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Abstract. RAID systems are ubiquitously deployed in storage environ-
ments, both as standalone storage solutions and as fundamental compo-
nents of virtualised storage platforms. Accurate models of their perfor-
mance are crucial to delivering storage infrastructures that meet given
quality of service requirements. To this end, this paper presents a flexi-
ble fork-join queueing simulation model of RAID systems that are com-
prised of zoned disk drives and which operate under RAID levels 01 or
5. The simulator takes as input I/O workloads that are heterogeneous in
terms of request size and that exhibit burstiness, and its primary out-
put metric is I/O request response time distribution. We also study the
effects of heavy workload, taking into account the request-reordering op-
timisations employed by modern disk drives. All simulation results are
validated against device measurements.

1 Introduction

RAID1 has revolutionised data storage because of its ability to synthesise a set of
low-cost commodity storage devices into a single logical unit that can deliver high
reliability with high performance. However, RAID system performance varies
heavily in practice, depending on chosen configuration and operating context.
Given a budget and an expected workload, it is therefore a major challenge for
system designers and engineers to select RAID components and corresponding
configurations capable of delivering a required level of quality of service. Perfor-
mance models provide a low-cost means to evaluate the suitability of candidate
system designs ahead of implementation.

In the above context, this paper introduces a queueing-based simulator for
the analysis of RAID systems comprised of zoned disks. Our goal is to pro-
vide an elegant high-level framework that avoids very detailed low-level device
simulation (e.g. as performed by the DiskSim [2] and RaidSim [3] simulators)
and which can be simply parameterised from disk drive technical specifications.

⋆ Corresponding author. Telephone: +44 20 7594 8251.
1 Redundant Array of Inexpensive Disks [1]; RAID levels describe various ways of

spreading data across multiple storage devices using striping, mirroring, and/or par-
ity



The simulation generates as its primary output metric the cumulative distri-
bution function of I/O request response time. From this, it is straightforward
to calculate metrics typically encountered in Service Level Agreements, includ-
ing response time quantiles and the mean, variance and higher moments of I/O
request response time.

Simulation is often used to study RAID system performance, since there exist
no exact analytical models of RAID of any level [4]. However, there are numerous
analytical queueing network approximations (e.g. [5–9]). In [4, 10, 11] we have de-
veloped approximate analytical queueing models of RAID 01 and 5. Simulations
are often used to validate the results of analytical models. Additionally, they
provide the ability to replicate the details of the scheduling algorithms and me-
chanical behaviour of real systems, while analytical models must abstract these
details. Thus, simulations can aid the development of more realistic analytical
models.

In [12] we introduced a zoned RAID simulator for RAID level 0 (striping,
no redundancy). This simulation is based on modelling each disk drive as an
M/G/1 queue and approximates RAID 0 as a split-merge queueing system (see
Figure 1(a)). In this system, a job (I/O request) splits into N subtasks which
are serviced in parallel. Only when all the subtasks finish servicing and rejoin
can the next job split into subtasks and start servicing. However, it is generally
accepted that the queueing model which most accurately reflects the behaviour
of RAID systems is the fork-join queueing network [5]. In a fork-join queue with
N queues, (see Figure 1(b)), each incoming job is split into N subtasks at the
fork point. Each of these subtasks queues for service at a parallel service node
before joining a queue for the join point. When all N subtasks in the job are
at the head of their respective join queues, they rejoin (synchronise) at the join
point.

(a) Split-merge queueing model (b) Fork-join queueing model

Fig. 1. Split-merge vs. fork-join queueing models

This paper presents a fork-join simulation capable of modelling RAID levels
01 (mirror of stripes) and 5 (distributed parity). In order to simulate a RAID
system, we must first implement an effective single disk simulation. We can then
use several instances of this single disk simulator as components in our disk array



simulator. Section 2 summarises our single disk simulation, which utilises the
JINQS Java-based queueing simulation library [13]. Section 3 details the fork-
join extensions to the single disk simulator required to create an effective model
for RAID. This involves firstly simulating a fork-join queueing network and then
tailoring it to model the specific demands of RAID 01 and 5. Furthermore we
enhance the model to accept various types of workload. We then validate the
accuracy of this new simulator by comparing results from several different types
of workload to device measurements taken on a real RAID system.

2 Single Disk Simulation

We model single disk drives as M/G/1 queues and use the JINQS Java-based
simulation library [13] for M/G/1 queue simulation. The service time density of
an access to a random location on a single disk drive is the convolution of the seek
time, rotational latency and data transfer time probability density functions. In
our model we use the seek time and rotational latency probability distributions
defined in [14] and the data transfer time distribution from [4]. The seek, rotation
and transfer times are sampled using the cumulative distribution function inver-
sion method described in [12]. An important subtlety that needs to be taken into
account is that modern disks are zoned, with more sectors on the outer tracks
than inner tracks. Therefore, a random request is more likely to be directed to a
sector on an outer track. Similarly, zoning means that it is faster to transfer data
on a track close to the circumference than the centre of the disk. The seek time
and data transfer models must take these factors into account. We assume that
all requests are random accesses and therefore it is always necessary to position
the disk head before transferring data.

3 RAID Simulation

Disk arrays organise multiple independent disks into a single logical disk unit. By
striping data across multiple disks and accessing the disks in parallel, higher data
transfer rates are achieved, especially with larger I/O requests. Data striping also
ensures that data is balanced across the disks, avoiding data hot spots. Disk
striping involves writing data blocks of a constant pre-defined size to successive
disks in a cyclical pattern.

However, the larger the disk array, the more likely it is that a member disk
will fail. In order to avoid data loss as a result of failures, redundancy can be
employed using mirroring (see Figure 2(a)) or parity blocks (see Figure 2(b)).
Parity is block-interleaved and distributed across all disks.

All these schemes involve striping of I/O accesses across disks in the disk
array. A fork-join queue in which customers represent I/O requests provides a
good foundation for an abstraction of this behaviour.



(a) RAID 01 (b) RAID 5

Fig. 2. RAID Configurations [15]
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Fig. 3. RAID simulator class diagram



3.1 Fork-Join Simulation

As shown in the UML class diagram of Figure 3, our queueing simulation is spec-
ified in terms of QueueingNode, Link and Customer classes. QueueingNodes are
connected by Links to create a network of queues. Response times measurements
are obtained by recording the time each Customer spends in the network. To ex-
tend this for fork-join queueing, we introduce ForkLink and JoinLink classes to
extend the Link class and a ForkedCustomer class to extend the Customer class.
ForkedCustomers are created at a ForkLink when a customer forks into subtasks
and removed at the JoinLink. A ForkLink creates a new ForkedCustomer for each
subtask, each with a reference to the original Customer. These ForkedCustomers
are sent to one of the n single M/G/1 queues. When a ForkedCustomer leaves an
M/G/1 queue, it is sent to JoinLink, which collects all ForkedCustomers. When
all the ForkedCustomers for a particular Customer have arrived, the original
Customer is sent on its way and all of its ForkedCustomers are destroyed.

3.2 RAID 01 Simulation

There are certain extensions to the fork-join simulation described above that
must be made to model a RAID 01 system accurately.

In particular, both the fork-join simulation described above and the RAID 0
simulation of [12] are limited to supporting requests consisting of a number of
subtasks that is a multiple of the number of disks. We therefore extend the
ForkLink class with RAID01ReadForkLink and RAID01WriteForkLink classes,
both of which support striping of variable size subtasks across disks starting
from a randomly selected disk. Additionally, we extend the JoinLink class with
the RAIDJoinLink class to support joining of variable-sized requests.

In terms of subtask scheduling for RAID 01 read operations, we assume an
efficient RAID controller which reads half the data from the primary disks and
half the data from the mirror disks [7]. RAID 01 write operations send each
subtask to both the primary and mirror disks and create double the number of
ForkedCustomers as for a read request of the same size.

3.3 RAID 5 Simulation

Manufacturers of RAID controllers seldom reveal the mechanisms and scheduling
strategies involved in their products. In the cases of RAID 0 and 01, the likely
disk accesses are relatively straightforward to predict. However in RAID 5, par-
ticularly with operations involving pre-reads and parity updates, there are many
possibilities for scheduling strategies and disk head positioning times within a
request. Here we base the design of our RAID 5 simulation upon the operational
assumptions of RAID 5 disk behaviour presented in [4, 7, 11].

In a manner analogous to the RAID 01 case, we extend the ForkLink class
with RAID5ReadForkLink and RAID5WriteForkLink classes.

A RAID 5 read request will read only from the disks containing data blocks in
a stripe and not the disk with the single parity block in each stripe. To simulate



this, when forking each request, the position of the parity disk is randomly chosen
as well as the starting disk. If a request accesses more than one stripe, then the
position of the parity disk within the array is incremented (modulo the number
of disks) at the end of each stripe.

The behaviour of a RAID 5 write is complex, with different parity-update
schemes that depend on the size of the request. For simplicity, we assume requests
are aligned to start striping from the first disk in the array.

Given a b-block write request on an n-disk RAID 5 system, the possibilities
are:

If a request consists of a number of complete stripes (i.e. b mod (n− 1) = 0),
all the disks are utilised, with either the new data block or the new parity block
written to each disk. Full stripe writes can be simulated by sending ForkedCus-

tomers to each disk and joining them at the RAID5WriteJoinLink when all
subtasks have completed.

If a request consists of b mod (n − 1) < n−1

2
blocks (i.e. it consists of zero

or more full stripe writes followed by a small partial stripe write), then parity is
calculated using [1]:

new parity = new data ⊕ old data ⊕ old parity

where ⊕ is the exclusive-or (XOR) operator. This is a read-modify-write oper-
ation. After transferring the full stripes, each of the b mod (n − 1) blocks and
parity must be transferred twice, first to read the old data and parity, then to
write the new data and parity. When the old data and parity have been read
from all disks, a new request will be issued to write the new data and parity
to the same disks. This request is given non-preemptive priority in the queue,
so at least one disk (the last to complete the pre-read) will just have completed
reading a data or parity block that now needs to be re-written.

If n−1

2
≤ b mod (n − 1) < n − 1 (i.e. the request consists of zero or more

full stripe writes followed by a large partial stripe write), then to minimise disk
accesses the parity is calculated by pre-reading from the disks that are not being
written to. The new parity is calculated by XOR-ing the data that will be written
with the data from the disks that will remain unchanged. This is a reconstruct-
write operation. After the full stripe transfers, n−1−b mod (n−1) blocks of data
are pre-read for the calculation of the new parity. When all n−1−b mod (n−1)
disks complete their pre-read, a new request is sent to the other b mod (n−1)+1
disks to write the new data and parity.

Simulation of the above operations is supported in the RAID5WriteForkLink

and RAID5WriteJoinLink classes. The RAID5WriteForkLink subdivides any
arriving request into full stripe subtasks followed by pre-read subtasks. These
subtasks are then routed to the relevant M/G/1 queues. When the pre-read
subtasks have completed and are accounted for at the RAID5WriteJoinLink

then, instead of completing the request, the RAID5WriteJoinLink creates a new
high priority request to send back to the RAID5WriteForkLink, where it splits
into b mod (n−1)+1 subtasks (the number of blocks to write plus the parity). In
order for the simulation to differentiate between full stripe writes and pre-reads



and the following partial stripe write, the ForkedCustomers are assigned classes
representing the type of request.

The subtasks of the partial stripe write will have different service times de-
pending on the nature of the previous request serviced by the disk. In the case
that b mod (n − 1) < n−1

2
, there are four possible scenarios to be considered.

The first scenario is when the disk is busy at the arrival instant of any of
the partial stripe write subtasks. Since the partial stripe write is accessing all
the disks used for the pre-read, and all the pre-reads must complete before the
partial stripe write is issued, it is not possible that the job currently servicing is
a ForkedCustomer from the same Customer. Hence to simulate a return to the
required disk position to transfer data, a random sample of seek and rotation
time is taken.

If the disk is idle on arrival of a subtask, then there are a further three
mutually exclusive scenarios with different positioning times:

– If another request has been in service between the pre-read and partial stripe
write subtasks then the simulator needs to sample a new seek and rotation
time.

– If the disk was the last to complete the pre-read, then it will be positioned
on the correct track, but just past the rotational position. In this case, the
simulator returns a positioning time of one full disk rotation.

– Otherwise, the disk is still positioned at the correct track and the simulator
needs to sample from the rotational latency for positioning time.

If b mod (n − 1) ≥
n−1

2
, there are again a number of scenarios to consider.

Since the pre-read involves different disks than the partial stripe write, it is
possible that previous full stripe subtasks from the same request could still be
servicing on the disks required for the partial stripe write after the pre-read has
completed.

In this context, if a subtask arrives to a busy disk, we consider whether the
job currently in service is part of the same request. If it is, the subtask will follow
on with no positioning time. If it arrives to an idle disk, the simulator checks
if the previous job was part of the same request. If it was then the disk head
is pointing to the correct track and the simulator needs to sample rotational
latency only. In all other cases the positioning time is obtained by sampling
both seek and rotation time.

Since we are simulating zoned disks, we must take into account that the
transfer time must be same both for the full-stripe and pre-read and for the
partial stripe write requests, since they are both accessing the same position on
the disk. Therefore, the transfer time for each subtask to each disk is recorded
in a hash table and referred to when the partial stripe write is serviced.

When all the partial stripe write subtasks complete, the RAID5WriteJoinLink

sends the single request on its way and removes all ForkedCustomers attached
to that request.



3.4 Bulk Arrivals

Most queueing simulations assume that arriving requests are Markovian. How-
ever, over the last decade, there have been many studies of storage system I/O
traces (e.g. [16–21]) which consistently show that real-life arrivals to storage sys-
tems exhibit burstiness and a variety of request size distributions. Consequently,
we have extended the simulator to support bulk arrivals of I/O requests at the
RAID controller, making use of JINQS ’s in-built support for arrivals that consist
of a number of requests defined by a chosen probability distribution.

3.5 Rotational Positioning Optimisation

Bursty workloads [20] result in highly variable queue lengths. As queue length
increases, response time suffers. To lessen this effect, many disk drives employ
scheduling algorithms to reorder jobs in the queue to minimise head positioning
time [22, 23]. This reduces the time needed to service each job, which in turn
reduces the waiting time for all jobs [24].

We incorporate this factor into our simulation by parameterising the service
time distribution sampler according to the current queue length. The sampler
then takes as many combined samples of seek and rotation time as there are
jobs in the queue and chooses the minimum of these to be the positioning time
of the request starting service. This can be used for either single disk simulation
or RAID simulation.

4 Validation

Our experimental platform consists of an Infortrend A16F-G2430 RAID system
containing four Seagate ST3500630NS disks. Each disk has 60 801 cylinders. A
sector is 512 bytes and we have approximated, based on measurements from
the disk drive, that the time to write a single physical sector on the innermost
and outermost tracks are 0.012064ms (tmax ) and 0.005976ms (tmin) respectively.
The stripe width on the array is configured as 128KB, which we define as the
block size. Therefore there are 256 sectors per block. The time for a full disk
revolution is 8.33ms. A track to track seek takes 0.8ms and a full-stroke seek
requires 17ms for a read; the same measurements are 1ms and 18ms respectively
for a write [25].

To obtain response time measurements from this system, we implemented
a benchmarking program that issues read and write requests using a master
process and multiple child processes. These child processes are responsible for
issuing and timing I/O requests, leaving the master free to spawn further child
processes without the need for it to wait for previously-issued operations to
complete.

In order to validate the simulation model effectively, it was necessary to min-
imise the effects of buffering and caching as these are not currently represented
in the model. We therefore disabled the RAID system’s write-back cache, set the



read-ahead buffer to 0 and opened the device with the O_DIRECT flag set. For
each of the experiments presented below (both measurement and simulation),
100 000 requests were issued. We present a selection of comparisons of cumula-
tive distribution functions (cdf). The single disk simulation is validated in [12],
so here we only present RAID validations.

4.1 RAID 01

In Figure 4 we compare measurement and simulation cdfs for RAID 01 with
Markovian arrivals at a rate of 0.01 requests/ms for different request type and
size. We generally observe good agreement between model and measurement,
particularly in Figure 4(b), in which a full stripe read is taking place. Figure 5
considers the same conditions, except in this case the request size is variable and
sampled from a geometric distribution with a specified mean request size. We
observe excellent agreement between model and measurement in these cases.
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(a) 2-block read request
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(b) 4-block read request
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(c) 3-block write request

Fig. 4. Cumulative distribution functions of RAID 01 I/O request time on a 4 disk
RAID system (λ = 0.01 requests/ms)

Figures 6 and 7 validate RAID 01 with more interesting workloads. In Fig-
ure 6 simulation and measurement cdfs are compared for a RAID 01 system with
constant-size full stripe requests, which arrive in bursts. Each request arrives as
part of a batch. The number of requests in each batch is decided by a geometric
distribution. We continue to see excellent agreement between model and mea-
surement. Figure 7 involves a high arrival rate at the array (0.06 requests/ms),
such that rotational positioning optimisation (RPO) should be expected. We
plot two simulation cdfs, one with RPO enabled on the simulator and the sec-
ond with RPO disabled. It is clear from the graph that for large arrival rates
(and hence long queue lengths) incorporating RPO into any model is crucial.
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(a) 4-block mean read request
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(b) 2-block mean write request

Fig. 5. Cumulative distribution functions of RAID 01 I/O request time on a 4 disk
RAID system with request sizes chosen from a geometric distribution (λ = 0.01 re-
quests/ms)

4.2 RAID 5

In Figure 8 we compare measurement and simulation cdfs for RAID 5 systems
wiqth Markovian arrivals with arrival rate λ requests/ms and constant size re-
quests. We can use these validations to help judge the accuracy of our RAID 5
models. We observe in Figure 8(a) that the read simulation appears to agree well
with the measurements. Figures 8(b) and 8(e) are small partial stripe writes.
While mean values appear to agree well, the shapes of the cdf curves for the
simulation differ somewhat from the measurement curves, particularly in the
case of a small partial stripe write that does not follow a full stripe write (Fig-
ure 8(b)). Figures 8(c) and 8(f) are large partial stripe writes. These show bet-
ter agreement than the small partial stripe equivalents. However, they appear
to consistently underestimate the measurements, as does the full stripe write
request in Figure 8(d). It is possible that this underestimation can be attributed
to not factoring into the simulation RAID controller overheads including parity
computation time.

Similarly, Figure 9 compares simulation and measurements for RAID 5 re-
quests with size decided by a geometric distribution. We again observe excellent
agreement for read requests in Figure 9(a). Write requests in Figure 9(b) tend to
underestimate the measurements since both full stripe requests and large partial
stripe write requests of constant size underestimate the measurement. Figure 10
compares mean response times for simulation and measurement for up to 10-
block jobs. The model predicts effectively the qualitative characteristics of mean
RAID 5 response times as block size varies.



0 50 100 150 200 250
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Time (ms)

P
ro

ba
bi

lit
y

Measurement
Simulation

Fig. 6. Cumulative distribution functions of RAID 01 I/O read request time on a 4
disk RAID system with 4-block requests and geometrically distributed bulk arrivals
with mean size 3 (λ = 0.01 requests/ms)

5 Conclusion

This paper has presented a RAID simulation based on fork-join queueing net-
works. We have presented extensive validations of this simulation against device
measurements, generally observing excellent agreement for RAID 01 and 5 with
request streams of both constant and variable size and bursty arrivals. We have
also incorporated rotational positioning optimisations into our simulation and
have shown in our validations that this is fundamental to any accurate repre-
sentation of disk drives or RAID systems operating under heavy load.

In future work, we hope to further relax the constraints on the simulation.
In particular, it is straightforward to modify the simulator to represent other
RAID levels and to accept arrival streams that consist of both read and write
requests, and both random and sequential accesses. Furthermore, we intend to
discover more about RAID controller overheads and incorporate these into our
models. We also intend to apply our simulator in validating and improving cur-
rent and future analytical queueing models of RAID systems. Finally, caching
is an interesting and practically useful aspect that merits further investigation
and integration into our model.
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(a) 5-block read request λ = 0.02
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(b) 1-block write request λ = 0.01
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(c) 2-block write request λ = 0.01
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(d) 3-block write request λ = 0.01
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(e) 4-block write request λ = 0.01
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(f) 5-block write request λ = 0.01

Fig. 8. Cumulative distribution functions of RAID 5 I/O request time on a 4 disk
RAID system (λ requests/ms)
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λ = 0.01
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(b) 4-block mean write request,
λ = 0.02

Fig. 9. Cumulative distribution functions of RAID 5 I/O request time on a 4 disk
RAID system with request sizes chosen from a geometric distribution (λ requests/ms)
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(a) mean read request, λ = 0.01
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(b) mean write request, λ = 0.02

Fig. 10. Plot of mean response time against request size on a 4 disk RAID 5 system
(λ requests/ms)


