.
This requires two priority levels, which we represent by
two classes where class0 has higher, non-preemptive prior-
ity than class1. Each class has an arrival rateλi , a service
time Laplace-Stieltjes transform (LST)X∗i (s) and a mean
service rateµi . The LST of the response time distribution
for a job of classi, denotedW∗

i (s), is therefore [5,7]:

W∗
0 (s) =

((1−ρ)s+λ1(1−X∗1 (s)))X∗0 (s)
λ0(X∗0 (s)−1)+s

(2)

W∗
1 (s) =

(1−ρ)(s+λ0(1−M∗(s)))X∗1 (s)
λ1(X∗1 (s+λ0(1−M∗(s)))−1)+s

(3)

whereρ = λ0
µ0

+ λ1
µ1

. M∗(s) is the LST representing the sum
of the service times of arriving class0 jobs while a class1
job is servicing. It is defined self-referentially by:

M∗(s) = X∗0 (s+λ0(1−M∗(s)))



3. Multiclass RAID Model

The ability to calculate the cumulative distribution func-
tion of a multiclass queue enables us to refine the original
model of [10] to more accurately reflect the physical be-
haviour of the disk array and the mixed arrival streams it is
likely to receive. In Section 3.1, we present an improved
RAID 5 write model by introducing multiclass queues, and
then extending this to include priority. In Section 3.2 we
extend our models to support heterogeneous arrivals.

3.1. Improved RAID 5 Write Models

A RAID 5 partial stripe write is composed of two sub-
tasks: a pre-read (for subsequent parity update) followed
by a write of the partial stripe and new parity. If the partial
stripe write follows some full stripe writes then the pre-read
follows immediately after the full stripe writes. However,
the array must wait for all the pre-reads to complete and the
new parity to be calculated before the partial stripe writes
can be issued to the disks. These partial stripe writes are
then given priority over any other request in the disk queue.

The RAID 5 write model previously developed in [10]
does not explicitly represent these two subtasks and instead
computes the cdf of the overall response time based on the
average of the service times of the pre-read and the partial
stripe write. We therefore present a new RAID 5 partial
stripe write model which employs two classes of request to
separately model the pre-read and partial stripe write.

We assume that the arrival streams are composed of ran-
dom access requests of homogeneous sizes and types. Fur-
ther there aren homogeneous disks in the array and the
arrival rate of logical I/O requests to the array isλ .

We represent service time as the random variableX =
S+ R+ Tk, whereS, R andTk are defined in Section 2.1,
and denote the number of blocks (stripe units) accessed by
a request asb. LetWd(t,γ,µ) define the cumulative distri-
bution function (cdf) of the response time of a single M/G/1
queue (disk), whereγ is the arrival rate at an individual disk
andµ is the mean service rate.

3.1.1. Multiclass Extension We denote the cdfs of the
response time of the pre-read subtask asW1(t) and of the
partial stripe write subtask asW0(t). In a multiclass system,
the total arrival rate to a queue (disk),γ, is the sum of the
arrival rates to a queue for each class; thusγ = γ1 + γ0.

We assume that the time to complete a single pre-read
and a single partial stripe write is equivalent to the weighted
average of completing two pre-reads or two partial stripe
writes. We note that these two subtasks are not indepen-
dent. Indeed, we assume that they are highly dependent,
giving:

Wwrite(t) = P(2W ≤ t) = P
(
W ≤

( t
2

))

Using these assumptions and Equation (1), the overall re-
sponse time distribution of a single partial stripe write re-
questWwrite(t) is:

Wwrite(t) =
γ1

γ
W1

( t
2

)
+

γ0

γ
W0

( t
2

)
(4)

If b < n−1
2 , a small partial stripe write, parity is calcu-

lated using [15]:

newparity = newdata⊕old data⊕old parity

where⊕ is the exclusive-or (XOR) operator. The first sub-
task pre-readsb+ 1 blocks of data for the parity update.
The second subtask writes the new data to the sameb+ 1
disks. This request is given priority in the queue, so at least
one disk (the last to complete the pre-read) will have just
completed reading a data or parity block that now needs to
be re-written. Therefore we add a full disk rotation (Rmax)
into that disk’s service time distribution. However, it is
likely that by the time the last disk has completed its pre-
read, the remaining disks will have started servicing the
next I/O request in their queues. These disks will need to
re-seek to write the new data and parity. Therefore, we as-
sume thatb disks seek again on the second request, while
only one disk needs a complete rotation. Since both sets of
subtasks access the same number of disks, the arrival rates
to each queue areγ1 = γ0 = λ (b+1)

n .
The cdfs of the response times of the subtasks are then:

W1(t) =
(
Wd

(
t, 2λ (b+1)

n , 1
E[R]+E[S]+E[T1]

))b+1

W0(t) =
(

Wd

(
t, 2λ (b+1)

n , 1
b(E[R]+E[S])+Rmax

b+1 +E[T1]

))b+1

If n−1
2 ≤ b < n−1, a large partial stripe write, then to

minimise disk accesses the parity is calculated by reading
only from the disks that are not being written to. The new
parity is calculated by XOR-ing the data that will be writ-
ten with the data from the disks that will remain unchanged.
The first subtask pre-readsn−1−b blocks of data for the
calculation of the new parity. When alln−1−b disks com-
plete their pre-read, a new request is sent to the otherb+1
disks to write the new data and parity. Thus, the arrival
rates to each disk within each class are:

γ1 =
λ (n−b−1)

n
γ0 =

λ (b+1)
n

The cdfs of the response times of the subtasks are:

W1(t) =
(
Wd

(
t,λ , 1

E[R]+E[S]+E[T1]

))n−b−1

W0(t) =
(
Wd

(
t,λ , 1

E[R]+E[S]+E[T1]

))b+1

When a partial stripe write (either large or small) follows
at least one full stripe write, the first subtask includes the



full stripe write and so will write to alln disks. The second
subtask is only the partial stripe write and hence will only
write to bmod+ 1 disks wherebmod≡ b mod (n−1). The
arrival rates to each disk for each class are:

γ1 = λ γ0 =
λ (bmod+1)

n

In the case that a small partial stripe follows at least one
full stripe write (b > n−1 and0 < bmod < n−1

2 ), the first
subtask is made up ofk = b b

n−1c block writes to each of the
n disks followed by pre-reads tobmod disks. The second
subtask writes the new data and parity tobmod+ 1 disks.
The cdfs of the response times of the subtasks are:

W1(t) =
(
Wd

(
t, λ (n+bmod+1)

n ,µ1

))n

W0(t) =
(
Wd

(
t, λ (n+bmod+1)

n ,µ0

))bmod+1

where

µ1 =
1

E[R]+E[S]+E[T
k+ bmod

n
]

and

µ0 =
1

bmod(E[R]+E[S])+Rmax
bmod+1 +E[T1]

When a large partial stripe follows at least one full stripe
write (n−1

2 ≤ bmod < n−1), the first subtask consists ofk
block writes to each of then disks followed by pre-reads to
n−bmod−1 disks. The second subtask writes the new data
and parity to the remainingbmod+ 1 disks. One of these
disks will not have to seek again, as it will be the last disk
to have finished transferring the full stripe. The cdfs of the
response times of the subtasks are then:

W1(t) =
(
Wd

(
t, λ (n+bmod+1)

n ,µ1

))n

W0(t) =
(
Wd

(
t, λ (n+bmod+1)

n ,µ0

))bmod+1

where

µ1 =
1

E[R]+E[S]+E[T
k+ n−bmod−1

n
]

and

µ0 =
1

bmod(E[R]+E[S])
bmod+1 +E[T1]

3.1.2. Priority Extension As soon as the new parity is
calculated, the partial stripe write subtask is prioritised.
Thus, we can give class0 jobs high priority and all other
jobs (including reads) low priority. Using the Laplace
transforms defined in Section 2.5 instead of the Pollaczek-
Khintchine transform equation, the response time distribu-
tion can be derived for high and low priority jobs.

3.2. Heterogeneous Arrival Streams

Thus far, our RAID models assume homogeneous ar-
rival streams. Here we use multiclass queues to generalise
these models for heterogeneous streams composed of both
reads and writes. This is achieved using Equation (1) to
calculate the request response time cdf:

W(t) = preadWread(t)+(1− pread)Wwrite(t)

wherepread is the probability that a request is a read.
We note that the arrival rate to the disk array used in [10]

and Section 3 must be modified. For RAID 01 the arrival
rate at each disk is:

λ (preadmin(b,n)+(1− pread)min(2b,n))
n

On RAID 5, the arrival rate at each disk is:

preadλ
min(b,n)

n
+(1− pread)γ

whereγ is the arrival rate at each disk in the array in the
case thatpread = 0, defined for each size of write request
in [10]. If the RAID 5 priority write model is used, then the
arrival rate of each priority class must also be known. The
arrival rate of low priority jobs is:

preadλ
min(b,n)

n
+(1− pread)γ1

while high priority jobs have an arrival rate of:

(1− pread)γ0

4. Validation

Our experimental platform consists of an Infortrend
A16F-G2430 RAID system containing four Seagate
ST3500630NS disks. Each disk has 60801 cylinders. A
sector is 512 bytes and we have approximated, based on
measurements from the disk drive, that the time to write
a single physical sector on the innermost and outermost
tracks are 0.012064ms (tmax) and 0.005976ms (tmin) re-
spectively. The stripe width on the array is configured as
128KB, which we define as the block size. Therefore there
are 256 sectors per block. The time for a full disk revo-
lution is 8.33ms. A track to track seek takes 0.8ms and a
full-stroke seek requires 17ms for a read; the same mea-
surements are 1ms and 18ms respectively for a write [16].

To obtain response time measurements from this system,
we implemented a benchmarking program that issues read
and write requests using a master process and a number of
child processes. These child processes are responsible for
issuing and timing I/O requests, leaving the master free to
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Figure 2. Comparison of mean response time against block size for RAID 01 for different values of λ .
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Figure 3. Comparison of mean response time
against block size for RAID 5 reads for differ-
ent values of λ (l).

spawn further processes without the need for it to wait for
previously-issued operations to complete.

In order to validate the analytical model effectively,
it was necessary to minimise the effects of buffering
and caching as these are not currently represented in the
model. We therefore disabled the RAID system’s write-
back cache, set the read-ahead buffer to 0 and opened the
device with theO_DIRECTflag set. For each of the exper-
iments presented below, 100 000 requests were issued and
the resulting means, variances and cumulative distribution
functions of the response times were calculated using the
statistical packageR.

4.1. RAID 01

In [10], we conducted a limited validation of our RAID
01 model by comparing modelled and measured cdfs for
the case of 2-block transfers only. Here, we aim to more
fully test the accuracy of the model by comparing measure-
ment and model for different load sizes and for block sizes
ranging from 1 to 30.

Fig. 2 shows measured and modelled mean response
times of reads and writes for RAID 01 for two different val-
ues ofλ – a light load ofλ = 0.01 requests/ms (Fig. 2(a))
and a heavy load ofλ = 0.03 requests/ms (Fig. 2(b)). For
write requests under light load, agreement between model
and measurement is excellent, even for large block sizes.
Under heavy load, agreement is excellent up to 7 blocks
which is when the system starts to saturate.

For read requests under both loads we observe good
agreement for block sizes of less than 17, with a slight ten-
dency for the model to overestimate for small block sizes.
For larger block sizes, the model tends to increasingly un-
derestimate the measurements. This behaviour is interest-
ing because it does not occur with RAID 01 writes or RAID
5 reads (see Fig. 3); we speculate that this is possibly be-
cause of the drive selection policy (which controls whether
to read from a primary disk or its mirror) implemented by
the RAID controller. Our model assumes random choice
of primary disk or mirror, but there are a number of other
options; we intend to investigate further through measure-
ments on RAID systems produced by other manufacturers.



Measured Single Class Multiclass Priority
λ # Mean σ2 Mean σ2 Mean σ2 Mean σ2

(ms−1) Blks (ms) (ms2) (ms) (ms2) (ms) (ms2) (ms) (ms2)
0.01 1 45.0 148.7 41.9 258.5 40.7 227.2 40.7 232.7

2 44.3 135.2 42.5 179.0 43.8 208.6 43.6 202.4
4 44.5 595.9 51.1 340.5 52.8 435.0 52.7 468.6
5 41.8 494.3 47.8 271.7 52.7 403.1 52.1 387.4
7 53.5 903.4 54.7 394.0 58.7 628.4 58.1 619.7
8 57.2 1084.4 51.6 326.0 58.3 616.6 57.1 519.8
10 65.8 1468.0 58.4 456.6 65.2 907.5 63.9 819.5
11 64.9 1515.5 55.6 391.0 64.6 941.3 62.6 696.9
13 64.16 1630.6 62.3 530.4 72.4 1295.4 70.1 1076.6
14 77.0 1992.6 59.9 468.4 71.7 1414.5 68.4 926.1
16 93.9 3327.9 66.4 616.1 80.3 1822.2 76.8 1400.7
17 89.3 3216.2 64.4 559.9 79.6 2087.2 74.8 1216.2
19 106.7 4710.2 70.7 715.5 89.0 2526.2 84.0 1803.2
20 102.0 4331.6 69.2 667.7 88.6 3029.9 81.6 1578.2

0.02 1 51.9 278.4 48.4 466.8 47.1 429.1 46.9 475.6
2 50.4 251.9 50.1 411.5 52.2 472.1 51.2 454.8
4 71.7 2496.7 69.0 975.0 75.4 1430.4 75.2 1726.6
5 65.3 2139.6 66.3 847.9 79.9 1731.1 75.4 1669.2
7 98.4 5359.0 76.4 1235.3 90.3 2534.0 86.8 2509.8
8 102.5 5863.0 74.8 1123.4 97.9 3588.7 86.6 2481.7
10 137.7 10234.3 84.7 1573.2 110.1 4643.0 100.5 3686.9
11 129.1 9171.6 84.6 1497.8 125.1 7967.5 100.0 3738.5
13 164.5 18646.5 94.1 2014.7 137.7 8829.0 117.0 5471.1
14 173.0 15746.0 96.1 2012.2 171.1 19712.4 116.3 5706.9

Table 1. Mean and variance of request response time for the three RAID 5 write models.

4.2. RAID 5

We validate our RAID 5 read model by comparing the
measured and modelled mean response times in Fig. 3. Re-
sults are presented for two values ofλ (0.01 and 0.02 re-
quests/ms) and for block sizes from 1 to 15. We generally
see good agreement between model and measurement.

We now validate our three models for RAID 5 partial
stripe write requests against device measurements. We re-
fer to the model presented in [10] as the single class model
and to the two models presented here in Section 3.1 as the
multiclass and priority models respectively.

In Fig. 4 mean response times are presented for the three
different models against device measurements for increas-
ing block sizes and for arrival rates of0.01 and 0.02 re-
quests/ms. For small block sizes and loads, the single class
model most often predicts means closest to the measured
results. As block size increases, the means predicted by the
multiclass and priority models are closer to the measured
results. For large block sizes, the multiclass model clearly
outperforms the other two models. However, the priority
model means are reasonably close to the measured results
for all block sizes. Table 1 contains means and variances
for all cases.

Fig. 5 compares the pdfs and cdfs of the three models
with measurements in the cases where each model had the

closest mean and variance to the measurements. Fig. 5(a)
is a 2-block write with an arrival rate of0.02 requests/ms;
the single class model gives the best mean and variance.
Fig. 5(c) is a 14-block write with an arrival rate of0.02
requests/ms; the multiclass model gives the best mean and
variance. Fig. 5(b) is an 8-block write with an arrival rate
of 0.01requests/ms; the priority model gives the best mean
and variance.

4.3. Mixed Reads and Writes

To validate both our RAID 01 and RAID 5 models for
mixed reads and writes, we consider arrival streams of
25% reads/75% writes, 50% reads/50% writes, and 75%
reads/25% writes. Each of these streams was generated for
λ = 0.01 and0.03 requests/ms and requests sizes between
1 and 5 blocks inclusive.

4.3.1. RAID 01 Table 2 compares modelled and mea-
sured variances for this model. Fig. 6 presents the pdfs
and corresponding cdfs for 2-block mixed read and write
requests for the three read/write combinations at an arrival
rate ofλ = 0.03 requests/ms. We observe excellent agree-
ment between measured and modelled means, variances,
pdfs and cdfs.
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Figure 4. Comparison of mean response time for all models against block size for RAID 5 partial
stripe writes for different values of λ .

(a) 2-block requests,λ = 0.02 requests/ms (b) 8-block requests,λ = 0.01 requests/ms (c) 14-block requests,λ = 0.02 requests/ms

Figure 5. Selected pdfs and cdfs of RAID 5 write request response times for the three models.



25% Reads, 75% Writes 50% Reads, 50% Writes 75% Reads, 25% Writes
λ # Measured Modelled Measured Modelled Measured Modelled

(ms−1) Blks Mean σ2 Mean σ2 Mean σ2 Mean σ2 Mean σ2 Mean σ2

(ms) (ms2) (ms) (ms2) (ms) (ms2) (ms) (ms2) (ms) (ms2) (ms) (ms2)
0.01 1 21.0 41.8 18.8 27.7 19.4 39.7 17.8 27.2 17.7 32.7 16.8 25.6

2 24.4 66.6 23.1 45.3 22.6 62.3 21.7 38.8 20.6 48.3 20.3 31.7
3 27.3 90.1 25.0 54.6 25.1 81.8 23.8 48.4 22.6 63.4 22.6 41.0
4 29.2 102.1 27.0 67.3 26.9 98.0 25.8 62.3 24.2 75.8 24.7 54.8
5 32.5 137.5 28.5 78.9 29.7 131.9 27.1 72.6 26.4 98.0 25.8 62.5

0.03 1 22.9 82.6 21.1 60.4 21.0 72.8 19.5 51.3 18.8 54.5 18.0 42.0
2 31.5 262.6 33.1 195.4 27.6 180.1 28.5 134.0 23.6 112.3 24.8 95.6
3 37.3 404.8 38.7 279.4 32.4 283.8 34.6 220.5 27.3 176.2 31.0 166.9
4 42.5 628.8 45.7 419.0 36.8 441.7 42.6 372.9 30.5 254.2 39.4 307.3
5 50.4 946.6 50.7 550.5 42.4 596.1 46.6 485.0 34.3 347.7 42.5 385.9

Table 2. Comparison of mean response times and variances for mixed read and write request streams
for RAID 01.

(a) 25% read requests, 75% write requests (b) 50% read requests, 50% write requests (c) 75% read requests, 25% write requests

Figure 6. RAID 01 2-block request response time pdfs and cdfs for arrival streams of mixed reads
and writes and an arrival rate λ = 0.03 requests/ms.



25% Reads, 75% Writes 50% Reads, 50% Writes 75% Reads, 25% Writes
λ # Measured Modelled Measured Modelled Measured Modelled

(ms−1) Blks Mean σ2 Mean σ2 Mean σ2 Mean σ2 Mean σ2 Mean σ2

(ms) (ms2) (ms) (ms2) (ms) (ms2) (ms) (ms2) (ms) (ms2) (ms) (ms2)
0.01 1 42.5 544.1 34.9 292.6 34.0 408.8 28.2 258.6 25.8 257.8 21.9 166.1

2 43.3 537.8 36.4 217.2 35.4 401.0 30.4 200.6 28.1 248.8 24.6 134.7
3 27.6 126.9 23.8 46.5 25.8 113.8 23.0 42.2 23.9 89.3 22.2 37.6
4 33.6 244.8 43.9 365.0 30.2 206.9 36.9 312.0 26.7 142.0 30.2 211.5
5 33.7 234.5 41.6 268.7 30.7 198.4 35.7 229.1 27.3 144.4 30.0 155.2

0.03 1 sat. sat. 44.3 670.5 105.8 9642.2 33.2 455.0 48.0 1722.9 24.2 241.3
2 sat. sat. 49.4 710.8 117.9 11921.4 38.7 496.4 57.5 2612.2 29.7 278.5
3 53.1 1770.2 35.7 220.5 47.3 1386.0 32.8 182.4 40.1 865.4 30.2 148.8
4 116.5 12192.3 85.5 2349.0 76.2 4596.2 65.3 1470.7 53.0 1880.7 49.3 786.1
5 109.7 9268.7 88.4 1947.2 77.4 4607.6 67.4 1122.3 55.6 2096.4 51.2 615.0

Table 3. Comparison of mean response times and variances for mixed read and write request streams
for RAID 5.

4.3.2. RAID 5 In this section, we focus on the single
class write model as it was, in the case of 100% write re-
quests, the most accurate for small block sizes. Table 3
presents modelled and measured variances – note that the
results for 1 and 2-block requests for the 25% read arrival
stream atλ = 0.03 requests/ms display saturation on the
RAID system. We note that agreement between measured
and modelled results is not as good as for RAID 01. In
particular, we observe that the measured mean response
times for 1 and 2-block requests are higher than for 4 and 5
block requests, but that this does not occur in the modelled
results. Furthermore, the measured mean response times
for mixed reads and writes exceed the measurements for
100% writes (which are significantly larger than the mea-
surements for 100% reads) for the same block size under
each load presented. This can be seen most clearly under
heavier loads and for higher percentages of write requests.
We need to investigate further the performance of the RAID
system under mixed arrival streams to understand why such
behaviour occurs.

5. Conclusion

In this paper we have presented an improved perfor-
mance model for RAID systems capable of calculating full
request response time distributions. By employing multi-
class queues, we gain the ability to analyse mixed arrival
streams of reads and writes. This mixture of request type
more accurately reflects the workloads experienced by real-
life RAID systems. Adopting multiclass queues also en-
ables us to more realistically model the way in which par-
tial stripe writes are conducted for RAID 5. Our results are
extensively validated against device measurements from a
real RAID system. This exercise has revealed some inter-
esting discrepancies between model and measurement for

certain types of I/O requests (e.g. RAID 5 mixed read and
writes), which we will investigate further.

There are a number features which we still need to
model in order to have a comprehensive model capable of
representing real I/O workloads. Firstly, caching is not yet
supported in our model. Secondly, we would like to sup-
port sequential as well as random I/O, to better model the
effects of locality. Thirdly, we currently constrain the align-
ment of RAID 5 write requests to start at the beginning of a
stripe in all cases. In the future, we would like to allow for
requests that start with a partial stripe, followed by further
data. Fourthly, all our models assume fixed request sizes
and we would like to extend them to incorporate distribu-
tions of block sizes. Finally, we have assumed Markovian
arrivals in our model, and have generated request streams
that conform to this assumption for our measurements. We
intend to compare the model response times with response
times generated from real I/O traces.
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Appendix

We summarise the RAID 01 and RAID 5 models of [10].
The response time cdf for a RAID 01b-block read is:

Wread(t)=





(
Wd

(
t, λb

n , 1
E[R]+E[S]+E[T1]

))b
if b < n(

Wd

(
t,λ , 1

E[R]+E[S]+E[Tb
n
]

))n

otherwise

(5)
The response time cdf for a RAID 01b-block write is:

Wwrite(t)=





(
Wd

(
t, 2λb

n , 1
E[R]+E[S]+E[T1]

))2b
if 2b < n(

Wd

(
t,λ , 1

E[R]+E[S]+E[T2b
n

]

))n

otherwise

We model a RAID 5 read in the same way as a RAID 01
read (see Equation (5)).

The simplest RAID 5 write request is one which con-
sists only of a number of complete stripes. Computation of
parity does not require pre-reading of existing data in this
case. The response time cdf is:

Wwrite(t) =

(
Wd

(
t,λ ,

1
E[R]+E[S]+E[T b

n−1
]

))n

For each case of the single class partial stripe write model,
the mean service rate and number of queues are averaged
for each class. A small partial stripe write, has an overall
response time cdf of:

Wwrite(t) =
(
Wd

(
t
2, 2λ (b+1)

n ,µ
))b+1

µ = 1
(2b+1)(E[R]+E[S])+Rmax

2(b+1) +E[T1]

For a large partial stripe write, the response time cdf is:

Wwrite(t) =
(

Wd

(
t
2
,λ ,

1
E[R]+E[S]+E[T1]

))n/2

If at least one full stripe write occurs followed by a small
partial stripe write, the response time cdf is:

Wwrite(t) =
(
Wd

(
t
2, λ (n+bmod+1)

n ,µ
)) n+bmod+1

2

µ = 1
(n+bmod)(E[R]+E[S])+Rmax

n+bmod+1 +E[Tk
2+

bmod+1
n

]

If at least one full stripe write occurs followed by a large
partial stripe write, the response time cdf is:

Wwrite(t) =
(
Wd

(
t
2, λ (n+bmod+1)

n ,µ
)) n+bmod+1

2

µ = 1
(n+bmod+0.5)(E[R]+E[S])

2n +E[Tk+1
2

]


