
A Response Time Distribution Model for Zoned
RAID

Abigail S. Lebrecht?, Nicholas J. Dingle, and William J. Knottenbelt

Department of Computing, Imperial College London,
South Kensington Campus, SW7 2AZ, United Kingdom

{asl102,njd200,wjk}@doc.ic.ac.uk

Abstract. RAID systems are widely deployed, both as standalone stor-
age solutions and as the building blocks of modern virtualised storage
platforms. An accurate model of RAID system performance is there-
fore critical to understanding storage system performance. To this end,
this paper presents a queueing network-based model of RAID systems
comprised of zoned disks and operating at RAID level 0-1 or 5. The
contribution over previous work is twofold. Firstly, our analysis approxi-
mates full I/O request response time distributions rather than just mean
values. This provides the ability to reason about response time quantiles
and higher moments of response time – both of which are useful in the
context of modern quality of service requirements. Secondly, we validate
our model against measurements from a real RAID system rather than
a software simulation. The close agreement between predicted and ob-
served response time distributions gives a high level of confidence in the
validity of our model.

1 Introduction

There is an unrelenting business demand for fast, reliable storage. For
example, the CIO of Chevron Corporation, the world’s fifth largest energy
company, claims that Chevron accumulates data at a rate of 2TB per
day [1]. Similarly, the news agency Reuters estimates that it manages
1.4PB of data, a figure which is growing at an annual rate of 50%.

Much of this data is ultimately stored on RAID systems, which are
deployed either as standalone storage solutions or as the building blocks of
virtualised storage infrastructures. The detailed understanding of RAID
system performance is therefore critical to determining whether or not
application-level quality of service demands will be met by a given storage
infrastructure.

? Corresponding author. Telephone: +44 20 7594 8385.

In this paper, we propose a novel queueing model for the analysis
of RAID systems comprised of zoned disks1. The inputs to this analysis
are a specified I/O request arrival rate, an I/O request access profile,
a given RAID configuration and physical disk parameters. The primary
output of this analysis is an approximation to the cumulative distribution
function of I/O request response time. From this, it is straightforward to
calculate response time quantiles, as well as the mean, variance and higher
moments of I/O request response time. This improves on the state-of-the-
art in RAID performance models [2–6], all of which yield approximations
to the mean response time only.

The first step in building a good RAID model is to derive an accurate
model of the behaviour of a single disk drive. To do this, we abstract a
disk drive as an M/G/1 queue and model the service time as the sum of
the random variables of seek time, rotational latency and data transfer
time. In doing so, we take into account the properties of zoned disks.
Section 2 describes this zoned disk drive queueing model in detail.

In line with previous work [7], we then abstract a RAID system as a
fork-join queueing network. This comprises several queues, each of which
represents one disk drive in the array. Incoming I/O requests fork into
subtasks which are processed across the drives; upon completion of all
subtasks, they join, signalling completion of the I/O request. Section 3
presents our analytical approximation of such a fork-join queueing net-
work.

We tailor our basic fork-join approximation to account for the I/O
request patterns associated with particular request types and request sizes
under different RAID levels. We focus on RAID 0-1 (mirrored stripes)
and RAID 5 (distributed parity), which are the two most commonly used
RAID levels. Section 4 derives the resulting novel cumulative distribution
functions of I/O request response time for RAID 0-1 and 5. Models for
RAID 0 (striping without redundancy) and RAID 6 (double distributed
parity) can also be derived from these results.

To test the accuracy of our resulting models, we validate them against
RAID device measurements in Section 5. Section 6 concludes and consid-
ers directions for future work.

1 On modern hard drives there are more blocks on cylinders on the outside of the
platter than those closer to the centre. Cylinders with the same number of blocks
are grouped together in zones. Disks rotate with a constant angular velocity and
therefore data throughput is higher for outer zones than for inner ones.

2 Disk Model

In making performance predictions for a disk array or storage system,
it is fundamental to model disk service time accurately. To this end, we
model a disk drive as an M/G/1 queue where the service time density is
the convolution of seek time, rotational latency and data transfer time
densities. Defining random variables for seek time, S, rotational latency,
R, and block transfer time, T , we describe their distributions below.

2.1 Seek Time

A seek, S, is the time taken for the disk head to move from the cylinder
where it is currently located, C2, to the cylinder containing a target sector,
C1. We define a random variable, D = |C1 − C2|, as the seek distance.
Seek time can then be defined in terms of seek distance. Specifically [8],

S(D) =

{
0 if D = 0
a + b

√
D otherwise

where a and b are constants defined in terms of the disk geometry, and
are given by:

a =
minseek

√
Cyls − 1−maxseek√
Cyls − 1− 1

b =
maxseek −minseek√

Cyls − 1− 1

Here Cyls is the total number of cylinders on the disk, minseek is the
track-to-track seek time and maxseek is the full-stroke seek time.

The disk model must reflect the layout of a zoned disk accurately.
As cylinders get closer to the disk edge, their circumference increases and
the number of sectors per cylinder increases. Therefore, a random request
has an increased probability of being directed to a sector on an outer
cylinder. Let C be a random variable representing the cylinder number of
a randomly selected disk sector. Then the probability distribution of C
can be approximated by assuming that the number of sectors per track
increases linearly [9]. That is,

fC(x) =
α + βx

γ
x = 0, 1, . . . , Cyls− 1

with constants α, β and γ defined as:

α =
SEC [0]

spb

β =
SEC [Cyls − 1]− SEC [0]

(Cyls − 1) spb

γ = α(Cyls − 1) +
β

2
(Cyls − 1)2

where SEC [0] and SEC [Cyls − 1] are the number of sectors on the inner-
most and outermost tracks respectively and spb is the number of physical
sectors per logical block. α represents the number of logical blocks on the
innermost track and β charts the rate of increase in blocks per cylinder.

The probability density function (pdf) of seek distance is calculated
by assuming the two random variables, C1 and C2, as two distinct cylinder
numbers, and calculating the seek distance between all possible cylinder
numbers. This is split into two terms, one for the case when C1 ≤ C2 and
one for the case where C1 > C2:

fD(x) =
∫ Cyls−1−x

0
fC(y)fC(x + y)dy +

∫ Cyls−1

x
fC(y)fC(y − x)dy (1)

The full expansion of Equation (1) appears in [9]. The cumulative
distribution function (cdf) of seek time, FS(t), can be defined in terms of
the cdf of fD(x), FD(x), as [8]:

FS(t) = FD

((
t− a

b

)2
)

2.2 Rotational Latency

Rotational latency, R, is the time to rotate to the angle of a target sector.
R has a uniform distribution with a range between 0 and the time for a
full disk revolution, Rmax [3].

2.3 Data Transfer Time

The time to transfer k logical blocks on cylinder x of a zoned disk can be
approximated as [9]:

t(x) =
k spb Rmax

α + βx

Denoting Tk as the random variable of the time to transfer k blocks of
data, its cdf is:

FTk
(t) =

∫
P (Tk ≤ t | C = x)fC(x)dx

=
∫ Cyls−1

max(φk(t),0)
fC(x)dx (2)

where
φk(t) =

k spb Rmax

βt
− α

β

calculates the minimum cylinder number it is possible to transfer k logical
blocks of data in less than t ms. The solution of the integral in Equa-
tion (2) is a function of t with a domain bounded between the minimum
and maximum possible k-block transfer times. If tmin and tmax are the
times to transfer to a single physical sector on the outermost and inner-
most tracks respectively, Equation (2) expands to:

FTk
(t) =





0 if t < k spb tmin
1

2(tmax−tmin)2γ

(
p + q

t + r
t2

)
if k spb tmin ≤ t ≤ k spb tmax

1 otherwise
(3)

with

p = (Cyls − 1)tmax (2(tmax − tmin)α + (Cyls − 1)(tmax − 2tmin)β)
q = ((Cyls − 1)tmax (−2 k spb(tmax − tmin)tminα + (Cyls − 1)k spb tmax tminβ

+(1− Cyls)k spb(tmax − 2tmin)tminβ))
r = (1− Cyls)(Cyls − 1)k2spb2t2max t2minβ

The Laplace transform of the disk’s response time pdf is derived using
the Pollaczek-Khintchine transform equation for M/G/1 queues [10]:

W ∗(θ) =
(1− ρ)θX∗(θ)
λX∗(θ)− λ + θ

Here X∗(θ) is the Laplace transform of the service time pdf, which in our
case is the product of the Laplace transforms of the pdfs of S, R and T ,
i.e. S∗(θ)R∗(θ)T ∗k (θ). Also, ρ = λ

µ , where λ is the I/O request arrival rate
to the disk and µ is the mean service rate, which in our case is given by

1
E[R]+E[S]+E[Tk] . As W ∗(θ) is unlikely to have an analytical inversion, we
invert it numerically using the Euler method [11] to obtain the response
time pdf fW (t). The cumulative distribution function W (t) is also easily
obtained by inverting W ∗(θ)/θ.

3 The Fork-Join Queue

Fork-join queues have been widely employed as an appropriate queueing
abstraction of the operation of disk arrays [2]. Given N queues, (see Fig-
ure 1(a)), each incoming job is split into N subtasks at the fork point.
Each of these subtasks queues for service at a parallel service node before
joining a queue for the join point. When all N subtasks in the job are at
the head of their respective join queues, they rejoin (synchronise) at the
join point.

(a) Fork-join queueing model (b) Split-merge queueing model

Fig. 1. Fork-join vs. split-merge queueing models

It is difficult to model job response times in a fork-join synchronisa-
tion analytically. Indeed, to date, exact analytical results exist only for
the mean response time of a two server system consisting of homoge-
neous M/M/1 queues [12]. Approximate results for mean response times
for M/M/1 and M/G/1 fork-join queues are more abundant [12–15, 5].
However, they all have limitations in the context of our present applica-
tion. In particular, none of these results have yet been extended to find
higher moments or full response time distributions. Furthermore, some are
not applicable to M/G/1 queues (necessary to support our disk service
time model) or heterogeneous servers (necessary to support the modelling
of heterogeneous disks), and some can be very computationally intensive
for a large number of queues (necessary when modelling very large disk
arrays). Our present work addresses these issues.

Our approach is inspired by Harrison and Zertal’s method for approx-
imating the mean of the maximum of multiple random variables [16]. This
gives an approximation to a fork-join synchronisation by assuming it to be
a similar queueing network, the split-merge queue [17] (see Figure 1(b)).

In the split-merge queue, a job splits into N subtasks which are serviced
in parallel. Only when all the subtasks finish servicing and rejoin can the
next job split into subtasks and start servicing. This will lead to a slower
mean response time than its fork-join equivalent.

An exact solution for the cumulative distribution function of job re-
sponse time in a split-merge queue can be found by utilising properties
of Order Statistics [18, 19]. Any random variables, X1, X2, . . . , Xn can be
reordered as X(1), X(2), . . . , X(n), where X(1) ≤ X(2) ≤ . . . ≤ X(n). Then
X(1), X(2), . . . , X(n) are the order statistics of X1, X2, . . . , Xn.

The cdf of X(n), the maximum order statistic (corresponding to job
response time in a split-merge queue), is calculated exactly as:

FX(n)
(x) = P (X(n) ≤ x)

= P (X(i) ≤ x ∀i)
Thus, if X1, X2, . . . , Xn are independent with cdfs Fi(x),

FX(n)
(x) =

n∏

i=1

Fi(x) (4)

Applying this to a disk array, consider an n-block I/O request sent to
an array of n homogeneous disks. If each disk processes a 1-block request
and has a response time cdf of W (t), then the approximate response time
cdf of the I/O request is (W (t))n. The next section generalises this to
deal with variable size I/O requests and I/O request sizes under various
RAID levels.

4 RAID Model

The results derived in Equation (4) above suffice to calculate the response
time cdf for read or write requests to an n-disk RAID 0 system in which
each request consists of a multiple of n blocks. However, not every I/O
request leads to an access to all disks, being influenced by I/O request
size and type, and also by RAID level. Below we deal with RAID levels
0-1 and 5, for both read and write requests.

Our model is designed to accept a homogeneous stream of I/O re-
quests of a given size and type. We further assume that all the service
time distributions on all disks are identically distributed. For the sake of
notational simplicity, let W (t, γ, µ) define the cdf of the response time
distribution of a single M/G/1 queue (disk), γ is the arrival rate at an
individual disk and µ is the mean service rate. We assume there are n
disks in the array and that the arrival rate of logical I/O requests to the
disk array as a whole is λ.

4.1 RAID 0-1

Read Requests Assuming an efficient RAID controller, a b-block read
on RAID 0-1 can read data from either primary or mirror disks. With
b ≥ n, we thus utilise all n disks of the array (and not n

2 disks) to give
better performance results for medium and large sized requests. However,
if b < n only b disks are utilised at any time. To account for this, we view
the system as a b-queue fork-join queue. The arrival rate at the disks
needs to be modified since each request only arrives at b of the n disks.

Therefore the cdf of the response time distribution for a read on a
RAID 0-1 system is:

(
W

(
t, λb

n , 1
E[R]+E[S]+E[T1]

))b
if b < n(

W

(
t, λ, 1

E[R]+E[S]+E[T b
n

]

))n

otherwise

Write Requests A b-block write must account for each request being
written on both a primary and mirror disks. The corresponding response
time cdf is defined as:

(
W

(
t, 2λb

n , 1
E[R]+E[S]+E[T1]

))2b
if 2b < n(

W

(
t, λ, 1

E[R]+E[S]+E[T 2b
n

]

))n

otherwise

4.2 RAID 5

Read Requests A read request under RAID 5 is modelled in the same
way as the equivalent read request under RAID 0-1. Note that, since
RAID 5 distributes data (and parity) across all disks, a b ≥ n read request
will access all n disks, despite the stripe size of n− 1 disks. The response
time cdf is: (

W
(
t, λb

n , 1
E[R]+E[S]+E[T1]

))b
if b < n(

W

(
t, λ, 1

E[R]+E[S]+E[T b
n

]

))n

otherwise

Write Requests The behaviour of a RAID 5 write depends on the size
of the request, with different methods used to update the parity.

Small Partial Stripe Write If a request consists of b < n−1
2 blocks (i.e. a

small partial stripe write), then parity is calculated using [20]:

new parity = new data ⊕ old data ⊕ old parity

where ⊕ is the exclusive-or (XOR) operator. This is a read-modify-write
operation. Each of the b blocks and parity must be transferred twice,
first to read the old data and parity, then to write the new data and
parity. When the old data and parity have been read from all disks, a
new request will be issued to write the new data and parity to the same
disks. This request is given priority in the queue, so at least one disk (the
last to complete the pre-read) will just have completed reading a data
or parity block that now needs to be re-written. Therefore we add a full
disk rotation into the service time distribution. However, it is likely that
by the time the last disk has completed its pre-read, the remaining disks
will have started servicing the next I/O request in their queues. These
disks will need to re-seek to write the new data and parity. Therefore,
we assume that b disks seek again on the second request, while one disk
needs a complete rotation only.

The request to pre-read will have a mean service time of E[R]+E[S]+
E[T1]. The arrival rate at each of b + 1 disks for both requests (i.e. the
pre-read and data transfer operations) is λ(b + 1)/n. Combining both
arrival streams, we approximate the cdf of the response time as:(

W

(
t

2
,
2λ(b + 1)

n
,

1
(2b+1)(E[R]+E[S])+Rmax

2(b+1)
+ E[T1]

))b+1

The mean service time in the above is calculated by averaging the
mean services times of the pre-read and data transfer operations. Thus,
the pdfs of seek time and rotational latency are altered to:

f ′(t) =

{
1

2(b+1) if x = 0
2b+1

2(b+1)f(t) otherwise

where f(t) represents the probability density function of seek time or
rotational latency.

Large Partial Stripe Write If n−1
2 ≤ b < n− 1 (i.e. a large partial stripe

write), then to minimise disk accesses the parity is calculated by reading
only from the disks that are not being written to. The new parity is cal-
culated by XOR-ing the data that will be written with the data from the
disks that will remain unchanged. This is a reconstruct-write operation.

The first request pre-reads n− 1− b blocks of data for the calculation of
the new parity. When all n − 1 − b disks complete their pre-read, a new
request is sent to the other b + 1 disks to write the new data and parity.
The arrival rate for the pre-read will be λ(n− 1− b)/n, and we compute
the time to complete this phase as the slowest of the n−1−b queues. The
arrival rate of the write request will be λ(b + 1)/n to b + 1 queues. Both
requests will have the same mean service time of E[R] + E[S] + E[T1].
Averaging the number of queues we are finding the maximum of (n/2), we
approximate the response time cdf of the two requests required (pre-read
and data transfer) as:

(
W

(
t

2
, λ,

1

E[R] + E[S] + E[T1]

))n/2

Full Stripe Write If a request consists of a number of complete stripes
(i.e. b mod (n− 1) = 0), no pre-reads are needed to calculate the parity.
All the disks are utilised, with either the new data block or the new parity
block written to each disk. The response time cdf is:

(
W

(
t, λ,

1

E[R] + E[S] + E[T b
n−1

]

))n

Full Stripe followed by Small Partial Stripe Write If b > n − 1 and 0 <
b mod (n− 1) < n−1

2 , at least one full stripe write will occur followed by
a small partial stripe write. Let k = b b

n−1c and bmod = b mod (n − 1).
We assume that there are two types of requests to be averaged. The
first request involves k full stripe writes, followed by a parity pre-read
to bmod + 1 disks. The second request writes the new data and parity to
bmod + 1 disks. The response time cdf is then approximated as:


W


 t

2
,
λ(n + bmod + 1)

n
,

1
(n+bmod)(E[R]+E[S])+Rmax

n+bmod+1
+ E[T k

2 +
bmod+1

n

]







n+bmod+1
2

Full Stripe followed by Large Partial Stripe Write If n−1
2 ≤ b mod (n−1) <

n− 1, at least one full stripe write will occur followed by a large partial
stripe write. The initial request will be to write k blocks to all disks
and then pre-read an additional block on n− bmod − 1 disks. The second
request, issued upon the completion of the first, writes the new data and
parity to the remaining bmod + 1 disks. If one of the n − bmod − 1 pre-
reading disks complete service last, then all the disks to be written to will

need to seek to write the new data. However, it is possible that, despite
the smaller mean service time, one of the bmod + 1 disks will complete
last. This disk will not need to seek or wait for rotation at all, and will
be in position to write the new data immediately. To account for these
possibilities, we assume that bmod + 0.5 disks will need to seek again in
the second request. The cdf is:(

W

(
t

2
,
λ(n + bmod + 1)

n
,

1
(n+bmod+0.5)(E[R]+E[S])

2n
+ E[T k+1

2
]

))n+bmod+1
2

5 Validation

To provide confidence in our analytical models, we validate them against
device measurements. Our experimental platform consists of an Infortrend
A16F-G2430 RAID system containing 4 Seagate ST3500630NS disks.
Each disk has 60801 cylinders. A sector is 512 bytes and we have derived
from measurement that the time to write a single physical sector on the
innermost and outermost tracks are 0.012064ms (tmax) and 0.005976ms
(tmin) respectively. The stripe width on the array is configured as 128KB,
which we define as the block size. Therefore there are 256 sectors per
block. The time for a full disk revolution is 8.33ms. A track to track seek
takes 0.8ms and a full-stroke seek requires 17ms for a read request; the
same measurements are 1ms and 18ms respectively for write requests [21].

To obtain response time measurements, we implemented a benchmark-
ing program that issues read and write requests using a master process
and a number of child processes. The master process constructs a list of
arrival times according to a specified distribution (here a negative ex-
ponential distribution to conform to the model assumptions) and then
monitors the system clock until the first generated arrival time occurs.
When it does, a child process is spawned which performs the read/write
operation and measures the time taken. This leaves the master process
free to spawn further child processes at the calculated arrival times with-
out the need for it to wait for previously-issued operations to complete.

Throughout, it was necessary to minimise the effects of buffering and
caching as these are not represented in the model. We therefore disabled
the write-back cache on the RAID system and set the read-ahead buffer
to 0KB. Furthermore, devices are opened with the O_DIRECT flag set. For
each of the experiments presented below, 100 000 requests were issued
with an arrival rate of λ = 0.02 requests per millisecond to random logical
locations. The resulting cumulative distribution functions of the response
times were calculated using the statistical package R.

5.1 Data Transfer Model

The data transfer model in Equation (3) can be validated by setting the
number of sectors to write to a large enough number that the seek and
rotation time will be insignificant in comparison to the transfer time. We
thus write 100MB in each transfer to a single ST3500630NS disk con-
nected directly to a separate test machine. This ensures that any over-
heads imposed by the RAID controller are bypassed. We also ensure that
no queueing occurs by waiting until a request completes before issuing
another. Figure 2 compares the cumulative distribution function of the
analytical data transfer time model with device measurements. The ef-
fects of disk zoning are clearly evident in the measurements, which are a
close match to the analytical model.

Fig. 2. Data transfer time of 100MB requests on a Seagate ST3500630NS disk, com-
pared with analytical model of zoned data transfer time

5.2 RAID 0-1

Figure 3(a) displays the measured and modelled cdfs for read requests
on a four disk RAID 0-1 system, and Figure 3(b) shows the correspond-
ing cdf for write requests. We observe good agreement between model
and measurement. Table 1 further illustrates the accuracy of the model,
comparing mean and variance for the model and measured results.

5.3 RAID 5

The analytical model assumes that all writes begin with a full stripe write,
or, if the request is for fewer blocks than a full stripe, then all blocks in

Blocks Mean Mean Variance Variance
measured model measured model

(ms) (ms) (ms2) (ms2)

RAID 0-1 read 2 18.3 20.4 20.3 40.1
write 2 29.0 30.3 164.9 119.8

RAID 5 read 3 22.6 24.2 58.9 66.4
write 1 51.9 48.4 286.2 466.8

2 50.0 50.1 257.9 411.5
3 31.2 30.3 186.3 119.8
4 70.9 69.0 2445.8 975.1
5 65.5 66.3 2256.3 848.0

Table 1. Response time mean and variance comparison for read and write requests on
RAID 0-1 and RAID 5 (λ = 0.02 requests/ms)

(a) 2-block read request (b) 2-block write request

Fig. 3. Cumulative distribution functions of RAID 0-1 I/O request time on a 4 disk
RAID system (λ = 0.02 requests/ms)

the request are written to the same stripe. Consequently, for the measure-
ments presented here, the alignment of I/O request starting locations on
the RAID system was constrained to ensure that this assumption held.
We note that more general alignments will occur in practice; extending
the model to account for this is part of our future work.

Figure 4 displays the measured and modelled cdfs of I/O request re-
sponse time on a four disk RAID 5 system. Figure 4(a) compares the dis-
tributions for 3-block read requests. Figure 4(b) is a small partial stripe
write and Figure 4(c) is a large partial stripe write. Figures 4(d), 4(e)
and 4(f) are full stripe requests, full stripes followed by a small partial
stripe, and full stripes followed by a large partial stripe, respectively.

Table 1 compares means and variances in all the above cases, and again
we note good agreement between the measured and modelled results. The
slight discrepancies between measured and modelled variances are caused
by the model’s simple abstraction of the array’s behaviour. Specifically,
for partial stripe request sizes, each request will not transfer to all disks
in the array in a single request. To approximate this, the model transfers
a fraction of a single block to each disk. This enables accurate mean
response time results, but the variance suffers.

6 Conclusion and Future Work

In this paper we have developed new methods for modelling the perfor-
mance of RAID systems. Our analytical queueing models enable, for the
first time, the calculation of an approximation to the response time dis-
tribution of I/O request response time in these systems. These results are
validated against device measurements from a real RAID system, demon-
strating the accuracy of the analytical models.

There are three ways in which we will seek to relax constraints on our
model, making it more applicable in the context of real I/O workloads
and systems. Firstly, caching is not yet supported in our model, and
therefore in our measurements all caching (read-ahead and write-through)
was disabled both on the disk and on the RAID controller. However, we
appreciate the important role that caching at both these levels plays in
I/O performance and we will therefore seek to incorporate it. Secondly, as
discussed in Section 5.3, we currently constrain the alignment of RAID
5 write requests. In the future, we intend to extend the RAID 5 write
model to describe requests that start with a partial stripe, followed by
further data. Finally, we have assumed Markovian arrivals in our model,
and have generated request streams that conform to this assumption for
our measurements. We intend to compare the model response times with
response times generated from real I/O traces. With these constraints
removed, we can then extend the model to allow I/O request streams
consisting of mixed request types and sizes. This will involve converting
our analytical model into a multi-class queueing system.

Acknowledgements

We are grateful to Peter Harrison and Soraya Zertal for helpful discus-
sions. This work is supported by EPSRC research grant EP/F010192/1.

(a) 3-block read request (b) 1-block write request

(c) 2-block write request (d) 3-block write request

(e) 4-block write request (f) 5-block write request

Fig. 4. Cumulative distribution functions of RAID 5 I/O request time on a 4 disk
RAID system (λ = 0.02 requests/ms)

References

1. Gantz, J.F.: The expanding digital universe: A forecast of worldwide information
growth through 2010. White paper, IDC (2007)

2. Lee, E.K.: Performance Modeling and Analysis of Disk Arrays. PhD thesis, Uni-
versity of California at Berkeley (1993)

3. Chen, S., Towsley, D.: A performance evaluation of RAID architectures. IEEE
Transactions on Computers 45 (1996) 1116–1130

4. Harrison, P.G., Zertal, S.: Queueing models of RAID systems with maxima of
waiting times. Performance Evaluation 64 (2007) 664–689

5. Varki, E.: Response time analysis of parallel computer and storage systems. IEEE
Transactions on Parallel and Distributed Systems 12 (2001) 1146–1161

6. Varki, E., Merchant, A., Xu, J., Qiu, X.: Issues and challenges in the performance
analysis of real disk arrays. IEEE Transactions on Parallel and Distributed Systems
15 (2004) 559–574

7. Chen, P.M., Lee, E.K., Gibson, G.A., Katz, R.H., Patterson, D.A.: RAID: High-
Performance, Reliable Secondary Storage. ACM Computing Surveys 26 (1994)
145–185

8. Chen, S., Towsley, D.: The design and evaluation of RAID 5 and parity striping
disk array architectures. IEEE Transactions on Parallel and Distributed Systems
17 (1993) 58–74

9. Zertal, S., Harrison, P.G.: Multi-RAID queueing model with zoned disks. In: High
Performance Computing and Simulation Conference (HPCS’07). (2007)

10. Harrison, P.G., Patel, N.M.: Performance Modelling of Communication Networks
and Computer Architectures. Addison-Wesley (1993)

11. Abate, J., Whitt, W.: The Fourier-series method for inverting transforms of prob-
ability distributions. Queueing Systems Theory and Applications 10 (1992) 5–88

12. Nelson, R., Tantawi, A.N.: Approximate analysis of fork/join synchronization in
parallel queues. IEEE Transactions on Computers 37 (1988) 739–743

13. Varma, S., Makowski, A.M.: Interpolation approximations for symmetric fork-join
queues. In: Proc. Performance ’93. (1994) 245–265

14. Thomasian, A., Tantawi, A.N.: Approximate solutions for M/G/1 fork/join syn-
chronization. In: Proc. WSC ’94. (1994) 361–368

15. Varki, E.: Mean value technique for closed fork-join networks. In: Proc. ACM
SIGMETRICS. (1999) 103–112

16. Harrison, P.G., Zertal, S.: Queueing models with maxima of service times. In:
Proc. TOOLS Conference. (2003) 152–168

17. Duda, A., Czachórski, T.: Performance evaluation of fork and join synchronization
primitives. Acta Informatica 24 (1987) 525–553

18. David, H.A.: Order Statistics. John Wiley and Sons, Inc (1981)
19. Lebrecht, A.S., Knottenbelt, W.J.: Response time approximations in fork-join

queues. In: 23rd UK Performance Engineering Workshop (UKPEW). (2007)
20. Patterson, D.A., Gibson, G., Katz, R.H.: A case for redundant arrays of inexpen-

sive disks (RAID). In: Proc. International Conference on Management of Data
(SIGMOD). (1988)

21. Seagate: Barracuda ES Data Sheet (2007)
http://www.seagate.com/docs/pdf/datasheet/ disc/ds barracuda es.pdf.

