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ABSTRACT
Useful analytical models of storage system performance must
support the characteristics exhibited by real I/O workloads.
Two essential features are the ability to cater for bursty
arrival streams and to support a given distribution of I/O
request size. This paper develops and applies the theory of
bulk arrivals in queueing networks to support these phenom-
ena in models of I/O request response time in zoned disks
and RAID systems, with a specific focus on RAID levels 01
and 5. We represent a single disk as an MX/G/1 queue, and
a RAID system as a fork-join queueing network of MX/G/1
queues. We find the response time distribution for a ran-
domly placed request within a random bulk arrival. We also
use the fact that the response time of a random request with
size sampled from some distribution will be the same as that
of an entire batch whose size has the same distribution. In
both cases, we validate our models against measurements
from a zoned disk drive and a RAID platform.
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1. INTRODUCTION
Despite the current economic downturn, demand for disk

storage continues its unrelenting rise. Indeed, the IDC fore-
casts that shipped disk storage capacity will increase at a
compound annual growth rate of over 38% for the next three
years [21]. The efficient operation of public and private en-
terprises worldwide remains critically dependent on reliable,
high performance storage. The detailed understanding of
disk storage system performance is therefore crucial in de-
termining whether storage infrastructures will deliver their
required quality of service.

It is imperative that models of storage system perfor-
mance should be capable of reflecting in their inputs the
features found in real I/O workloads. Over the last decade,
there have been many studies of storage system I/O traces
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(e.g. [8, 27, 19, 20, 23]). These consistently show that real-
life arrivals to storage systems exhibit burstiness and a va-
riety of request size distributions.

While analytical models of disks and RAID systems pro-
vide a rapid and elegant means to make performance predic-
tions, it is challenging to incorporate the features identified
above into them. Some progress has been made on reflect-
ing variable sized I/O requests [4, 18], but to the best of
our knowledge all existing models of RAID assume a simple
non-bursty Markovian I/O request arrival stream (e.g. [5,
11, 12, 13, 15, 25, 26]). We also note that prior to [12] and
[13], all previous analytical studies focused only on mean
I/O request response time; however, modern Service Level
Agreements demand the ability to reason about higher mo-
ments and percentiles of response time. For certain highly
constrained Markovian arrival streams, [12, 13] derive the
full cumulative distribution function of I/O request response
time, from which all of the previous measures can be easily
obtained.

This paper makes contributions on both theoretical and
application levels. Specifically, we develop novel analytical
methods for calculating response times in M/G/1 queues
with bulk arrivals (i.e. MX/G/1 queues), as well as for
approximating response times in fork-join networks of such
queues. We then apply these in an analytical queueing net-
work model of zoned disk drives and RAID systems to yield
the full distribution of I/O request response time given a)
arrival streams with burstiness characterised by bulk arrivals
and b) arrival streams with an arbitrary distribution of re-
quest response size.

In the context of arrival streams with burstiness, we de-
rive the response time distribution of a randomly-selected
request within a batch. Previous work [2, 10] calculates only
the queue length generating function of a single MX/G/1
queue.

Our chosen method to model a workload of different-sized
jobs is to define each job as a single bulk arrival, where the
size distribution of the bulk arrivals is the same as the job
size distribution. We then seek the response time distri-
bution of an entire batch, rather than a random customer
within a batch, which is the usual focus on work on bulk ar-
rivals. To the best of our knowledge, only Nelson, Towsley
and Tantawi [18] have applied this perspective, in mod-
elling the parallel processing of different sized requests in
an MX/M/c queue. Here we consider fork-join networks of
MX/G/1 queues since it is well known that disk drives do
not have Markovian service times, and a fork-join structure
accurately reflects the operation of RAID systems [15].



Our analysis supports RAID levels 01 and 5. We note
that our RAID 5 write model is more general than exist-
ing analytical models which presume RAID 5 write oper-
ations consist of a fixed number of subtasks in a job [11,
13] or a variable number that never exceeds a full stripe [4].
Furthermore, all these models assume that all requests are
performed without skewing (i.e. assuming that requests are
stripe-aligned) which is not in general the case in reality.
Our model relaxes both these restrictions.

The remainder of this paper is organised as follows. Sec-
tion 2 describes relevant background theory, before Section 3
presents our development of bulk arrival theory to permit
the analysis of MX/G/1 queues for full response time distri-
butions. We extend this approach to allow the calculation of
such distributions in fork-join networks composed of several
of these queues, thus enabling us to model single disks and
RAID systems with bursty arrivals. Section 4 presents our
approach for calculating the response time distribution of
an entire batch of arrivals, using MX/G/1 models of single
disks and fork-join network models of RAID systems. This
gives us the ability to represent variable-sized I/O requests
arriving to an M/G/1 queue. Section 5 then validates our
methods against measurements from real devices. Section 6
concludes and considers directions for future work.

2. BACKGROUND
We develop our RAID model in a bottom-up hierarchical

fashion. A disk drive is modelled as a single M/G/1 queue,
and a RAID system is abstracted as a fork-join queueing
network [3].

2.1 Disk Model
The service time density of an access to a random location

on a single disk drive is the convolution of the seek time,
rotational latency and data transfer time probability density
functions. An important advance in disk drive technology
that needs to be taken into account is that modern disks
are zoned, with more sectors on the outer tracks than inner
tracks. A random request is thus more likely to access a
sector on an outer track. Similarly, zoning means that it is
faster to transfer data on a track close to the circumference
than the centre of the disk. The seek time and data transfer
models must take these factors into account.

Our zoned disk model uses the seek time and rotational
latency probability distributions defined in [29] and the data
transfer time distribution from [13]. We denote the random
variables of seek time, rotational latency and single block
transfer time as S, R and T respectively.

2.2 Fork-Join Model
In an N -queue fork-join network (see Figure 1) each in-

coming request or job is split into N subtasks at the fork
point. Each of these subtasks queues for service at a par-
allel service node before joining a queue for the join point.
When all N subtasks in the job are at the head of their
respective join queues, they rejoin (synchronise) at the join
point.

It is difficult to model job response times in a fork-join
synchronisation analytically. Indeed, exact analytical results
only exist for the mean response time of a two server system
consisting of homogeneous M/M/1 queues [17]. Approxi-
mations for mean response times for M/M/1 and M/G/1
fork-join queues are more abundant [17, 24, 25] but such

results do not permit higher moments or full response time
distributions to be calculated. Here, as in [13], we use an
approach based on the maximum order statistic [7, 14] to de-
rive an approximation to the cumulative distribution func-
tion of a fork-join queue’s response time. That is, if a single
queue has a response time distribution F (x), then the re-
sponse time distribution of a fork-join queueing network of
n identical queues is approximated as F (x)n.

Figure 1: Fork-join queueing model

2.3 RAID Model
A fork-join queue does not model all the intricacies of a

RAID system. The fork-join analysis described above can
calculate the response time cdf for read or write requests
to an n-disk RAID system in which each request consists
of a multiple of n blocks. However, not every I/O request
leads to an access to all disks, being influenced by I/O re-
quest size and type, and also by RAID level. We adapt the
notation used in [13], in which the fork-join approximation
was tailored to model I/O operations on mirrored stripes
(RAID 01) and distributed parity (RAID 5). For simplic-
ity, we always assume n homogeneous disks in the array; we
also assume an arrival rate of λ logical I/O requests per ms.
Let Wd(t, γ, µ) define the cumulative distribution function
(cdf) of the response time of a single M/G/1 queue (disk),
where γ is the arrival rate at an individual disk and µ is the
mean service rate of a single disk. Then, for example, the
response time distribution of a constant-sized read request,
b, on RAID 01 is:

Wread(t) =

8
<
:

“
Wd

“
t, λb

n
, 1

E[R]+E[S]+E[T ]

””b

if b < n“
Wd

“
t, λ, 1

E[R]+E[S]+ b
n

E[T ]

””n

otherwise

Interested readers are invited to consult [13] for a full de-
scription of this model.

3. WORKLOADS WITH BULK ARRIVALS
In this section we derive the response time distribution

for a random job in an MX/G/1 queue. Our approach
is inspired by Harrison’s derivation of the Laplace-Stieltjes
Transform (LST) of job response time in an M/G/1 queue
using conditional probability [9].

3.1 Job Response Time in a Single Queue
Figure 2 shows the state of an MX/G/1 queue at the ar-

rival instant of a randomly chosen job, given that the queue
is not empty at the arrival instant. At the arrival instant,
a batch C is currently in service. This batch has completed
Ums of service (the backward recurrence time [6]) and has
V ms of service remaining (the forward recurrence time).



Figure 2: The queue at the arrival instant of a tagged customer

When batch C started service, there were A batches queue-
ing behind it. During time U , a further Y batches joined
the queue. Within the arriving batch, there are Z jobs (the
backward recurrence size) ahead of the tagged customer. U
and V are continuous random variables, and A, Y and Z
are discrete random variables.

If B denotes the random variable describing batch size,
and X the service time of a single job, then the LST of the
service time of an entire batch X∗

B(θ) can be defined as:

X∗
B(θ) = E[E[e−θ(X1+X2+...+XB)]

= E[(X∗(θ))B ]

= GB(X∗(θ))

where GB(z) is the probability generating function of B. It
is straightforward to show E[XB ] = E[X]E[B].

The queueing time of the tagged customer, denoted by
random variable Q, is the sum of the service times of all
customers ahead (including the remaining service time of
the job in service), as follows:

E[e−θQ | Q > 0] =

E[e−θ(V +XB1+...+XBA
+XB1+...+XBY

+X1+...+XZ)|U, V, Y, Z, A]

= X∗(θ)ZGB(X∗(θ))AGB(X∗(θ))Y e−θV

Deconditioning on A and Z (which are independent of V , Y
and each other), and Y (which can be expressed in terms of
U given that the number of batches arriving has a Poisson
distribution),

E[e−θQ | Q > 0] = P (θ)E[e−θV e−λ(1−(GB(X∗(θ))))U | U, V ]

where P (θ) = GZ(X∗(θ))GA(GB(X∗(θ))). Here GZ(z) is
the generating function of the discrete backward recurrence
time (see Appendix A). GA(z) is the generating function of
queue length at the beginning of service of the first customer
in a batch. By the random observer principle, at equilibrium
A is equivalent to N , the number of customers queueing
immediately after the start of a batch service. GN (z) is a
well known result [10]:

GA(z) = GN (z) =
(1− ρ)(1− z)

GB(X∗(λ(1− z))− z

The joint density of forward and backward recurrence
times U and V at a point (u, v) is 1

E[XB ]
fXB (u + v) [10]

where fXB (t) is the pdf of batch service time XB . Thus,

deconditioning further,

E[e−θQ | Q > 0] =

P (θ)

E[X]E[B]

Z ∞

0

Z ∞

0

e−θve−λ(1−(GB(X∗(θ))))ufXB (u + v)dudv

=
P (θ)(GB(X∗(λ(1−GB(X∗(θ)))))−GB(X∗(θ)))

E[X]E[B](θ − λ(1− (GB(X∗(θ)))))

If a batch arrives to an empty queue, then the queueing
time for a randomly selected job in the batch is the time to
service all the jobs ahead of it in the batch; thus

E[e−θQ | Q = 0] = GZ(X∗(θ))

Considering both cases (empty and non-empty queues),
and given queue utilisation ρ, the LST of queueing time is:

Q∗(θ) = (1− ρ)GZ(X∗(θ)) + ρE[e−θQ|Q > 0]

=
(1− ρ)θGZ(X∗(θ))

θ − λ(1− (GB(X∗(θ))))

Hence the response time LST for a randomly placed cus-
tomer in a batch is

W ∗(θ) = Q∗(θ)X∗(θ). (1)

The response time distribution is obtained by numerically
inverting W ∗(θ) [1].

In our context of zoned disk modelling with bulk arrivals,
we represent a single disk as an MX/G/1 queue with the
service time distribution referred to in Section 2.1. These
queues also form the basic components of our fork-join model
for RAID systems.

3.2 RAID 01
RAID 01 is the striped mirrored RAID level, where disks

are divided into 2 identical sets (native, mirror). A RAID
01 read access can be executed on either the native or the
mirror copy while the write access must be done on both.

It is not straightforward to extend the single disk model
for batch arrivals to RAID 01. Our fork-join approximation
assumes independence of response times for each disk; how-
ever, in the case of batch arrivals to RAID, although the
service time distributions on the different disks can reason-
ably be assumed to be independent, under the assumption
that all operations are full-stripe accesses, each queue will
receive the same number of jobs per batch and hence the
queueing time will have a high level of dependency.

Therefore we use a new method to calculate the response
time distribution. The model results in a single queue whose



service time distribution is calculated as the distribution of
the maximum service time across all the disks in the array.
This assumption of dependence of queueing (but not ser-
vice) times is not exact, but approximates the reality that
queueing times of requests to each disk in a RAID system
will be highly correlated.

We begin by finding FX(t), the service time distribution
of a single zoned disk, defined as the sum of seek time, rota-
tional latency and data transfer time. The intricacies of zon-
ing mean that this distribution cannot be found analytically,
and must instead be calculated numerically by inversion of
its LST or by convolution. It is then possible to find the
distribution of maximum service time across n disks using
the maximum order statistic, i.e. FX(t)n.

Equation 1 (from which we will derive our response time
distribution) requires the LST of the maximum service time
X∗(θ). Numerical calculation of this LST is theoretically
possible, but in practice requires an infeasible amount of
computation. As a means to more efficiently and elegantly
obtain the LST, we proceed by fitting a logistic function:

f(t) =
1

1 + ea−bt

to the distribution of maximum service time FX(t)n. The fit-
ting can be accomplished by using a nonlinear least-squares
Marquardt-Levenberg algorithm [16]. The LST of the logis-
tic function is then:

X∗(θ) = Hypergeometric2F1[1, s/b, (b + s)/b,−ea]

where Hypergeometric2F1 is the hypergeometric function

2F1(a, b, c, z) which is the solution for y of the hypergeomet-
ric differential equation [28]:

z(1− z)y′′ + [c− (a + b + 1)z]y′ − aby = 0

Substitution of X∗(θ) into Equation 1 then gives a readily-
invertible expression for the distribution of response time.

4. WORKLOADS WITH DIFFERENT SIZED
ARRIVALS

We now consider a different application of bulk arrival
theory, namely to support the modelling of Markovian (i.e.
without bulk arrivals) arrival streams with different size re-
quests. In the following, I/O requests are equivalent to
batches, and subtasks making up a request are equivalent
to jobs within a batch. We assume all requests are random
disk accesses. Thus, the first subtask within a request will
have a service time that includes time to seek and rotate to
the desired position on the disk. The remaining subtasks
will be sequential.

4.1 Single Disk
The number of subtasks in a request, B, can be described

by a discrete probability density function, fB(x) with prob-
ability generating function GB(x). The first subtask in the
batch will have a service time XRAND = S + R + T . The
remaining subtasks are sequential and hence have service
time XSEQ = T . These service time random variables have
corresponding LSTs X∗

RAND(θ) and X∗
SEQ(θ). As before, we

assume all service times are independent. Then, if we de-
fine XB as the random variable of the service time of all the
subtasks in a single request, the corresponding LST can be

calculated as follows:

X∗
B(θ) = E[E[e

−θ(XRAND+XSEQ1+...+XSEQB−1 )|B]] (2)

There is always one fewer sequential subtask than there are
subtasks in a batch. The number of sequential subtasks has
a probability density function fB−1(x) = fB(x + 1), x =
0, 1, 2, . . . . Since XRAND and XSEQ are independent,

X∗
B(θ) = E[E[e−θXSEQ ](B−1)E[e−θXRAND ]]

= E[(X∗
SEQ(θ))(B−1)X∗

RAND(θ)]

= GB−1(X
∗
SEQ(θ))X∗

RAND(θ)

where GB−1(z) =
P∞

i=0 fB(i+1)zi. This LST is substituted
into the Pollaczek-Khintchine transform equation [10] as the
LST of service time; hence the response time LST is:

W ∗
d (θ) =

(1− ρ)θX∗
B(θ)

λX∗
B(θ)− λ + θ

(3)

where ρ = λE[XB ]. The mean job service time, E[XB ] can
be calculated from X∗

B(θ), yielding:

E[XB ] = E[XRAND ] + E[XSEQ ]E[B − 1]

= E[S] + E[R] + E[B]E[T ]

As before, W ∗
d (θ) is easily numerically inverted to obtain the

distribution of service time.

4.2 RAID 01
In RAID 01, subtasks from each request are striped across

the disks. A read request stripes all its subtasks across the
disks and a corresponding write request stripes double the
number of subtasks. As a consequence of the striping, a
single disk in a disk array will only see a fraction of the
subtasks of a request. If we define BR as the number of
subtasks in a request on a single disk in the array and the
mean number of subtasks in a request is E[B], the mean
request size per utilised disk, E[BR], is:

E[BR] =


1 E[B] < n
E[B]

n
otherwise

Consequently, the number of disks in the array accessed by
each request depends on the number of subtasks in a job
and is therefore dependent on B. We note all disks will be
accessed unless a job has fewer subtasks than there are disks.
We define the parameter dB as the mean number of disks in
use:

dB = n−
n−1X
i=1

(n− i) fB(i)

Similarly the arrival rate, γ, at each disk is dependent on
the number of disks accessed.

γ =
λ

n
(preaddB + pwrited2B)

The response time distribution of a read and write request
on RAID 01 can now be defined as:

Wread(t) =

„
Wd

„
t, γ,

1

E[R] + E[S] + E[BR]E[T ]

««dB

Wwrite(t) =

„
Wd

„
t, γ,

1

E[R] + E[S] + E[2BR]E[T ]

««d2B

The single disk cdf Wd(t, γ, µ) is the numerical inversion of
the LST in Equation 3 with X∗

B(θ) replaced by X∗
BR

(θ).



4.3 RAID 5
RAID 5 is block-interleaved distributed parity. The parity

is defined as the XOR of all the data on a stripe.
Owing to the way in which RAID 5 distributes its parity

blocks, RAID 5 reads can be modelled in a similar manner
to RAID 01 reads [13].

RAID 5 write operations are significantly more complex
due to the need to update parity blocks. If a full stripe
is written, then all the new data is immediately available
for parity calculation; however, if less than a full stripe is
written, then the new parity can only be calculated with
old data already written on the stripe. There are two ways
to update the parity: a read-modify-write finds the XOR
of the data and parity that are being overwritten with the
new data; a read-reconstruct-write finds the XOR of the old
data on the stripe that is not being overwritten with the new
data. In order to calculate the parity the old data needed
must be pre-read before the new data and parity can be
written.

A randomly-sized RAID 5 write with a skew (i.e. not
stripe-aligned) could consist of any or all of the following: a
partial stripe write followed by a number of full stripe writes
followed by another partial stripe write. We summarise the
five possible procedures (P1, . . . , P5) for a RAID 5 write in
Table 1. Here Rand is a random seek and transfer, Seq is a
sequential operation and NOP represents no operation.

P1 P2 P3 P4 P5

pre-read Rand NOP NOP NOP Rand
partial stripe write Rand NOP NOP NOP Rand
full stripe Seq Rand NOP Rand NOP
further full stripes Seq Seq NOP Seq NOP
pre-read Seq Seq Rand NOP Seq
partial stripe write Rand Rand Rand NOP Rand

Table 1: Possible RAID 5 write procedures

Table 1 shows that there will never be more than three
random accesses in a single RAID 5 write request. There
will only be one random operation in the case that there
are no partial stripes writes, namely that a job begins at
the start of a stripe and that the number of subtasks in the
job is divisible by n − 1. However, our RAID model aims
to find an average amount of accesses on a single disk and
then apply it to all disks. This is more difficult in RAID 5,
as the parity pre-reads and partial stripe writes are made
only to certain disks in the array, depending on whether
the parity calculation demands a read-modify-write or read-
reconstruct-write. It is very likely, however, that no single
disk will have more than two random accesses directed to it,
since a partial stripe does not access all disks. Meanwhile,
each disk will only have one random access per request if
the request consists of a multiple of n− 1 subtasks and the
request starts at the beginning of a stripe (i.e. a full stripe
write). Defining fR5R(x) as the probability of encountering
x random subtasks in a request on a single disk, in terms of
the job size probability distribution, fB(x):

fR5R(x) =

8
<
:

1
n−1

P∞
i=1 fB(i(n− 1)) x = 1

1− 1
n−1

P∞
i=1 fB(i(n− 1)) x = 2

0 otherwise

Similarly, defining fR5S (x) as the probability of encoun-

tering x sequential subtasks in a request on a single disk:

fR5S (x) =

(x+1)(n−1)X

i=x(n−1)+1

fB(i)

In a similar way as for Equation 2, we derive X∗
B(θ) as:

X∗
B(θ) = GR5S (X∗

RAND(θ))GR5S (X∗
SEQ(θ))

This can be used to calculate E[XB ] straightforwardly.
In terms of the number of disks accessed, a RAID 5 write

request accesses all disks unless it is a partial stripe. A small
partial stripe write (read-modify-write), which occurs when
b < n−1

2
, involves accesses to b+1 disks (b data disks plus the

parity disk). A large partial stripe write (read-reconstruct-
write) involves accesses to all disks over two operations, and
so on average accesses n

2
disks per operation. Hence:

dB =

bn−1
2 cX

i=1

(i+1)fB(i)+
n

2

n−1X

i=dn−1
2 e

fB(i)+n

 
1−

nX
i=1

fB(i)

!

5. VALIDATION
Our experimental platform consists of an Infortrend A16F-

G2430 RAID system containing four Seagate ST3500630NS
disks. Each disk has 60 801 cylinders. A sector is 512 bytes
and we have approximated, based on measurements from the
disk drive, that the time to write a single physical sector on
the innermost and outermost tracks are 0.012064ms (tmax )
and 0.005976ms (tmin) respectively. The stripe width on the
array is configured as 128KB, which we define as the block
size. Therefore there are 256 sectors per block. The time
for a full disk revolution is 8.33ms. A track to track seek
takes 0.8ms and a full-stroke seek requires 17ms for a read;
the same measurements are 1ms and 18ms respectively for
a write [22].

To obtain response time measurements from this system,
we implemented a benchmarking program that issues read
and write requests using a master process and multiple child
processes. These child processes are responsible for issuing
and timing I/O requests, leaving the master free to spawn
further child processes without the need for it to wait for
previously-issued operations to complete.

In order to validate the analytical model effectively, it was
necessary to minimise the effects of buffering and caching
as these are not currently represented in the model. We
therefore disabled the RAID system’s write-back cache, set
the read-ahead buffer to 0 and opened the device with the
O_DIRECT flag set. For each of the experiments presented
below, 100 000 requests were issued. We choose to present all
our results as probability density functions (pdfs); however,
it would be possible to derive the cumulative distribution
function, mean, variance and further moments of response
time if required.

5.1 Bulk Arrivals
Figure 3 compares model predictions and measurement

results for bulk arrivals to a single disk, with the number
of requests in a batch generated using a geometric distri-
bution. Results are presented for two different arrival rates
(λ = 0.01, 0.02 requests per ms) and for arrival streams com-
posed entirely of batches of either read or write requests. All
requests within batches consist of one 128KB block and are
to random locations. We observe good agreement between



(a) mean batch size = 2, reads, λ = 0.01 (b) mean batch size = 2, writes, λ = 0.02 (c) mean batch size = 3, writes, λ = 0.01

Figure 3: Response time pdf of model against measurement for requests on a single disk with batch arrivals.

model and measurement. The multiple peaks observed in
both model and measurement arise from the variation of re-
sponse time caused by the different possible batch sizes (with
the most probable batch sizes yielding the highest peaks).

As described in Section 3.2, we can perform a least-squares
fit of a logistic function to the (numerically calculated) dis-
tribution of maximum disk service time in order to more
efficiently generate response time results for RAID 01 sys-
tems with batch arrivals. Figure 4 shows the logistic func-
tion fit for a 4-block read operation. The closeness of fit
gives confidence in the accuracy of this approximation step.
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Figure 4: Logistic fit to maximum disk service time
cdf

Figure 5 compares model predictions and measurement
results for bulk arrivals to a four-disk RAID 01 system. As
with the single disk, the number of requests in a batch is
generated using a geometric distribution but results are pre-
sented for both read and write requests for a single arrival
rate of λ = 0.01 requests per ms. Again, we observe good
agreement between model and measurement. It is interest-
ing to note that the model predicts more pronounced peaks
than the measurements. We speculate that this is due to
the nature of our maximum order statistic approximation
for service time in a fork-join queue, which magnifies the
sinusoidal behaviour of the single disk model, as well as our
assumption of dependence of queueing times at each disk.

5.2 Variable Job Sizes
Figure 6 compares model predictions and measurement

results for variable-sized arrivals to a single disk where the
size of a request is generated using a geometric distribu-
tion. Results are presented for two different arrival rates
(λ = 0.01, 0.02 requests per ms) and for arrival streams com-
posed entirely of either read or write requests. In the case
of read requests, we observe excellent agreement between
model and measurement. In the case of write requests (Fig-
ures 6(c) and 6(f)) the agreement is less good, but is still rea-
sonable and yields similar means and variances of response
time. We speculate that the bimodal nature of the mea-
surements may be due to some disk-specific write request
handling behaviour that is not accounted for in the model.

Figure 7 compares model predictions and measurement
results for bulk arrivals to a four-disk RAID 01 system. As
with the single disk, the size of request is generated using
a geometric distribution. We observe reasonable agreement
between model and measurement.

We note that all results thus far have been presented for
arrival streams composed entirely of read or write requests.
Our model, however, is capable of calculating results for ar-
rival streams containing a mixture of both reads and writes.
Figure 8 accordingly compares model predictions and mea-
surement results in this case; we observe good agreement.

Finally, Figure 9 compares model predictions and mea-
surement results for arrivals with geometrically-distributed
sizes to a four-disk RAID 5 system. We observe excellent
agreement for read requests. The fit for write requests is
less exact due to the complicated nature of the pre-reads
and parity updates that is approximated in our models.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have developed new analytical methods

for response times of bulk arrivals in queueing networks, and
we have applied these in predicting I/O request response
time in zoned disks and RAID systems operating at levels
01 and 5. Our derivations for the distribution of I/O request
response time given bursty and variable-sized arrival streams
allow us to more accurately reflect workloads experienced by
real-life storage systems within our models. The applicabil-
ity and accuracy of our models is shown by our validation



(a) mean batch size = 2, reads, λ = 0.01 (b) mean batch size = 2, writes, λ = 0.01 (c) mean batch size = 3, writes, λ = 0.01

Figure 5: Response time pdf of model against measurement for requests on a RAID 01 with batch arrivals.

(a) mean job size = 3, reads, λ = 0.01 (b) mean job size = 4, reads, λ = 0.01 (c) mean job size = 4, writes, λ = 0.01

(d) mean job size = 5, reads, λ = 0.01 (e) mean job size = 2, reads, λ = 0.02 (f) mean job size = 3, writes, λ = 0.02

Figure 6: Response time pdf of model against measurement for requests on a single disk with different sized
arrivals.



(a) mean job size = 2, writes, λ = 0.01 (b) mean job size = 3, writes, λ = 0.01 (c) mean job size = 4, reads, λ = 0.01

Figure 7: Response time pdf of model against measurement for requests on RAID 01 with different sized
arrivals.

of model predictions against device measurements.
There are a number of potential avenues for future work.

Firstly, our RAID 01 batch arrival model currently assumes
full-stripe arrivals, but this restriction could be relaxed. Sec-
ondly, our validation experiments have used a geometric dis-
tribution for batch size. However, our model supports any
batch size distribution and so it would be interesting to com-
pare our model to measurements where the batch size dis-
tribution is based on statistics collected from real life I/O
request stream data. Thirdly, caching is not yet supported
in our model. Finally, we aim to combine our models for
batch arrivals and variable-size arrivals into a single model
to permit the representation of more realistic workloads with
bursty, variably-sized I/O requests.
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APPENDIX
A. DISCRETE BACKWARD RECURRENCES

In this appendix we derive GZ(z) (used in Section 3). Let
L be a discrete random variable representing the batch size
for a randomly selected job with associated mass function
fL(x) = P(A randomly selected job will have batch size x).
Note this is not the same as fB(x), the batch size pdf, as
L is more likely to be a larger batch size, as there are more
jobs in larger batches. L can be defined with a size-biased
density:

fL(x) =
xfB(x)

E[B]

The discrete random variable Z is the number of completed
jobs in a batch during the service of a random job. Then,

P (Z = x | L = x0) =


1

x0
0 ≤ x < x0

0 x ≥ x0

By the law of total probability,

P (Z = x) =

∞X
x0=x+1

1

x0
fL(x0)

=

∞X
x0=x+1

fB(x0)

E[B]
x = 0, 1, 2, . . .

Therefore the density and generating functions are,

fZ(x) = (1− FB(x))/E[B]

GZ(z) =
1−GB(z)

E[B](1− z)


