
Imperial College London
Department of Computing

Queueing network models of Zoned RAID
system performance

Abigail Lebrecht

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy and the Diploma of Imperial College in Computing

under Imperial College London, October 2009

Abstract

RAID systems are widely deployed, both as standalone storage solutions and as

the building blocks of modern virtualised storage platforms. An accurate model of

RAID system performance is therefore critical towards fulfilling quality of service

constraints for fast, reliable storage.

This thesis presents techniques and tools that model response times in zoned

RAID systems. The inputs to this analysis are a specified I/O request arrival

rate, an I/O request access profile, a given RAID configuration and physical disk

parameters. The primary output of this analysis is an approximation to the cumu-

lative distribution function of I/O request response time. From this, it is straight-

forward to calculate response time quantiles, as well as the mean, variance and

higher moments of I/O request response time. The model supports RAID levels

0, 01, 10 and 5 and a variety of workload types.

Our RAID model is developed in a bottom-up hierarchical fashion. We begin by

modelling each zoned disk drive in the array as a single M/G/1 queue. The ser-

vice time is modelled as the sum of the random variables of seek time, rotational

latency and data transfer time. In doing so, we take into account the properties of

zoned disks. We then abstract a RAID system as a fork-join queueing network.

This comprises several queues, each of which represents one disk drive in the ar-

ray. We tailor our basic fork-join approximation to account for the I/O request

patterns associated with particular request types and request sizes under different

RAID levels. We extend the RAID and disk models to support bulk arrivals, re-

quests of different sizes and scheduling algorithms that reorder queueing requests

to minimise disk head positioning time. Finally, we develop a corresponding sim-

ulation to improve and validate the model. To test the accuracy of all our models,

we validate them against disk drive and RAID device measurements throughout.

i

ii

Acknowledgements

I would like to thank the following people, without whom this thesis would never

have been possible:

• My supervisor, Dr William Knottenbelt, for his patience, inspiration, guid-

ance and constant enthusiasm throughout my research.

• My second supervisor, Professor Peter Harrison, for always making time to

share his expertise, encouraging me to explore new ideas and for introduc-

ing me to the wonders of Queueing Theory.

• The members of the Analysis, Engineering, Simulation and Optimisation of

Performance (AESOP) research group for interesting and constructive dis-

cussions and debates on many research topics including but not exclusively

those discussed in this thesis. Particular thanks to Dr Nicholas Dingle who

I enjoyed collaborating with on much of this work.

• The Engineering and Physical Sciences Research Council (EPSRC) for pro-

viding me with the funding to do my PhD and the Department of Computing

at Imperial College London for assigning this funding to me.

• My parents, for their constant love and support and for always encouraging

me to follow the path to intellectual and professional fulfilment, wherever it

may take me.

• My husband Bernard, for making the time spent writing this thesis the best

time of my life.

iii

‘Mathematics is the majestic structure conceived by man to grant him comprehen-

sion of the universe.’ Le Corbusier

iv

Contents

Abstract i

Acknowledgements iii

1 Introduction 1

1.1 Motivation . 1

1.2 Aims and Objectives . 3

1.3 Contributions . 4

1.3.1 Response Time Distribution Model of Zoned RAID 5

1.3.2 Developments in Queueing Theory 5

1.3.3 Queueing Simulation of Zoned RAID 6

1.4 Outline . 6

1.5 Publications and Statement of Originality 8

v

vi CONTENTS

2 Background Theory 11

2.1 Random Variables . 12

2.1.1 Laplace Transforms . 16

2.2 Stochastic Processes . 21

2.2.1 Markov Processes . 21

2.2.2 Poisson Processes . 21

2.2.3 Markov Chains . 22

2.2.4 Renewal Theory . 24

2.3 Queueing Theory . 27

2.3.1 The M/G/1 queue . 29

2.4 Generalised Lambda Distribution 39

2.5 Disk Drive and Disk Array Modelling 41

2.5.1 Disk Drives . 41

2.5.2 Disk Drive Model . 45

2.5.3 RAID . 48

2.5.4 Disk Array Model . 53

2.5.5 Zoned Disk Drives and Disk Arrays 70

2.5.6 Caching . 73

CONTENTS vii

3 Disk Drive Model 78

3.1 Introduction . 78

3.2 Seek Time . 82

3.3 Rotational Latency . 86

3.4 Data Transfer Time . 86

3.5 Disk Drive Model . 88

3.6 Disk Drive Simulation . 91

4 RAID Model 95

4.1 Introduction . 95

4.2 The Fork-Join Queue . 97

4.2.1 The Maximum Order Statistic 99

4.2.2 Validating the Fork-Join Queue Approximation 101

4.2.3 Choosing a Fork-Join Approximation 110

4.2.4 Fork-Join Simulation . 110

4.3 RAID Model . 111

4.3.1 RAID 0 . 113

4.3.2 RAID 01 . 114

4.3.3 RAID 5 . 122

viii CONTENTS

4.4 RAID Simulation . 135

4.4.1 RAID 0 and RAID 01 Simulation 135

4.4.2 RAID 5 Simulation . 140

5 Workload Modelling 151

5.1 Introduction . 151

5.2 Multiclass RAID Model . 156

5.2.1 Heterogeneous Arrival Streams 156

5.2.2 Multiclass RAID 5 Write Model 162

5.3 Workloads with Different Sized Arrivals 172

5.3.1 Single Disk . 173

5.3.2 RAID 01 . 174

5.3.3 RAID 5 . 176

5.4 Workloads With Bulk Arrivals 183

5.4.1 Single Disk . 187

5.4.2 RAID 01 . 190

5.5 Rotational Position Ordering . 197

5.5.1 State-Dependent Service Times for an M/G/1 queue . . . 198

5.5.2 Application to Zoned Disk Model 202

5.5.3 RAID 01 Extension . 205

6 Conclusion 217

6.1 Summary of Thesis Achievements 217

6.2 Applications . 219

6.3 Future Work . 221

Bibliography 223

ix

x

List of Tables

3.1 Response time mean and variance comparison for measurement

and model of 256KB read and write requests on a single disk with

arrival rate 0.01 requests/ms. 91

4.1 Comparison of simulation and models for means of Erlang-N ran-

dom variables (low-variance). 102

4.2 Comparison of simulation and models for means of N Pareto ran-

dom variables (high-variance). 102

4.3 Comparison of simulated and modelled mean response times for

M/M/1 parallel queues with many servers. 106

4.4 Comparison of simulated and modelled mean response times for

Erlang-2 M/G/1 parallel queues with many servers. 106

4.5 Response time mean and variance comparison for measurement

and model of read and write requests on 4-disk RAID 01 with an

arrival rate of 0.02 requests/ms. 117

xi

xii LIST OF TABLES

4.6 Response time mean and variance comparison for measurement

and model of 4-disk RAID 01 read and write requests with arrival

rate 0.01 requests per ms. 120

4.7 Response time mean and variance comparison for measurement

and model of 4-disk RAID 5 read requests. 129

4.8 Proportion of service time operations used by the disks for small

partial stripe write requests on different sized arrays. 148

4.9 Proportion of service time operations used by the disks for small

partial stripe requests that follow full stripe writes on different

sized arrays. 148

4.10 Proportion of service time operations used by the disks for large

partial stripe write requests. 149

4.11 Proportion of service time operations used by the disks for large

partial stripe write requests that follow full stripe writes on differ-

ent sized arrays. 150

5.1 Response time mean and variance comparison for measurement

and model of mixed read and write request streams for 4-disk

RAID 01. 158

5.2 Response time mean and variance comparison for measurement

and model of mixed read and write request streams for 4-disk

RAID 5 with arrival rate 0.01 requests/ms. 160

5.3 Response time mean and variance comparison for measurement

and models of the three 4-disk RAID 5 write models. 169

5.4 Possible RAID 5 write procedures. 177

5.5 Measured and modelled variances for read request response times

on a single disk with different sized requests and arrival rate λ

requests/ms. 212

xiii

xiv

List of Figures

2.1 The mechanical components of a disk drive, (a) top view, (b) side

view [101]. 42

2.2 RAID levels 0 and 1 [133]. 49

2.3 RAID levels 01 and 10 [133]. 50

2.4 RAID levels 5 and 6 [133]. 52

2.5 Lee’s model of a disk array. 54

2.6 Fork-join queueing model. 55

2.7 Varki et al.’s model of a disk array. 56

2.8 Readahead Disk Array cache. 74

2.9 Writethrough Disk Array cache. 75

2.10 Writeback Disk Array cache. 77

3.1 A diagram of sector layout on a disk with (a) no zoning and (b)

zoning. 79

xv

xvi LIST OF FIGURES

3.2 Comparison of density functions for cylinder layout for both model

and measurement on a Fujitsu MAN3367FC disk drive. 85

3.3 Comparison of modelled and measured cdfs of zoned data transfer

time for 100MB requests on a single disk. 89

3.4 Measured and modelled densities for workloads of constant 256KB

size on a single disk with arrival rate λ = 0.01 requests/ms. 90

3.5 JINQS M/G/1 queue simulator class diagram. 93

3.6 Response time distributions of measurement, simulation and model

for workloads of constant 256KB size on a single disk with arrival

rate λ = 0.01 requests/ms. 93

4.1 Split-merge queueing model. 99

4.2 Mean response time RN for M/M/1 fork join-queue with N queues,

λ = 1, µ = 1.1. 104

4.3 Mean response time RN for Erlang-2 M/G/1 fork-join queue

with N queues, λ = 0.1, µ = 0.375. 105

4.4 Mean response time RN for an heterogeneous M/M/1 fork-join

queue with N queues. 108

4.5 Mean response time RN for an heterogeneous M/G/1 fork-join

queue with N queues and an Erlang-2 service time distribution,

with mean 0.2 + 0.1N . 108

LIST OF FIGURES xvii

4.6 Mean response time RN for an heterogeneous M/G/1 fork-join

queue with N queues and a service time distribution of Erlang-

(N + 1),with mean 0.375. 109

4.7 Fork-Join simulator class diagram. 112

4.8 4-disk RAID 0 b-block request response time pdfs for arrival streams

of reads or writes with arrival rate λ requests/ms. 115

4.9 I/O request response time distributions on 4-disk RAID 01 with

arrival rate 0.02 requests/ms. 118

4.10 Comparison of measured and modelled mean response time against

block size for RAID 01 with arrival rate 0.01 requests/ms. 119

4.11 8-disk RAID 01 b-block request response time pdfs and cdfs for

arrival streams of reads or writes with rate λ requests/ms. 121

4.12 Comparison of mean response time against block size for 4-disk

RAID 5 reads for different arrival rate values, λ (l). 129

4.13 Comparison of mean response time against block size for 8-disk

RAID 5 for different arrival rate values, λ (l). 130

4.14 4-disk RAID 5 b-block read request response time pdfs and cdfs

for arrival streams with rate λ requests/ms. 131

4.15 4-disk RAID 5 b-block write request response time pdfs for arrival

streams with rate 0.01 requests/ms. 133

4.16 8-disk RAID 5 b-block write request response time pdfs for arrival

streams with rate 0.01 requests/ms. 134

xviii LIST OF FIGURES

4.17 RAID simulator class diagram. 136

4.18 I/O request response time distributions of 4-disk RAID 01 with

arrival rate 0.01 requests/ms. 138

4.19 I/O request response time distributions of 4-disk RAID 0 with ar-

rival rate λ requests/ms. 139

4.20 I/O request response time distributions of 4-disk RAID 5 with ar-

rival rate 0.01 requests/ms. 144

4.21 Plot of mean response time against request size on a 4-disk RAID 5

system with arrival rate λ requests/ms. 147

5.1 Comparison of mean response time against block size for 8-disk

RAID 01 with arrival rate 0.03 requests/ms. 155

5.2 4-disk RAID 01 2-block request response time pdfs and cdfs for

arrival streams of mixed read and write requests and rate 0.03 re-

quests/ms. 159

5.3 Comparison of mean response time against block size for 8-disk

RAID 01 with mixed arrival streams of read and write requests

and rate 0.01 requests/ms. 160

5.4 8-disk RAID 01 b-block request response time pdfs and cdfs for

arrival streams of mixed reads and writes with rate λ requests/ms. 161

5.5 Comparison of mean response time against block size for 8-disk

RAID 5 with mixed arrival streams of read and write requests and

rate 0.01 requests/ms. 162

LIST OF FIGURES xix

5.6 8-disk RAID 5 b-block request response time pdfs and cdfs for

arrival streams of mixed reads and writes with rate λ requests/ms. 163

5.7 Comparison of mean response time for all models against block

size for 4-disk RAID 5 partial stripe writes for different values of λ.170

5.8 Selected pdfs and cdfs of 4-disk RAID 5 write request response

times for the three models and arrival rate λ requests/ms. 171

5.9 I/O request response time pdf of model against measurement on a

single disk with different sized arrivals and rate λ requests/ms. . . 181

5.10 I/O request response time pdf of model against measurement on

4-disk RAID 01 with different sized arrivals and rate λ requests/ms.182

5.11 I/O request response time pdf of model against measurement on

4-disk RAID 01 with different sized arrivals and a mix of reads

and writes and rate λ requests/ms. 183

5.12 I/O request response time pdf of model against measurement for

reads on 4-disk RAID 5 with different sized arrivals and rate λ

requests/ms. 184

5.13 I/O request response time pdf of model against measurement for

writes on 4-disk RAID 5 with different sized arrivals and rate λ

requests/ms. 185

5.14 I/O request response time distributions of 4-disk RAID 01 with

request sizes chosen from a geometric distribution and arrival rate

λ requests/ms. 186

xx LIST OF FIGURES

5.15 I/O read request response time distributions of 4-disk RAID 5

with request sizes chosen from a geometric distribution with mean

size 5 blocks and arrival rate 0.01 requests/ms. 186

5.16 The queue at the arrival instant of a tagged customer. 187

5.17 I/O request response time pdf of model against measurement on a

single disk with bulk arrivals with rate λ requests/ms. 193

5.18 Logistic fit to maximum disk service time cdf over four disks. . . 194

5.19 I/O request response time pdf of model against measurement for

4-disk RAID 01 with full stripe bulk arrivals and rate 0.01 re-

quests/ms. 195

5.20 I/O request response time pdf of simulation and analytical mod-

els against measurement for requests on a single disk with bulk

arrivals and rate 0.01 requests/ms. 196

5.21 I/O request response time distributions of 4-disk RAID 01 with

4-block read requests and geometrically distributed bulk arrivals

with mean size 2 and arrival rate 0.01 requests/ms. 197

5.22 Comparison of measured and modelled mean 1-block read request

service times for various fixed queue lengths. 208

5.23 Mean response time against assumed maximum queue length and

measurements for different sized read requests on a single disk

with arrival rate 0.03 requests/ms. 210

5.24 Mean response time against assumed maximum queue length and

measurements for different sized read requests on a single disk

and arrival rate 0.04 requests/ms. 211

5.25 Comparison of actual model and Generalised Lambda Distribu-

tion approximation of the response time model for a 1-block read

request to a single disk, with an arrival rate of 0.01 requests/ms. . 213

5.26 Comparison of measurements and approximations of the mod-

elled pdfs for response times of different sized read requests to

a single disk with arrival rate 0.03 requests/ms. 214

5.27 Comparison of measurements and approximations of the mod-

elled pdfs for response times of different sized read requests to

a single disk with arrival rate 0.04 requests/ms. 215

5.28 Response time cdf of simulation and analytical models against

measurement for read requests on a single disk with RPO enabled

and arrival rate λ requests/ms. 216

5.29 I/O request response time distributions of 4-disk RAID 01 with

4-block read requests and an arrival rate of 0.06 requests/ms. . . . 216

xxi

xxii

Chapter 1

Introduction

1.1 Motivation

Despite the current economic downturn, demand for disk storage continues its

unrelenting rise. Indeed, the IDC forecasts that shipped disk storage capacity

will increase at a compound annual growth rate of over 38% for the next three

years [102]. The efficient operation of public and private enterprises worldwide

remains critically dependent on reliable, high performance storage. RAID1 has

revolutionised data storage because of its ability to synthesise a set of low-cost

commodity storage devices into a single logical unit that can deliver high relia-

bility with high performance. However, RAID system performance varies heavily

in practice, depending on chosen configuration and operating context. Given a

budget and an expected workload, it is therefore a major challenge for system

1Redundant Array of Inexpensive Disks [91]; RAID levels describe various ways of spreading
data across multiple storage devices using striping, mirroring, and/or parity

1

2 Chapter 1. Introduction

designers and engineers to select RAID components and corresponding configu-

rations capable of delivering a required level of quality of service. Performance

models provide a low-cost means to evaluate the suitability of candidate system

designs ahead of implementation.

RAID systems consist of a controller and member hard disk drives of which the

disks drives represent the greatest performance bottleneck. An accurate hard disk

drive performance model provides the foundations of an effective performance

model of any RAID system. A significant recent development in disk drive tech-

nology is zoning2 which enables greater space efficiency on each disk. A per-

formance model must reflect the time and capacity benefits that this technology

introduces over its unzoned counterpart. No prior work exists that produces an

analytical response time distribution performance model of a RAID system con-

sisting of zoned disk drives.

In the context of modern Service Level Agreements, effective performance pre-

diction must provide the ability to reason not only about mean response times, but

also higher moments and percentiles of response time. Therefore, our target in

this work is the full cumulative distribution function of I/O request response time,

from which all of the previous measures can be easily derived.

In this thesis we provide means to calculate response time distributions of zoned

RAID systems for varying RAID levels and types of workload. This improves on

the state-of-the-art in RAID performance models, which provide only the mean

2On modern hard drives there are more blocks on cylinders on the outside of the platter than
those closer to the centre. Cylinders with the same number of blocks are grouped together in
zones. Disks rotate with a constant angular velocity and therefore data throughput is higher for
outer zones than for inner ones.

1.2. Aims and Objectives 3

response time and no support for zoned disk drives [26, 54, 79, 124, 128]. RAID

systems are most commonly and effectively modelled by fork-join queueing net-

works. This thesis provides a study and discussion on the benefits and drawbacks

of response time approximations for this type of queue, for implementation in our

model.

Most queueing network analytical models and specifically most analytical RAID

models are only validated against a simulation model. We aim to always validate

our RAID performance models against device measurements as well as simulation

results, providing additional confidence in our models and their applications to

commonly used storage systems.

1.2 Aims and Objectives

The aim of this thesis is to create a response time performance model of zoned

RAID systems using analytical queueing network models.

In order to fulfil this, the following objectives must be achieved:

• Develop an analytical queueing model of I/O request response time in a

zoned hard disk drive. This involves defining the service time distribution

based on the mechanical behaviour of a disk during a read or write request.

• Choose an approximation of the fork-join queue that will best suit the needs

of our RAID model.

4 Chapter 1. Introduction

• Tailor the fork-join queue approximation for the specific requirements of

RAID levels 0, 01, 10 and 5 for both read and write requests of any size.

• Consider likely workload variations to a RAID system and show that the

model can be adapted to accept these workloads.

• Create a simulation of a hard disk drive and RAID 0, 01 and 5 systems,

both to compare to and improve the analytical model and to be used as a

stand-alone simulation.

• For confidence in the models, validate both analytical and simulation mod-

els against device measurements from real disk drives and RAID systems.

1.3 Contributions

This thesis presents queueing network modelling techniques that enable the de-

velopment of a response time performance model of zoned RAID systems. We

use some existing techniques and extend some existing models to create first a

model of a disk drive, then extend it through the abstraction of a fork-join queue

to a RAID model. We then look at modelling different types of workloads that

could be expected on a modern zoned disk array. The specific contributions of

this thesis are described below:

1.3. Contributions 5

1.3.1 Response Time Distribution Model of Zoned RAID

We develop a model for full distributions of I/O request response time of a single

hard disk drive by extending Zertal and Harrison’s work on service time distribu-

tions on a zoned disk [139]. We choose to model a RAID system with a fork-join

queue and since no exact response time solutions exist for this queue, we use

the maximum order statistic method to approximate its response time distribu-

tion. We introduce extensions to this approximation to enable features of RAID

systems that differ from standard fork-join queue behaviour to be modelled. We

consider different types of workloads that a disk and RAID system could expect,

such as mixed arrival streams of read and write requests of varying size, bursty

arrival streams and scheduling algorithms with request reordering. We incorpo-

rate support for these workloads into the disk drive and RAID system models. All

these models are extensively validated against device measurements.

1.3.2 Developments in Queueing Theory

Often, the creation of a queueing network model of a hard disk drive or RAID

system presents a problem that demands the derivation of new results in queue-

ing theory. This thesis provides a number of contributions to queueing theory.

Firstly, we provide a discussion on the relative benefits of existing fork-join queue

response time approximations. Secondly, we develop analytical methods for cal-

culating response times in M/G/1 queues with bulk arrivals, as well as for ap-

proximating response times in fork-join networks of such queues. Finally, we

introduce a novel approximation for the response time of M/G/1 queues with

6 Chapter 1. Introduction

state-dependent service times distributions for application to disk drives that em-

ploy scheduling algorithms with request reordering.

1.3.3 Queueing Simulation of Zoned RAID

In parallel to our analytical queueing network model, we have developed a queue-

ing based discrete-event simulator of zoned hard disk drives and RAID systems

based on the JINQS queueing simulation library [38]. This simulation supports

similar workloads to the analytical model, so that it can be directly compared

to the analytical model which will aid its development. The simulator can also

be used as a standalone zoned RAID simulation. The simulator requires a small

number of parameters that can be obtained either from the disk specification or

measurements taken from the disk making the simulator simple and transparent to

use. The simulation is extensively validated against device measurements.

1.4 Outline

The remainder of this thesis is organised as follows:

Chapter 2 describes the background theory required by the research presented in

this thesis. Some elementary probability theory is introduced that is needed

for the study of stochastic processes and Markov chains. With these details

it is possible to introduce queueing theory with specific focus on the M/G/1

queue. A literature survey is then presented on work to do with all aspects of

1.4. Outline 7

creating performance models of zoned and unzoned disk drives and RAID

systems.

Chapter 3 presents an analytical queueing network model for I/O request re-

sponse time in a hard disk drive. Probability distributions are derived for

the contributing mechanical factors that combine to form the service time

distribution. In addition a corresponding simulation is presented for a disk

drive. Both these models are validated against device measurements.

Chapter 4 extends this disk drive model into a RAID system model. A RAID

system is abstracted as a fork-join queue. There is an initial discussion

on the best response time approximation for fork-join queueing networks.

The fork-join response time approximation is tailored to reflect the specific

needs of read and write requests of any size on RAID 0, 01, 10 and 5. Again,

a corresponding simulation is introduced and compared to the analytical

model and all models are validated against device measurements.

Chapter 5 explores a variety of workload types that a disk drive and RAID sys-

tem could expect to experience and creates analytical models to support

them. Specifically, this chapter deals with workloads consisting of mixtures

of read and write requests, workloads that contain requests whose size is

decided by a specified probability distribution and bursty arrival streams.

Modern disk drives employ a scheduling algorithm that services the request

in the disk queue with the shortest disk arm positioning time. This has a par-

ticularly pronounced effect on response times for bursty or heavily loaded

arrival streams. A novel model for a disk drive with this scheduling algo-

rithm implemented is presented here. We also look at using multiclass and

8 Chapter 1. Introduction

priority queues to model the parity update operations in a partial stripe write

request to RAID 5. Throughout, the analytical models are compared with

device measurements and simulation results where possible.

Chapter 6 concludes the thesis by summarising and evaluating the achievements

presented and highlighting opportunities for future work.

1.5 Publications and Statement of Originality

I declare that this thesis was composed by myself, and that the work that it presents

is my own, except where otherwise stated.

The following publications arose from work conducted during the course of this

PhD:

• UK Performance Evaluation Workshop 2007 (UKPEW) [78] discusses

different approximations for the response time of a fork-join queue high-

lighting the benefits of using the maximum order statistic approximation.

The work on fork-join queues in Chapter 4 is based on this paper.

• International Conference on Analytical and Stochastic Modelling Tech-

niques and Applications 2008 (ASMTA) [73] presents the analytical zoned

disk model, applies the approximation of response times in fork-join queues

to model RAID systems and introduces modifications to the fork-join model

to account for the specific needs of RAID 01 and 5. The disk drive model

1.5. Publications and Statement of Originality 9

is in Chapter 3 and the RAID model is in Chapter 4. This is joint work with

Nicholas Dingle.

• IEEE International Symposium on Modeling, Analysis, and Simulation

of Computer and Telecommunication Systems 2008 (MASCOTS) [72]

studies a wider range of workloads to RAID 01 and RAID 5 systems. It

considers workloads that consist of both read and write requests and models

RAID 5 partial stripe write requests as two subrequests using mulitclass and

priority queues. This work is presented in Chapter 5. This is joint work with

Nicholas Dingle.

• UK Performance Evaluation Workshop 2008 (UKPEW) [74] continues

to validate the RAID model introduced in the previous two papers against

device measurements on a large disk array and makes some modifications

to the RAID 5 write request model. These validations and modifications are

presented in Chapters 4 and 5. This is joint work with Nicholas Dingle.

• European Performance Engineering Workshop 2009 (EPEW) [75] and

European Simulation and Modelling Conference 2008 (ESM) [131] in-

troduce queueing simulation models of a single disk, RAID 0, 01 and 5 and

for a variety of workloads. These simulations are validated against device

measurements. The disk drive simulation is discussed in Chapter 3, the

fork-join queue and RAID simulation is described in Chapter 4 and other

workloads are simulated in Chapter 5. This is joint work with Nicholas

Dingle and Francis Wan.

• International Conference on Quantitative Evaluation of Systems 2009

10 Chapter 1. Introduction

(QEST) [76] presents an approximate response time model of the shortest

positioning time first scheduling algorithm for disk drives, which has a sig-

nificant effect on response time for increasing load. This work is described

in Chapter 5. This is joint work with Nicholas Dingle.

• International Conference on Performance Evaluation Methodologies

and Tools 2009 (VALUETOOLS) [77] considers disks and RAID systems

with bursty arrival streams and different sized requests arriving in the queue

using the theory of queues with bulk arrivals. This work is described in

Chapter 5. This is joint work with Nicholas Dingle, Peter Harrison and

Soraya Zertal.

Chapter 2

Background Theory

This chapter introduces the background theory relevant to the research that is pre-

sented in this thesis. This background theory consists of two parts. In the first part,

the mathematical techniques required in this thesis are introduced. This includes

the use of random variables, stochastic processes, renewal theory and Markov

chains and an introduction to certain aspects of queueing theory. In addition,

there is a brief introduction to Laplace transforms and their numerical inversion

and a discussion on the Generalised Lambda Distribution which can be used to

approximate distributions given their first four moments. The second part pro-

vides a survey of related work in the area of performance models of disk drives

and RAID systems.

11

12 Chapter 2. Background Theory

2.1 Random Variables

A random variable is a function that reflects the result of a random experiment by

mapping the sample space of all possible outcomes to some real number [16, 51].

If the set of all values that the random variable can take is finite, or countably in-

finite, it is discrete. Otherwise the random variable is continuous. The probability

of the random variable taking a particular value is calculated using the probabil-

ity mass function (pmf) for discrete random variables or the probability density

function (pdf) for continuous random variables. The pmf, fX(x), for a discrete

random variable X with any real number x is defined as fX(x) = IP(X = x).

The probability that the value of the random variable will be below some speci-

fied value can be calculated using the cumulative distribution function (cdf) of X ,

FX(x):

FX(x) = IP(X ≤ x) =











∑

∀i≤x fX(i) X is discrete
∫ x

−∞
fX(u)du X is continuous

The properties of a random variable can be described by defining moments of X ,

where E[Xn] is the nth moment of X[51]. These moments can provide concise

summary information about a random variable. Specifically we use the mean,

variance, skewness and kurtosis to describe the properties of a random variable.

We define E[Xn] as

E[Xn] =











∑

i x
n
i fX(xi) X is discrete

∫∞

−∞
xnfX(x)dx X is continuous

2.1. Random Variables 13

The first moment of X , E[X], is called the mean or expectation and provides

the weighted average of the possible values that X can take. The variance of X

utilises the first and second moments and represents the spread of the density with

respect to the mean [59]:

Var[X] = σ2 = E[X2] − E[X]2

The skewness indicates the asymmetry of the density around its mean which af-

fects the shape of the distribution. Whether the skewness is positive or nega-

tive indicates that the density is skewed towards values greater or less than the

mean [59]. It is defined as

α3 =
1

σ3

(

E[X3] − 3E[X2]E[X] + 2E[X]3
)

The kurtosis indicates the flatness of the distribution with respect to the normal

distribution [59]. It is defined as

α4 =
1

σ4

(

E[X4] − 4E[X3]E[X] + 6E[X2]E[X]2 − 3E[X]4
)

For discrete random variables X with non-negative integer values, the probability

generating function (pgf), GX(z) is defined as [51]

GX(z) = E[zX] =

∞
∑

i=0

fX(i)zi

The nth derivative of GX(z) with z = 1 is called the nth factorial moment,

E[X(X − 1) . . . (X − n + 1)].

14 Chapter 2. Background Theory

We define the probability that an event X occurs given that an event Y has already

occurred as the conditional probability, IP(X|Y) = IP(X∩Y)
IP(Y)

. We can then define

the conditional pdf as

fX|Y (x|y) =
fX,Y (x, y)

fY (y)

where fX,Y is the joint pdf of random variables X and Y [119]. The conditional

expectation of X given that Y = y is

E[X|Y = y] =











∑

x xfX|Y (x|y) X and Y are discrete and fY (y) > 0
∫∞

−∞
xfX|Y (x|y)dx X and Y are continuous and fY (y) > 0

If the sample space, S, can be partitioned into sets {Y1, Y2, . . . , Yn} then any event

X can be written as X = ∪n
i=1X ∩ Yi. Consequently, the law of total probability

can be derived:

IP(X) =

n
∑

i=1

IP(X ∩ Yi) =

n
∑

i=1

IP(X|Yi)IP(Yi) (2.1)

The law of total probability can be used in tandem with conditional expectations

by redefining E[X] as E[X] = E[E[X|Y1, Y2, . . . , Yn]] This implies that [51],

E[X] =











∑

y E[X|Y = y]fY (y) Y is discrete
∫∞

−∞
E[X|Y = y]fY (y)dy Y is continuous

There are some well known discrete and continuous random variables whose prop-

erties are utilised in this thesis. We describe these below [99, 51].

The Bernoulli Random Variable X is an experiment that can have only two

2.1. Random Variables 15

possible outcomes, 0 or 1. If IP(X = 1) = p, the pmf is

fX(x) =











1 − p x = 0

p x = 1

The Binomial Random Variable If X represents the number of successful out-

comes of n independent Bernoulli trials, the pmf with parameters (n, p) becomes

fX(x) =

(

n

x

)

px(1 − p)n−x x = 0, 1, . . . , n

The pgf is GX(z) = (pz + 1 − p)n and E[X] = np.

The Geometric Random Variable Let X represent the number of Bernoulli trials

required for one successful outcome to occur. Then the pmf is

fX(x) = (1 − p)x−1p x = 1, 2, . . .

The pgf is GX(z) = pz
1−(1−p)z

and E[X] = 1
p
.

The Poisson Random Variable For large n and small p, the Binomial random

variable can be approximated by the Poisson random variable which has parameter

λ = np and pmf

fX(x) = e−λ λx

x!
x = 0, 1, . . .

The pgf is GX(z) = e−λ(1−z) and E[X] = λ.

The Uniform Random Variable If the probability of an arbitrary value is con-

stant over a specified period, the Uniform random variable is used. A random

16 Chapter 2. Background Theory

variable is distributed uniformly over the interval (a, b) with pdf

fX(x) =











1
b−a

a < x < b

0 otherwise

Here E[X] = a+b
2

.

The Exponential Random Variable The (negative) exponential random variable

has parameter λ and pdf

fX(x) =











λe−λx x ≥ 0

0 x < 0

where E[X] = 1
λ

.

2.1.1 Laplace Transforms

The Laplace transform is an integral transform that has many useful applications

in mathematics, physics and engineering. It can often be applied to convert a

hard-to-solve problem in the real-valued t-domain into an easier problem in the

complex valued s-domain. The solution can then be inverted to provide the solu-

tion in the t-domain [8]. The Laplace Transform, f ∗
X(s) is defined as follows [51]:

Definition For a continuous function fX(t), where t ≥ 0, the Laplace transform

can be calculated as

f ∗
X(s) =

∫ ∞

0

e−stfX(t)dt

2.1. Random Variables 17

In the context of probability theory, fX(t) is the probability density function of a

random variable X . If only the cumulative distribution function of X is available,

the Laplace-Steiltjes transform can be used instead [51]:

f ∗
X(s) =

∫ ∞

0

e−stdFX(t)

The Laplace transform can also be expressed in terms of expectation for non-

negative random variable X with density fX(t) as [51]

f ∗
X(s) = E[e−sX]

Properties

A benefit of studying functions in the Laplace domain is that certain computa-

tionally intensive complicated procedures become fast and straightforward when

translated into the Laplace transform domain. We summarise here some of the

properties that are especially relevant to this thesis.

Moments The Laplace Transform can be used to generate moments of a random

variable by differentiating it n times and evaluating it at the point s = 0:

dnf ∗
X(s)

dsn









s=0

= (−1)nE[Xn]

Integration To obtain a distribution function from a given density function in

the t-domain, the density function must be integrated. However, in the Laplace

18 Chapter 2. Background Theory

domain, the Laplace Transform of a cumulative distribution function F ∗
X(s) can

be calculated from the Laplace Transform of the density function f ∗
X(s) as fol-

lows [35]:

F ∗
X(s) =

f ∗
X(s)

s

This can be proved using integration by parts from the definition of Laplace Trans-

forms.

Convolution An important property of the Laplace Transform is the convolution

property. If we have two independent random variables, X and Y , then the pdf of

X + Y is the convolution of the two individual pdfs:

fX+Y (t) =

∫ ∞

−∞

fX(t − x)fY (x)dx

However, the Laplace transform of the convoluted pdfs can be shown to be merely

the product of the individual Laplace Transforms, a far simpler procedure [69]:

f ∗
X+Y (s) = f ∗

X(s)f ∗
Y (s)

Uniqueness If f(t) and g(t) are functions with corresponding Laplace Trans-

forms f ∗(s) and g∗(s), then f ∗(s) = g∗(s) ⇔ f(t) = g(t) [8].

Laplace Transform Inversion

Since the Laplace Transform of a function is unique, it is possible to return a

Laplace Transform of a function, f ∗(s), to the t-domain, f(t), by finding the

2.1. Random Variables 19

inverse of the Laplace transform. An integral formula for the inverse Laplace

Transform, known as the Bromwich contour inversion integral, is given by:

f(t) =
1

2πi

∫ a+i∞

a−i∞

estf ∗(s)ds (2.2)

where a is a real number which lies to the right of all the singularities of f ∗(s) [35].

In practice it is difficult to use this equation to find the inverse of most functions

analytically. Therefore many numerical inversion algorithms have been developed

including the Euler method [2, 3]. Other inversion methods include the Laguerre

method [60], Talbot’s technique [112] and Durbin’s method [37]. In this work we

only use the Euler method for Laplace transform inversion, which we summarise

here.

Equation (2.2) can be modified to create a more palatable problem of integrating

a real-valued function of a real variable avoiding the use of complex variables and

a contour integral. First, the substitution s = a + iu allows Equation (2.2) to be

rewritten as

f(t) =
1

2πi

∫ ∞

−∞

e(a+iu)tf ∗(a + iu)du

By noting that, e(a+iu)t = eat(cos ut + i sin ut) and substituting into the above

equation, it can be shown that [1]:

f(t) =
2eat

π

∫ ∞

0

Re(f ∗(a + iu) cos(ut))du (2.3)

This integral in the real domain can be calculated numerically using the trape-

zoidal rule of numerical integration. This is a numerical approximation of the

20 Chapter 2. Background Theory

integral of a function over the interval [a, b] as

∫ b

a

f(t)dt ≈ h

(

f(a) + f(b)

2
+

n−1
∑

k=1

f(a + kh)

)

where h = b−a
n

. In the case of Equation (2.3), we set the step size h = π
2t

. We

define a constant A that controls the discretisation error (set to 19.1 in [3]) and let

a = A
2t

. Then f(t) can be approximated as the following alternating series [35]:

f(t) ≈ e
A
2

2t
Re

(

f ∗

(

A

2t

))

+
e

A
2

2t

∞
∑

k=1

(−1)kRe

(

f ∗

(

A + 2kπi

2t

))

Euler summation can be implemented to accelerate the convergence of this al-

ternating series. The sum of the first n terms are calculated explicitly and Euler

summation is used to calculate the next m terms. The mth term after the first n is

given by [35]

E(t, m, n) =
m
∑

k=0

(

m

k

)

2−msn+k(t)

where

sn(t) =
n
∑

k=0

(−1)kRe

(

f ∗

(

A + 2kπi

2t

))

The truncation error that results from using this Euler summation can be esti-

mated by comparing the magnitudes of the nth and n + 1th terms, |E(t, m, n) −

E(t, m, n + 1)|. If n = 20 and m = 12, there will be a truncation error of the

order of 10−8 [35].

2.2. Stochastic Processes 21

2.2 Stochastic Processes

A stochastic process is a set of random variables, {Xt}, indexed by a time pa-

rameter t. Xt represents the state of a system at time t [86]. In this section we

summarise some relevant classes of stochastic processes.

2.2.1 Markov Processes

A Markov process is a class of stochastic process in which the set of random

variables, {Xt}, must have an additional property known as the memoryless or

Markov Property [69]. The Markov property can be written as follows:

IP(Xtn+1 = xn+1|Xtn = xn, Xtn−1 = xn−1, . . . , Xt1 = x1)

= IP(Xtn+1 = xn+1|Xtn = xn)

That is, the future evolution of the system depends only on the current state of the

system.

2.2.2 Poisson Processes

The Poisson process is a counting process associated with the Markov property

which counts the number of randomly occurring events observed in a time period

t. It is defined by a set of random variables {N(t)|t > 0}, where N(t) counts the

number of events that have occurred up to time t. Each random variable, N(t), has

22 Chapter 2. Background Theory

a Poisson distribution. It can be shown that, since the counting process has a Pois-

son distribution, the interarrival time between any two consecutive events has an

exponential distribution and consequently exhibits the memoryless property [51].

2.2.3 Markov Chains

A Markov chain is a discrete time Markov process {Xn ∈ S | n = 0, 1, 2, . . .}

with countable state space, S = {0, 1, 2, . . . |S|} [51]. The probability of moving

to a future state j from a current state i are defined by the one-step transition

probabilities,

pi,j(n) = IP(Xn+1 = j|Xn = i, Xn−1 = in−1, . . . , X1 = i1)

= IP(Xn+1 = j|Xn = i) i, j = 0, 1, 2, . . .

If the one-step transition probabilities do not depend on the time instant (pi,j(n) =

pi,j), the Markov chain is time homogeneous. All time homogeneous one-step

transition probabilities can be presented in the transition probability matrix P ,

with members pi,j and indices ranging over the state space [86]. All row sums in

P are 1.

A Markov chain is irreducible if every state is reachable from every other state.

A state is periodic with period m if state j is returned to at some multiple of m

steps. If there does not exist an integer m > 1 that fulfils this for a state, then the

state is aperiodic. In an irreducible Markov chain, either all states are periodic or

all states are aperiodic.

2.2. Stochastic Processes 23

It is possible that over a long period of time (n steps) the probability of a Markov

chain being in a particular state will be independent of the initial step:

lim
n→∞

IP(Xn = j | X0 = i) = lim
n→∞

p
(n)
i,j = πj j = 0, 1, . . . , |S|

If these limiting probabilities πj exist and sum to 1, then a steady-state exists

for the Markov chain and they are referred to as the steady-state distribution or

equilibrium distribution. The steady-state theorem states:

Theorem 2.1. Consider an irreducible and aperiodic Markov chain, X , with one-

step transition probability matrix P = (pi,j), i, j = 0, 1, . . . , |S|. Then, if the set

of equations

πj =

|S|
∑

i=0

πipi,j j = 0, 1, . . . (2.4)

|S|
∑

j=0

πj = 1 (2.5)

has a positive solution, the solution is unique and is the steady-state distribution

of X .

These equations are referred to as the balance equations of the Markov chain.

By defining the row vector π = (π0, π1, . . .), Equation (2.4) can be rewritten as

π = πP .

If the state space is discrete but the time parameter is continuous, so X = {Xt | t >

0} and X has the Markov property, it is referred to as a continuous time Markov

process. Each continuous time Markov process has an embedded discrete time

24 Chapter 2. Background Theory

Markov chain which defines state transition probabilities at state transition in-

stants [86].

The Markov property defines that the amount of time spent in any state must be

memoryless. For continuous time Markov chains, it can be proved that this is only

the case if there are exponentially distributed state sojourn times [69].

2.2.4 Renewal Theory

We consider an event that happens recurrently, first at time 0 and then at fur-

ther random intervals forever. Let each instance of occurrence be represented

by the random variable Tn, n = 0, 1, . . . as a renewal or arrival point. The set

{Tn | n = 0, 1, . . .} is called a renewal process. In addition the intervals between

these random occurrences are defined by the random variables Sn = Tn − Tn−1,

n = 1, 2, The random variables Sn are assumed to be independent and iden-

tically distributed and are called renewal or interarrival intervals. The time of the

arrival of the nth renewal point is equivalent to the sum of all the inter-arrival

times prior to it [86]:

Tn =

n
∑

i=1

Si n = 1, 2, . . .

Nt is defined as the number of renewals in time interval (0, t] or Nt = max{n | Tn ≤

t}.

2.2. Stochastic Processes 25

Continuous Recurrence Times

Another interesting random variable is the time from a randomly chosen time

point to the next or previous renewal point. The time to the next renewal from

this random time instant is called the forward recurrence time or residual life

and is denoted by the random variable Ut. The backward recurrence time is the

time that has passed since the most recent renewal, Vt. In addition the random

variable Wt = Ut + Vt gives the length of a renewal period. This is different from

the interval between random occurrences, Sn as it is dependent on the renewal

interval containing time point t.

It is useful in this work to find the joint probability distribution of forward and

backward recurrence times, Ut and Vt. Denoting the density time of a renewal

period, Sn, as fSn
(t) and mean length of a renewal period E[Sn] it is shown in [51]

that:

fUt,Vt
(u, v) → 1

E[Sn]
fSn

(u + v) as t → ∞ (2.6)

Discrete Backward Recurrences

Renewal theory is applicable not just in the continuous domain but also in the

discrete domain. An example of this would be a stream of batches of objects all

containing a different number of objects. The size of the batch is equivalent to the

renewal period. Let us assume a random object is picked in some batch. We pro-

vide here the derivation of the size distribution of discrete backward recurrences

(the number of objects counted from the start of the batch containing the specified

object up to that object) [29].

26 Chapter 2. Background Theory

Let L be a discrete random variable representing the batch size for a randomly

selected object with associated mass function fL(x) = IP(A randomly selected

object will have batch size x). Note this is not the same as fB(x), the batch size

pdf, as L is more likely to be a larger batch size, as there are more objects in larger

batches. L can be defined with a size-biased density:

fL(x) =
xfB(x)

E[B]

The discrete random variable Y is the number of objects in a batch in front of the

randomly chosen object. Then,

IP(Y = x | L = x0) =











1
x0

0 ≤ x < x0

0 x ≥ x0

By the law of total probability,

IP(Y = x) =

∞
∑

x0=x+1

1

x0
fL(x0)

=

∞
∑

x0=x+1

fB(x0)

E[B]
x = 0, 1, 2, . . .

The density function of a discrete backward recurrence, fY (x), can be derived

from the result above and the definition of density functions as

fY (x) =
1 − FB(x)

E[B]

2.3. Queueing Theory 27

Similarly, the probability generating function is defined as

GY (z) =
1

E[B]

∞
∑

i=0

(1 − FB(i))zi

=
1 − GB(z)

E[B](1 − z)

2.3 Queueing Theory

Queueing Theory is the mathematical study of real-world phenomena that can be

abstracted as queues and service stations. It was invented by A. K. Erlang in 1909

to avoid telephone traffic congestion [45]. Queueing problems arise throughout

daily life today in the retail world, transport systems and health services as well as

more technical domains such as manufacturing, computer networking and modern

communication systems [122]. The application of queueing models to a real-life

system enables system operators to implement routing and scheduling strategies

that can be shown to improve overall system performance. A single queue gener-

ally consists of a line which is populated by customers that arrive randomly with

interarrival times specified by a probability distribution. The queue has a number

of servers, which serve customers at a rate defined by another probability distribu-

tion. Kendall defined a notation for identifying different queue types, specifying a

queue with the notation A/S/m, where A is nature of the arrival process, S simi-

larly describes the service process and m are the number of servers available to the

single queue [51, 65]. An extended form of Kendall’s notation defines a queue as

A/S/m/c/p/d, where c is the capacity of the queue, p is the available population

of customers and d is the queueing discipline. If the notation A/S/m is used, it

28 Chapter 2. Background Theory

is assumed that both c and p are infinite and d is First Come First Served (FCFS).

Some other possible queueing disciplines are Last Come First Served (LCFS) and

priority queueing.

The simplest queue is the M/M/1 queue. This queue has Markovian arrivals and

service times and one server. This implies that the interarrival times and service

times are exponentially distributed with arrival and service rates λ and µ respec-

tively [45]. An M/M/1 queue is a continuous time Markov chain, where the state

is defined by the number of tasks queueing or in service. Markovian arrivals and

service times ensure that the Markov property is fulfilled. The M/G/1 queue has

a generalised service time distribution, which could be any continuous probability

distribution.

For any type of queue in the steady-state, Little [81] proved that in all cases the

mean number of tasks in the system (queueing or in service), L, is related to the

response time of a task, W , by L = λW .

Systems with multiple resources can be modelled as networks of queues. Queue-

ing networks can be classified as one of three types: open, closed or mixed. An

open network has at least one incoming source of customers and at least one exit

from the network for customers. A closed network has neither entrance nor exit

and a mixed network is a multi-class network in which customers of certain classes

see an open network and other classes see a closed network. Results exist for

steady state distributions of both open and closed networks [33, 42, 61].

In this thesis, we exclusively study M/G/1 queues and queueing networks of or

queues derived from M/G/1 queues. We therefore summarise results relating to

2.3. Queueing Theory 29

the M/G/1 queue here.

2.3.1 The M/G/1 queue

By exploiting the Markovian nature of an M/M/1 queue it is not difficult to calcu-

late its response time distribution explicitly using the properties of Markov chains.

This is not possible with an M/G/1 queue where the service times do not have

the Markov property. However, the arrival process is still Markovian and we can

exploit that fact.

An M/G/1 queue has a Poisson arrival process with rate λ and service time dis-

tribution FX(x) and service rate µ. The queue utilisation is ρ = λ
µ

. N(t) is defined

as the number of customers queueing and in service at time t. Since N(t) is de-

pendent on the non-Markovian service times as well as Markovian arrival times,

{N(t) | t ≥ 0} is not in general a Markov chain. Ln is defined to be the number

of customers queueing immediately after the completion of service and departure

of the nth customer at time tn [119].

It is important to note here the PASTA property (Poisson Arrivals See Time Aver-

ages) [134] or the random observer property which states that as t → ∞, the state

of the system seen by an arrival from a Poisson process has the same distribution

as the state of the system observed at a randomly chosen time [86].

By defining Zn as the number of new arrivals in the queue during the service of

30 Chapter 2. Background Theory

the n + 1th customer then

Ln+1 =











Ln − 1 + Zn Ln > 0

Zn Ln = 0
(2.7)

If the queue was not empty then the new queue length will be the previous queue

length minus the departing customer plus all arriving customers. If the queue was

empty at the previous departure point then the next departure point must wait for

a customer to arrive before service begins and another departure can take place.

The Zn are independent and identically distributed random variables. In addition,

they are independent of L1, L2, . . . , Ln. Therefore, to determine the value of Ln+1

it is only necessary to know Ln and Zn and not any of the previous queue lengths

L1, L2, . . . , Ln−1. Thus {Ln | n = 1, 2, . . .} is a discrete time Markov chain

called the embedded Markov chain of the stochastic process {N(t) | t ≥ 0} for

an M/G/1 queue. Defining the pmf of Zn, n ≥ 0 as pj = IP(Zn = j), j ≥ 0 and

pgf, GZn
(z) =

∑∞
j=0 pjz

j , we can start to calculate the transition probabilities for

the embedded Markov chain. If Xn is the service time random variable for the

service of the nth customer and there is a Poisson arrival process with rate λ, it

follows that

IP(Zn = j | Xn+1 = x) =
(λx)j

j!
e−λx

Hence, by the law of total probability,

pj =

∫ ∞

0

(λx)j

j!
e−λxdFX(x)

2.3. Queueing Theory 31

and therefore,

GZn
(z) =

∫ ∞

0

eλxze−λxdFX(x) = X∗[λ(1 − z)] (2.8)

where X∗(s) is the Laplace-Stieltjes transform of the distribution function FX(x).

The embedded Markov chain has transition matrix Q = (qij | i, j ≥ 0) where

transition probabilities are derived from Equation (2.7).

qij = IP(Ln+1 = j | Ln = i) =























IP(Zn = j − i + 1) i 6= 0, j ≥ i − 1

IP(Zn = j) i = 0, j ≥ 0

0 otherwise

(2.9)

Hence,

Q =

























p0 p1 p2 p3 p4 . . .

p0 p1 p2 p3 p4 . . .

0 p0 p1 p2 p3 . . .

0 0 p0 p1 p2 . . .

...
...

...
...

...
. . .

























The steady state equations for this Markov chain, π = πQ are

πi = π0pi +

i
∑

j=0

πj+1pi−j (2.10)

32 Chapter 2. Background Theory

The generating function Π(z) =
∑∞

i=0 πiz
i, if it exists, will become,

Π(z) = π0GZn
(z) +

∞
∑

i=0

i
∑

j=0

πj+1pi−jz
i

= π0GZn
(z) +

∞
∑

j=0

∞
∑

i=j

πj+1pi−jz
i

since 0 ≤ j ≤ i ≤ ∞.

Hence,

Π(z) = π0GZn
(z) +

∞
∑

j=0

πj+1z
j

∞
∑

i=0

piz
i

= π0GZn
(z) +

(Π(z) − π0)GZn
(z)

z

Solving this equation results in:

Π(z) =
π0(1 − z)GZn

(z)

GZn
(z) − z

(2.11)

This is dependent on the Markov chain being stationary, i.e. Π(1) = 1. Since in

Equation (2.11), both numerator and denominator tend to 0 as z → 1, we apply

L’Hôpital’s rule to obtain:

Π(1) =
π0

1 − G′(1)
= 1

Where G′(1) = dG(z)
dz

|z=1 . Therefore, for the stationary condition to be ful-

filled, G′(1) < 1 and 1 − G′(1) = π0. Differentiating Equation (2.8) and letting

z = 1 (using the properties of moments in Laplace transforms described in Sec-

2.3. Queueing Theory 33

tion 2.1.1), it follows that G′(1) = λ
µ

= ρ. In a steady state, the server utilisation

ρ < 1. Therefore, using this result and Equation (2.8), Equation (2.11) can be

rewritten as

Π(z) =
(1 − ρ)(1 − z)X∗(λ(1 − z))

X∗(λ(1 − z)) − z
(2.12)

This equation which is the equilibrium probability generating function of the

queue length is called the Pollaczek-Khintchine transform equation. The response

time distribution, FW (x), can be calculated from this result since the length of the

queue Ln that exists on the departure of the nth customer from service is precisely

the number of customers that arrived during the waiting time and service of the

departing customer. Therefore the response time of a single customer is equiv-

alent to the combined interarrival times of all customers that arrived between a

chosen customer arriving and leaving the system. Hence, the generating function

of queue length can be expressed as [50, 51]

Π(z) = E[E[zL | W]] = E[e−λW (1−z)] = W ∗[λ(1 − z)]

Then the Laplace-Stieltjes transform of response time for an M/G/1 queue is

W ∗(θ) = Π

(

λ − θ

λ

)

=
(1 − ρ)θX∗(θ)

θ − λ(1 − X∗(θ))
(2.13)

This equation can be derived differently by using conditional expectation and con-

sidering an M/G/1 queue in two cases: firstly when a request arrives to an empty

queue and hence has a response time equivalent to service time alone, and sec-

ondly when a request arrives to a non-empty queue and queueing time must be

factored into the response time calculation [49]. In this case, new random vari-

34 Chapter 2. Background Theory

ables are defined to describe the state of the queue at the arrival of a random tagged

customer. A is defined as the number of customers in the queue (not in service) at

the start of service of the customer that is being serviced when a tagged customer

arrives. Y is the number of customers that arrive between the start of service of

this customer and the arrival of the tagged customer. U and V are the backwards

and forwards recurrence times for the service time of this customer – the propor-

tion of the service time before and after the tagged customer arrives. It can be

noted that Y is the number of customers that arrive during time U . We can define

the total queueing time for the tagged customer as the time for the request in ser-

vice to complete service (V) and for all requests ahead of the tagged customer in

the queue to complete service. Therefore, assuming that the queueing time Q > 0

and conditioning on A, Y , U and V , we obtain

E[e−θQ|U, V, A, Y] = E[e−θ(V +X1+...+XA+Y)|U, V, A, Y]

Deconditioning on A and Y and noting that Y is the number of Poisson distributed

arriving customers in time period U gives

E[e−θQ | U, V] = GA(X∗(θ))E[e−λ(1−X∗(θ))Ue−θV | U, V]

Using the result for the joint density of forward and backward recurrence times in

2.3. Queueing Theory 35

Equation (2.6), deconditioning further yields

E[e−θQ | Q > 0] = GA(X∗(θ))µ

∫ ∞

0

∫ ∞

0

e−λ(1−X∗(θ))ue−θvfX(u + v)dudv

= GA(X∗(θ))µ

∫ ∞

0

∫ w

0

e−θwfX(w)e(θ−λ(1−X∗(θ)))udwdu

=
µGA(X∗(θ))(X∗(λ(1 − X∗(θ))) − X∗(θ))

θ − λ(1 − X∗(θ))
(2.14)

By the random observer property, the number of customers queueing at the begin-

ning of a service is the same as the number of customers queueing immediately

after the start of service of a customer. Equation (2.12) provides the queue length

generating function for an M/G/1 queue that counts the customer currently in

service. Discounting this customer, it can easily be observed that the generating

function of the number of queueing customers is

GA(z) =
(1 − ρ)(1 − z)

X∗(λ(1 − z)) − z

and substituting this into Equation (2.14) yields

E[e−θQ | Q > 0] =
µ(1 − ρ)(1 − X∗(θ))

θ − λ(1 − X∗(θ))
(2.15)

Then the Laplace transform of queueing time can be obtained by

Q∗(θ) = IP(Q > 0)E[e−θQ | Q > 0] + IP(Q = 0)E[e−θ0]

= ρE[e−θQ | Q > 0] + (1 − ρ)

By the convolution principle of Laplace transforms, the response time Laplace

36 Chapter 2. Background Theory

transform is

W ∗(θ) = Q∗(θ)X∗(θ)

which reduces simply to Equation (2.13).

Busy Periods

In a queueing system, busy periods are defined as the intervals between idle peri-

ods on the server. It can be observed that the distribution of the busy period will

be the same for all queueing disciplines that are work-conserving and for which

the server is never idle when the queue is empty [50]. We denote the length of a

busy period by the random variable M . N customers arrive during the service of

the first customer in the busy period. For each of these customers, i = 1, . . . , N ,

we define their pseudo-busy period as the time to service them and all customers

that arrive during their service as Mi. The service time of the first customer is

quantified by the random variable X , as are all subsequent service times. Then,

since {Mi | i = 1 . . .N} are independent and identically distributed,

E[e−θM | X = x, N = n, M1 = m1, M2 = m2, . . .Mn = mn]

= e−θ(x+m1+m2+...+mn)

Deconditioning on the Mis we get

E[e−θM | X = x, N = n] = e−θx(M∗(θ))n

2.3. Queueing Theory 37

Since arrivals are Markovian, N has a Poisson distribution with mean λx and we

can decondition further to obtain

E[e−θM | X = x] = e−θxe−λx
∞
∑

n=0

(λxM∗(θ))n

n!
= e−x(θ+λ−λM∗(θ))

Finally we decondition on X to calculate the LST of the busy period M :

M∗(θ) = E[e−θM] =

∫ ∞

0

e−x(θ+λ−λM∗(θ))dFX(x) = X∗(θ + λ − λM∗(θ))

(2.16)

thus creating a recursive equation for the LST of the busy period [28]. This can

also be derived by assuming a last-come first-served queueing discipline for the

busy period without loss of generality (as the length of the busy period does not

change between scheduling strategies) and deriving the busy period distribution

using conditional expectation [50]. This technique, in which a time delay is de-

fined in terms of independent, identically distributed time delays is called delay

cycle analysis.

M/G/1 Queues with Non-preemptive Priority

In a priority queue, customers arrive with an assigned priority class which defines

a relative priority for order of service. There are two types of priority, preemptive

and non-preemptive. For preemptive priority, if a customer arrives in the queue

with a higher priority class than the customer currently servicing, the servicing

customer will cease service and the arriving customer will replace it at the server.

In non-preemptive priority a servicing customer cannot be interrupted and upon

38 Chapter 2. Background Theory

completion the server will next choose the highest priority customer waiting in

the queue. Much work has been done on both these cases for different types of

queues [28, 49, 63, 111]. In this thesis, we are specifically interested in M/G/1

queues with non-preemptive priority and servers with a different type of service

time distribution for each class. The derivation for the response time distribution

of this type of class can be found in Conway, Maxwell and Miller [28] based on

the theory of busy periods.

They consider an M/G/1 queue in which customers have a class i = 1, 2, . . . , r

with an attached priority. Each priority class has a Markovian arrival rate of λi

and service time random variable Xi so the utilisation is ρi = λiE[Xi]. They aim

to find the response time distribution of type i customers. In order to do this they

group customers that are not in class i into two composite classes: class a contains

customers with a higher priority than class i and class b contains customers with

a lower priority than class i. Then the arrival rates for these new classes will be

λa =
∑i−1

j=1 λj and λb =
∑r

j=i+1 λj. The distributions of service time become

FXa
(t) = 1

λa

∑i−1
j=1 λjFXj

(t) and FXb
(t) = 1

λb

∑r
j=i+1 λjFXj

(t).

Then the Laplace-Stieltjes transform of queueing time for a priority class i cus-

tomer will be

Q∗
i (θ) =

(1 − ρ)(θ + λa(1 − M∗
a (θ))) + λb(1 − X∗

b (θ + λa(1 − M∗
a (θ))))

λiX∗
i (θ + λa(1 − M∗

a (θ))) − λi + θ

(2.17)

The response time distribution LST for a priority class i customer will be

W ∗
i (θ) = Q∗

i (θ)X
∗
i (θ) (2.18)

2.4. Generalised Lambda Distribution 39

2.4 Generalised Lambda Distribution

Sometimes it is not possible to derive an equation for the response time distribu-

tion function in the t-domain exactly. Since all queues in this thesis are M/G/1 or

derived from M/G/1 queues, the response time distribution is always initially de-

rived in the Laplace domain. Usually we numerically invert the resulting Laplace

transform but occasionally in this thesis the complexities of these derivations make

the Laplace transform too complicated to numerically invert quickly. In these

cases, we consider distribution fitting approximations to calculate the response

time distribution and density.

One such distribution fitting approximation is the Generalised Lambda Distribu-

tion (GLD) [71]. The GLD takes as parameters the first four moments of response

time which are easily obtainable from any Laplace transform (see Section 2.1.1).

The GLD is parameterised using the mean (µ), variance (σ2), skewness (α3) and

kurtosis (α4), and approximates the related distribution from these values. If the

cdf of response time is defined as FW (t), then its inverse, Q(u) is approximated

as:

Q(u) ≈ λ1 +
1

λ2

(

uλ3 − 1

λ3
− (1 − u)λ4 − 1

λ4

)

(2.19)

The parameters λ3 and λ4 are calculated by solving the following simultaneous

equations numerically:

α3 =
v3 − 3v1v2 + 2v3

1

(v2 − v2
1)

3
2

α4 =
v4 − 4v1v3 + 6v2

1v2 − 3v4
1

(v2 − v2
1)

2

40 Chapter 2. Background Theory

where

v1 =
1

λ3(λ3 + 1)
− 1

λ4(λ4 + 1)

v2 =
1

λ2
3(2λ3 + 1)

+
1

λ2
4(2λ4 + 1)

− 2

λ3λ4
β(λ3 + 1, λ4 + 1)

v3 =
1

λ3
3(3λ3 + 1)

+
1

λ3
4(3λ4 + 1)

− 3

λ2
3λ4

β(2λ3 + 1, λ4 + 1)

+
3

λ3λ2
4

β(λ3 + 1, 2λ4 + 1)

v4 =
1

λ4
3(4λ3 + 1)

+
1

λ4
4(4λ4 + 1)

+
6

λ2
3λ

2
4

β(2λ3 + 1, 2λ4 + 10)

− 4

λ3
3λ4

β(3λ3 + 1, λ4 + 1) − 4

λ3λ3
4

β(λ3 + 1, 3λ4 + 1)

and β(x, y) is the Euler Beta Function [135]. Then λ1 and λ2 can be calculated

using:

λ2 =

√

v2 − v2
1

σ

λ1 = µ +
1

λ2

(

1

λ3 + 1
− 1

λ4 + 1

)

An approximation of the response time distribution, FW (t), can consequently be

obtained by setting t = Q(u) and FW (t) = u. To obtain the response time density,

again t = Q(u) and fW (t) = fW (Q(u)) which is defined in [9] as

fW (Q(u)) =
λ2

uλ3−1 + (1 − u)λ4−1
(2.20)

2.5. Disk Drive and Disk Array Modelling 41

2.5 Disk Drive and Disk Array Modelling

We summarise here past work in the field of performance models of hard disk

drives and RAID systems. We first describe the physical structure of disk drives

and arrays and then introduce some of the different methods used to model these

features effectively. Those models that are more relevant to the research in this

thesis are discussed in detail; other less relevant models are summarised. We

also discuss the effect of zoning and caching on response times and summarise

research in these areas.

2.5.1 Disk Drives

Disk drives consist of a mechanism and a controller. The mechanism contains

recording and positioning components and the controller manages the storage and

retrieval of data [101]. Figure 2.1 is a diagram of the mechanical components of

a single disk drive. A single disk drive is comprised of at least one and as many

as twelve platters. These platters rotate around a spindle. As disk rotation speed

increases, transfer rates are improved and rotational latency shortens. The disk

head senses the magnetic flux variations on the disk’s surface in order to read

data [5].

Data can be written to each platter on the disk. Tracks in the same position on

each platter are grouped together and referred to as cylinders. Any location on

the disk is uniquely identified by the cylinder number, platter number and sector

number [4].

42 Chapter 2. Background Theory

Figure 2.1: The mechanical components of a disk drive, (a) top view, (b) side
view [101].

The execution of a request by a disk is dependent on seek time, rotational latency

and data transfer time. These factors combine to make up the disk service time.

Seek time is the time it takes the disk arm to move the head to the cylinder of

choice from its current position. Rotational latency is the time for the required

sector to rotate under the disk head after the seek completes. The performance

impact of seek time depends upon the diameter of the disk and rotational latency

on the angular distance of the chosen sector from the original position of the disk

head. The seek time and rotational latency together are referred to as the disk

positioning time.

The data transfer time is dependent on the rate at which data can be read and

written onto a platter’s surface. This is a function of the platter’s rotation rate,

the density of the magnetic media and the distance of the head from the centre

of the platter. Transfer time can vary across the disk due to disk zoning [101].

The further the disk head is from the centre of the platter, the faster its disk trans-

fer time. This is because there are more sectors on the outer than inner tracks

and these additional sectors can be read from or written to in the same time as

2.5. Disk Drive and Disk Array Modelling 43

the few sectors per track at the centre of the disk. Zoning utilises this effect, by

grouping tracks into zones. Each track in a single zone contains the same num-

ber of sectors. By grouping these tracks, data can be written to the correct zone

according to its performance requirements. On a disk without zoning, each track

has the same number of sectors and the same amount of data is written to each

track. Hence, there will be an increasing distance between data blocks on outer

tracks. On a zoned disk, the number of sectors on a track increases as the track

gets closer to the disk circumference, and the distance between blocks on a track

remains constant [92]. There will be further discussion on modelling zoned disks

in Section 2.5.5.

Other factors need to be considered when modelling the service time of a disk:

Sparing All disks contain some sectors that are flawed and cannot be used. The

flaws are found during manufacturing and hence the controller knows where the

damaged sectors are and not to use them. References to these sectors are re-

mapped to other parts of the disk. This is called sparing [101].

Caching Caching occurs for both reads and writes [101] and improves the re-

sponse time and throughput. Policies are needed to define what is stored in the

cache at any time. We discuss the issues that need to be addressed when modelling

caching in Section 2.5.6.

Rotational Positioning Ordering On many modern disk drives, requests in the

disk queue are re-ordered and rescheduled in order to minimise disk head po-

44 Chapter 2. Background Theory

sitioning time [5]. This reduces the time needed to service each request which

inevitably reduces overall request response times [57]. There exist many possible

scheduling algorithms to choose the order in which requests are serviced.

The simplest and most often modelled is First Come First Served (FCFS) in which

disk arm positioning time is not minimised. The Shortest Seek Time First (SSTF)

algorithm minimises track-to-track seek time only. SSTF can be implemented

using the SCAN algorithm [32] in which requests are serviced in order of the

disk cylinder number in a particular direction. The main drawback of SSTF is

that it does not consider rotational latency; the latter makes up an increasing pro-

portion of disk head positioning time as recent advances in disk technology have

shortened seek times significantly, while rotational speeds have increased only

slightly [62]. To address this, Jacobson and Wilkes [62] and Seltzer et al. [107]

introduce Shortest Access Time First (SATF), where access time is disk head po-

sitioning time. This strategy introduces the possibility that certain requests can

suffer from starvation. The Aged Shortest Access Time First (ASATF) algorithm

avoids this by basing ordering on a metric that takes into account the amount of

time that a request has been queueing. These adjusted access times will decrease

the longer they remain in the queue. Andrews et al. [6] and Bachmat [11] study

other, more optimal scheduling algorithms for example cases of the Asymmetric

Travelling Salesman Problem.

Worthington et al. [138] carry out a simulation study of FCFS, SSTF and SATF

and resolve that SATF provides the fastest mean response times, and that FCFS

can yield particularly poor performance metrics. Thomasian and Fu [113] also

look at a new scheduling algorithm that minimises seek time. Burkhard and

2.5. Disk Drive and Disk Array Modelling 45

Palmer [20] present an SATF-like scheduling algorithm for optimising positioning

time that takes into account the fact that an aggressive head movement may fail to

settle in time to read from the target sector. In this case, the disk must complete

a full rotation before data transfer can begin. The probability of this occurring is

known as the miss probability, and is drive-dependent. Seagate disks implement

Rotational Positioning Ordering (RPO) using Native Command Queueing (NCQ)

which aims to optimally re-order commands to maximise performance [58].

2.5.2 Disk Drive Model

The disks are the slowest part of a disk array. It is therefore fundamentally im-

portant to model disk service time parameters accurately to ensure precise perfor-

mance predictions for a disk array or storage system.

The parameters that combine to make up disk service time are seek time, rotational

latency and data transfer time. Ruemmler and Wilkes [101] suggest that analyti-

cal models are unlikely to model disk drive response time accurately because of

the disk’s non-linear state-dependent behaviour. However, there exist many an-

alytical results modelling the response time of disk drives which have compared

favourably to their simulated counterparts.

A disk drive can be modelled as a single server queue, usually M/G/1 since

service time is unlikely to be Markovian. The service time of each request is the

sum of queueing time, seek time, rotational latency and data transfer time. It is

assumed that requests are independent.

46 Chapter 2. Background Theory

Lee [79] defines seek time, S, in terms of seek distance D as

S =











0 if D = 0

a
√

D − 1 + b(D − 1) + c if D > 0

where the square root term models the acceleration and deceleration of the disk

head in each seek, and the linear term models the period after the maximum ve-

locity is reached. a, b and c are chosen according to the disk to satisfy the average

seek time on a disk (AvgSeek), the time to seek from one cylinder to an adjacent

cylinder (MinSeek) and the time to seek from the outermost cylinder to the in-

nermost cylinder (MaxSeek). If there are approximately 200 or more cylinders

(Cyls) per disk, a, b and c can be approximated as [79]

a = (−10MinSeek + 15AvgSeek − 5MaxSeek)/(3
√

Cyls)

b = (7MinSeek − 15AvgSeek + 8MaxSeek)/(3Cyls)

c = MinSeek

A simplified version defines seek time as only a non-linear function of seek dis-

tance [15, 104]. If the seek is sequential, it follows that the seek distance and time

are zero, otherwise,

S = a + b
√

D D > 0 (2.21)

where a is the arm acceleration time and b is the mechanical seek factor [26].

Bitton and Gray [15] elaborate that b is a constant determined by the disk speed

and the track density on the magnetic media. These values are usually calculated

experimentally.

2.5. Disk Drive and Disk Array Modelling 47

Kuratti and Sanders [70] approximate the service time distribution by modelling it

as an Erlang-k probability distribution based on the moments of rotational latency,

seek time and data transfer time.

Park and Shin [90] present a disk model that incorporates bad sectors on the disk,

which cannot be read from or written to. They suggest that ignoring the bad

sectors leads to less accurate disk service time models.

Models of Disk Head Positioning Optimisation

Modelling response times for disks with minimised disk head positioning time is

analytically difficult, and hence there do not exist many analytical models of this

and none for zoned disk drives. Chen et al. [24] present a model for a scheduling

algorithm that only minimises seek time. Shriver et al. [108] define the distance

(in terms of number of bytes) between two random requests with minimised posi-

tioning time as
no of Cylinders × Bytes per Cylinder

E[Queue length] + 2

However, this is not applicable in the context of zoned disks since Bytes per Cylinder

is not constant.

Varki et al. [128] approach their model in a similar manner, defining disk posi-

tioning time as a function of queue length. They argue that seek distance can

be approximated as the distance from one end of the disk to the other, called

full stroke distance, divided by the number of tasks being serviced or awaiting

48 Chapter 2. Background Theory

service, 1 + Q. Thus seek time is defined as,

S = a + b
√

full stroke distance/(1 + Q)

The most comprehensive existing analytical performance model including queue

re-ordering is that of Gotlieb and MacEwen [43]. However, this only models

SSTF, not SATF. They use the theory of state-dependent queues in their model,

whereby the service time distribution can depend on the queue length at the start

of a service. This work is primarily based on the research of Harris [48].

There are a number of studies of M/M/1 queues with state-dependent service

times which could be used to loosely model a disk with RPO, including those by

Harris [48] and Morrison [87]. A number of other studies consider the simpler

case of two service time states [18, 27, 44]. Brill and Posner [18] allow for differ-

ent service rates depending on whether or not there are customers queueing behind

a request at the start of service. Gray and Wang [44] study the case in which the

service rate changes when the queue length exceeds a given number (N) and then

changes back when the queue length is less than K (K ≤ N).

However, no general result exists for response time in M/G/1 queues with state-

dependent service times.

2.5.3 RAID

Disks arrays were introduced in the 1980s as a way to utilise parallelism between

multiple disks to improve aggregate I/O performance [23]. Disk arrays organise

2.5. Disk Drive and Disk Array Modelling 49

multiple independent disks into a large logical disk unit. By striping data across

multiple disks and accessing the disks in parallel, higher data transfer rates are

achieved, especially with larger I/O requests. Data striping also ensures that data

is balanced across the disks, avoiding data hot spots, where a few disks are con-

stantly accessed while most are not. However, the larger the disk array, the more

likely it is that a disk in it will fail. In order to avoid data loss as a result of fail-

ures, redundancy can be employed. However, redundancy causes a decrease in

performance dependent upon the choice of redundancy scheme. Disk arrays with

redundancy are known as Redundant Arrays of Inexpensive Disks (RAID). There

are numerous different schemes of RAID employing different types of redundancy

that are defined as levels in [23, 91].

(a) RAID 0 (b) RAID 1

Figure 2.2: RAID levels 0 and 1 [133].

RAID 0 This array is not redundant, so it is given level zero. It is sometimes

called JBOD (Just a Bunch of Disks) [56]. The array uses striping and this, com-

bined with non-redundancy, results in providing the benefits of low cost and high

performance but has the disadvantage of low reliability. Disk striping involves

50 Chapter 2. Background Theory

(a) RAID 01 (b) RAID 10

Figure 2.3: RAID levels 01 and 10 [133].

writing data blocks to successive disk array members in a cyclical pattern and is

demonstrated in the RAID 0 diagram (Figure 2.2(a)). It has the best write perfor-

mance as no redundant information is updated. It is widely used in supercomput-

ing environments where performance and space efficiency take precedence over

reliability [23].

RAID 1 Redundancy is implemented by storing an exact copy of the contents

of each disk (a mirrored disk) in the array. Therefore, RAID 1 uses twice as many

disks as RAID 0. RAID 1 offers excellent reliability, but with the worst space

efficiency of all RAID levels and less impressive performance for write requests

than read requests. RAID 1 does not implement any disk striping [23].

RAID 01 and RAID 10 RAID 01 and 10 combine the mirroring in RAID 1 and

striping in RAID 0. RAID 01 is a mirror of stripes and RAID 10 is a stripe of

mirrors.

2.5. Disk Drive and Disk Array Modelling 51

RAID 2, 3 and 4 RAID 2, 3 and 4 do not present any reliability, performance or

space efficiency improvements on either RAID 0, 1, 5 or 6 and are therefore not

relevant to our research.

RAID 5 Under this scheme, each stripe is given a parity block that can be re-

ferred to if a disk fails. The parity is block-interleaved and distributed across

all disks (illustrated in Figure 2.4(a)). Consequently, each disk will contain both

parity and data blocks, in contrast to RAID 3 and RAID 4, in which one disk con-

tains only parity blocks and the remaining disks only contain data. This alleviates

the performance bottleneck created by all requests accessing the parity disk for

write requests in the preceding two RAID levels. Furthermore, because parity is

distributed, all disks are able to participate in servicing read requests, not all but

one [79]. Redundancy in RAID 5 is achieved at a lower cost than mirroring in

RAID 1.

A parity block is the exclusive or (XOR) of all the other data blocks in the stripe.

If there are n data blocks, D0 . . .Dn−1, then

P = D0 ⊕ D1 ⊕ . . . ⊕ Dn−1 (2.22)

If a request writes to a small proportion of the stripe, the parity block can be

updated by pre-reading the data and parity that will be rewritten and using the

following formula:

new parity = new data ⊕ old data ⊕ old parity (2.23)

52 Chapter 2. Background Theory

(a) RAID 5

(b) RAID 6

Figure 2.4: RAID levels 5 and 6 [133].

RAID 6 As larger disk arrays are used, multiple disk failures are possible. RAID

5 only allows for one disk failure at a time, because there is only one parity block

per stripe. RAID 6 extends RAID 5, by using two parity blocks, P and Q, so that

data can be recovered if two disks fail at once. Anvin [7] explains the procedure of

calculating the two parities and regaining data from failed disks based on Plank’s

work on Reed-Solomon codes [94, 95]. P is calculated in the same way as the

parity in RAID 5 by XOR-ing all the data blocks. Q is a Reed-Solomon code that

uses the properties of Galois fields.

Q = g0D0 ⊕ g1D1 ⊕ . . . ⊕ gn−1Dn−1

2.5. Disk Drive and Disk Array Modelling 53

where g is a generator of the Galois field.

Using these two different parities, any two of the data blocks or parities can be

recalculated if they fail consecutively.

Parity Q is computationally more expensive than parity P. RAID 6 suffers from

the same performance issues as RAID 5, as well as the added performance issues

of calculating the extra parity. It is also slightly less space efficient than RAID 5,

but is much more reliable.

Block Sizes Files to be written to disk are split into blocks of a specified constant

size (the stripe width). These blocks are striped across the disk array according

to the chosen RAID level. The block size is chosen dependent on data needs.

Bigger block sizes require fewer I/O operations to read and less seeks for non-

contiguous blocks. The performance advantages of the bigger block is traded-

off with a decrease in space efficiency. If the block size is large, some blocks,

particularly when dealing with small files, will be partially empty [121].

2.5.4 Disk Array Model

A disk array receives requests that must be queued for service. Each request is

split into a number of tasks equivalent to the number of blocks that need to be

read or written in the job. These tasks are queued across the disks, then joined

together to fulfil the disk array request. Lee [79] illustrates this with a diagram

abstracting some of the features of disk arrays as queues, adapted in Figure 2.5.

54 Chapter 2. Background Theory

...

...

...

1 2 M

1 2 3 N

M = Number of processes issuing requests
N = Number of disks
Each request split into N tasks

Figure 2.5: Lee’s model of a disk array.

Ideally, this scenario should be modelled as a closed queueing network with an

N -server fork-join queue, each server modelling a disk in the array. In a fork-

join queueing system (Figure 2.6), each incoming job is split into N tasks at the

fork point. Each of these tasks queues for service at a parallel service node be-

fore joining a queue for the join point. When all N tasks in the job are at the

front of their respective queues, they rejoin (synchronise) at the join point. The

model also needs to take into account the synchronous nature of tasks. The disk

scheduler may re-order the queue to minimise access time, resulting in an element

of dependence between a task and the preceding task so a significant amount of

synchronicity occurs. In addition, the behaviour of the cache must be modelled in

this network. Any analytical result, whether it is exact or an approximation, must

be capable of modelling of the order of 50 disk drives in a disk array [54].

2.5. Disk Drive and Disk Array Modelling 55

Figure 2.6: Fork-join queueing model.

Lee [79] stated in 1993 that to date, “a definitive analytic model for block-interleaved

redundant disk arrays does not exist”. He attributes this to the difficulties involved

in deriving analytical results for the response time of a fork-join queueing system.

We have found no indication that this statement no longer holds today. All disk

models have had to make compromises or approximations on some of these prop-

erties to create an analytical model.

Some of the earlier analytical models ignored queueing completely. These are

usually used for calculating expected service time and throughput values. Kim

and Tantawi [67] present an approximation for service time distributions striped

over N disks, ignoring queueing, redundancy and synchronisation.

An improvement on this are models that involve queueing but not the fork-join

synchronisation. Chen and Towsley [26] create analytical models for mirrored

clustering and RAID-5 for small and large I/O requests. Mean response times are

derived from the disk parameters needed to predict service time on a single disk,

the specifications of the RAID level and whether the request is a read or a write.

This model is used as an opportunity to discuss scheduling options for these two

56 Chapter 2. Background Theory

Figure 2.7: Varki et al.’s model of a disk array.

RAID levels. The response time is calculated for each disk drive separately. In

RAID 5, each queue is modelled with two classes, one for parity and one for data,

giving the parity class non-preemptive priority.

Most recent models include queueing and fork-join synchronisation but make

other approximations. Lee and Katz [80] were the first to model disk arrays as

a closed queueing network with fork-join synchronisation and a variety of request

sizes, presenting an approximation for utilisation. They do not, however, model

redundancy or synchronised arrivals or present any results for response times.

Although exact results are only available for a 2-queue system [17], there exist

many approximations for response time in a fork-join queue. We focus here on

those which were developed for the specific application of modelling a disk ar-

ray. Therefore, we will primarily focus on the fork-join and disk array modelling

work of Varki [123, 124, 125, 126, 127, 128, 129] and various collaborators, and

Harrison and Zertal [52, 53, 54].

2.5. Disk Drive and Disk Array Modelling 57

Varki’s work develops results for the fork-join queueing model before applying it

to disk arrays. The closed queueing network model dealt with in these works is

displayed in Figure 2.7. Jobs accessing the disk array are synchronous, so each

I/O request can only be issued when the previous one has completed.

Harrison and Zertal [52] propose an approximation to fork-join synchronisation

by deriving the maxima of the service time random variables for each fork. Then

each fork-join queue is reduced to only the slowest performing queue in the fork

and the mean response times can be easily derived. This is one of the only models

that allows disk arrays made up of different RAID levels, a multi-RAID system.

They define a method for finding the maximum of multiple random variables [52].

From this they derive an expression for the moments of this maximum random

variable.

Let fn(α, t) be a probability density function that describes the maximum of

n independent, negative exponential random variables, with parameters α =

(α1, . . . αn). The following recurrence relation can be obtained for the Laplace

transform of fn(α, t), Ln(α, s).

(s +
m
∑

j=1

αj)Lm(α, s) =
m
∑

j=1

αjLm−1(α\j , s) s ≥ 0 (2.24)

for 1 ≤ m ≤ n, where α\j = (α1, . . . αj−1, αj+1, . . . αm), L0(ε, s) = 1 and ε is

the zero vector.

The proof for this is presented in [52]. The kth moment, Mn(α, k) for fn(α, t),

58 Chapter 2. Background Theory

can be derived by differentiating Equation (2.24) k times using Leibniz’s theorem

and setting s to 0.

Mn(α, k) =
k

∑n
j=1 αj

Mn(α, k − 1) +

∑n
j=1 αjMn−1(α\j , k)

∑n
j=1 αj

(2.25)

where n ≥ 1 and M0(ε, k) = 0, ∀k ≥ 1; Mn(α, 0) = 0, ∀n ≥ 0.

These results can be combined into a recurrence relation for approximating the

mean value of the maximum of n independent, non-negative random variables

with means m = (m1, . . . , mn). I(n, α,M) is the approximation function, which

uses a recurrence relation to generate the mean of the maxima. Then, I(n, α,M)

is

I(k, α,M) =
1

k

k
∑

i=1

I(k − 1, α\i,M\i) + αiMiLk−1(α\i, αi)/2 (2.26)

k = 2 . . . n

I(1, α1, M1) = 1/α1

where, α = (m−1
1 , . . . , m−1

n), and the second moments are M = (M1, . . . , Mn).

The result is exact if the n random variables are exponentially distributed. These

results are applied specifically to RAID 01 and 5 in the following ways [139]:

RAID 01

Reads Since each disk is mirrored, the data can be read from either disk. This

is decided by a scheduling policy. Possible scheduling policies are:

2.5. Disk Drive and Disk Array Modelling 59

Random join the read request is assigned to a disk with a defined probability.

Shortest queue the read request is assigned to the disk with the shortest queue.

Minimum seek the read request is directed to the disk with the minimum seek

distance.

Reading from both a disk and its mirror produces better performance results for

medium and large sized requests. However, for small read requests, the seek and

rotation time overheads on the additional disks result in higher response times

than searching over half the disks exclusively.

If the mirrored disks are physically located far away from each other, then random

join is the best policy as no prior information needs to be gathered from the disks

before routing the requests. Harrison and Zertal [52, 53, 54] use random join.

For a one-block read request on disk i, the mean read response time Zr(i) is

defined as

Zr(i) = Qi + Yi + T + t

where Qi is the queueing time, Yi is the disk positioning time of seek time and

rotational latency, T is the constant data transfer time and t is the bus transfer

time for one data block. Disks are assumed to be unzoned. There are no parallel

disk services in a one block read and hence no fork-join synchronisation.

The response time for a multiple block read is the maximum response time of all

the disks accessed in the request. The maximum joint queueing and positioning

time, which varies according to disk is found. This is then added to the mean

transfer time which is assumed to be constant per block and dependent only on

60 Chapter 2. Background Theory

the number of blocks being transferred. The recurrence relation defined in Equa-

tion (2.26) for finding the maximum of multiple random variables, in this case the

random variables Yi + Qi, i = 1, . . . , k, can then be applied. The mean response

time of a request of size B blocks can be estimated as

Zr =
k

max
i=1

(Qi + Yi) +
B

k
(T + t)

where k = min(B, N). The mean read response time can be approximated as

E[Zr] = I(k, α,M) +

⌈

B

k

⌉

(T + t)

αi =
1

E[Qi] + E[Yi]

Mi = E[Q2
i] + E[Y 2

i] + 2E[Qi]E[Yi] i = 1, . . . , k

Writes In mirrored RAID, every write request must write to both the disk and

its mirror. The mean response time will be the maximum response time across all

these disks. Therefore, if the write request consists of B blocks, it is treated in a

similar manner to a 2B block read request:

E[Zw] = I(k, α,M) +

⌈

2B

N

⌉

(T + t)

and k = min(2B, N).

2.5. Disk Drive and Disk Array Modelling 61

RAID 5

Reads Reads are calculated in a similar manner to RAID 01, except that there is

no choice of disks and one disk in each stripe is not considered as it contains the

parity value, so the disk array is treated as if it only contains N − 1 disks.

E[Zr] = I(k, α,M) +

⌈

B

N − 1

⌉

(T + t)

and k = min(B, N).

Writes The response time of write requests are more complicated to calculate

because the time taken to calculate the new parity has to be added to the standard

write considerations. The complication derives from the fact that if a partial stripe

write takes place, the new parity is calculated by pre-reading the old parity value

and existing data first. A full stripe write does not need the old parity to calculate

the new value, as all data on the stripe is replaced. To cope with these intricacies,

the problem is split up into different cases: full stripes, small partial stripes and

large partial stripes.

A differentiation is made between small or large stripes that follow a number of

full stripes and small and large stripes that make up the entire request. A small

or large stripe is defined by whether the number of blocks to be written, B, is

less than, or greater than or equal to N−1
2

mod (N − 1). Small partial stripes

calculate the new parity by pre-reading the old parity and the old data (a read-

modify-write, see Equation (2.23)). A large partial stripe reads the data blocks

from the disks which will not be rewritten and then calculates the new parity by

62 Chapter 2. Background Theory

calculating the exclusive or of this data with the new data (a read-reconstruct-

write, see Equation (2.22)). Thus the response times can be calculated as

Zw = δfull(Zfull + Z+) + (1 − δfull)(δlargeZlarge + δsmallZsmall)

where δ is the delta function, 1 if the subscripted statement is true and 0 other-

wise. Z+ refers to a partial stripe following a full stripe and Zsmall and Zlarge are

exclusive partial stripe writes.

Hence, in order to calculate E[Zw], mean values need to be found for Zfull , Zsmall ,

Zlarge and Z+.

Zfull All the disks are accessed and parity is calculated without any prior infor-

mation. The mean response time is calculated similarly to a read request:

E[Zfull] = I(N, α,M) +

⌈

B

N − 1

⌉

(T + t)

Zlarge All the disks are accessed once. Either they are accessed to pre-read to

update the parity or to write the new data blocks and parity.

The mean response time consists of the time to pre-read the unused blocks for

calculating the parity; a full disk rotation to return to the correct rotational position

to write, and write transfer time T . The mean response time is

E[Zlarge] = pre read + RMAX + T

2.5. Disk Drive and Disk Array Modelling 63

pre read is the mean of the maximum time to read each of the N − k blocks

pre-read to calculate parity, where k = B mod (N − 1),

pre read = I(N − k, α,M) + T + t

Zsmall Each of the k + 1 disks utilised is accessed twice. The mean response

time is then,

E[Zsmall] = pre read + RMAX + T

with

pre read = I(1 + k, α,M) + T + t

Z+ If a partial stripe write follows a full stripe write, then there is no need to

seek for the pre-read as the head is in the correct position. Hence, there is just

an additional block read, for the pre-read to re-calculate the parity. Then, as with

Zsmall and Zlarge , there is a complete disk revolution so that the new data and

parity can be written in the same place. Therefore, the additional response time

for a partial stripe write following a full stripe write is,

E[Z+] = 2T + t + RMAX

The scheduling and synchronisation problems of the RAID 5 partial stripe writes

are addressed in [25, 70]. Chen and Towsley [25] present a solution by modelling

the disk array as a fork-join queue in which each server maintains two queues. One

queue contains a read or write request; the other contains parity requests. When

64 Chapter 2. Background Theory

a job services, the disk services the read requests required to calculate the new

parity and sends the parity write request to the parity queue of the required disk.

The parity queue is a priority non-preemptive queue; hence these write request

will be immediately serviced as soon as the server finishes with the customer it is

servicing and assuming there are no customers ahead of it in the priority queue.

The authors define two policies for when the jobs should be added to the parity

queue. The Before Service policy issues the parity write request as the pre-read

requests start servicing. The After Read-Out policy only issues the request when

all the read requests to calculate the new parity complete. After Read-Out will

result in a slower response time for each partial stripe write job; however, the

Before Service policy risks the possibility that the new parity will not have been

re-calculated to be written when the write parity request is ready to be serviced,

slowing down the disk array. The sophistication of this RAID 5 model is possible

because fork-join queueing is not accounted for. Instead, the mean response time

of each queue is derived, and then averaged for the mean response time of the disk

array.

Kuratti and Sanders [70] suggest a simpler strategy, although it does result in

larger response times. When all the read requests have completed, the data and

parity write requests are then issued to the back of the required disk queues. The

disk is assumed to have an Erlang-distributed service time distribution.

2.5. Disk Drive and Disk Array Modelling 65

Workload

The arrival rate assumes that each request is split into as many subtasks as there are

disks. However this is not the case, as a request splits into a set number of subtasks

according to how many blocks there are in the job. Additionally the RAID level

and type of I/O operation will affect the number of blocks transferred. Therefore,

the arrival rate at a disk is adjusted to account for this variation of arrival rate from

the rate that arrives at the array. Harrison and Zertal [54] calculate the arrival

rate at each disk by considering the proportion of jobs that are RAID 01 (pR1) or

RAID 5 (pR5), the proportion of read (pr) and write (pw) requests, and the number

of blocks, B that each request consists of. Therefore, the arrival rate to each disk

for RAID 01 given an arrival rate to the array of λ is

λR1 = pR1λ(pr min(B, N) + pw min(2B, N))/N

Similarly the disk arrival rate for RAID 5 is

λR5 = pR5λ(pr min(B, N) + pwκ(B))(1 + pw)/N

where

κ(B) =











N if 2B ≥ N − 1

B + 1 otherwise

The RAID 5 models described in [25, 70] involve requests being routed back to

write new data in partial stripe writes. The combined arrival rates of new and

feedback data would not be Poisson. However, it is assumed that partial stripe

66 Chapter 2. Background Theory

writes make up a small enough percentage of total requests that the overall arrival

process remains approximately Poisson.

Fork-Join Queues

There are other ways to approximate the fork-join queue’s response time than

Harrison and Zertal’s method. Nelson and Tantawi [88] define bounds for the

mean response time of a fork-join queue in a system of M/M/1 queues. A scaling

approximation is introduced, based on the observation that both the lower and

upper bounds of the mean response time grow at the same rate as a function of the

number of servers. By running simulations of the fork-join network with different

values of N , the mean response time approximation is calibrated to the following

result:

RN ≈
[

HN

H2
+

4

11

(

1 − HN

H2

)

ρ

](

12 − ρ

8

)

1

µ(1 − ρ)
N ≥ 2 (2.27)

where HN is the harmonic series,
∑N

i=1
1
i

and ρ = λ/µ here and in all further

approximations. Varma and Makowski [130] use interpolation between light and

heavy traffic to approximate the mean response time for the same M/M/1 fork-join

situation:

RN ≈
[

HN +

((

N
∑

i=1

(

N

i

)

(−1)i−1

i
∑

m=1

(

i

m

)

(m − 1)!

im+1

)

− HN

)

λ

µ

]

1

µ − λ

0 ≤ λ < µ N ≥ 2 (2.28)

2.5. Disk Drive and Disk Array Modelling 67

This result can be extended to non-exponential service and arrival times, but in all

cases, is only applicable for homogeneous servers.

Varki et al. [126] present another approximation for the same conditions as Equa-

tions (2.27) and (2.28),

RN ≈ 1

µ

(

HN +
ρ

2(1 − ρ)

(

N
∑

i=1

1

i − ρ
+ (1 − 2ρ)

N
∑

i=1

1

i(i − ρ)

))

(2.29)

Hartley and David [31, 55] and Gumbel [46] present an upper bound for the mean

of the maximum of a set of n independent, identically distributed random vari-

ables, Xi as

E[X(n)] ≤ µ +
σ(n − 1)√

2n − 1
(2.30)

where µ is the mean of X and σ is the standard deviation. This use of Order

Statistics to approximate fork-join queues is discussed further in Section 4.2.1.

Thomasian and Tantawi [115] adapt Equation (2.30) to create their own fork-join

response time approximation. Using Nelson and Tantawi’s method of observing

simulation results they present an approximation to the mean response time of a

fork-join queue consisting of M/G/1 queues in parallel service. Their approxi-

mation proposes:

RN (ρ) ≈ R1(ρ) + σ1(ρ)FNαN(ρ) (2.31)

R1(ρ) and σ1(ρ) are the mean response time and standard deviation respectively

for one M/G/1 queue with no fork-join properties. FN is a constant dependent

on the service time distribution of the parallel servers. αN(ρ) is a linear function

generated by simulating the fork-join synchronisation with the specified service

68 Chapter 2. Background Theory

time distribution. αN(ρ) will have to be recalculated and hence resimulated for

any change of service time distribution.

Kim and Agrawala [66] present an analysis of the fork-join queue for M/G/1

queues with heterogeneous servers. They study the joint distributions of the virtual

waiting times of each queue, the time to serve all customers waiting in a queue

at a specified time. However the method is significantly more computationally

intensive than other results.

Varki [123] extends the Mean Value Analysis approximation technique for closed

queueing networks [97] to closed fork-join networks. The Mean Value Analysis

iteratively calculates the mean response time, throughput and queue length for

each disk in the network. This cannot be directly applied to closed fork join

networks, as the Mean Value Analysis only applies to product form networks and

fork-join queues are not product form. However, a similar iterative approach can

be developed to approximate the fork-join case.

First, in [124] the underlying Markov chain of the fork-join queue is documented.

If there are N parallel servers, then the mean response time of the system is the

mean response time for the quickest queue added to the response times of the

slower queues. From these results, the following bound is calculated for response

time:

RN ≤ 1

µ
[HN + AN] (2.32)

where RN is the mean response time for N servers and AN is the mean number

of jobs seen by an arriving job. This can be simplified if the fork-join queue is the

only case of queueing in the network. Since this is a closed network, the mean

2.5. Disk Drive and Disk Array Modelling 69

number of jobs seen by an arriving job will be all but itself, namely m−1, if there

are m jobs in the system. The bound can then be simplified to,

RN ≤ 1

µ
[HN + m − 1]

Varki’s mean value approach describes a situation in which a closed queueing

network consists of a number of fork-join queues constructed either in series or

parallel with each other. If there are K sub-systems in the network, then using

Equation (2.32) iterative mean value equations are derived that calculate the mean

response time for each subsystem, i = 0, . . . , K as

Ri(m) ≈ 1

µi
[HNi

+ Qi(m − 1)]

Qi is calculated iteratively in a similar manner to mean value analysis, by defining:

Xi(m) =
m

∑K
n=1[Rn(m)Vn/Vi]

Qi(m) = Xi(m)Ri(m)

where Vi is the average number of visits per job to subsystem i in the closed

queueing network. The iteration is initialised by the result Qi(0) = 0 for all

subsystems. Each subsystem must have homogeneous servers.

Generally when modelling a disk array, as seen in Figure 2.7, there are two sub-

systems to iterate between: the fork-join synchronisation of the disk array, and a

single server queue from which the I/O requests are generated. The service rate of

the single server queue will be λ, which is the arrival rate to the fork-join queue.

70 Chapter 2. Background Theory

Varki and Wang [129] apply this method for RAID 5 read requests. The mean

value technique is extended in [127] to include multi-class requests in the fork-

join queue.

2.5.5 Zoned Disk Drives and Disk Arrays

Zoned Disk Drives

Disk zones enable faster transfer times for data that requires better performance.

Since tracks get larger closer to the circumference of the disk, more sectors can

be read or written from outer tracks than inner tracks in the same period of time.

In the models described so far, block transfer time was defined as a constant.

More accurately, block transfer time is a variable, decreasing as the disk cylinder’s

radius increases.

Ghandeharizadeh et al. [40] describe a strategy for optimal data layout on a zoned

disk. They suggest keeping the hottest files in the outer zones, defining hot as the

files most frequently accessed. This is done by lining up the files in order of heat,

with the hottest first, and then laying them out on the disk contiguously, starting

with the outermost part of the disk and working inwards.

Once there exists an initial optimal data placement, a plan is needed for dynamic

reorganisation when the heat of a file changes. A formula is presented that recal-

culates the heat of a file, f , after a number of file accesses to f using timestamp-

ing [40]. The timestamps, ti, are recorded in a queue of maximum length K and

when the queue is full the new heat is recalculated, taking into account the times

2.5. Disk Drive and Disk Array Modelling 71

of the last accesses:

heatnew(f) =
1 − c

1
K

∑K−1
i=1 ti+1 − ti

+ c × heatold (f) (2.33)

where c is a constant between 0 and 1.

Once it is decided that a file should be promoted to a faster zone, a strategy needs

to be defined for migrating the file. In order to move a file into another zone,

a file or files may need to be moved out of the destination zone, and since files

are of differing size, file fragmentation could occur. Fragmentation gives poor

performance when reading a file as the file will not be laid out sequentially. The

approach defined to deal with fragmentation is to ensure that the file being pro-

moted remains contiguous, even if it is not contiguous in its original location. The

data blocks that it replaces are directly swapped into the original location of the

hotter file and may become fragmented. However, these files are accessed less of-

ten so their poor performance is less important. If they were to be accessed more

often, they would be dynamically migrated to a faster zone and no longer frag-

mented. To ensure that the performance improvement of the hotter file moving to

a faster zone outweighs the bad performance of moving the data in the faster zone

to slower zones and possibly fragmenting it, a threshold is defined. A swap occurs

only if the improvement in expected service time is larger than this threshold.

Calculations for optimal placement on zoned disks is confronted in [118]. To

calculate the optimal placement of a file on a disk, a cost metric is presented in

terms of both the best zone to place the data in, and the seek time from the last

request on the disk. The cost function is represented by an expression that is

72 Chapter 2. Background Theory

ten pages long. To find the optimal placement, the minimum value for the cost

function is found using mathematical software.

Zoned Disk Arrays

Applying disk zoning to RAID (Z-RAID), is introduced in [30, 68]. For Z-RAID

level 1, the primary copies are all put in the faster zones and the mirrors are placed

in the inner zones, with the disks split into an inner and outer zone of equal ca-

pacity. Then all read data can be accessed from the outer zones improving per-

formance. Write performance would not improve as each write procedure would

involve writing to both inner and outer zones.

Z-RAID level 5 places the parity block on the inner zone and all other data on

an outer zone. Hence, if there are n disks in the Z-RAID 5 disk array, then 1
n

th

of the total disk space is given to the inner zone for parity, and the remaining

n−1
n

th of space constitutes the outer zone for the data blocks. Similarly, RAID

6, which has two parity blocks per stripe, will have an inner zone consisting of

2
n

th of the disk and an outer zone of n−2
n

th of the disk. This may be detrimental

for write performance as partial stripe write requests involve two accesses to the

parity block which will always be on the inner zone.

Thomasian and Han [114] have a similar method to Z-RAID 1 to allow load bal-

ancing with mirrored disks. They calculate a pivot point on a disk that will effec-

tively split the disk into two zones, outer and inner. If a block has been written to

the outer zone, then it will be written to the inner zone on its mirror. This ensures

that all tracks are used on a disk while ensuring that all data can take advantage of

2.5. Disk Drive and Disk Array Modelling 73

the read performance benefits of being on an outer zone, either on the disk or on

its mirror. However, it also provides poor write performance as data must always

be written to an inner zone.

2.5.6 Caching

Caching can occur on both a disk drive and disk array. Wong and Wilkes [136]

state that there is no communication between the disk drive cache and the disk

array cache and hence there is often data overlap between the two. There may be

performance overheads on the disk array cache from the array controller. [117,

120, 128] study the disk array cache and [14, 47, 108, 136] look at the disk drive

cache.

There are two separate caches for reads and writes [14]. A read request will

check both caches for a hit. The read cache needs to be updated if data stored in

it is rewritten in the write cache. The cache sizes needed to achieve readahead

and writebehind are typically tiny compared to the capacity on the disks [136].

Treiber and Menon [117] describe a simulation study of the effects of cache size

on performance.

Readahead cache

Figure 2.8 displays a queueing model of the possible routes through the disk array

cache of a read request (a model of a disk drive cache would replace the fork-

join queue in the diagram with a single M/G/1 queue). If there is a cache miss,

74 Chapter 2. Background Theory

Figure 2.8: Readahead Disk Array cache.

then the cache service time is 0, but the total request response time is slower

than a cache hit. If there is a cache hit, the cache has a service time of t =

request size/cache transfer rate [128]. There is no zoning in the cache, so transfer

time for one block is constant. However, the size of request can vary; therefore t

varies depending on the distribution of request sizes.

Shriver et al. [108] treat the combined cache and disk as a single server queue. A

cache service is followed by a disk service, but the disk gets a reduced workload

to account for the cache hits. If there is a cache miss followed by a sequential

request, then the sequential request will service in the cache immediately after-

wards, during the time that the previous request is still reading from the disk.

Therefore the sequential request will also count as a cache miss and have to read

the same data from the disk to the cache. This is called a partial cache hit [108].

Therefore, we can not assume that all sequential requests will be cache hits, but

must allow a proportion of sequential requests to be cache misses. This proportion

is defined as the probability that a sequential arrival occurs before the read request

that reads the required data into the cache has finished servicing on the disks.

2.5. Disk Drive and Disk Array Modelling 75

The probability of a cache hit is dependent on the size of the cache, the amount

of spatial locality multiplied by the proportion of read requests and the amount

of temporal locality. Shriver et al. [108] ignore temporal locality, focusing on

sequential locality. They define the probability of a cache miss as:

1/(min(request size + readahead , seq requests length))

If the queue is in equilibrium, the miss rate becomes:

ρ/(min(request size + readahead , seq requests length))

Varki et al. [128] include temporal locality in their miss probability metric, but do

not define how to calculate it.

cache miss prob = readahead miss prob × rereference miss prob

Other works look at calculating cache miss rates in terms of temporal locality, by

analysing the Least Recently Used (LRU) scheduling algorithm [10, 137].

Writethrough Cache

Figure 2.9: Writethrough Disk Array cache.

The writethrough cache is the most simple to model, and is often considered not

76 Chapter 2. Background Theory

really caching as it does nothing to improve write performance, just read. Fig-

ure 2.9 displays the behaviour of the writethrough cache. Each request is written

to both the cache and disk array. If the writethrough cache or the read cache are

full and a new request needs to be written to either of them, a scheduling algorithm

must be applied to decide which data should be written over in the cache [109].

Writeback Cache

This is also called a writebehind cache [14, 47, 136]. In a writeback cache, a

cache hit is defined as the case when there is space in the cache to write an arriving

job [85]. The request response time is the time to complete writing to the cache

only. When there is a cache miss, a request is blocked from writing to the cache

until there is space to write in the cache. There is space to write in the cache if the

new data is writing over data already in the cache or there are ‘clean’ blocks in the

cache. ‘Clean’ blocks are data that has already been transferred to the disk or disk

array. All arriving data in the cache is initially ‘dirty’. Pure writeback caching

waits until the cache is full of ‘dirty’ blocks and then starts writing ‘dirty’ blocks

to disk. The advantage of this is that requests in the cache can be reordered to be

written to disk in the most efficient manner, with the additional benefit that due to

the high likelihood of temporal locality, a read request can find a recent write in

the cache. However, this results in a lot of blocking in the queue, so more popular

is writeback with thresholds, in which a certain threshold is set in the cache. Once

a proportion of the cache the size of the threshold is populated by ‘dirty’ blocks,

‘dirty’ blocks start being written to disk. Implementation of thresholds is a trade-

off between decreasing blocking and increasingly efficient writes to disk.

2.5. Disk Drive and Disk Array Modelling 77

Varki et al. [128] model a writeback cache as an M/M/1/K queue, where K is

defined as the difference between the cache capacity and the threshold, i.e. the

maximum number of blocks that can be written to disk at any time.

Figure 2.10: Writeback Disk Array cache.

The cache is modelled as a queue with blocking before service (BBS) [93]. If there

are K blocks servicing in the disk array, the cache will block incoming requests

until there is space to move more data to disk. However, this model assumes that

the population of the cache is always in excess of its threshold.

There are a number of scheduling algorithms used to choose which data to write

to the disk when the threshold is passed [47]. The three most popular are Least

Recently Used (LRU), Shortest Access Time First (SATF) and Largest Segment

per Track (LST). There is another strategy called Piggybacking [14], in which a

write request is written after a read cache miss has occurred and the read required

is on the same track of the disk as the write request. There are also different

strategies for updating the read cache after a write replaces the data [14]. The data

could be updated, or just removed from the read cache, or the read cache could be

updated after every write (with the newly written data added to the read cache),

irrespective of whether it was originally in the read cache or not. The scheduling

algorithm chosen will significantly affect the resulting model.

Chapter 3

Disk Drive Model

3.1 Introduction

Over the past two decades disk drive performance improvements have signif-

icantly lagged behind all other system component performance enhancements.

Consequently, disk system performance is the increasingly dominant factor in

overall system behaviour [25, 101, 106]. In turn, improving overall I/O perfor-

mance depends upon effective predictive models of hard disk drive I/O request

response times.

It is important to consider the physical construction of the drive when creating

a predictive disk drive performance model. Disk drives consist of a mechanism

and a controller. The mechanism contains recording and positioning components

and the controller manages the storage and retrieval of data [101]. The disk is split

into tracks and each track is populated with sectors. Section 2.5.1 provides a more

78

3.1. Introduction 79

extensive discussion of the key mechanical components of a hard disk drive.

Hard disk drive technology has advanced enormously in its fifty-three year his-

tory, consistently providing lower cost units with higher capacity and better per-

formance. It is fundamental for disk drive performance models to be constantly

updated to reflect these technological advances. A significant recent phenomenon

in disk drives impacting upon I/O request response time was the introduction of

zoned disks (also known as zoned bit recording or zoned constant angular veloc-

ity [84]). Zoned bit recording can be found on most hard disk drives manufac-

tured since the introduction of disk zoning in the early 1990s [34, 64]. Prior to

the zoned disk it was assumed that there were the same number of sectors on each

track throughout the disk. However the circular nature of disks makes it feasible

that the longer tracks on the outside of the disk could store up to 50% more sectors

than a track near the disk’s centre. Figure 3.1 illustrates the difference in sector

layout on a disk with and without zoning.

Figure 3.1: A diagram of sector layout on a disk with (a) no zoning and (b) zoning.

Many existing analytical disk drive performance models do not support disk zon-

ing [25, 54, 70, 101, 128]. One of the few analytical zoned disk drive performance

models is Zertal and Harrison’s [139]. The model we present here is inspired by

80 Chapter 3. Disk Drive Model

their original work. In our model, a queueing model abstracts a disk drive to be

an M/G/1 queue. The queue’s service time represents the time to complete oper-

ations involved in reading or writing a request from or to a disk. This service time

is defined to be the sum of track to track seek time, rotational latency and data

transfer time. In order to incorporate these into the queueing model, pdfs must be

derived for each of these quantities and convolved to create a service time den-

sity function. Service time is described by the random variable X and seek time,

rotational latency and block transfer time are described by independent random

variables S, R and T . Hence, X = S + R + T . If I/O requests are sequential,

then seek and rotation time are both zero and each request’s service time consists

of transfer time only. This is a more straightforward case than random access in

which any combination of seek, rotation and transfer times must be considered.

Throughout this thesis we assume all requests are independent and random access.

In the context of modern Service Level Agreements, effective performance pre-

diction must provide the ability to reason not only about mean response times,

but also higher moments and percentiles of response time. Therefore, our target

throughout this work is the full cdf of I/O request response time, from which all of

the previous measures can be easily derived. Analytical queueing network models

of disk drive and RAID performance [26, 54, 79, 124, 128] developed prior to our

work approximate only the mean response time of the system.

In this chapter we present the derivation of an analytical queueing model for re-

sponse times on a single hard disk drive. In Sections 3.2, 3.3 and 3.4, the density

functions are derived for seek time, rotational latency and data transfer time whose

convolution forms the service time density of a disk drive. Using these, an analyti-

3.1. Introduction 81

cal queueing model of a single disk drive is described in Section 3.5. Additionally,

we develop a corresponding disk drive simulation to compare with the analytical

model. Section 3.6 introduces this disk drive simulation based on the queueing

based simulator JINQS [38].

Each stage of deriving both analytical and simulation models is validated against

device measurements to ensure accuracy throughout. Unless otherwise stated, we

use a Seagate ST3500630NS disk to validate the models. Each disk has 60801

cylinders. A sector is 512 bytes and we have approximated, based on measure-

ments from the disk drive, that the time to write a single physical sector on the

innermost and outermost tracks are 0.012064ms (tmax) and 0.005976ms (tmin) re-

spectively. The time for a full disk revolution is 8.33ms. A track to track seek

takes 0.8ms and a full-stroke seek requires 17ms for a read; the same measure-

ments are 1ms and 18ms respectively for a write [105].

Eventually we will extend the disk model for use in a RAID system. On a RAID

system blocks are defined to be a particular size and striped across all the disks

in the array. In preparation for this, in the disk model we refer to transfer sizes in

terms of blocks rather than sectors. We define the block size as 128KB which is

the stripe width on an Infortrend A16F-G2430 RAID system. Therefore there are

256 sectors per block.

To obtain response time measurements from this system, we implemented a bench-

marking program that issues read and write requests using a master process and

multiple child processes. These child processes are responsible for issuing and

timing I/O requests, leaving the master free to spawn further child processes with-

out the need for it to wait for previously-issued operations to complete. In order

82 Chapter 3. Disk Drive Model

to validate the analytical model effectively, it was necessary to minimise the ef-

fects of buffering and caching as these are not currently represented in the model.

We therefore disabled the system’s write-back cache, set the read-ahead buffer

to 0 and opened the device with the O_DIRECT flag set. We also disabled the

operating system’s I/O scheduler. For each of the experiments presented here,

100 000 requests were issued and the resulting means, variances and cumulative

distribution and density functions of the response times were calculated using the

statistical package R [96].

3.2 Seek Time

A seek, S, is the time taken for the disk head to move from the cylinder where it

is currently located, C1, to the cylinder containing a target sector, C2. We define

a random variable, D = |C1 − C2|, as the seek distance. Seek time can then be

defined in terms of seek distance. Specifically [25],

S(D) =











0 if D = 0

a + b
√

D otherwise
(3.1)

where a is the arm acceleration time and b is the mechanical seek factor [25].

Here we define them in terms of minimum and maximum seek times which are

constants that are provided by the disk manufacturer or could be measured from

the disk. Using Equation (3.1) and setting D = 1 and then D = Cyls − 1 (the

3.2. Seek Time 83

maximum and minimum seek distances), a and b can be defined as follows:

a =
minseek

√
Cyls − 1 − maxseek√
Cyls − 1 − 1

b =
maxseek − minseek√

Cyls − 1 − 1

where Cyls is the total number of cylinders on the disk, minseek is the track-to-

track seek time and maxseek is the full-stroke seek time.

The disk model must reflect the layout of a zoned disk accurately. As cylinders get

closer to the disk edge, their circumference increases and the number of sectors

per cylinder increases. Therefore, a random request has an increased probability

of being directed to a sector on an outer cylinder. Let C be a random variable

representing the cylinder number of a randomly selected disk sector. The pdf of C

can be approximated by assuming that the number of sectors per track increases

linearly and approximating the discrete C as a continuous random variable [139].

That is,

fC(x) =
α + βx

γ
x = 0, 1, . . . , Cyls − 1 (3.2)

with constants α, β and γ defined as:

α =
SEC [0]

spb

β =
SEC [Cyls − 1] − SEC [0]

(Cyls − 1) spb

γ = α(Cyls − 1) +
β

2
(Cyls − 1)2

where SEC [0] and SEC [Cyls − 1] are the number of sectors on the innermost

and outermost tracks respectively and spb is the number of physical sectors per

84 Chapter 3. Disk Drive Model

logical block. α represents the number of logical blocks on the innermost track

and β charts the rate of increase in blocks per cylinder.

Often disk specifications supplied by manufacturers do not provide information

on the number of sectors on the innermost and outermost tracks. However, it is

possible to take measurements from the disk drive to ascertain the mean transfer

time to a single sector on the innermost (tmax) and outermost (tmin) tracks. α

and β can then also be calculated from the transfer time equation detailed later

in Equation (3.4) using the transfer time parameters which allows SEC [0] and

SEC [Cyls − 1] to become obsolete.

This model assumes cylinder capacity increases linearly. In reality it increases in

steps as there are collections of tracks that all have the same number of sectors.

An example of the effectiveness of this assumption in one particular case can be

seen in Figure 3.2. We compare the modelled density function of which cylinder

a randomly selected sector on the disk will be (Equation (3.2)) with a density

function calculated from zoning information provided by the manufacturer for a

Fujitsu MAN3367FC disk drive [39]. We observe adequate agreement between

the linear model and reality. Furthermore, the use of a linear approximation in

the analytical model avoids future complications in the derivation of the seek time

density.

The pdf of seek distance is calculated by assuming the two random variables C1

and C2 as two distinct cylinder numbers, and calculating the seek distance between

all possible cylinder numbers. This is split into two terms, one for the case when

3.2. Seek Time 85

Figure 3.2: Comparison of density functions for cylinder layout for both model
and measurement on a Fujitsu MAN3367FC disk drive.

C1 ≤ C2 and one for the case where C1 > C2 [139]:

fD(x) =

∫ Cyls−1−x

0

fC(y)fC(x + y)dy +

∫ Cyls−1

x

fC(y)fC(y − x)dy

This can be shown to equate to

fD(x) = A + Gx + Ex3 0 ≤ x ≤ Cyls − 1

where,

A =
V (Cyls − 1)

3γ2

G = −V + β2(Cyls − 1)2

3γ2

E =
β2

3γ2

V = 6α2 + 6αβ(Cyls − 1) + 2β2(Cyls − 1)2

86 Chapter 3. Disk Drive Model

The cdf of seek time, FS(t), can be defined in terms of the cdf of D, FD(x),

as [25]:

FS(t) =











FD(0) 0 ≤ t < a + b

FD

(

(

t−a
b

)2
)

otherwise

3.3 Rotational Latency

Rotational latency, R, is the time to rotate to the angle of a target sector. R has a

uniform distribution with a range between 0 and the time for a full disk revolution,

Rmax [26]; thus,

fR(x) = 1/Rmax 0 ≤ x ≤ Rmax (3.3)

3.4 Data Transfer Time

The time to transfer k logical blocks on cylinder x of a zoned disk can be approx-

imated as [139]

t(x) =
k spb Rmax

α + βx
(3.4)

α+βx approximates the number of sectors on a cylinder; therefore Rmax

α+βx
provides

the time to write to each sector on cylinder x.

As mentioned in Section 3.2, often the number of sectors in each zone are not

provided in the manufacturer’s disk specification. If this is the case, α and β can

be calculated using Equation (3.4). Disk specifications often provide the mini-

mum and maximum logical block transfer times and if they are not provided these

3.4. Data Transfer Time 87

parameters can be easily calculated from device measurements. We define tmin as

the minimum data transfer time and tmax as the maximum data transfer time for

one 512 Byte sector. Subsequently, tmin is the time to transfer to the outermost

track and tmax is the time to transfer to the innermost track. Thus substituting into

Equation (3.4),

tmax =
Rmax

α

tmin =
Rmax

α + β(Cyls − 1)

α and β can subsequently be redefined as

α =
Rmax

tmax

β =
Rmax

Cyls − 1

(

1

tmin

− 1

tmax

)

We assume that Tk is independent of seek time and seek distance. Denoting Tk as

the random variable of the time to transfer k blocks of data, its cdf is

FTk
(t) =

∫

IP(Tk ≤ t | C = x)fC(x)dx

=

∫

IP(x ≥ k spb Rmax

βt
− α

β
)fC(x)dx

=

∫ Cyls−1

max(φk(t),0)

fC(x)dx (3.5)

where

φk(t) =
k spb Rmax

βt
− α

β

calculates the minimum cylinder number it is possible to transfer k logical blocks

of data to or from in less than t ms. The solution of the integral in Equation (3.5)

88 Chapter 3. Disk Drive Model

is a function of t with a domain bounded between the minimum and maximum

possible k-block transfer times.

Equation (3.5) expands to

FTk
(t) =























0 t < k spb tmin

α
γ
(Cyls − 1) + α2

2βγ
+ β(Cyls−1)2

2γ
− k2R2

maxspb2

2t2βγ
t < k spb tmax

1 otherwise

(3.6)

This model can be validated by setting the number of sectors to transfer to at a

large enough number that the seek and rotation time will become insignificant in

comparison to the transfer time. We thus write 100MB in each request to random

locations on a single ST3500630NS disk connected directly to a test machine. We

also ensure that no queueing occurs by waiting until a request completes before

issuing another. Figure 3.3 compares cdfs produced by the analytical data transfer

time model and device measurements. The effects of disk zoning are clearly evi-

dent in the measurements, which are a close match to the analytical model. It can

be observed that the measurement cdf increases by steps reflecting the disk zones,

whereas the model curve is smooth because of our linear approximation.

3.5 Disk Drive Model

A disk drive is modelled as an M/G/1 queue in which the arrival process corre-

sponds to I/O requests arriving at a disk and the service process corresponds to the

time to position the disk head and transfer the data. In order to find the density or

distribution of the response time, W , we must use the Pollaczek-Khintchine trans-

3.5. Disk Drive Model 89

Figure 3.3: Comparison of modelled and measured cdfs of zoned data transfer
time for 100MB requests on a single disk.

form equation for the Laplace transform of response time of M/G/1 queues [51]:

W ∗(θ) =
(1 − ρ)θX∗(θ)

λX∗(θ) − λ + θ
(3.7)

X∗(θ) is the Laplace transform of the service time pdf, which is the product of the

Laplace transforms of the pdfs of S, R and Tk, i.e. S∗(θ)R∗(θ)T ∗
k (θ). We assume

S, R and Tk are independent of each other. Also, ρ = λ
µ

, where λ is the I/O request

arrival rate to the disk and µ is the mean service rate, which in our case is given

by 1
E[R]+E[S]+E[Tk]

. As W ∗(θ) is unlikely to have an analytical inversion, we invert

it numerically using the Euler method [2] to obtain the response time pdf fW (t).

The cdf W (t) is also easily obtained by inverting W ∗(θ)/θ.

The mean response time, variance and further moments of response time can be

calculated in two ways. Either Equation (3.7) can be differentiated n times at

the point θ = 0 to give a recursive formula for the response time in terms of

moments of the service time, or the moments can be calculated numerically from

90 Chapter 3. Disk Drive Model

the inverted density function. Our experience in comparing these two methods is

that the difference between results from both methods is marginal and they are

equally computationally intensive.

In Figure 3.4 we compare the response time density functions of this model with

measurements from the disk drive. It is fundamental to have good agreement

between model and measurement in this most basic case in order to be able to

extend the model for more sophisticated workloads and RAID systems. In this

case we use the same request size (256KB) and a small arrival rate (0.01 requests

per ms) for read and write requests. For this disk we observe excellent agreement

for both read requests (Figure 3.4(a)) and write requests (Figure 3.4(b)). Table 3.1

provides means and variances for these two cases.

(a) read requests (b) write requests

Figure 3.4: Measured and modelled densities for workloads of constant 256KB
size on a single disk with arrival rate λ = 0.01 requests/ms.

3.6. Disk Drive Simulation 91

Mean Mean Variance Variance
measured model measured model

(ms) (ms) (ms2) (ms2)

read 19.34 19.55 52.25 49.19
write 20.54 20.32 59.19 54.19

Table 3.1: Response time mean and variance comparison for measurement and
model of 256KB read and write requests on a single disk with arrival rate 0.01
requests/ms.

3.6 Disk Drive Simulation

Simulations are often used to validate analytical models. Additionally, they pro-

vide the ability to replicate the details of the scheduling algorithms and mechanical

behaviour of real disk systems while analytical models can only abstract these de-

tails. Consequently simulations can aid the development of more realistic analyt-

ical models. Also simulations, although slower than analytical models, are faster

to run than taking response time measurements from a disk drive. It is also expen-

sive to invest in different types of disk drives to validate the disk model against

device measurements whereas a validated simulation can replicate different disk

drives with a simple change of parameters.

To improve and validate our analytical model we have developed a disk drive sim-

ulation. Our simulation aims to be an elegant high-level framework that avoids

very detailed low-level device simulation (e.g. as performed by the DiskSim [19]

and RaidSim [22] simulators) and which can be simply parameterised from disk

drive technical specifications. Our simulation takes as input identical parameters

to the analytical model to ensure that the two are easily comparable. The simula-

tion generates as its primary output metric the cumulative distribution function of

I/O request response time.

92 Chapter 3. Disk Drive Model

Our queueing based simulator models a single disk drive as an M/G/1 queue

and uses the JINQS Java-based simulator [38] to simulate this. A queueing net-

work in JINQS is defined in terms of Node, Link and Customer classes. JINQS

defines a queueing network as a collection of Nodes that are connected to each

other by Links. The network is populated by Customers. A Source node injects

Customers into a network with the inter-arrival time between customers sampled

from a specified probability distribution. In the case of the M/G/1 queue, this will

be the exponential distribution. The Source node is Linked to a QueueingNode.

QueueingNodes allow customers to queue for service with a first-come first-served

queueing discipline. The service time is decided by sampling from another spec-

ified probability distribution. For an M/G/1 queue, the QueueingNode is Linked

to a Sink node where customers are absorbed and customer response times are

measured. Figure 3.5 shows a UML class diagram displaying the relationships

between the key classes in JINQS.

JINQS contains inbuilt distribution samplers for many well-known probability dis-

tributions. However, to sample the disk service time, it was necessary to create

distribution samplers for seek time, rotational latency and data transfer time based

on the analytical probability distributions presented in Sections 3.2, 3.3 and 3.4

using the inverse transform and acceptance-rejection random-variate generation

techniques [13]. The simulation generates service times by summing samples

from these three distribution samplers.

Similarly to the measurements, each simulation run involves 100 000 requests be-

ing issued by the simulator and give 99% confidence intervals with a half width of

the order 0.01. Figure 3.6 compares cdfs of device measurements, the analytical

3.6. Disk Drive Simulation 93

����������	�

�
��������� ������� � ���! "��
�!� #%$����! "��
��$�� ��� � #&�! "��
�('(� �) *�'�+ ,(�-���.������/(+ �
������� *� �.��0(���1'("����.������/(+ �
��2���������� "��.��� �3 ��"�,� �����.������/(+ �
�!�4� '("��%5 ��� ,(�-���.������/(+ �

6
��879���3:
��� ����$���"�����,� ������;(���%�)���-���)<��('!����� �
= � ��>� �%�)��� ;!���&$(+ �!�3 ��"�? �@�.������/(+ ��A

B�C D :
E ����"���? �F��;(����� ������� G�"H�!I�������A
E �-�!*8��? �F��;(����� ������� A

J-��
���
 C D�K�6 �MLN

���.'($!'!�! � #&�! "��
= ��"�� ��� ? �O��;(���%�)���-��� G�� $�����/�����+ �('("�A
= '!���.��$��4? �F��;(����� ������� A
= 5 ��� P�'(� ��? �F��;(����� ������� A

6 �MLN

= ���! "��
Q "!'(�-����R��S� "�>
= ��"�� ��� ? �O��;(���%�)���-��� G�� $�����/�����+ �('("�A
E '!���.��$��4? �F��;(����� ������� A
E 5 ��� P�'(� ��? �F��;(����� ������� A

T C D :
E '!���.��$��4? �F��;(����� ������� A

TN���M�4U�

E ����+ '�#&�!0M ���4�) /����3 ��"!R�'(�&$(+ ���
E /!'�� ��V��� W ���!0M ���4�) /����3 ��"!R�'(�&$(+ ���
Q "�X ���%�4;(���%�)���-��� ��? A

�S� '�*8��+ ��*� '

����"�"������ ���H/�#

��"�� ��� ��Y + �('�*8���

Figure 3.5: JINQS M/G/1 queue simulator class diagram.

(a) read request (b) write request

Figure 3.6: Response time distributions of measurement, simulation and model
for workloads of constant 256KB size on a single disk with arrival rate λ = 0.01
requests/ms.

94 Chapter 3. Disk Drive Model

model and simulation for read and write requests with the same parameters as the

pdfs in Figure 3.4. The simulation and analytical models produce almost identical

cdfs which are very close to the measurement cdf, particularly for read requests.

Chapter 4

RAID Model

4.1 Introduction

RAID systems are fundamental components of almost all modern data storage

systems due to their ability to increase storage infrastructure performance and

reliability in a cost-effective manner. As a result they are now widely deployed

at every level from personal home storage devices to enterprise-scale storage area

networks. Choice of RAID level can critically affect the performance delivered

by a storage system. It is therefore important to be able to predict performance of

a given RAID configuration for various I/O workloads.

RAID systems consist of a controller managing multiple disks. In the previ-

ous chapter a performance model was presented for a single disk. This must

be extended to reflect the requirements of a RAID system. The presence of

fork-join synchronisation in RAID system behaviour indicates that the most ap-

95

96 Chapter 4. RAID Model

propriate queueing network model of a RAID system is the fork-join queueing

network [80]. There do not exist any exact analytical results for a fork-join

queue consisting of more than two queues [79]. However, there exist numer-

ous approximations and bounds of varying accuracy and computational inten-

sity [12, 25, 26, 54, 66, 80, 82, 88, 115, 116, 123, 124, 125, 126, 127, 128, 129].

In Section 4.2 we present an analytical response time approximation of the fork-

join queue and compare it to some existing fork-join response time approxima-

tions [52, 88, 126, 130].

Combining the fork-join approximation and disk drive model we can develop an

analytical RAID model. The various RAID levels provide either performance,

redundancy or space efficiency advantages or a combination of these over single

disks. We specifically focus on modelling RAID levels 0, 01 and 5. RAID 0 is disk

striping without any redundancy. RAID 01 is a mirror of stripes implementing

properties of both RAID 0 and RAID 1. The presence of striping gives RAID 01 a

performance advantage over RAID 1. The RAID 01 model can easily be modified

to model RAID 10 (stripe of mirrors) which we describe in this chapter. We do not

model RAID levels 2, 3 or 4 as RAID 01 and 5 present performance, reliability

and cost-effective advantages over all these levels. RAID 5 is distributed single

parity block. RAID 6 is distributed double parity blocks and hence has a reliability

advantage over RAID 5. However, there is no uniform RAID 6 configuration and

they tend to be system and manufacturer specific. Consequently, it is not possible

at present to create a general performance model for RAID 6 as we do for the

lower RAID levels.

Simply abstracting each I/O request as a customer in a fork-join queue is not suf-

4.2. The Fork-Join Queue 97

ficient to model the intricacies of RAID systems. Although the fork-join queue

mimics striping, modifications must be made to the model to represent requests

that split into any number of subtasks, mirroring and parity calculations. There is

a small body of work that addresses this [25, 26, 54] but no conclusive analyti-

cal method for modelling response time distributions of RAID based on fork-join

queueing for RAID levels 0, 01 and 5 for any size of request exists. This chapter

presents such a model. We introduce the extensions and modifications to the com-

bined fork-join and disk models that are necessary to create an effective RAID

response time model in Section 4.3. Finally, we introduce a RAID simulation to

compare to our analytical model in Section 4.4.

To provide confidence in our simulation and analytical models, we validate them

against device measurements. Our experimental platform consists of an Infortrend

A16F-G2430 RAID system containing Seagate ST3500630NS disks. The speci-

fications for these disks are listed at the start of Chapter 3. As mentioned in the

previous chapter, the stripe width on this array is set at 128KB which we define as

a single block size.

4.2 The Fork-Join Queue

As described in Section 2.5.4 and illustrated in Figure 2.6, in a fork-join queueing

system, each incoming job is split into N tasks at the fork point. Each of these

tasks queues for service at a parallel service node before joining a queue for the

join point and rejoining when all tasks have completed service.

98 Chapter 4. RAID Model

As discussed in Chapter 2, it is difficult to model moments of job response time

in a fork-join synchronisation analytically. For more than two parallel servers,

approximations exist for the mean response time of homogeneous servers. Ideally

a universal solution or accurate approximation is needed to solve for moments

of job response time in generic fork-join networks. The closest to this is Varki’s

modification of mean value analysis applied to closed fork-join networks [123],

which approximates mean values only.

Here, fork-join queues are being studied specifically for the purpose of modelling

disk arrays. Therefore certain constraints on the fork-join model are preferable,

for an accurate disk array model. Each disk in the array is modelled as one of

the parallel servers of the fork-join queue. The service time of a disk drive is

dependent on the disk cylinder seek time and rotational latency and is unlikely to

be distributed exponentially. Hence, the disk array requires a fork-join model with

M/G/1 parallel queues. The service time distributions and mean service times

on each disk may not be identical; hence any analytical approximation should

allow for heterogeneous parallel servers. Finally, a disk array could consist of tens

of disk drives so the analytical approximation needs to be capable of generating

results quickly for a large number of disks.

In order to solve fork-join queueing networks analytically, most results assume

that the response times of parallel queues are independent and identically dis-

tributed (iid). The arrival rate to the fork is λ and mean service rate for each

queue is µ.

One way of approximating fork-join synchronisation, is to model a similar net-

work called the split-merge queue exactly (see Figure 4.1) [16, 36]. In the split-

4.2. The Fork-Join Queue 99

merge queue, a job splits into N tasks which are serviced in parallel. Only when

all the tasks finish servicing and rejoin can the next job split into tasks and start

servicing. This will lead to slower mean response times than its fork-join equiva-

lent.

Figure 4.1: Split-merge queueing model.

4.2.1 The Maximum Order Statistic

Here, we present an alternative to Harrison and Zertal’s method [52], by finding

the mean of the maximum of a set of random variables by utilising the properties

of Order Statistics [31, 103]. This will give an exact solution for the response time

of a split-merge queue which is a conservative approximation of the response time

of a fork-join queue.

Definition It is possible to reorder any random variables, X1, X2, . . . , Xn as

X(1), X(2), . . . , X(n), where X(1) ≤ X(2) ≤ . . . ≤ X(n). Then X(1), X(2), . . . , X(n)

are the order statistics of X1, X2, . . . , Xn.

The maximum of n random variables using order statistics is X(n), the maximum

100 Chapter 4. RAID Model

order statistic. The mean value of this maximum and further moments can be

found if the cdf of X(n) is calculated.

FX(n)
(x) = IP(X(n) ≤ x) = ∀iIP(X(i) ≤ x)

Thus, if X1, X2, . . . , Xn are independent and identically distributed with cdf F (x),

FX(n)
(x) = (F (x))n.

If the random variables are independent but not identically distributed, and Xi has

cdf Fi(x),

FX(n)
(x) =

n
∏

i=1

Fi(x)

The mean of the maximum of n independent random variables with pdf fi(x), is

then

E[X(n)] =

∫ ∞

−∞

x

(

n
∑

i=1

fi(x)

Fi(x)

)

n
∏

i=1

Fi(x)dx (4.1)

If the random variables are iid, equation (4.1) simplifies to

E[X(n)] = n

∫ ∞

−∞

xf(x)(F (x))(n−1)dx (4.2)

Further moments, Mk, can be calculated,

Mk = E[Xk
(n)] = n

∫ ∞

−∞

xkf(x)(F (x))(n−1)dx

These results always give exact solutions to the mean of the maximum random

variable, irrespective of the distribution of the random variables.

4.2. The Fork-Join Queue 101

4.2.2 Validating the Fork-Join Queue Approximation

To validate this approximation, it is compared to simulation and analytical results

from Harrison and Zertal [52] (Equation (2.26)) who present an approximation

to the mean response time of a split-merge queue. Each simulation run involves

100 000 requests being issued by the simulator, giving 98% confidence intervals

with a half width of the order 0.01. The analytical results are obtained using

Mathematica [135].

Before looking at queueing response times, we start with the simpler case of find-

ing the maximum of some well known random variables. Harrison and Zertal’s

method and the maximum order statistic produce identical results for exponential

random variables, since Equation (2.26) is exact for exponential random variables.

Table 4.1 compares the two models and simulation results for an Erlang-k distri-

bution, with parameter, λ = k. The column HZ contains the results from the

approximation in Equation (2.26) and OS contains the exact method in Equa-

tion (4.2). The approximation suffers with low variance as N → ∞, with a

constantly increasing percentage error for larger N . Equation (4.2) consistently

delivers better percentage errors with no clear performance deficits.

For a high variance situation, a Pareto distribution is used. Table 4.2 compares the

two models and simulation results for a heavy-tailed Pareto-β distribution. This

has cdf FP (x) = 1 − α(x + γ)−β, with α = γβ and γ = β − 1. The maximum

order statistic consistently outperforms Harrison and Zertal’s approximation.

102 Chapter 4. RAID Model

N Exp-1 Erlang-2
Sim HZ % err OS % err

1 1.000 1.003 1.000 -0.334 1.000 -0.334
2 1.500 1.373 1.375 0.135 1.375 0.135
4 2.083 1.772 1.813 2.265 1.774 0.089
8 2.718 2.182 2.288 4.881 2.180 -0.078

16 3.381 2.588 2.786 7.648 2.587 -0.035

N Erlang-3 Erlang-4
Sim HZ % err OS % err Sim HZ % err OS % err

1 0.999 1.000 0.062 1.000 0.062 0.999 1.000 0.060 1.000 0.060
2 1.271 1.313 3.281 1.313 3.281 1.195 1.281 7.207 1.273 6.127
4 1.546 1.677 8.448 1.630 5.153 1.380 1.609 16.64 1.544 10.6230
8 1.806 2.074 14.84 1.945 7.147 1.555 1.966 26.43 1.808 13.993

16 2.061 2.488 20.74 2.254 8.562 1.716 2.339 36.30 2.063 16.820

Table 4.1: Comparison of simulation and models for means of Erlang-N random
variables (low-variance).

N Exp-1 Pareto-4 Pareto-5
Sim HZ % err OS % err Sim HZ % err OS % err

1 1.000 1.004 1.000 -0.381 1.000 -0.381 0.994 1.000 0.614 1.000 0.614
2 1.500 1.579 1.750 10.82 1.571 -0.509 1.567 1.667 6.350 1.556 -0.707
4 2.083 2.327 2.625 12.81 2.319 -0.345 2.269 2.444 7.744 2.266 -0.132
8 2.718 3.261 3.577 9.698 3.255 -0.184 3.129 3.290 5.173 3.129 -0.001
16 3.381 4.394 4.571 4.027 4.395 0.023 4.153 4.174 0.512 4.149 -0.096

Table 4.2: Comparison of simulation and models for means of N Pareto random
variables (high-variance).

4.2. The Fork-Join Queue 103

M/M/1 Queues

To further validate the use of the maximum order statistic of response time as an

approximation for fork-join queue response time, we compare it to the fork-join

queue response time approximations described in Section 2.5.4. All these approx-

imations only apply to the mean response time of an M/M/1 fork-join queue.

Since M/M/1 queues have both exponential arrival and service time distributions,

the approximation in Equation (2.26) (Harrison and Zertal’s approximation [52])

is identical to the maximum order statistic. Figure 4.2 compares analytical approx-

imations for the mean response time for a fork-join queueing network of M/M/1

queues with a fork-join queueing simulation. The results were calculated with an

arrival rate λ = 1 request per time unit and a service rate µ = 1.1 requests per

time unit for each server and the number of servers (N) varying from 1 to 25. The

analytical methods are the maximum order statistic (OS), Nelson and Tantawi’s

approximation [88] in Equation (2.27) (NT), Varma and Makowski’s approxima-

tion [130] in Equation (2.28) (VM) and Varki et al.’s approximation [126] in Equa-

tion (2.29) (VMC). All these results are compared to a simulation of the network,

with the line labelled SIM. Each simulation run involves 100 000 requests being

issued by the simulator and then each run is replicated 30 times.

The mean of the maximum order statistic, which gives exact results for a split-

merge queue but only approximates the fork-join model, performs worst out of all

the approximations for the M/M/1 queue. This could be expected as the split-

merge model waits for all parallel servers to finish servicing before a new job

begins service and will hence be slower than the fork-join model. However, it must

be noted that all these approximations except OS and VM are limited to M/M/1

104 Chapter 4. RAID Model

Figure 4.2: Mean response time RN for M/M/1 fork join-queue with N queues,
λ = 1, µ = 1.1.

queues and cannot be extended for M/G/1 queues which is a requirement of a

RAID model.

M/G/1 queues

The benefits of the maximum order statistic become more apparent with an M/G/1

queue. The approximations defined for M/M/1 queues (equations (2.27), (2.28)

and (2.29)) only apply for M/M/1 queues and most approximations that exist

for M/G/1 queues are computationally intensive [130], or reliant on simula-

tion results to provide parameters (Equation (2.31) [115]). Varki presents an ap-

proximation for mean response time only using a modified mean value analysis

in [123]. Harrison and Zertal’s method is an approximation of the split-merge

queue, whereas the maximum order statistic is exact for the split-merge queue.

Figure 4.3 plots mean response time for an N -server fork-join queue. The ser-

4.2. The Fork-Join Queue 105

Figure 4.3: Mean response time RN for Erlang-2 M/G/1 fork-join queue with N
queues, λ = 0.1, µ = 0.375.

vice time distribution has an Erlang-2 distribution with mean service rate at each

server of 0.375 requests per time unit and Markovian arrival rate 0.1 requests per

time unit. The graph compares Harrison and Zertal (HZ), the mean of the max-

imum order statistic (OS), Varki’s mean value analysis method [123] (VAR) and

a simulation (SIM). The mean of the maximum order statistic can be seen to be

a good approximation of response time for a fork-join queue of M/G/1 queues

and has the additional benefit of being capable of providing the full probability

distribution of response time.

A Large Number of Parallel Queues

Disk arrays often consist of tens of individual disk drives. Any analytical ap-

proximation of a disk array needs to quickly and accurately calculate the mean

response time as the number of parallel queues increase. Finding the mean of

the maximum order statistic is computationally fast for a large number of paral-

106 Chapter 4. RAID Model

lel queues. However, simulating large fork-join queues is very slow. Therefore,

Figures 4.2 and 4.3 only show results up to 25 disks. To show how these results

compare as the number of queues gets very large, tables are presented for the

cases when there are 40 and 50 parallel queues. Table 4.3 shows mean response

times for the M/M/1 fork-join queue described above with arrival rate 1 request

per time unit and service rate 1.1 requests per time unit . Table 4.4 displays mean

response times for the M/G/1 fork-join queue with Erlang-2 distributed service

times, arrival rate 0.1 requests per time unit and service rate 0.375 requests per

time unit. Both tables are labelled with the same keys that are used in Figures 4.2

and 4.3. We observe similar trends for the accuracy of the approximations as were

visible for a smaller number of queues. Significantly, a larger number of queues

make some of the approximations highly computationally intensive (e.g. VM),

but this is not the case for the maximum order statistic.

N Simulation 98% Confidence Interval OS NT VM VMC
half width

40 32.195 1.201 42.785 31.055 29.196 28.263
50 32.450 0.684 44.992 32.42 30.171 29.469

Table 4.3: Comparison of simulated and modelled mean response times for
M/M/1 parallel queues with many servers.

N Simulation 98% Confidence Interval OS HZ
half width

40 10.0126 0.0160 11.481 14.521
50 10.406 0.0178 12.0054 15.27

Table 4.4: Comparison of simulated and modelled mean response times for
Erlang-2 M/G/1 parallel queues with many servers.

4.2. The Fork-Join Queue 107

Heterogeneous Servers

Heterogeneous parallel servers arranged in a fork-join queueing network is an-

other situation in which approximating the response time with the maximum or-

der statistic is an improvement upon other analytical approximations. The fork-

join approximations discussed in Section 2.5.4 are only applicable for homoge-

neous servers. Figure 4.4 studies the mean response time for an M/M/1 fork-

join queue with heterogeneous servers. It plots the mean response time for an N

branch fork-join queue in which each server has a mean service rate of 1.1+ 0.2i,

where i = 0, 1, . . . , N − 1 and arrival rate 1 request per ms. The line SIM rep-

resents a queueing simulation of response time for N = 1, . . . , 16 and the line

OS is an approximation using the mean of the maximum order statistic. To show

that the approximations for response time in fork-join queues with homogeneous

servers cannot approximate the heterogeneous result, two lines are plotted assum-

ing homogeneous servers, using Nelson and Tantawi’s approximation (see Equa-

tion (2.27)), which was shown in Figure 4.2 to be the most accurate analytical

approximation of M/M/1 fork-join synchronisation. Firstly, we approximate the

heterogeneous servers by assuming homogeneous servers with the minimum, and

hence the slowest service rate, 1.1. This is displayed in the line NT µ = 1.1.

Secondly in line NT, we define the service rate of the homogeneous servers as the

mean of all the service rates on the heterogeneous servers.

The maximum order statistic approximation results stay consistently closer to the

fork-join simulation than the homogeneous cases. Furthermore, both attempts at

approximating parallel systems with heterogeneous servers by assuming homoge-

neous servers have increasingly large percentage errors as N increases.

108 Chapter 4. RAID Model

Figure 4.4: Mean response time RN for an heterogeneous M/M/1 fork-join
queue with N queues.

Figure 4.5: Mean response time RN for an heterogeneous M/G/1 fork-join queue
with N queues and an Erlang-2 service time distribution, with mean 0.2 + 0.1N .

4.2. The Fork-Join Queue 109

Figure 4.6: Mean response time RN for an heterogeneous M/G/1 fork-join queue
with N queues and a service time distribution of Erlang-(N +1),with mean 0.375.

Figures 4.5 and 4.6 compare simulation results with only the mean of the maxi-

mum order statistic for response times in M/G/1 heterogeneous fork-join queues.

Figure 4.5 charts the mean response time for N M/G/1 queues with an Erlang-

2 distribution, but with a mean service rate that varies according to N (µ =

0.2 + 0.1N). Figure 4.6 keeps the mean service rate constant at 0.375, but varies

the service time distribution according to N . The service time distribution is

Erlang-(N + 1). In both cases the arrival rate is 0.1 requests per ms.

In Figures 4.4 and 4.5, the mean response time tends to a constant value as N

increases. This is because queues are added to the network with increasingly fast

mean response times. The slow response times of the queues initially added to the

network have a larger effect on the overall mean response time of the fork-join

network.

110 Chapter 4. RAID Model

4.2.3 Choosing a Fork-Join Approximation

The benefits of the maximum order statistic as an approximation to predict the

response time of a fork-join queue have been documented in this section. To

summarise:

• Although not the most accurate approximation of fork-join queue response

time, the mean of the maximum order statistic adequately represents fork-

join queue response time with M/M/1 queues.

• To model a disk array, the fork-join queue must consist of M/G/1 queues.

In this case, the maximum order statistic is one of few available approxima-

tions, fast and not reliant on prior simulation results.

• The maximum order statistic of response time continues to model the re-

sponse time of a fork-join queue well for heterogeneous servers and a large

number of servers.

• Most fork-join queue approximations only calculate the mean response time.

The maximum order statistic derives the full response time distribution from

which further moments and quantiles of response time can be obtained.

4.2.4 Fork-Join Simulation

The simulation used throughout this section is an extension of the JINQS queueing

software. In Section 3.6 we described how JINQS single queue simulation is spec-

ified in terms of QueueingNode, Link and Customer classes. QueueingNodes are

4.3. RAID Model 111

connected by Links to create a network of queues. Response times measurements

are obtained by recording the time each Customer spends in the network.

To extend this simulation for fork-join queueing, we introduce ForkLink and Join-

Link classes to extend the Link class and a ForkedCustomer class to extend the

Customer class. Figure 4.7 is a UML diagram displaying the relationship of these

new classes with the original JINQS simulation. The Source node now links to the

QueueingNodes with a ForkLink. At the ForkLink a new ForkedCustomer is cre-

ated for each subtask in an arriving Customer, each with a reference to that original

Customer. These ForkedCustomers are sent to one of the n single queues. These

queues could be either M/M/1 or M/G/1. When a ForkedCustomer leaves a

queue, it is sent to the JoinLink, which collects all ForkedCustomers. When all

the ForkedCustomers that reference a particular Customer have arrived, the orig-

inal Customer is sent on its way to the Sink node and all of its ForkedCustomers

are destroyed.

4.3 RAID Model

Modelling RAID systems as a fork-join queue suffices to calculate the response

time cdf for read or write requests to an n-disk RAID 0 system in which each

request consists of a multiple of n blocks. However, not every I/O request leads

to an access to all disks, being influenced by I/O request size and type, and also

by RAID level. Here, we introduce models of RAID levels 0, 01 and 5, for both

read and write requests.

112 Chapter 4. RAID Model

���������
	��

��������� ������� � ���� !��
��� "�#����� !$�
��#�� ��� � "%�� !$�
�'&'� � (�&�) *' �����$������+�) �
���,��� (� �,��-����.&'!����$������+�) �
��/���������� !��,��� �0 ��!�*' �����,�'����+�) �
���1� &'!���2 ��� *' ���3�,�����'+�) �

4 �

05��768�
�������
	���

9 !���� &'!��,�3�� !$�
9 � &���:;�<�� !$�
����� =� !�&') >������ ���������� !$�

? ����@A��
B5
��� ����#���!��,�$*' �����,>������ ������� C7��&������ �
D � ��=� ��� ��� >����E#�) ���0 ��!�F �G�,������+�) ��H

I�J K 5

L �,��!���F �<�,>������ ������� M�!N��O�������H
L ����(���F �<�,>������ ������� H

4 �

05 I'J K 5
9 2 ��� :;�<�� !$�

P � J K7I�J K 5
9RQ �� !��<��S�&���T$�1&'+�) �

U����
��� J K�V
? �768�
���$&'#�&��$ � "E�� !��
D ��!$� ��� F �<�$>������ ���.��� M'� #�����+�����) �'&'!�H
D &��,�,��#$�1F �<�,>������ ������� H
D 2 ��� W�&'� ��F �<�,>����;� ������� H

�,��!�!������ �'�N+$"

�1� &�(���) �.(� &

��!$� ��� �;X) �'&�(����

Figure 4.7: Fork-Join simulator class diagram.

4.3. RAID Model 113

Our model is initially designed to accept a homogeneous stream of I/O requests

of a given size and type. We further assume that all the service time distributions

on all disks are identically distributed. For the sake of notational simplicity, let

Wd(t, γ, µ) define the cdf of the response time distribution of a single M/G/1

queue (disk), γ the arrival rate at an individual disk and µ the mean service rate.

We assume there are n disks in the array and that the arrival rate of logical I/O

requests to the disk array as a whole is λ. The service time parameters (seek time,

rotational latency and data transfer time) are defined in the disk model description

in Chapter 3.

4.3.1 RAID 0

RAID 0 is striping with no redundancy. In terms of its performance model a

RAID 0 read or write operation is modelled in an identical way to a RAID 01 read

operation (see Equation (4.4)) despite the physical differences between these three

operations. The only difference between a RAID 0 read and write performance

model are the read or write specific parameters such as track-to-track seek time

and full stroke seek times, but the RAID striping operations are identical. For a

b-block request, if b < n only b disks are utilised at any time. To account for this,

we view the system as a b-queue fork-join queue in these cases. The arrival rate

at the disks would then need to be modified since each request would only arrive

at b of the n disks. If b ≥ n, all n disks of the array are utilised, but the service

time must account for the number of blocks transferred to each disks on average

during a request.

114 Chapter 4. RAID Model

Therefore the cdf of the response time distribution for a b-block read or write

request on a RAID 0 system using the maximum order statistic approximation of

the fork-join queue is:

WR0(t) =











(

Wd

(

t, λb
n

, 1
E[R]+E[S]+E[T1]

))b

if b < n
(

Wd

(

t, λ, 1
E[R]+E[S]+E[T b

n
]

))n

otherwise
(4.3)

Validation

Figure 4.8 compares pdfs for measurement and model of response time on 4-disk

RAID 0 with different arrival rates and request sizes. We observe excellent agree-

ment between model and measurement for read requests and adequate agreement

for write requests. This slight lag is possibly due to a RAID system overhead on

write requests which is not attributed for in the model.

4.3.2 RAID 01

Read Requests

Assuming an efficient RAID controller, a b-block read on RAID 01 can read data

from either primary or mirror disks. With b ≥ n, we thus utilise all n disks of the

array (and not n
2

disks) to give better performance results for medium and large

sized requests. The array controller chooses whether to read from a disk or its

mirror. In our model we assume this choice is made randomly.

Therefore, similar to a RAID 0 request, the cdf of the response time distribution

4.3. RAID Model 115

(a) read requests, b = 2, λ = 0.01 (b) write requests, b = 2, λ = 0.01

(c) read requests, b = 3, λ = 0.02 (d) write requests, b = 3, λ = 0.02

Figure 4.8: 4-disk RAID 0 b-block request response time pdfs for arrival streams
of reads or writes with arrival rate λ requests/ms.

116 Chapter 4. RAID Model

for a read on a RAID 01 system using the maximum order statistic approximation

of the fork-join queue is:

WR01r
(t) =











(

Wd

(

t, λb
n

, 1
E[R]+E[S]+E[T1]

))b

if b < n
(

Wd

(

t, λ, 1
E[R]+E[S]+E[T b

n
]

))n

otherwise
(4.4)

Write Requests

A b-block write must account for each request being written on both primary and

mirrored disks, therefore 2b blocks are written in each request. The corresponding

response time cdf is defined as:

WR01w
(t) =











(

Wd

(

t, 2λb
n

, 1
E[R]+E[S]+E[T1]

))2b

if 2b < n
(

Wd

(

t, λ, 1
E[R]+E[S]+E[T 2b

n
]

))n

otherwise

In a RAID 10 system data is striped across half the disks and mirrored on the

other half of the disks (i.e. the odd numbered disks are the original and the even

numbered disks are mirrors as opposed to RAID 01 where the first n
2

disks are the

original and the remaining n
2

disks are mirrored). However, an analytical model of

RAID 01 would focus only on the performance implications of this arrangement

which are identical to those of RAID 01. Therefore RAID 10 could be modelled

using the same analytical models as RAID 01.

4.3. RAID Model 117

Validation

To support these analytical models for RAID 01, we validate them against de-

vice measurements. We do not have access to a RAID 10 system to validate our

model in that case. Figure 4.9(a) displays the measured and modelled cdfs for

the response time of 256kB read requests on a four disk RAID 01 system, and

Figure 4.9(b) shows the corresponding cdf for write requests. We observe good

agreement between model and measurement. Table 4.5 further illustrates the ac-

curacy of the model, comparing mean and variance for the model and measured

results for the cases illustrated in Figure 4.9 and showing excellent agreement in

all cases.

Figure 4.10 shows measured and modelled mean response times of reads and

writes for both 4-disk and 8 disk RAID 01 for a light load of λ = 0.01 requests/ms

and a variety of request sizes. For write requests agreement between model and

measurement is excellent, even for large block sizes.

Blocks Mean Mean Variance Variance
measured model measured model

(ms) (ms) (ms2) (ms2)

read 2 18.3 20.4 20.3 40.1
write 2 29.0 30.3 164.9 119.8

Table 4.5: Response time mean and variance comparison for measurement and
model of read and write requests on 4-disk RAID 01 with an arrival rate of 0.02
requests/ms.

For read requests we observe good agreement, with a slight tendency for the model

to overestimate for small block sizes. Table 4.6 contains means and variances for

the cases presented in Figure 4.10(a). For larger block sizes, the model tends to

increasingly underestimate the measurements. This behaviour is interesting be-

118 Chapter 4. RAID Model

(a) 2-block read request (b) 2-block write request

Figure 4.9: I/O request response time distributions on 4-disk RAID 01 with arrival
rate 0.02 requests/ms.

cause it does not occur with RAID 01 writes or RAID 5 reads (see Figure 4.12);

we speculate that this is possibly because of the drive selection policy (which

controls whether to read from a primary disk or its mirror) implemented by the

RAID controller or controller overhead. This may be disk drive or RAID sys-

tem specific and ideally should be investigated further by comparing the model

with device measurements from disk drives and RAID systems produced by other

manufacturers.

Figure 4.11 compares pdfs and cdfs for some randomly chosen parameters. We

generally see excellent agreement between model and measurement. Interestingly,

even if the measured and modelled cdfs do not have excellent agreement, their

pdfs show some similar trends. For example, in Figure 4.11(c) the model exhibits

the bimodal nature of the measurement although it does not share its peaks.

4.3. RAID Model 119

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 5 10 15 20 25 30

M
ea

n
R

es
po

ns
e

T
im

e
(m

s)

Blocks

Measurement-read
Model-read

Measurement-write
Model-write

(a) 4-disk RAID 01

 15

 20

 25

 30

 35

 40

 45

 0 2 4 6 8 10 12 14

M
ea

n
R

es
po

ns
e

T
im

e
(m

s)

Blocks

Measurement-read
Model-read

Measurement-write
Model-write

(b) 8-disk RAID 01

Figure 4.10: Comparison of measured and modelled mean response time against
block size for RAID 01 with arrival rate 0.01 requests/ms.

120 Chapter 4. RAID Model

Reads Writes
Measured Modelled Measured Modelled

Blks Mean σ
2 Mean σ

2 Mean σ
2 Mean σ

2

(ms) (ms2) (ms) (ms2) (ms) (ms2) (ms) (ms2)

1 15.7 15.2 15.9 22.9 22.3 38.9 19.9 26.8
2 17.8 14.8 19.1 24.4 25.7 65.8 24.7 50.4
3 19.2 16.8 21.4 32.8 28.9 88.8 26.4 59.4
4 20.4 19.3 23.6 44.9 30.9 100.5 28.1 69.8
5 21.7 21.0 24.4 48.9 34.7 135.6 29.8 81.6
7 24.4 35.1 26.1 57.8 40.5 317.4 33.5 110.3
9 27.1 52.3 27.8 68.0 43.0 218.5 37.5 146.4
11 29.7 68.9 29.5 79.8 44.0 267.9 41.7 191.3
13 32.4 93.3 31.4 93.1 50.5 426.2 46.2 246.5
14 33.6 112.5 32.3 100.4 50.1 430.1 48.5 278.4
15 35.2 126.1 33.2 108.1 53.1 561.6 50.9 313.7
17 38.0 169.6 35.2 125.0 61.0 756.7 55.9 395.1
19 41.2 230.0 37.2 143.8 64.6 1179.1 61.3 493.1
21 44.0 299.1 39.3 164.9 73.9 1656.0 67.0 611.0
23 47.5 372.6 41.4 188.3 74.1 1735.4 73.0 752.2
25 51.1 524.0 43.6 214.2 85.1 2357.6 79.4 921.1
27 55.1 743.5 45.9 242.9 82.6 2647.4 86.3 1122.9
28 56.3 627.7 47.0 258.3 87.9 2726.3 89.9 1238.2
29 58.3 731.0 48.2 274.5 100.7 3883.3 93.6 1364.4
30 60.6 839.4 49.4 291.5 94.0 3439.3 97.5 1501.9

Table 4.6: Response time mean and variance comparison for measurement and
model of 4-disk RAID 01 read and write requests with arrival rate 0.01 requests
per ms.

4.3. RAID Model 121

(a) read requests pdf, b = 6, λ = 0.01 (b) read requests cdf, b = 6, λ = 0.01

(c) write requests pdf, b = 3, λ = 0.03 (d) write requests cdf, b = 3, λ = 0.03

(e) write requests pdf, b = 4, λ = 0.01 (f) write requests cdf, b = 4, λ = 0.01

Figure 4.11: 8-disk RAID 01 b-block request response time pdfs and cdfs for
arrival streams of reads or writes with rate λ requests/ms.

122 Chapter 4. RAID Model

4.3.3 RAID 5

Read Requests

A read request under RAID 5 is modelled in the same way as the equivalent read

request under RAID 01. Note that, since RAID 5 distributes data (and parity)

across all disks, a b ≥ n read request will access all n disks, despite the stripe size

of n − 1 disks. The response time cdf is:

WR5r
(t) =











(

Wd

(

t, λb
n

, 1
E[R]+E[S]+E[T1]

))b

if b < n
(

Wd

(

t, λ, 1
E[R]+E[S]+E[T b

n
]

))n

otherwise

Write Requests

In our RAID 5 model we assume that all write requests start striping from the

first disk in the array. The behaviour of a RAID 5 write depends on the size of

the request, with different methods used to update the parity. Write requests that

include partial stripe writes will need to pre-read data to calculate the new parity

before writing the partial stripe. Therefore these types of writes must consist of

two subrequests, one to write any preceding full stripes and pre-read data and the

second to write the partial stripe. We assume that the time to complete a single

pre-read and a single partial stripe write is equivalent to the weighted average

of completing two pre-reads or two partial stripe writes. We note that these two

subrequests are not independent. Indeed, we assume that they are highly depen-

dent, and if the mean response time of each type of subrequest was represented

by random variable W , the total request response time for both subrequests would

4.3. RAID Model 123

be:

WR5w
(t) = IP(2W ≤ t) = IP

(

W ≤
(

t

2

))

(4.5)

We consider RAID 5 write requests in the following-size dependent categories:

Small Partial Stripe Write If a request consists of b < n−1
2

blocks, then parity

is calculated using [91]:

new parity = new data ⊕ old data ⊕ old parity

where ⊕ is the exclusive-or (XOR) operator. This is a read-modify-write opera-

tion. Each of the b blocks and the single parity block must be transferred twice,

first to read the old data and parity, then to write the new data and parity. When

the old data and parity have been read from all disks, a new subrequest will be

issued to write the new data and parity to the same disks. This request is given

priority in the queue, so at least one disk (the last to complete the pre-read) will

just have completed reading a data or parity block that now needs to be re-written.

Therefore we add a full disk rotation into the service time distribution for one disk

only. However, it is likely that by the time the last disk has completed its pre-

read, the remaining disks accessed will have started servicing the next I/O request

in their queues. These disks will need to re-seek back to the original disk sector

which was pre-read from to write the new data and parity. Therefore, we assume

that b disks seek again on the second subrequest, while one disk needs a complete

rotation only.

The request to pre-read will have a mean service time of E[R] + E[S] + E[T1] on

124 Chapter 4. RAID Model

each disk. Therefore the service rate for both subrequests is the mean over all the

disks for both the pre-read and partial stripe write subrequests. In the pre-read,

b+1 disks are accessed each with mean service time E[R]+E[S]+E[T1]. In the

partial stripe write, b disks are accessed with mean service time E[R] + E[S] +

E[T1] and one disk is accessed with mean service time Rmax + E[T1]. The arrival

rate at each of the b + 1 disks for both subrequests is λ(b + 1)/n. Combining both

arrival streams, we approximate the cdf of the response time as:

WR5w
(t) =

(

Wd

(

t

2
,
2λ(b + 1)

n
,

1
(2b+1)(E[R]+E[S])+Rmax

2(b+1)
+ E[T1]

))b+1

The mean service time in the above is calculated by averaging the mean service

times of the pre-read and partial stripe write operations. Thus, the pdfs of seek

time and rotational latency are altered to:

f ′(t) =











1
2(b+1)

if t = 0

2b+1
2(b+1)

f(t) otherwise

where f(t) represents the pdf of seek time or rotational latency.

Large Partial Stripe Write If n−1
2

≤ b < n − 1, then to minimise disk ac-

cesses the parity is calculated by pre-reading only from the disks that are not

being written to in the partial stripe write operation. The new parity is calculated

by XOR-ing the data that will be written with the data from the disks that will re-

main unchanged. This is a read-reconstruct-write operation. The first subrequest

pre-reads n − 1 − b blocks of data for the calculation of the new parity. When

4.3. RAID Model 125

all n − 1 − b disks complete their respective pre-reads, a new subrequest is sent

to the other b + 1 disks to write the new data and parity. The arrival rate for the

pre-read will be λ(n− 1− b)/n, and we compute the time to complete this phase

as the slowest of the n − 1 − b queues. The arrival rate of the partial stripe write

subrequest will be λ(b + 1)/n to b + 1 queues. Both pre-read and partial stripe

write subrequests will have the same mean service time of E[R] + E[S] + E[T1],

as the disks accessed for the partial stripe write are not the same as those accessed

for the pre-read. Averaging the number of queues we are finding the maximum

response time of ((n−1−b)+(b+1)
2

) queues; we thus approximate the response time

cdf of the two subrequests required as:

WR5w
(t) =

(

Wd

(

t

2
, λ,

1

E[R] + E[S] + E[T1]

))n/2

Full Stripe Write If a request consists of a number of complete stripes (i.e.

b mod (n − 1) = 0), no pre-reads are needed to calculate the parity. All the disks

are utilised, with either the new data block or the new parity block written to each

disk. The response time cdf is:

WR5w
(t) =

(

Wd

(

t, λ,
1

E[R] + E[S] + E[T b
n−1

]

))n

Full Stripe followed by Small Partial Stripe Write If 0 < b mod (n − 1) <

n−1
2

and b > n − 1, at least one full stripe write will occur followed by a small

partial stripe write. Let k = b b
n−1

c and bmod = b mod (n − 1). We assume

that there are again two subrequests to be averaged. The first subrequest involves

126 Chapter 4. RAID Model

k full stripe writes, followed by a parity pre-read to bmod + 1 disks. The second

subrequest writes the new data and parity to bmod +1 disks. The mean service time

is calculated similarly to the small partial stripe write mean service time. The main

difference between these two operations in terms of disk head positioning time is

that the first subrequest will access all the disks while the partial stripe write will

only access bmod + 1 disks. In the first subrequest, there will be k data blocks

written to the disks not being pre-read from and k + 1 data blocks written to and

read from the bmod + 1 disks that are pre-read from for parity calculation. In the

second subrequest, one data block is written to bmod + 1 disks. Hence the total

number of data transfers over all disks and the two subrequests is nk+2(bmod +1)

and the mean number of transfers per subrequest, per disks is k
2

+ bmod+1
n

. The

response time cdf is then approximated as:

WR5w
(t) =

(

W

(

t

2
,
λ(n + bmod + 1)

n
,

1
(n+bmod)(E[R]+E[S])+Rmax

n+bmod+1
+ E[T k

2
+

bmod+1

n

]









n+bmod+1

2

Full Stripe followed by Large Partial Stripe Write If n−1
2

≤ bmod < n − 1

and b > n − 1, at least one full stripe write will occur followed by a large partial

stripe write. The initial subrequest will be to write k blocks to all disks and then

pre-read an additional block on n− bmod −1 disks. The second subrequest, issued

upon the completion of the first, writes the new data and parity to the remaining

bmod + 1 disks.

A large partial stripe write that follows a full stripe write is less straightforward

4.3. RAID Model 127

to model than the other cases. Specifically the amount of seeking each disk must

do between the time that a partial stripe parity pre-read completes and the partial

stripe write begins varies dependent on the size of the request. The fewer disks

that are pre-read (n − bmod − 1), the more likely that the pre-read will complete

before the remaining bmod + 1 disks complete their respective full stripe writes.

If any of the bmod + 1 disks complete the full stripe write operations before the

pre-read has completed servicing then that disk must wait to write the new data or

parity. In this time, that disk may start servicing the next request in its queue, or

just rotate away from the desired position. Henceforth, when the pre-read eventu-

ally completes, those disks will have to re-seek back causing additional seek and

rotational latency. However, if the pre-read completes first then, when one of the

bmod + 1 disks completes their full stripe write, they can immediately write the

new data or parity for the large partial stripe write without any additional seeking.

We accordingly approximate the probability of the bmod + 1 disks having to seek

as n−bmod−1
n

, as the less disks there are to pre-read, the quicker the pre-read opera-

tion will complete. Then it is more likely that the pre-reading on the n− bmod − 1

disks will complete prior to the completion of the full stripe write operations on

the other bmod + 1 disks.

However, as the number of full stripes written increases this relationship becomes

less relevant. This is because each disk will take different amounts of time to

write the (larger amount of) full stripe data and the additional pre-read time on

some disks will be insignificant in comparison. The effect of zoning amplifies

these differences. As the number of full stripes (k) increases, the disk that fin-

ishes first is less likely to depend on whether there was an additional pre-read

128 Chapter 4. RAID Model

on that disk, and it is more likely that all the disks will need to re-seek. There-

fore, we define the probability of seeking as 1 − bmod−1
nk

. Since all disks have

to seek initially for the start of the full-stripe write, the mean seek time becomes
(

1 − bmod−1
2nk

)

(E[R] + E[S]). There will be nk+n−bmod −1 data transfers across

the array in the pre-read and bmod + 1 data transfers in the write which averages

to k+1
2

data transfers per subrequest per disk. The cdf or request response time is:

WR5w
(t) =

(

Wd

(

t

2
,
λ(n + bmod + 1)

n
,

1
(

1 − bmod−1
2nk

)

(E[R] + E[S]) + E[T k+1
2

]

))

n+bmod+1

2

Validation

We validate our RAID 5 read model by comparing the measured and modelled

mean response times on a 4-disk array in Figure 4.12. Results are presented for

two values of λ (0.01 and 0.02 requests/ms) and for block sizes from 1 to 15. We

generally see good agreement between model and measurement. Table 4.7 con-

tains means and variances for this case. The model variances agree more closely

with measured variances than any of our other RAID operation models.

Figure 4.13(a) shows measured and modelled mean response times for 8-disk

RAID 5 reads under light and heavy loads. Agreement is excellent for light load,

but under heavier load for larger block sizes, the model increasingly overestimates

the measurements (this problem will be dealt with in Chapter 5).

Figure 4.14 compares pdfs and cdfs for some RAID 5 read requests. The modelled

4.3. RAID Model 129

λ = 0.01 ms−1
λ = 0.02 ms−1

Measured Modelled Measured Modelled
Blks Mean σ

2 Mean σ
2 Mean σ

2 Mean σ
2

(ms) (ms2) (ms) (ms2) (ms) (ms2) (ms) (ms2)

1 16.5 24.3 16.2 27.6 16.8 29.4 16.6 33.0
2 20.4 42.5 20.4 40.1 21.9 63.5 21.9 61.1
3 22.5 58.6 24.2 66.3 24.9 99.0 27.9 119.1
4 24.0 77.9 28.6 104.6 27.6 157.6 36.3 222.1
5 24.9 94.0 29.9 116.0 29.0 200.0 38.4 253.3
6 24.5 56.2 25.2 53.2 28.1 123.9 31.2 128.5
7 28.6 137.2 32.5 142.3 34.4 303.2 42.9 329.6
8 30.9 161.0 33.9 157.3 37.5 367.1 45.4 376.2
9 31.7 177.9 35.3 173.8 39.0 436.6 48.1 429.7

10 33.5 216.1 36.7 191.8 43.3 618.4 50.9 491.3
11 34.8 271.7 38.3 211.4 46.3 838.3 54.0 562.1
12 36.9 309.7 39.8 232.9 50.4 1010.2 57.2 644.1
13 39.7 411.9 41.4 256.4 55.4 1297.1 60.7 739.2
14 42.3 452.1 43.1 282.1 61.4 1617.6 64.5 849.5
15 43.9 523.6 44.9 310.0 66.5 2089.2 68.6 978.6

Table 4.7: Response time mean and variance comparison for measurement and
model of 4-disk RAID 5 read requests.

 15

 20

 25

 30

 35

 40

 45

 0 2 4 6 8 10 12 14 16

M
ea

n
R

es
po

ns
e

T
im

e
(m

s)

Blocks

Measurement-l=0.01
Model-l=0.01

Measurement-l=0.02
Model-l=0.02

Figure 4.12: Comparison of mean response time against block size for 4-disk
RAID 5 reads for different arrival rate values, λ (l).

130 Chapter 4. RAID Model

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 2 4 6 8 10 12 14

M
ea

n
R

es
po

ns
e

T
im

e
(m

s)

Blocks

Measurement-l=0.01
Model-l=0.01

Measurement-l=0.03
Model-l=0.03

(a) RAID 5 read requests

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 2 4 6 8 10 12 14

M
ea

n
R

es
po

ns
e

T
im

e
(m

s)

Blocks

Measurement-l=0.01
Model-l=0.01

Measurement-l=0.03
Model-l=0.03

(b) RAID 5 write requests

Figure 4.13: Comparison of mean response time against block size for 8-disk
RAID 5 for different arrival rate values, λ (l).

4.3. RAID Model 131

(a) b = 4, λ = 0.01 (b) b = 6, λ = 0.03

Figure 4.14: 4-disk RAID 5 b-block read request response time pdfs and cdfs for
arrival streams with rate λ requests/ms.

132 Chapter 4. RAID Model

pdf in Figure 4.14(b) displays the bimodal nature of the measured result, but not

the peak of the maximum value. Figure 4.14(a) shows close agreement between

model and measurement.

Figure 4.13(b) shows measured and modelled results for RAID 5 writes under

light and heavy loads. The dips for both measurement and model at 7 and 14

blocks occur because these are full stripe writes with no slow parity pre-reads.

For light load there is good agreement between model and measurement. For a

heavier load, both measurement and model quickly show signs of saturation.

Figures 4.15 and 4.16 present pdfs for RAID 5 write requests on both a 4 and 8-

disk array. Figures 4.15(a) and 4.16(a) show small partial stripe write operations.

We observe excellent agreement for the 8-disk case, but less good agreement for

the 4-disk case. Figures 4.15(b), 4.16(b) and 4.16(c) show large partial stripe write

operations. Here we observe excellent agreement in all cases. Figures 4.15(c)

and 4.16(d) are full stripe write operations – in both cases the model peaks a little

earlier than the measurement. This may be because no parity calculation RAID

controller overhead time is taken into account. Figures 4.15(d) and 4.16(e) are

small partial stripes that follow full stripe writes and Figures 4.15(e) and 4.16(f)

are large partial stripe writes that follow full stripe writes. In both these cases there

is poor agreement between measured and modelled pdfs although mean response

times are similar. However, these results suggest there is room for improvement

in some of these models.

4.3. RAID Model 133

(a) b = 1 (b) b = 2

(c) b = 3 (d) b = 4

(e) b = 5

Figure 4.15: 4-disk RAID 5 b-block write request response time pdfs for arrival
streams with rate 0.01 requests/ms.

134 Chapter 4. RAID Model

(a) b = 3 (b) b = 4

(c) b = 5 (d) b = 7

(e) b = 8 (f) b = 12

Figure 4.16: 8-disk RAID 5 b-block write request response time pdfs for arrival
streams with rate 0.01 requests/ms.

4.4. RAID Simulation 135

4.4 RAID Simulation

To assist in improving and validating these models, we have developed a corre-

sponding RAID simulation. Similarly to the analytical model, we must modify the

fork-join simulation to model RAID operations more realistically. The advantage

of simulation over analytical models when modelling RAID systems is that the

simulation is capable of mimicking physical behaviour on each individual disk

whereas the analytical model must only assume an average identical behaviour

for each disk. This is helpful for improving the analytical model, as it helps us to

observe if our assumptions about the disk and RAID operations are likely to be

correct. We present simulations for RAID 0, RAID 01 and RAID 5 and compare

them with device measurements and the existing analytical models described in

this chapter. The UML diagram in Figure 4.17 depicts the classes that must be

added to the fork-join simulator to create a RAID 0, 01 and 5 simulation.

4.4.1 RAID 0 and RAID 01 Simulation

There are extensions to the fork-join simulation described in Section 4.2.4 that

must be made to model a RAID 0 and 01 system accurately.

In particular, both the fork-join simulation and the RAID 0 simulation of [131]

are limited to supporting requests consisting of a number of subtasks that is a

multiple of the number of disks. We therefore extend the ForkLink class with

RAID01ReadForkLink and RAID01WriteForkLink classes, both of which support

striping of variable size subtasks across disks starting from a randomly selected

136 Chapter 4. RAID Model

����������	�
��

�������� ������� � ����� ��

!� "$#��%��� ��

&#!� � ��� � � "'��� ��

�()� � � *�()+ ,�� ���%�)�!���!-!+ �

������ *$� �)�$.����/(� ��0�)�!���!-!+ �

�1���������� ������ ��� �� 2,�� ���%�)�!���!-!+ �

!�3� (� ���4 ��� ,�� �/�/���!����-!+ �

5����76�
!89����������	:
��
; � ���� (� ��)�/�$� ��
; � (2��<��=��� ��

���� � >&� $(�+ ?������ �������@��� ��

A@
$�7BC���76

�� �)��#��� ��7��,�� ���%�)?&���3� ������� DE��(2���!� �
F � �2>�� ��� ��� ?!���%#!+ �2�3� �� !G �H�)�!���!-!+ ��I

J!K LE6

M ���� ���G �%�)?��$�3� ������� N� :�$O��)�!��I
M ����*���G �%�)?��$�3� ������� I

5����76!J!K L96
; 4 ��� <��P��� ��

Q ��K LEJ!K L96
;�R ��� ��P�$S�(2��T�� (�-!+ �

UH��
&��
�K L�V�A@�!8E

��)(�#$(2��� � "'��� ��
F �� �� ��� G �%�)?����3� ������� N!� #��%��-��)��+ ��() �I
F (2�)�)��#��3G �%�)?������ ������� I
F 4 ��� WH(�� ��G �%�)?��$�3� ������� I

X!Y[Z \�Q ��K LEJ!K L96

X!Y[Z \H]$X�
�^!8@5����76!J!K L96 X!Y_Z _])`a��K ��
�5����76!J!K L96 X�Y[Z _b!X�
!^!8@5$����6!J!K LE6 X�Y[Z _b�`c�7K ��
�5$����6!J!K LE6

X�Y[Z _b�`c�7K ��
2Q ��K L9J!K L96
F 4 ��� <��P��� ��

X�Y[Z \�d�5����76!J!K L96

�)�� ! ��)�2� �)�:-�"

��� (�*)��+ �[*$� (

�� �� ��� �3e + �)(�*��)�

Figure 4.17: RAID simulator class diagram.

4.4. RAID Simulation 137

disk. Additionally, we extend the JoinLink class with the RAIDJoinLink class to

support joining of variable sized requests (see Figure 4.17 for UML diagram).

In terms of subtask scheduling for RAID 01 read operations, we assume an effi-

cient RAID controller which reads half the data from the primary disks and half

the data from the mirror disks [54]. RAID 01 write operations send each subtask

to both the primary and mirror disks and create double the number of ForkedCus-

tomers as for a read request of the same size.

RAID 0 read and write operations are identical in terms of RAID disk behaviour

operations. We therefore extend the ForkLink class with a RAID0ForkLink class

which supports striping of variably sized requests across disks starting from a

randomly selected disk.

Validation

In Figure 4.18 we compare measurement, model and simulation cdfs for RAID 01

systems with Markovian arrivals, arrival rate 0.01 requests/ms and requests with

a constant size. We generally observe good agreement between model and mea-

surement, particularly in Figure 4.18(b), in which a full stripe read is taking place.

The simulation and analytical model differ most for larger block sizes and write re-

quests (which write double the number of blocks for each request). The analytical

model produces slower response times than the simulation model. This is caused

by the overhead of using the split-merge queue approximation in the analytical

model, rather than the fork-join queue in the simulation. However, particularly

in the case of write requests, both simulation and analytical models underestimate

138 Chapter 4. RAID Model

measurements slightly. This may be because neither model or simulation take into

account any RAID controller overheads.

(a) 2-block read request (b) 4-block read request

(c) 1-block write request (d) 3-block write request

Figure 4.18: I/O request response time distributions of 4-disk RAID 01 with ar-
rival rate 0.01 requests/ms.

In Figure 4.19 we compare RAID 0 simulation with the analytical model and

device measurements. The cdfs presented correspond to the pdfs in Figure 4.8.

We observe similar trends to the RAID 01 case but generally better agreement

between models and measurement. This is because RAID 0 operations are more

transparent then any other RAID level and hence can be modelled very accurately.

4.4. RAID Simulation 139

(a) 2-block read request, λ = 0.01 (b) 3-block read request, λ = 0.02

(c) 2-block write request, λ = 0.01 (d) 3-block write request, λ = 0.02

Figure 4.19: I/O request response time distributions of 4-disk RAID 0 with arrival
rate λ requests/ms.

140 Chapter 4. RAID Model

4.4.2 RAID 5 Simulation

Manufacturers of RAID controllers seldom reveal the mechanisms and schedul-

ing strategies involved in their products. In the cases of RAID 0 and 01, the likely

disk accesses are relatively straightforward to predict. However in RAID 5, par-

ticularly with operations involving pre-reads and parity updates, there are many

possibilities for scheduling strategies and disk head positioning times within a

request.

In a manner analogous to the RAID 01 case, we extend the ForkLink class with

RAID5ReadForkLink and RAID5WriteForkLink classes.

A RAID 5 read request will read only from the disks containing data blocks in

a stripe and not the disk with the single parity block in each stripe. To simulate

this, when forking each request, the position of the parity disk is randomly chosen

as well as the starting disk. If a request accesses more than one stripe, then the

position of the parity disk within the array is incremented (modulo the number of

disks) at the end of each stripe.

The behaviour of a RAID 5 write is complex, with different parity-update schemes

that depend on the size of the request. For simplicity, we assume requests are

aligned to start striping from the first disk in the array.

Given a b-block write request on an n-disk RAID 5 system, the possibilities are:

If a request consists of a number of complete stripes (i.e. bmod = 0), all the disks

are utilised, with either the new data block or the new parity block written to each

disk. Full stripe writes can be simulated by sending ForkedCustomers to each disk

4.4. RAID Simulation 141

and joining them at the RAID5WriteJoinLink when all subtasks have completed.

If a request consists of bmod < n−1
2

blocks the simulation must reflect the fol-

lowing procedures. After transferring the full stripes, each of the bmod blocks and

parity must be transferred twice, first to read the old data and parity, then to write

the new data and parity. When the old data and parity have been read from all

disks, a new request will be issued to write the new data and parity to the same

disks. This request is given non-preemptive priority in the queue, so at least one

disk (the last to complete the pre-read) will have just completed reading a data or

parity block that now needs to be re-written.

If n−1
2

≤ bmod < n − 1 then after transfer of the full stripes, n − 1 − bmod blocks

of data are pre-read for the calculation of the new parity. When all n − 1 − bmod

disks complete their pre-read, a new request is sent to the other bmod + 1 disks to

write the new data and parity.

Simulation of these operations is supported in the RAID5WriteForkLink and the

RAID5WriteJoinLink classes (see Figure 4.17 for UML diagram).

The RAID5WriteForkLink subdivides any arriving request into full stripe sub-

tasks followed by pre-read subtasks. These subtasks are then routed to the rel-

evant M/G/1 queues. When the pre-read subtasks have completed and are ac-

counted for at the RAID5WriteJoinLink then, instead of completing the request,

the RAID5WriteJoinLink creates a new high priority request to send back to the

RAID5WriteForkLink, where it splits into bmod +1 subtasks (the number of blocks

to write plus the parity). In order for the simulation to differentiate between full

stripe writes and pre-reads and the following partial stripe write, the ForkedCus-

142 Chapter 4. RAID Model

tomers are assigned classes representing the type of request.

The simulation has the most obvious benefit over the analytical model when mod-

elling the service times of each subtask on each disk. In the analytical model,

whether the disk must re-seek or not between subtasks is assumed and averaged

over all the disk. In the simulation these can be programmed to be specific to

each request. The subtasks of the partial stripe write will have different service

times dependent on the nature of the previous request serviced by the disk. If

bmod < n−1
2

, there are four possible scenarios that must be considered.

The first scenario is when the disk is busy at the arrival instant of any of the partial

stripe write subtasks. Since the partial stripe write is accessing all the disks used

for the pre-read, and all the pre-reads must complete before the partial stripe write

is issued, it is not possible that the job currently servicing is a ForkedCustomer

from the same Customer. Hence to simulate a return to the required disk position

to transfer data, a random sample of seek and rotation time is taken.

If the disk is idle on arrival of a subtask, then there are a further three mutually

exclusive scenarios with different positioning times:

• If another request has been in service between the pre-read and partial stripe

write subtasks then the simulator needs to sample a new seek and rotation

time.

• If the disk was the last to complete the pre-read, then it will be positioned

on the correct track, but just past the rotational position. In this case, the

simulator returns a positioning time of one full disk rotation.

4.4. RAID Simulation 143

• Otherwise, the disk is still positioned at the correct track and the simulator

needs to sample from the rotational latency for positioning time.

If bmod ≥ n−1
2

, there are again a number of scenarios to consider. Since the

pre-read involves different disks than the partial stripe write, it is possible that

previous full stripe subtasks from the same request could still be servicing on the

disks required for the partial stripe write after the pre-read has completed.

In this context, if a subtask arrives to a busy disk, we consider whether the job

currently in service is part of the same request. If it is, the subtask will follow on

with no positioning time. If it arrives to an idle disk, the simulator checks if the

previous job was part of the same request. If it was then the disk head is pointing

to the correct track and the simulator needs to sample rotational latency only. In

all other cases the positioning time is obtained by sampling both seek and rotation

time.

Since we are simulating zoned disks, we must take into account that the transfer

time must be the same both for the full-stripe and pre-read and for the partial

stripe write requests, since they are both accessing the same position on the disk.

Therefore, the transfer time for each subtask to each disk is recorded in a hash

table and referred to when the partial stripe write is serviced.

When all the partial stripe write subtasks complete, the RAID5WriteJoinLink sends

the single request on its way and removes all ForkedCustomers attached to that re-

quest.

144 Chapter 4. RAID Model

(a) 5-block read request (b) 1-block write request

(c) 2-block write request (d) 3-block write request

(e) 4-block write request (f) 5-block write request

Figure 4.20: I/O request response time distributions of 4-disk RAID 5 with arrival
rate 0.01 requests/ms.

4.4. RAID Simulation 145

Validation

In Figure 4.20 we compare measurement, analytical model and simulation cdfs

for RAID 5 systems with Markovian arrivals with arrival rate 0.01 requests/ms

and constant size requests. This enables us to judge the effectiveness of both

the simulation and analytical models. We observe in Figure 4.20(a) excellent

agreement between read request simulation and measurement. It is possible that

the analytical model is less effective in this case because it ignores the parity block

while the simulation takes the parity block into account.

Figure 4.20(b) compares models and measurement for a small partial stripe write.

Interestingly the analytical model is much closer to measurement than the sim-

ulation. However, the simulation is likely to have a mean response time closer

to the measurement than the analytical model. Figures 4.20(c) compares models

and measurement for a large partial stripe writes. In this case, both simulation

and analytical models show good agreement with the measurements. The analyt-

ical model shows slightly better agreement than the simulation model but this is

most probably because of the split-merge overhead rather than superior modelling

of any specific RAID 5 operation. However both appear to consistently under-

estimate the measurements, as they again do for the full stripe write request in

Figure 4.20(d). It is possible that this underestimation can be attributed to not

factoring into the simulation RAID controller overheads including parity compu-

tation time. Figure 4.20(e) compares models and measurement for a small partial

stripe write that follows a full stripe write. In this case the simulation is close to

the measurement and the analytical model is less impressive. We can see here that

the shape of the simulation graph is similar to its shape in figure 4.20(b) repre-

146 Chapter 4. RAID Model

senting a similar service time procedure, but this time is positioned much closer

to the measurement curve. Figure 4.20(f) compares models and measurement for

a large partial stripe write that follows a full stripe write. We observe good agree-

ment between the simulation and measurement cdfs. The analytical model curve

is not similar to the measurement curve but will yield a mean response time closer

to the measurements than the simulation.

Figure 4.21 compares mean response times for simulation, analytical model and

measurement for up to ten block jobs. The model predicts effectively the qual-

itative characteristics of mean RAID 5 response times as block size varies. The

simulation provides consistently closer mean response times to measurement than

the analytical model for read requests. However for write requests the analytical

model generally has closer mean response times to the measurements than the

simulation. This is an interesting and unexpected result as one would expect the

simulation to be a closer model than the analytical model, since it uses true fork-

join queueing instead of split-merge and allows the simulator to mimic actual disk

arm behaviour, rather than assuming an average service time.

The transparency of the simulation model can help to analyse the correctness of

some of the assumptions we have made about disk head movements in a RAID 5

partial stripe write request in the context of service time. In the simulation the

choice of service time is decided based on whether the server is empty when a

partial stripe write subtask arrives and whether the last served subtask was part

of the same request as the arriving subtask. This can only be loosely estimated

in the analytical model. A significant difference is that the analytical model only

considers two cases for each partial stripe write, in the small partial stripe case:

4.4. RAID Simulation 147

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2 4 6 8 10

M
ea

n
R

es
po

ns
e

T
im

e
(m

s)

Blocks

Measurement
Simulation

Model

(a) mean read request, λ = 0.02

 0

 10

 20

 30

 40

 50

 60

 70

 0 2 4 6 8 10

M
ea

n
R

es
po

ns
e

T
im

e
(m

s)

Blocks

Measurement
Simulation

Model

(b) mean write request, λ = 0.01

Figure 4.21: Plot of mean response time against request size on a 4-disk RAID 5
system with arrival rate λ requests/ms.

148 Chapter 4. RAID Model

whether the disk must complete a full random seek and rotation or whether the

disk will instead make one complete revolution. In the large partial stripe case:

whether the disk must complete a full random seek and rotation or whether it

immediately transfers data. However, the simulation considers an additional case

for both types which is that the head is pointing to the correct track as the last

subtask served was from the same request, and need only complete a random

rotation. In Tables 4.8, 4.9, 4.10, and 4.11 we present the proportion of subtasks

in a partial stripe write operation that fall into the three categories according to the

simulation and analytical model.

Disks λ Size Rotate Rmax Seek
requests/ms # blocks Sim Ana Sim Ana Sim Ana

4 0.01 1 0.328 N/A 0.328 0.5 0.344 0.5
4 0.02 1 0.166 N/A 0.167 0.5 0.668 0.5
4 0.03 1 0.012 N/A 0.012 0.5 0.975 0.5
8 0.01 1 0.327 N/A 0.328 0.5 0.344 0.5
8 0.01 2 0.424 N/A 0.213 0.333 0.362 0.667

Table 4.8: Proportion of service time operations used by the disks for small partial
stripe write requests on different sized arrays.

Disks λ Size Rotate Rmax Seek
requests/ms # blocks Sim Ana Sim Ana Sim Ana

4 0.01 4 0.625 N/A 0.364 0.5 0.011 0.5
4 0.02 4 0.284 N/A 0.695 0.5 0.021 0.5
4 0.01 7 0.594 N/A 0.394 0.5 0.012 0.5
8 0.01 8 0.624 N/A 0.364 0.5 0.011 0.5
8 0.01 9 0.607 N/A 0.374 0.333 0.019 0.667
8 0.01 10 0.597 N/A 0.379 0.25 0.025 0.75

Table 4.9: Proportion of service time operations used by the disks for small partial
stripe requests that follow full stripe writes on different sized arrays.

Table 4.8 compares these proportions for a small partial stripe write where Rotate

is a random rotation, Rmax is a complete disk revolution and Seek is a random seek

and rotation. The most interesting difference between the analytical and simula-

tion proportions is that the simulation appears to be very clearly load-dependent.

4.4. RAID Simulation 149

The analytical model does not currently have capability to include load-dependent

service times.

Table 4.9 compares proportions for a small partial stripe write that follows at least

one full stripe write. We again observe load-dependent service in the simulation.

In addition the largest proportion of procedures in almost all cases is the random

rotation which is not supported in the analytical model.

Disks λ Size Rotate Transfer Seek
requests/ms # blocks Sim Ana Sim Ana Sim Ana

4 0.01 2 0 N/A 0 0 1 1
4 0.02 2 0 N/A 0 0 1 1
4 0.03 2 0 N/A 0 0 1 1

Table 4.10: Proportion of service time operations used by the disks for large partial
stripe write requests.

In Table 4.10 our simulation and analytical models agree completely for large

partial stripe write requests providing confidence in both models. In this case

Transfer refers to operations where the disk head is positioned correctly and no

seek or rotational activity is needed. Table 4.11 compares proportions for a small

partial stripe write that follows at least one full stripe write. We again observe load

dependence in the simulation which is not supported in the analytical model. In

general, the analytical model tends to follow the trends of the simulation, showing

a decrease or increase in seek and transfer time in tandem with the simulation.

However, the proportions are very different and again the rotational time that the

analytical model ignores is quite a large factor in most of the simulation results.

It is difficult to know how much importance to give to these results. In our vali-

dations of the simulation, we have not observed excellent agreement with device

measurements. However, it is definitely clear that the analytical model is flawed

150 Chapter 4. RAID Model

Disks λ Size Rotate Transfer Seek
requests/ms # blocks Sim Ana Sim Ana Sim Ana

4 0.01 5 0.39 N/A 0.0293 0.75 0.317 0.25
4 0.02 5 0.199 N/A 0.244 0.75 0.566 0.25
4 0.01 8 0.369 N/A 0.284 0.375 0.348 0.625
4 0.01 11 0.348 N/A 0.275 0.25 0.377 0.75
4 0.01 14 0.328 N/A 0.266 0.188 0.406 0.813
8 0.01 11 0.505 N/A 0.124 0.625 0.371 0.375
8 0.01 12 0.47 N/A 0.174 0.75 0.355 0.25
8 0.01 13 0.389 N/A 0.294 0.875 0.317 0.125

Table 4.11: Proportion of service time operations used by the disks for large partial
stripe write requests that follow full stripe writes on different sized arrays.

by not taking into account the third option of a random rotation without a seek. In

all cases the analytical model compensates for this rotation by having a higher pro-

portion of the other two procedures which average to approximately the same ser-

vice time. In addition the model could probably be improved with load-dependent

service times, although we conjecture that this would make the analytical model

significantly more complex for a very small improvement in accuracy.

Chapter 5

Workload Modelling

5.1 Introduction

It is imperative that models of storage system performance should be capable of

reflecting in their inputs the features found in real I/O workloads. In the previous

chapter we only considered homogeneous Poisson arrival streams. By homoge-

neous we mean that all I/O requests are assumed to be random accesses of the

same type (read/write) and size. In this chapter we develop our analytical RAID

model to accept more realistic workloads. In order to do this we must incorporate

some existing results from queueing theory into our models and also develop new

analytical queueing network results for application within the model.

Our initial extension to the model in this chapter is to support heterogeneous I/O

request arrival streams with mixtures of read and write requests. This improved re-

alism is possible through applying the theory of multiclass queues in Section 5.2.

151

152 Chapter 5. Workload Modelling

Multiclass queueing networks also allow us to reflect the scheduling of subtasks

in RAID 5 write requests more authentically in our analytical model. One of the

problems with the RAID 5 write model highlighted by the simulation model is

that it coarsely models the scheduling of subtasks in a RAID 5 write request. In

our original single-class RAID 5 write model we find the average service time and

arrival rate to each disk for the two subrequests of a write request that a disk is

likely to see: the pre-read and partial stripe write operations. However a multiclass

system enables us to treat these two subrequests as different entities – there will

be two classes, one for pre-reads and one for the following partial stripe writes.

This still does not entirely represent the behaviour of a RAID 5 write request since

after the pre-read has completed and a new parity is computed, the partial stripe

write is given non-preemptive queueing priority over other subtasks [25]. There-

fore we implement theory on priority queueing [28] combined with the theory of

multiclass queues to present a new RAID 5 write request model in Section 5.2.2.

We compare this new model with the single class model presented in the previous

chapter and device measurements to assess its effectiveness.

It is essential for models of RAID 01 and 5 to take as input arrival streams with

an arbitrary distribution of request response size. In order to model a workload

of different-sized jobs, we define each job as a single bulk arrival, where the size

distribution of the bulk arrivals is the same as the job size distribution. We then

derive the response time distribution of an entire batch, rather than a random cus-

tomer within a batch, which is the usual focus of work on bulk arrivals. To the

best of our knowledge, only Nelson, Towsley and Tantawi [89] have applied this

perspective, in modelling the parallel processing of different sized requests in an

5.1. Introduction 153

MX/M/c queue. Here we consider fork-join networks of MX/G/1 queues. We

note that the RAID 5 write model presented in this context is more general than

existing analytical models including work in the previous chapter which presume

RAID 5 write operations consist of a fixed number of subtasks in a job [54, 73]

or a variable number that never exceeds a full stripe [25]. Furthermore, all these

models assume that all requests are performed without skewing (i.e. assuming that

requests are stripe-aligned) which is not in general the case in reality. Our model

relaxes both these restrictions. Section 5.3 presents our approach for calculating

the response time distribution of an entire batch of arrivals, using MX/G/1 mod-

els of single disks and fork-join network models of RAID systems. This gives us

the ability to represent variable-sized I/O requests arriving to an M/G/1 queue.

We continue to study MX/G/1 queues and utilise their properties by turning our

attention to developing methods to model bursty I/O request arrival streams. In

our original disk and RAID model we have assumed arrival streams are strictly

Markovian. Over the last decade, however, there have been many studies of stor-

age system I/O traces (e.g. [41, 98, 100, 108, 132]) consistently showing that real-

life arrivals to storage systems exhibit burstiness. To account for this factor in our

model, we derive the response time distribution of a randomly-selected queueing

request within a batch. Previous works [21, 51] only calculate the queue length

generating function of a single MX/G/1 queue. In Section 5.4 we present our

development of bulk arrival theory to permit the analysis of MX/G/1 queues for

full response time distributions. We extend this approach to allow the calculation

of such distributions in fork-join networks composed of several of these queues,

thus enabling us to model single disks and RAID systems with bursty arrivals.

154 Chapter 5. Workload Modelling

Bursty workloads [100] result in highly-variable queue lengths. As queue length

increases, response time suffers. To lessen this effect, many disk drives employ

scheduling algorithms to reorder jobs in the queue to minimise head positioning

time [20, 32, 62, 107]. This reduces the time needed to service each job, which in

turn reduces the waiting time for all jobs [57]. The best way to minimise the total

response time of all queueing I/O requests is to dynamically reorder them so that

the next request chosen to be serviced has the lowest disk head positioning time

of all queueing requests. With this strategy employed, as queue lengths increase

response times do not suffer excessively since service times are simultaneously

reduced.

Disk drive and RAID models including the models presented in the last two chap-

ters generally model disk queue scheduling discipline as First Come First Served

(FCFS). This is an adequate approximation for small workloads and request sizes.

However, as these increase the FCFS model will increasingly overestimate the re-

sponse time of the disk or RAID system. For example, Figure 5.1 compares our

RAID 01 model presented in the previous chapter against device measurements

for an arrival rate of 0.03 requests/ms. We observe that as request size increases

the model increasingly overestimates the device measurements with scheduling

strategies employed. It is therefore fundamentally important that these scheduling

algorithms must be represented in any disk or RAID model.

In Section 5.5, we model the operation of a disk drive with Shortest Access Time

First (SATF) scheduling by using an M/G/1 queue with queue-length dependent

service time distributions. There does not currently exist a generally-applicable

exact result for the response time distribution of this variety of queue. We present

5.1. Introduction 155

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 2 4 6 8 10 12 14

M
ea

n
R

es
po

ns
e

T
im

e
(m

s)

Blocks

Measurement-read
Model-read

Measurement-write
Model-write

Figure 5.1: Comparison of mean response time against block size for 8-disk
RAID 01 with arrival rate 0.03 requests/ms.

a novel approximation for the response time distribution of such a queue. Addi-

tionally, it is a non-trivial challenge to derive realistic service time distributions for

each queue length such that expected positioning time is minimised. Our model is

developed for a single disk and we consider ways of extending it to a RAID sys-

tem. We demonstrate the accuracy of our model by comparing model predictions

with real device measurements.

Throughout this chapter we use the same model terminology defined in the previ-

ous two chapters unless otherwise stated. We also validate against measurements

from the same disk and RAID system as in previous chapters.

156 Chapter 5. Workload Modelling

5.2 Multiclass RAID Model

Multiclass queues allow for different customer types and service time distribu-

tions [16]. To analyse the response time of these queues we must find an expres-

sion for the response time distribution of a queue receiving all class types.

In a system where arrivals have class i, i = 1, . . . , m, let W be a random variable

representing a request’s response time. The cumulative distribution function of

W , FW (t), is approximated as:

FW (t) = IP(W ≤ t)

=
m
∑

i=1

IP(W ≤ t | classi)IP(classi) (5.1)

This approximation works best for low arrival rates. It would be exact if the

multiclass techniques were used for the service times rather than the response

times but this can be computationally restrictive. This equation is used throughout

this section, where classes are either read and write request for either RAID 01

or RAID 5 requests (see Section 5.2.1) or pre-read and partial stripe write for a

RAID 5 write request (see Section 5.2.2).

5.2.1 Heterogeneous Arrival Streams

Thus far, our RAID models have assumed homogeneous arrival streams. Here

we use multiclass queues to generalise these models for heterogeneous streams

composed of both read and write requests. This is achieved using Equation (5.1)

5.2. Multiclass RAID Model 157

to calculate the request response time cdf:

W (t) = preadWread(t) + (1 − pread)Wwrite(t)

where pread is the probability that a request is a read. Wread(t) and Wwrite(t) are

defined in the previous chapter for RAID levels 0, 01 and 5. We note that the

arrival rate to the disk array used in these RAID models must be modified to take

the combined stream into account.

For RAID 01 the arrival rate at each disk is:

λ(pread min(b, n) + (1 − pread) min(2b, n))

n

On RAID 5, the arrival rate at each disk is:

preadλ
min(b, n)

n
+ (1 − pread)γ

where γ is the arrival rate at each disk in the array in the case that pread = 0,

described for each size of RAID 5 write request in Section 4.3.3.

Validation

To validate both our RAID 01 and RAID 5 models for mixed reads and writes,

we consider arrival streams of 25% reads/75% writes, 50% reads/50% writes, and

75% reads/25% writes.

158 Chapter 5. Workload Modelling

RAID 01

25% Reads, 75% Writes 50% Reads, 50% Writes 75% Reads, 25% Writes
λ # Measured Modelled Measured Modelled Measured Modelled

(ms−1) Blks Mean σ
2 Mean σ

2 Mean σ
2 Mean σ

2 Mean σ
2 Mean σ

2

(ms) (ms2) (ms) (ms2) (ms) (ms2) (ms) (ms2) (ms) (ms2) (ms) (ms2)

0.01 1 21.0 41.8 18.8 27.7 19.4 39.7 17.8 27.2 17.7 32.7 16.8 25.6
2 24.4 66.6 23.1 45.3 22.6 62.3 21.7 38.8 20.6 48.3 20.3 31.7
3 27.3 90.1 25.0 54.6 25.1 81.8 23.8 48.4 22.6 63.4 22.6 41.0
4 29.2 102.1 27.0 67.3 26.9 98.0 25.8 62.3 24.2 75.8 24.7 54.8
5 32.5 137.5 28.5 78.9 29.7 131.9 27.1 72.6 26.4 98.0 25.8 62.5

0.03 1 22.9 82.6 21.1 60.4 21.0 72.8 19.5 51.3 18.8 54.5 18.0 42.0
2 31.5 262.6 33.1 195.4 27.6 180.1 28.5 134.0 23.6 112.3 24.8 95.6
3 37.3 404.8 38.7 279.4 32.4 283.8 34.6 220.5 27.3 176.2 31.0 166.9
4 42.5 628.8 45.7 419.0 36.8 441.7 42.6 372.9 30.5 254.2 39.4 307.3
5 50.4 946.6 50.7 550.5 42.4 596.1 46.6 485.0 34.3 347.7 42.5 385.9

Table 5.1: Response time mean and variance comparison for measurement and
model of mixed read and write request streams for 4-disk RAID 01.

Table 5.1 compares modelled and measured means and variances for a 4-disk

RAID 01 array with mixed arrival streams of read and write requests for varying

arrival rates and request sizes. Figure 5.2 presents the pdfs and corresponding cdfs

for 2 block mixed read and write requests for the three read/write combinations at

an arrival rate of λ = 0.03 requests/ms. We observe excellent agreement between

measured and modelled means, variances, pdfs and cdfs. The bimodal nature

of both modelled and measured pdfs represent the respective peaks of read and

write requests. Figure 5.3 shows measured and modelled mean response times

for arrival streams with varying proportions of reads and writes for RAID 01.

Figure 5.4 displays a selection of full pdf and cdf results for 8 disk RAID 01 mixed

reads and writes. We observe good agreement between measured and modelled

results in all these cases.

5.2. Multiclass RAID Model 159

(a) 25% read requests, 75% write requests
cdf

(b) 25% read requests, 75% write requests
pdf

(c) 50% read requests, 50% write requests
cdf

(d) 50% read requests, 50% write requests
pdf

(e) 75% read requests, 25% write requests
cdf

(f) 75% read requests, 25% write requests
pdf

Figure 5.2: 4-disk RAID 01 2-block request response time pdfs and cdfs for arrival
streams of mixed read and write requests and rate 0.03 requests/ms.

160 Chapter 5. Workload Modelling

 20

 25

 30

 35

 40

 2 4 6 8 10 12 14

M
ea

n
R

es
po

ns
e

T
im

e
(m

s)

Blocks

Measurement - 25% read
Model - 25% read

Measurement - 50% read
Model - 50% read

Measurement - 75% read
Model - 75% read

Figure 5.3: Comparison of mean response time against block size for 8-disk
RAID 01 with mixed arrival streams of read and write requests and rate 0.01
requests/ms.

RAID 5

25% Reads, 75% Writes 50% Reads, 50% Writes 75% Reads, 25% Writes
Measured Modelled Measured Modelled Measured Modelled

Blks Mean σ
2 Mean σ

2 Mean σ
2 Mean σ

2 Mean σ
2 Mean σ

2

(ms) (ms2) (ms) (ms2) (ms) (ms2) (ms) (ms2) (ms) (ms2) (ms) (ms2)

1 42.5 544.1 34.9 292.6 34.0 408.8 28.2 258.6 25.8 257.8 21.9 166.1
2 43.3 537.8 36.4 217.2 35.4 401.0 30.4 200.6 28.1 248.8 24.6 134.7
3 27.6 126.9 23.8 46.5 25.8 113.8 23.0 42.2 23.9 89.3 22.2 37.6
4 33.6 244.8 43.9 365.0 30.2 206.9 36.9 312.0 26.7 142.0 30.2 211.5
5 33.7 234.5 36.5 188.4 30.7 198.4 32.5 158.8 27.3 144.4 28.5 112.9

Table 5.2: Response time mean and variance comparison for measurement and
model of mixed read and write request streams for 4-disk RAID 5 with arrival
rate 0.01 requests/ms.

Table 5.2 presents modelled and measured means and variances for RAID 5 with

an arrival rate of 0.01 requests per ms. Figure 5.5 shows measured and modelled

mean response times for arrival streams with varying proportions of reads and

writes for RAID 5. Figure 5.6 displays a selection of full pdf and cdf results for

RAID 5 mixed reads and writes. We observe especially good agreement between

5.2. Multiclass RAID Model 161

(a) 25% read requests, 75% write requests,
b = 3, λ = 0.03, cdf

(b) 25% read requests, 75% write requests,
b = 3, λ = 0.03, pdf

(c) 50% read requests, 50% write requests, b =
3, λ = 0.03, cdf

(d) 50% read requests, 50% write requests,
b = 3, λ = 0.03, pdf

(e) 75% read requests, 25% write requests,
b = 14, λ = 0.01, cdf

(f) 75% read requests, 25% write requests,
b = 14, λ = 0.01, pdf

Figure 5.4: 8-disk RAID 01 b-block request response time pdfs and cdfs for arrival
streams of mixed reads and writes with rate λ requests/ms.

162 Chapter 5. Workload Modelling

measured and modelled results here. Particularly noteworthy is Figure 5.6(b),

in which the model accurately captures the bimodal distribution of the measured

results.

 20

 25

 30

 35

 40

 45

 50

 2 4 6 8 10 12 14

M
ea

n
R

es
po

ns
e

T
im

e
(m

s)

Blocks

Measurement - 25% read
Model - 25% read

Measurement - 50% read
Model - 50% read

Measurement - 75% read
Model - 75% read

Figure 5.5: Comparison of mean response time against block size for 8-disk
RAID 5 with mixed arrival streams of read and write requests and rate 0.01 re-
quests/ms.

5.2.2 Multiclass RAID 5 Write Model

A RAID 5 partial stripe write is composed of two subrequests: a pre-read followed

by writing the partial stripe and new parity block. The array must wait for all the

pre-reads to complete and the new parity to be calculated before the partial stripe

write and new parity block can be written to disk. The partial stripe write subtasks

are then given priority over any other request in the disk queue.

The RAID 5 write model in the previous chapter does not explicitly represent

these two subrequests and instead computes the cdf of the overall response time

5.2. Multiclass RAID Model 163

(a) 25% read requests, 75% write requests,
b = 4, λ = 0.01, cdf

(b) 25% read requests, 75% write requests,
b = 4, λ = 0.01, pdf

(c) 50% read requests, 50% write requests,
b = 7, λ = 0.01, cdf

(d) 50% read requests, 50% write requests,
b = 7, λ = 0.01, pdf

(e) 75% read requests, 25% write requests,
b = 4, λ = 0.03, cdf

(f) 75% read requests, 25% write requests,
b = 4, λ = 0.03, pdf

Figure 5.6: 8-disk RAID 5 b-block request response time pdfs and cdfs for arrival
streams of mixed reads and writes with rate λ requests/ms.

164 Chapter 5. Workload Modelling

based on the average of the service times of the pre-read and the partial stripe

write subrequests. Therefore we now present a new multiclass RAID 5 partial

stripe write model which employs two classes of request to separately model the

pre-read and partial stripe write subrequests.

We assume that the arrival streams to the RAID 5 system are still composed of

random access requests of homogeneous sizes and types with b logical blocks

in each request. Furthermore there are n homogeneous disks in the array and

the arrival rate of logical I/O requests to the array is λ. We first introduce the

multiclass RAID 5 write model before extending it to include non-preemptive

priority as well.

Multiclass RAID 5 Write Requests

We denote the cdfs of the response time of the pre-read subrequest as W1(t) and

of the partial stripe write subrequest as W0(t). In a multiclass system, the total

arrival rate to a queue (disk), γ, is the sum of the arrival rates to a queue for each

class; thus γ = γ1 + γ0.

Using our assumptions about RAID 5 write requests discussed in Section 4.3.3

and Equation (5.1), the overall response time distribution of a single partial stripe

write request Wwrite(t) (calculated as the weighted average of the time to complete

two pre-read subrequests and two partial stripe write subrequests) is:

Wwrite(t) =
γ1

γ
W1

(

t

2

)

+
γ0

γ
W0

(

t

2

)

(5.2)

5.2. Multiclass RAID Model 165

In Section 4.3.3 we presented the RAID 5 write model, which averaged the be-

haviour of the pre-read and partial stripe write subrequests. In that model, the

arrival rate to each disk is the sum of the arrival rates to that disk for both sub-

requests, γ, and the service time distribution is the average of the service time

distributions of both subrequests. In the multiclass model, the arrival rate at each

disk remains the combined rate, γ, but the service time distributions are no longer

averaged but used in their original form as the service time distribution of a pre-

read or a partial stripe write. Similarly in the previous model the number of disks

accessed in a request was calculated as the average of the number of disks ac-

cessed by a pre-read and a partial stripe write subrequest, which is no longer

necessary here. The justification for the calculation of service times, number of

disks accessed and arrival rate are provided in Section 4.3.3. Here we summarise

the resulting multiclass cdfs.

If b < n−1
2

, the cdfs of the response time of the first subrequest, W1(t), and of the

partial stripe write subrequest, W0(t), are given by:

W1(t) =
(

Wd

(

t, 2λ(b+1)
n

, 1
E[R]+E[S]+E[T1]

))b+1

W0(t) =

(

Wd

(

t, 2λ(b+1)
n

, 1
b(E[R]+E[S])+Rmax

b+1
+E[T1]

))b+1

Since both sets of subtasks access the same number of disks, the arrival rates to

each queue are γ1 = γ0 = λ(b+1)
n

.

The cdfs of the response times of the subrequests if n−1
2

≤ b < n − 1 are:

W1(t) =
(

Wd

(

t, λ, 1
E[R]+E[S]+E[T1]

))n−b−1

W0(t) =
(

Wd

(

t, λ, 1
E[R]+E[S]+E[T1]

))b+1

166 Chapter 5. Workload Modelling

The arrival rates to each disk within each class are:

γ1 =
λ(n − b − 1)

n
γ0 =

λ(b + 1)

n

When a partial stripe write (either large or small) follows at least one full stripe

write, the first subrequest includes the full stripe write and so will write to all n

disks. The second subrequest is only the partial stripe write and hence will only

write to bmod + 1 disks. The arrival rates to each disk for each class are:

γ1 = λ γ0 =
λ(bmod + 1)

n

In the case that a small partial stripe follows at least one full stripe write, the first

subrequest is made up of k = b b
n−1

c block writes to each of the n disks followed

by pre-reads to bmod + 1 disks. The second subrequest writes the new data and

parity to bmod + 1 disks. The cdfs of the response times of the subrequests are:

W1(t) =

(

Wd

(

t, λ(n+bmod+1)
n

, 1
E[R]+E[S]+E[T

k+
bmod

n

]

))n

W0(t) =

(

Wd

(

t, λ(n+bmod+1)
n

, 1
bmod (E[R]+E[S])+Rmax

bmod+1
+E[T1]

))bmod+1

When a large partial stripe follows at least one full stripe write the first subrequest

consists of k block writes to each of the n disks followed by pre-reads to n−bmod−

1 disks. The second subrequest writes the new data and parity to the remaining

bmod +1 disks. One of these disks will not have to seek again, as it will be the last

disk to have finished transferring the full stripe. The cdfs of the response times of

5.2. Multiclass RAID Model 167

the subrequests are then:

W1(t) =

(

Wd

(

t, λ(n+bmod+1)
n

, 1
E[R]+E[S]+E[T

k+
n−bmod−1

n

]

))n

W0(t) =

(

Wd

(

t, λ(n+bmod+1)
n

, 1
bmod (E[R]+E[S])

bmod+1
+E[T1]

))bmod+1

Priority

In reality, the partial stripe write subrequest is given queueing priority when is-

sued. Therefore, to improve the model, the class 0 jobs are given a high prior-

ity and all other jobs (including reads) are given low priority. This requires two

priority levels, which we represent by two classes where class 0 has higher, non-

preemptive priority than class 1. Each class has an arrival rate γi, a service time

Laplace-Stieltjes transform (LST) X∗
i (s) and a mean service rate µi. The LST of

the response time distribution for a job of class i, denoted W ∗
i (s), can be derived

from Equation (2.17) as:

W ∗
0 (s) =

((1 − ρ)s + γ1(1 − X∗
1 (s)))X∗

0 (s)

γ0(X∗
0 (s) − 1) + s

(5.3)

W ∗
1 (s) =

(1 − ρ)(s + γ0(1 − M∗(s)))X∗
1 (s)

γ1(X
∗
1 (s + γ0(1 − M∗(s))) − 1) + s

(5.4)

where ρ = γ0

µ0
+ γ1

µ1
. M∗(s) is the LST representing the sum of the service times of

arriving class 0 jobs while a class 1 job is servicing. It is defined self-referentially

by:

M∗(s) = X∗
0 (s + γ0(1 − M∗(s)))

As soon as the new parity is calculated, the partial stripe write subrequest is pri-

168 Chapter 5. Workload Modelling

oritised. Thus, we can give class 0 jobs high priority and all other jobs (includ-

ing reads) low priority. Using Equations 5.3 and 5.4 instead of the Pollaczek-

Khintchine transform equation, the response time distribution can be derived for

high and low priority jobs on a single disk. The overall write request response

time distribution can then be calculated by applying Equation (5.2) using the same

method as in the non-priority multiclass case.

Validation

We now validate our three models for RAID 5 partial stripe write requests against

device measurements. We refer to the model presented in the previous chapter as

the single class model and to the two models presented above as the multiclass

and priority models respectively.

In Figure 5.7 mean response times are presented for the three different models

against device measurements for increasing block sizes and for arrival rates of

0.01 and 0.02 requests/ms. For small block sizes and loads, the single class model

most often predicts means closest to the measured results. As block size increases,

the means predicted by the multiclass and priority models are closer to the mea-

sured results. For large block sizes, the multiclass model clearly outperforms the

other two models. However, the priority model means are reasonably close to the

measured results for all block sizes. Table 5.3 contains means and variances for

all these cases. It should be noted that the it is not always the case that the model

with the closest mean response time has the closest variance to the measurements.

In fact, in most cases, the multiclass model consistently has the closest variance

5.2. Multiclass RAID Model 169

to the measured variance.

Measured Single Class Multiclass Priority
λ # Mean σ

2 Mean σ
2 Mean σ

2 Mean σ
2

(ms−1) Blks (ms) (ms2) (ms) (ms2) (ms) (ms2) (ms) (ms2)

0.01 1 45.0 148.7 41.9 258.5 40.7 227.2 40.7 232.7
2 44.3 135.2 42.5 179.0 43.8 208.6 43.6 202.4
4 44.5 595.9 51.1 340.5 52.8 435.0 52.7 468.6
5 41.8 494.3 47.8 271.7 52.7 403.1 52.1 387.4
7 53.5 903.4 54.7 394.0 58.7 628.4 58.1 619.7
8 57.2 1084.4 51.6 326.0 58.3 616.6 57.1 519.8

10 65.8 1468.0 58.4 456.6 65.2 907.5 63.9 819.5
11 64.9 1515.5 55.6 391.0 64.6 941.3 62.6 696.9
13 64.16 1630.6 62.3 530.4 72.4 1295.4 70.1 1076.6
14 77.0 1992.6 59.9 468.4 71.7 1414.5 68.4 926.1
16 93.9 3327.9 66.4 616.1 80.3 1822.2 76.8 1400.7
17 89.3 3216.2 64.4 559.9 79.6 2087.2 74.8 1216.2
19 106.7 4710.2 70.7 715.5 89.0 2526.2 84.0 1803.2
20 102.0 4331.6 69.2 667.7 88.6 3029.9 81.6 1578.2

0.02 1 51.9 278.4 48.4 466.8 47.1 429.1 46.9 475.6
2 50.4 251.9 50.1 411.5 52.2 472.1 51.2 454.8
4 71.7 2496.7 69.0 975.0 75.4 1430.4 75.2 1726.6
5 65.3 2139.6 66.3 847.9 79.9 1731.1 75.4 1669.2
7 98.4 5359.0 76.4 1235.3 90.3 2534.0 86.8 2509.8
8 102.5 5863.0 74.8 1123.4 97.9 3588.7 86.6 2481.7

10 137.7 10234.3 84.7 1573.2 110.1 4643.0 100.5 3686.9
11 129.1 9171.6 84.6 1497.8 125.1 7967.5 100.0 3738.5
13 164.5 18646.5 94.1 2014.7 137.7 8829.0 117.0 5471.1
14 173.0 15746.0 96.1 2012.2 171.1 19712.4 116.3 5706.9

Table 5.3: Response time mean and variance comparison for measurement and
models of the three 4-disk RAID 5 write models.

Figure 5.8 compares the pdfs and cdfs of the three models with measurements

in the cases where each of the models had the closest mean and variance to the

measurements. Figures 5.8(a) and 5.8(b) are a 2-block write with an arrival rate

of 0.02 requests/ms; the single class model gives the best mean and variance in

this case. Figures 5.8(e) and 5.8(f) are a 14-block write with an arrival rate of 0.02

requests/ms; the multiclass model gives the best mean and variance here. Fig-

ures 5.8(c) and 5.8(d) are an 8-block write with an arrival rate of 0.01 requests/ms;

here the priority model gives the best mean and variance.

170 Chapter 5. Workload Modelling

 40

 50

 60

 70

 80

 90

 100

 110

 0 2 4 6 8 10 12 14 16 18 20

M
ea

n
R

es
po

ns
e

T
im

e
(m

s)

Blocks

Measurement
Single Class

Multiclass
Priority

(a) λ = 0.01 request/ms

 40

 60

 80

 100

 120

 140

 160

 180

 0 2 4 6 8 10 12 14

M
ea

n
R

es
po

ns
e

T
im

e
(m

s)

Blocks

Measurement
Single Class

Multiclass
Priority

(b) λ = 0.02 requests/ms

Figure 5.7: Comparison of mean response time for all models against block size
for 4-disk RAID 5 partial stripe writes for different values of λ.

5.2. Multiclass RAID Model 171

(a) 2-block requests, λ = 0.02 requests/ms,
cdf

(b) 2-block requests, λ = 0.02 requests/ms,
pdf

(c) 8-block requests, λ = 0.01 requests/ms,
cdf

(d) 8-block requests, λ = 0.01 requests/ms,
pdf

(e) 14-block requests, λ = 0.02 re-
quests/ms, cdf

(f) 14-block requests, λ = 0.02 re-
quests/ms, pdf

Figure 5.8: Selected pdfs and cdfs of 4-disk RAID 5 write request response times
for the three models and arrival rate λ requests/ms.

172 Chapter 5. Workload Modelling

Interestingly, the multiclass and priority models only outperform the single class

model for larger workloads and request sizes. This illustrates the difficulty in mod-

elling RAID 5 write requests. We have presented four possible models here for

RAID 5 so far including the simulation model and surprisingly, the most consis-

tently accurate model is the single-class model which abstracts RAID 5 behaviour

the most.

5.3 Workloads with Different Sized Arrivals

We now consider a different heterogeneous arrival stream to support the modelling

of Markovian arrival streams with different size requests. In order to do this, we

utilise the properties of queues with bulk arrivals. We define each I/O request

to be equivalent to a single bulk arrival, and subtasks making up a request are

equivalent to jobs within a batch. This could be an arrival either to a single disk

(queue) or a RAID system (fork-join queue). We assume all requests are random

disk accesses. Thus, the first subtask within a request will have a service time

that includes time to seek and rotate to the desired position on the disk. The

remaining subtasks will be sequential. We first present a model for a single disk

with different sized requests in Section 5.3.1 and then extend it for RAID 01 and

RAID 5 in Sections 5.3.2 and 5.3.3 respectively. We then validate all these models

against device measurements.

5.3. Workloads with Different Sized Arrivals 173

5.3.1 Single Disk

The number of subtasks in a request, B, can be described by a discrete pdf, fB(x)

with probability generating function GB(x). The first subtask in the batch will

have a service time XRAND = S + R + T . The remaining subtasks are sequential

and hence have service time XSEQ = T . These service time random variables

have corresponding LSTs X∗
RAND(θ) and X∗

SEQ(θ). As before, we assume all

service times are independent. Then, if we define XB as the random variable of

the service time of all the subtasks in a single request, the corresponding LST can

be calculated as follows from the definition of a Laplace-Stieltjes transform, using

conditional expectation:

X∗
B(θ) = E[E[e−θ(XRAND+XSEQ1

+...+XSEQB−1
)|B]] (5.5)

There is always one fewer sequential subtask than there are subtasks in a batch.

The number of sequential subtasks has a probability density function fB−1(x) =

fB(x + 1), x = 0, 1, 2, Since XRAND and XSEQ are independent,

X∗
B(θ) = E[E[e−θXSEQ](B−1)E[e−θXRAND]]

= E[(X∗
SEQ(θ))(B−1)X∗

RAND(θ)]

= GB−1(X
∗
SEQ(θ))X∗

RAND(θ)

where GB−1(z) =
∑∞

i=0 fB(i + 1)zi, a probability generating function. This LST

is substituted into the Pollaczek-Khintchine transform equation [51] as the LST

174 Chapter 5. Workload Modelling

of service time; hence the response time LST is:

W ∗
d (θ) =

(1 − ρ)θX∗
B(θ)

λX∗
B(θ) − λ + θ

(5.6)

where ρ = λE[XB]. The mean job service time, E[XB] can be calculated from

X∗
B(θ), yielding:

E[XB] = E[XRAND] + E[XSEQ]E[B − 1]

= E[S] + E[R] + E[B]E[T]

As before, W ∗
d (θ) is easily numerically inverted to obtain the distribution of re-

sponse time.

5.3.2 RAID 01

In RAID 01, subtasks from each request are striped across the disks. A read

request stripes all its subtasks across the disks and a corresponding write request

stripes double the number of subtasks. As a consequence of the striping, a single

disk in a disk array will only see a fraction of the subtasks of a request. If we

define BR as the number of subtasks in a request on a single disk in the array and

the mean number of subtasks in a request is E[B], the mean request size per disk,

E[BR], is:

E[BR] =











1 E[B] < n

E[B]
n

otherwise

5.3. Workloads with Different Sized Arrivals 175

If there are less than a mean number of n blocks in a request, there cannot be

less than one block written to a disk, but less disks will be written to on the array.

Consequently, the number of disks in the array accessed by each request depends

on the number of subtasks in a job and is therefore dependent on B. We note all

disks will be accessed unless a job has fewer subtasks than there are disks. We

define the parameter dB as the mean number of disks in use:

dB = n −
n−1
∑

i=1

(n − i) fB(i)

Similarly the arrival rate, γ, at each disk is dependent on the number of disks

accessed.

γ =
λ

n
(preaddB + pwrited2B)

The response time distribution of a read and write request on RAID 01 can now

be defined as:

Wread(t) =

(

Wd

(

t, γ,
1

E[R] + E[S] + E[BR]E[T]

))dB

Wwrite(t) =

(

Wd

(

t, γ,
1

E[R] + E[S] + E[2BR]E[T]

))d2B

The single disk response time cdf Wd(t, γ, µ) is the numerical inversion of the

LST in Equation (5.6) with X∗
B(θ) replaced by X∗

BR
(θ).

176 Chapter 5. Workload Modelling

5.3.3 RAID 5

RAID 5 is block-interleaved distributed parity. The parity is defined as the XOR

of all the data on a stripe. Owing to the way in which RAID 5 distributes its parity

blocks, RAID 5 reads can be modelled in a similar manner to RAID 01 reads.

This is because, although a RAID 5 read operation accesses only n − 1 disks per

stripe (given an n-disk array), the same number of disks can be accessed because

the parity is distributed across n disks. RAID 5 write operations are significantly

more complex due to the need to update parity blocks. If a full stripe is written,

then all the new data is immediately available for parity calculation; however, if

less than a full stripe is written, then the new parity can only be calculated with

old data already written on the stripe.

Existing analytical queueing models of RAID 5 present RAID 5 write models

which have a fixed number of subtasks in a job [54, 73] or a variable number that

is fixed to never exceed a full stripe [25]. Furthermore, all these models assume

that all data will be written starting from the beginning of a stripe (stripe-aligned).

In reality, jobs can be of any size and be written in any place on a stripe.

A randomly-sized RAID 5 write with a skew (i.e. not stripe-aligned) could consist

of any or all of the following: a partial stripe write followed by a number of

full stripe writes followed by another partial stripe write. We summarise the five

possible procedures (P1, . . . , P5) for a RAID 5 write in Table 5.4. Here Rand is

a random seek and transfer, Seq is a sequential operation and NOP represents no

operation. Any initial write or pre-read and all partial stripe write subrequests

will demand a random disk access. Writing further full stripes or a pre-read that

5.3. Workloads with Different Sized Arrivals 177

follows a full-stripe write will have sequential disk accesses.

P1 P2 P3 P4 P5

pre-read Rand NOP NOP NOP Rand
partial stripe write Rand NOP NOP NOP Rand
full stripe Seq Rand NOP Rand NOP
further full stripes Seq Seq NOP Seq NOP
pre-read Seq Seq Rand NOP Seq
partial stripe write Rand Rand Rand NOP Rand

Table 5.4: Possible RAID 5 write procedures.

Table 5.4 shows that there will never be more than three random accesses in a

single RAID 5 write request. There will only be one random operation in the case

that there are no partial stripes writes, namely that a job begins at the start of a

stripe and that the number of subtasks in the job is divisible by n − 1. However,

our RAID model aims to find an average amount of accesses on a single disk and

then apply it to all disks. This is more difficult in RAID 5, as the parity pre-reads

and partial stripe writes are made only to certain disks in the array, depending on

whether the parity calculation demands a read-modify-write or read-reconstruct-

write. It is very likely, however, that no single disk will have more than two

random accesses directed to it, since a partial stripe does not access all disks.

Meanwhile, each disk will only have one random access per request if the request

consists of a multiple of n− 1 subtasks and the request starts at the beginning of a

stripe (i.e. a full stripe write). Defining fR5R(x) as the probability of encountering

x random subtasks in a request on a single disk, in terms of the job size probability

178 Chapter 5. Workload Modelling

distribution, fB(x):

fR5R(x) =























1
n−1

∑∞
i=1 fB(i(n − 1)) x = 1

1 − 1
n−1

∑∞
i=1 fB(i(n − 1)) x = 2

0 otherwise

Similarly, defining fR5S (x) as the probability of encountering x sequential sub-

tasks in a request on a single disk:

fR5S (x) =

(x+1)(n−1)
∑

i=x(n−1)+1

fB(i)

In a similar way as for Equation (5.5), we derive X∗
B(θ) as:

X∗
B(θ) = GR5R(X∗

RAND(θ))GR5S (X∗
SEQ(θ))

This can be used to calculate E[XB] straightforwardly.

In terms of the number of disks accessed, a RAID 5 write request accesses all

disks unless it is only a partial stripe write with no full stripe writes. A small

partial stripe write (read-modify-write), which occurs when b < n−1
2

, involves

accesses to b + 1 disks (b data disks plus the parity disk). A large partial stripe

write (read-reconstruct-write) accesses n − b − 1 disks in the first subrequest and

b + 1 disks in the second subrequest, on average accessing n
2

disks per operation.

Hence:

dB =

bn−1
2

c
∑

i=1

(i + 1)fB(i) +
n

2

n−1
∑

i=dn−1
2

e

fB(i) + n

(

1 −
n
∑

i=1

fB(i)

)

5.3. Workloads with Different Sized Arrivals 179

These parameters can be used to calculate the response time distribution of a

RAID 5 request in the same way as a RAID 01 request.

Simulation

Our simulation model for both RAID 01 and 5 supports requests consisting of

a constant or variable number of subtasks. The number of subtasks is sampled

from a specified probability distribution. The simulator does not currently sup-

port RAID 5 write requests with a variable number of subtasks. This is because the

RAID 5 write simulation described in Chapter 4 is designed to be stripe-aligned

(since the analytical model for constant request size is stripe-aligned) and would

need to be modified significantly to be compared with the unstripe-aligned analyt-

ical model presented in this section. This is scope for future work.

Validation

Figure 5.9 compares our analytical model predictions and measurement results

for variable-sized arrivals to a single disk where the size of a request is generated

using a geometric distribution. Results are presented for two different arrival rates

(λ = 0.01, 0.02 requests per ms) and for arrival streams composed entirely of

either read or write requests. In the case of read requests, we observe excellent

agreement between model and measurement. In the case of write requests (Fig-

ures 5.9(c) and 5.9(f)) the agreement is less good, but is still reasonable and yields

similar means and variances of response time. We speculate that the bimodal na-

ture of the measurements may be due to some disk-specific write request handling

180 Chapter 5. Workload Modelling

behaviour that is not accounted for in the model.

Figure 5.10 compares model predictions and measurement results for bulk arrivals

to a four-disk RAID 01 system. As with the single disk, the size of request is

generated using a geometric distribution and results are presented for two arrival

rates. We observe reasonable agreement between model and measurement.

We note that all results thus far have been presented for arrival streams composed

entirely of read or write requests. However, our model is capable of calculating re-

sults for arrival streams containing a mixture of both reads and writes. Figure 5.11

accordingly compares model predictions and measurement results in this case; we

observe good agreement.

Finally, Figures 5.12 and 5.13 compare model predictions and measurement re-

sults for arrivals with geometrically-distributed sizes to a four-disk RAID 5 sys-

tem. We observe excellent agreement for read requests in Figure 5.12. The fit for

write requests is a little less exact due to the complicated nature of the pre-read

and parity update operations that is approximated in our models. However, we do

observe better agreement between model and measurement than we have done in

any of our previous RAID 5 write models or simulation.

We compare our simulation model to device measurements and the analytical

model. Figure 5.14 compares RAID 01 with arrival streams of variable request

size sampled from a geometric distribution with a specified mean request size.

We observe excellent agreement between simulation model and measurement in

these cases. There is very close agreement between the analytical model and sim-

ulation model for both read and write requests on RAID 01.

5.3. Workloads with Different Sized Arrivals 181

(a) mean job size = 3, reads, λ =
0.01

(b) mean job size = 4, reads, λ =
0.01

(c) mean job size = 4, writes, λ

= 0.01
(d) mean job size = 5, reads, λ =
0.01

(e) mean job size = 2, reads, λ =
0.02

(f) mean job size = 3, writes, λ =
0.02

Figure 5.9: I/O request response time pdf of model against measurement on a
single disk with different sized arrivals and rate λ requests/ms.

182 Chapter 5. Workload Modelling

(a) mean job size = 2, writes, λ

= 0.01
(b) mean job size = 3, reads, λ =
0.01

(c) mean job size = 3, writes, λ

= 0.01
(d) mean job size = 4, reads, λ =
0.01

Figure 5.10: I/O request response time pdf of model against measurement on 4-
disk RAID 01 with different sized arrivals and rate λ requests/ms.

5.4. Workloads With Bulk Arrivals 183

(a) mean job size = 4, 50%
reads, λ = 0.01

(b) mean job size = 2, 25%
reads, λ = 0.02

Figure 5.11: I/O request response time pdf of model against measurement on 4-
disk RAID 01 with different sized arrivals and a mix of reads and writes and rate
λ requests/ms.

Similarly, Figure 5.15 compares simulation and analytical models and device mea-

surements for RAID 5 read requests with size decided by a geometric distribution.

We again observe excellent agreement for read requests.

5.4 Workloads With Bulk Arrivals

In the previous section we utilised the properties of queues with bulk arrivals to

derive a model for arrival streams with different sized requests. In this section,

we look to model bursty I/O request arrival streams by modelling each burst as a

single bulk arrival. We therefore need to derive results for the response time of

a single request in an M/G/1 queue with bulk arrivals. We derive the response

time distribution for a random customer in an MX/G/1 queue. Our approach

is inspired by Harrison’s derivation of the Laplace-Stieltjes Transform (LST) of

184 Chapter 5. Workload Modelling

(a) mean job size = 2, reads, λ =
0.01

(b) mean job size = 3, reads, λ =
0.01

(c) mean job size = 4, reads, λ =
0.02

Figure 5.12: I/O request response time pdf of model against measurement for
reads on 4-disk RAID 5 with different sized arrivals and rate λ requests/ms.

5.4. Workloads With Bulk Arrivals 185

(a) mean job size = 2, writes, λ

= 0.01
(b) mean job size = 3, writes, λ

= 0.02

(c) mean job size = 5, writes, λ

= 0.01

Figure 5.13: I/O request response time pdf of model against measurement for
writes on 4-disk RAID 5 with different sized arrivals and rate λ requests/ms.

186 Chapter 5. Workload Modelling

(a) 4-block mean read request, λ = 0.01 (b) 2-block mean read request, λ = 0.02

(c) 2-block mean write request, λ = 0.01

Figure 5.14: I/O request response time distributions of 4-disk RAID 01 with re-
quest sizes chosen from a geometric distribution and arrival rate λ requests/ms.

Figure 5.15: I/O read request response time distributions of 4-disk RAID 5 with
request sizes chosen from a geometric distribution with mean size 5 blocks and
arrival rate 0.01 requests/ms.

5.4. Workloads With Bulk Arrivals 187

customer response time in an M/G/1 queue using conditional probability [49].

We can then apply this result to a single disk and RAID 01 before validating these

models against device measurements.

5.4.1 Single Disk

Figure 5.16: The queue at the arrival instant of a tagged customer.

Here we model a disk drive as an MX/G/1 queue where I/O requests are repre-

sented by customers in the queue. Figure 5.16 shows the state of an MX/G/1

queue at the arrival instant of a randomly chosen customer, given that the queue

is not empty at the arrival instant. At the arrival instant, a batch C is currently

in service. This batch has completed Ums of service (the backward recurrence

time [29]) and has V ms of service remaining (the forward recurrence time). When

batch C started service, there were A batches queueing behind it. During time U ,

a further Y batches joined the queue. Within the arriving batch, there are Z cus-

tomers (the backward recurrence size) ahead of the tagged customer. U and V are

continuous random variables, and A, Y and Z are discrete random variables.

If B denotes the random variable describing batch size, and X the service time of

188 Chapter 5. Workload Modelling

a single customer, then the LST of the service time of an entire batch X ∗
B(θ) can

be defined as:

X∗
B(θ) = E[E[e−θ(X1+X2+...+XB)]

= E[(X∗(θ))B]

= GB(X∗(θ))

where GB(z) is the probability generating function of B. It is straightforward to

show E[XB] = E[X]E[B].

The queueing time of the tagged customer, denoted by random variable Q, is the

sum of the service times of all customers ahead (including the remaining service

time of the customer in service), as follows:

E[e−θQ | Q > 0] =

E[e−θ(V +XB1
+...+XBA

+XB1
+...+XBY

+X1+...+XZ)|U, V, Y, Z, A]

= X∗(θ)ZGB(X∗(θ))AGB(X∗(θ))Y e−θV

Deconditioning on A and Z (which are independent of V , Y and each other), and

Y (which can be expressed in terms of U given that the number of batches arriving

has a Poisson distribution),

E[e−θQ | Q > 0] = GZ(X∗(θ))GA(GB(X∗(θ)))E[e−θV e−λ(1−(GB(X∗(θ))))U | U, V]

Here GZ(z) is the generating function of the discrete backward recurrence time

(see Section 2.2.4). GA(z) is the generating function of queue length at the be-

5.4. Workloads With Bulk Arrivals 189

ginning of service of the first customer in a batch. By the random observer prop-

erty [49], at equilibrium A is equivalent to N , the number of customers queueing

immediately after the start of a batch service. GN(z) is a well known result [51]:

GA(z) = GN(z) =
(1 − ρ)(1 − z)

GB(X∗(λ(1 − z)) − z

The joint density function of the forward and backward recurrence times U and V

at a point (u, v) is 1
E[XB]

fXB
(u + v) [51] where fXB

(t) is the pdf of batch service

time XB . Thus, deconditioning further,

E[e−θQ |Q > 0] =
GZ(X∗(θ))GA(GB(X∗(θ)))

E[X]E[B]
∫ ∞

0

∫ ∞

0

e−θve−λ(1−(GB(X∗(θ))))ufXB
(u + v)dudv

=
GZ(X∗(θ))GA(GB(X∗(θ)))

E[X]E[B]
∫ ∞

0

∫ w

0

e−θwfXB
(w)eθ−λ(1−(GB(X∗(θ))))udwdu

=
1

E[X]E[B]
GZ(X∗(θ))GA(GB(X∗(θ)))

(GB(X∗(λ(1 − GB(X∗(θ))))) − GB(X∗(θ)))
∫ ∞

0

e(θ−λ(1−(GB(X∗(θ)))))udu

=
1

E[X]E[B](θ − λ(1 − (GB(X∗(θ)))))

GZ(X∗(θ))GA(GB(X∗(θ)))

(GB(X∗(λ(1 − GB(X∗(θ))))) − GB(X∗(θ)))

If a batch arrives to an empty queue, then the queueing time for a randomly se-

lected job in the batch is the time to service all the jobs ahead of it in the batch;

190 Chapter 5. Workload Modelling

thus

E[e−θQ | Q = 0] = GZ(X∗(θ))

Considering both cases (empty and non-empty queues), and given queue utilisa-

tion ρ, the LST of queueing time is:

Q∗(θ) = (1 − ρ)GZ(X∗(θ)) + ρE[e−θQ|Q > 0]

=
(1 − ρ)θGZ(X∗(θ))

θ − λ(1 − (GB(X∗(θ))))

Hence the response time LST for a randomly placed customer in a batch is

W ∗(θ) = Q∗(θ)X∗(θ). (5.7)

The response time distribution is obtained by numerically inverting W ∗(θ) [2].

5.4.2 RAID 01

It is not straightforward to extend the single disk model for batch arrivals to

RAID 01. Our fork-join approximation assumes independence of response times

for each disk; however, in the case of batch arrivals to RAID 01, although the

service time distributions on the different disks can reasonably be assumed to be

independent, under the assumption that all operations are full-stripe accesses, each

queue will receive the same number of jobs per batch and hence queueing times

across disks will have a high level of dependency.

Therefore we use a new method to calculate the response time distribution. The

5.4. Workloads With Bulk Arrivals 191

model results in a single queue whose service time distribution is calculated as the

distribution of the maximum service time across all the disks in the array. This

assumption of dependence of queueing (but not service) times is not exact, but

approximates the reality that queueing times of requests to each disk in a RAID

system will be highly correlated.

We begin by finding FX(t), the service time distribution of a single zoned disk,

defined as the sum of seek time, rotational latency and data transfer time. The

intricacies of zoning mean that this distribution cannot be found analytically, and

must instead be calculated numerically by inversion of the service time LST or

by convolution of the component parts. It is then possible to find the distribution

of maximum service time across n disks using the maximum order statistic, i.e.

(FX(t))n.

Equation (5.7) (from which we will derive our response time distribution) requires

the LST of the maximum service time X∗(θ). Numerical calculation of this LST

is theoretically possible, but in practice requires an infeasible amount of compu-

tation. As a means to more efficiently and elegantly obtain the LST, we proceed

by fitting a logistic function:

f(t) =
1

1 + ea−bt

to the distribution of maximum service time (FX(t))n. The fitting can be accom-

plished by using a nonlinear least-squares Marquardt-Levenberg algorithm [83].

192 Chapter 5. Workload Modelling

The LST of the logistic function is then:

X∗(θ) = Hypergeometric2F1[1, s/b, (b + s)/b,−ea]

where Hypergeometric2F1 is the hypergeometric function 2F1(a, b, c, z) which is

the solution for y of the hypergeometric differential equation [135]:

z(1 − z)y′′ + [c − (a + b + 1)z]y′ − aby = 0

Substitution of X∗(θ) into Equation (5.7) then gives a readily-invertible expres-

sion for the distribution of response time in a RAID 01 system.

Simulation

The RAID simulator already supports bulk arrivals of I/O requests at the RAID

controller, making use of JINQS’s in-built support for arrivals that consist of a

number of requests defined by a chosen probability distribution. The UML di-

agram in Figure 3.5 shows that the Source class in the disk simulator contains

a batchsize attribute that will choose the batch size from a specified distribution

sampler.

Validation

Figure 5.17 compares model predictions and measurement results for bulk arrivals

to a single disk, with the number of requests in a batch generated using a geometric

distribution. Results are presented for two different arrival rates (λ = 0.01, 0.02

5.4. Workloads With Bulk Arrivals 193

requests per ms) and for arrival streams composed entirely of batches of either

read or write requests. All requests within batches consist of one 128KB block

and are to random locations. We observe good agreement between model and

measurement. The multiple peaks observed in both model and measurement arise

from the variation of response time caused by the different possible batch sizes

(with the most probable batch sizes yielding the highest peaks).

(a) mean batch size = 2, reads, λ

= 0.01
(b) mean batch size = 2, writes,
λ = 0.02

(c) mean batch size = 3, reads, λ

= 0.01
(d) mean batch size = 3, writes,
λ = 0.01

Figure 5.17: I/O request response time pdf of model against measurement on a
single disk with bulk arrivals with rate λ requests/ms.

194 Chapter 5. Workload Modelling

As described in Section 5.4.2, we can perform a least-squares fit of a logistic

function to the (numerically calculated) distribution of maximum disk service time

in order to more efficiently generate response time results for RAID 01 systems

with batch arrivals. Figure 5.18 shows the logistic function fit for a 4-block read

operation to a 4-disk system. The closeness of fit gives confidence in the accuracy

of this approximation step.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30 35

F
(t

)

time

numerical
logistic fit

Figure 5.18: Logistic fit to maximum disk service time cdf over four disks.

Figure 5.19 compares model predictions and measurement results for full stripe

bulk arrivals to a four-disk RAID 01 system. As with the single disk, the num-

ber of requests in a batch is generated using a geometric distribution but results

are presented for both read and write requests for a single arrival rate of λ = 0.01

requests per ms. Again, we observe good agreement between model and measure-

ment. It is interesting to note that the model predicts more pronounced peaks than

the measurements. We speculate that this is due to the nature of our maximum or-

der statistic approximation for service time in a fork-join queue, which magnifies

the sinusoidal behaviour of the single disk model, as well as our assumption of

total dependence of queueing times at each disk.

5.4. Workloads With Bulk Arrivals 195

(a) mean batch size = 2, reads (b) mean batch size = 2, writes

(c) mean batch size = 3, writes

Figure 5.19: I/O request response time pdf of model against measurement for
4-disk RAID 01 with full stripe bulk arrivals and rate 0.01 requests/ms.

196 Chapter 5. Workload Modelling

In Figure 5.20 we compare the analytical and simulation models against device

measurements for both read and write requests with geometrically distributed

batch sizes. Both the simulation and analytical models are close to the device

measurements, although the analytical model is slightly closer to the measure-

ments. This is probably caused by RAID system overhead which is not taken into

account by either model, but can be slightly matched by the lag in the analytical

model created from the split-merge queue approximation.

(a) mean batch size = 2, 2-block read re-
quests

(b) mean batch size = 3, 1-block write re-
quests

Figure 5.20: I/O request response time pdf of simulation and analytical models
against measurement for requests on a single disk with bulk arrivals and rate 0.01
requests/ms.

The simulation extends easily for the case of batch arrivals on either RAID 01 or

RAID 5. The simulation is much more flexible than the analytical model for RAID

systems with bulk arrivals. It is capable of predicting response times for any sized

request quickly, whilst the RAID 01 analytical model is highly computationally

intensive. We compare one case for the simulation, analytical model and device

measurements in Figure 5.21 for the case of 4-block read requests with a mean

batch size of 2 blocks. Due to the straightforward modelling of bulk arrivals in the

5.5. Rotational Position Ordering 197

simulation as opposed to the complicated and approximate nature of the analytical

model, it is not surprising that the simulation produces a much more accurate

model than the analytical model.

Figure 5.21: I/O request response time distributions of 4-disk RAID 01 with 4-
block read requests and geometrically distributed bulk arrivals with mean size 2
and arrival rate 0.01 requests/ms.

5.5 Rotational Position Ordering

Rotational Position Ordering (RPO) is a scheduling strategy that chooses the re-

quest with the shortest positioning time to serve next in a disk queue. The analyt-

ical model of disk drives with rotational position ordering is developed from the

theory of M/G/1 queues with queue length or state dependent service times. We

first present a new analytical approximation for deriving response time distribu-

tions of M/G/1 queues with state dependent service times. We then apply it to

our existing disk model.

198 Chapter 5. Workload Modelling

5.5.1 State-Dependent Service Times for an M/G/1 queue

In an M/G/1 queue with state-dependent service times, we assume that from time

t = 0, customers C0, C1, . . . , Cn, . . . arrive at the queue. Let Ln denote the queue

length immediately after customer Cn has completed service, and let Zn denote

the number of customers that arrive in the queue during the service of customer

Cn+1. Then,

Ln+1 =











Ln − 1 + Zn Ln > 0

Zn Ln = 0

Given state-dependent service times, the number of arrivals during a service pe-

riod, Zn, is dependent on the service time, which in turn depends on the queue

length at the start of customer Cn+1’s service, Ln. Given i requests in the queue

at the start of service, we denote the service time of the M/G/1 queue by the ran-

dom variable Xi. Since arrivals are Markovian with arrival rate λ, the probability

of j arrivals in a pre-defined service period x is:

IP(Zn = j | XLn
= x) =

(λx)j

j!
e−λx (j ≥ 0)

Therefore, by the law of total probability, the probability of j arrivals during a

service period given all possible service times for a queue length of i at the start

of a service is:

pj,i = IP(Zn = j | Ln = i) =

∫ ∞

0

(λx)j

j!
e−λxdFXi

(x) (5.8)

The probability generating function for Zn given a queue length of i at the start of

5.5. Rotational Position Ordering 199

a service is:

Gi(z) =

∫ ∞

0

eλxze−λxdFXi
(x) = X∗

i [λ(1 − z)] (5.9)

where X∗
i is the Laplace-Stieltjes Transform (LST) of Xi.

The embedded Markov chain has transition matrix Q = (qij | i, j ≥ 0) where:

q0j = IP(Ln+1 = j | Ln = 0) = pj,1

qij = IP(Ln+1 = j | Ln = i) =











pj−i+1,i j ≥ i − 1 ≥ 0

0 0 ≤ j ≤ i − 2

Q =

























p0,1 p1,1 p2,1 p3,1 . . .

p0,1 p1,1 p2,1 p3,1 . . .

0 p0,2 p1,2 p2,2 . . .

0 0 p0,3 p1,3 . . .

...
...

...
...

. . .

























The steady-state equations for the Markov chain, π = πQ consequently are:

πj = π0pj,1 +

j+1
∑

i=1

πipj−i+1,i (5.10)

where πi is the steady-state probability of there being i requests in the queue

(including the customer currently in service).

200 Chapter 5. Workload Modelling

Then the queue length generating function Π(z) =
∑∞

i=0 πiz
i, if it exists, is [48]:

Π(z) = π0

∞
∑

j=0

pj,1z
j +

∞
∑

j=0

j+1
∑

i=1

πipj−i+1,iz
j

= π0

∞
∑

j=0

pj,1z
j +

∞
∑

j=0

π1pj,1z
j +

∞
∑

j=1

π2zpj−1,2z
j−1 +

∞
∑

j=2

π3z
2pj−2,3z

j−2 + . . .

= π0G1(z) +
1

z

∞
∑

i=1

πiz
iGi(z) (5.11)

This is dependent on the chain being stationary, the condition for which is that

Π(1) = 1 [51]. Since the Gi(z) are all probability generating functions, ∀i Gi(1) =

1 and

Π(1) = π0 +

∞
∑

i=1

πi

By definition of the steady-state probabilities,
∑∞

i=0 πi = 1, hence Π(1) = 1.

Using an approach similar to the derivation of Gi(z) in Equation (5.9), it can be

observed that Π(z) is related to the response time, W as follows [51]:

Π(z) =

∫ ∞

0

eλxz−λxdFW (x)

= W ∗[λ(1 − z)] (5.12)

Hence, by substituting Equation (5.11) into Equation (5.12),

W ∗(θ) = π0X
∗
1 (θ) +

λ

λ − θ

∞
∑

i=1

πi

(

λ − θ

λ

)i

X∗
i (θ) (5.13)

5.5. Rotational Position Ordering 201

In practice we would need to know the service time distribution for all possible

queue lengths to be able to apply this equation. An elegant simplification that

eradicates this problem assumes that if the queue length is greater than or equal

to a specified length n then all corresponding service times are represented by

the random variable Xn. This is an increasingly accurate approximation when

there is a relatively low probability of high queue lengths or if the service time

distributions are similar for higher queue lengths. Then,

Π(z) = π0G1(z) +
1

z

n−1
∑

i=1

πiz
iGi(z) +

1

z

∞
∑

i=n

πiz
iGn(z)

= π0G1(z) +
1

z

n−1
∑

i=1

πiz
iGi(z) +

1

z
Gn(z)(Π(z) −

n−1
∑

i=0

πiz
i)

=
zπ0G1(z) +

∑n−1
i=1 πiz

iGi(z) − Gn(z)
∑n−1

i=0 πiz
i

z − Gn(z)

We need to ensure that Π(1) = 1 to fulfil the stationary condition. Using L’Hôpital’s

rule to find the limit as z → 1, it becomes apparent that in order for Π(1) → 1 as

z → 1, the following equation must hold:

π0 =
1 − λE[Xn] −∑n−1

i=1 πi(λE[Xi] − λE[Xn])

1 + λE[X1] − λE[Xn]
(5.14)

Solving the set of linear equations arising from Equations (5.10) and (5.14), the

queue length probabilities π0, π1, . . . , πn can be calculated.

202 Chapter 5. Workload Modelling

The approximated response time LST can be calculated using Equation (5.12):

W ∗(θ) =
1

λ(1 − X∗
n(θ)) − θ

π0((λ − θ)X∗
1 (θ) − λX∗

n(θ)) +

(λ − θ)

n−1
∑

i=1

(πi

(

λ − θ

λ

)i−1

(X∗
i (θ) − X∗

n(θ)))

By differentiating this equation m times and evaluating at θ = 0, a recurrence

relation for moments of response time can be derived:

E[W m] =
1

(m + 1)(1 − λE[Xn])
(

π0

(

λE[Bm+1
1] + (m + 1)E[Xm

1] − λE[Xm+1
n]

)

+

n−1
∑

i=1

πiλ

min[i,m+1]
∑

j=0

(

m + 1

j

)(

i

j

)

j!

λj

(

E[Xm+1−j
i] − E[Xm+1−j

n]
)

+λ
m+1
∑

j=2

(

m + 1

j

)

E[Xj
n]E[W m+1−j]

)

(5.15)

5.5.2 Application to Zoned Disk Model

In the case of RPO, we define service time as the minimum disk head positioning

time of all queueing I/O requests plus any additional rotations needed if the head

fails to settle in time to read from target sectors. The probability that the disk head

misses the correct rotational position at the end of a seek (termed a latency miss)

is denoted as pmiss [20]. If there are i requests in the queue immediately prior to

5.5. Rotational Position Ordering 203

the start of a service, the service time of a request is thus:

Xi = min
h=1,...,i

(Sh + Rh) + pmissRmax + Tk

where Rmax is the time to complete a complete disk revolution and S, R and Tk

are seek time, rotational latency and k-block data transfer time respectively. In or-

der to calculate the probability distribution of Xi we employ order statistics [31].

We find the first order statistic (i.e. minimum) of i convolutions of seek time and

rotational latency (S + R). If a set of independent and identically distributed ran-

dom variables, X1, X2, . . . , Xi are ordered in terms of size, the cdf of the smallest,

X(1), will be:

FX(1)
(x) = IP(X(1) ≤ x) = 1 − IP(X(1) > x)

= 1 − ∀jIP(X(j) > x) j = 1, 2, . . . , i

= 1 − ∀j(1 − IP(X(j) ≤ x))

= 1 − (1 − FX(x))i

In our case X is S + R which has a convolved cdf of:

FR+S (x) =
1

Rmax

∫ Rmax

0

FS(x − z)dz

=
1

Rmax

∫ x

x−Rmax

FS(u)du

The pdf of a random variable M that models the occurrence of a latency miss,

204 Chapter 5. Workload Modelling

based on a single Bernoulli trial, is:

fM (x) =























1 − pmiss x = 0

pmiss x = Rmax

0 otherwise

It should be noted that the latency miss is only noticeable when RPO is switched

on due to the more aggressive seeks that RPO entails. Since for the case n = 1

there is no queue re-ordering, and hence no RPO, there will be no latency misses.

If the convolved minimum positioning time and transfer time have density func-

tion fYi
(x) then convolving fYi

(x) with fM(x) yields

fXi
(x) =











fYi
(x) i = 1

(1 − pmiss)fYi
(x) + pmissfYi

(x − Rmax) i > 1
(5.16)

Here x is bounded between the minimum transfer time, and the sum of maxi-

mum seek time, maximum latency (which is the time to complete two full disk

revolutions for positioning and latency miss time) and maximum transfer time,

irrespective of how much request reordering occurs.

Using Equation (5.15) the mean, variance and further moments of response time

can be calculated. In order to do this it must be noted that the mth moment of

service time is

E[Xm
i] =























E[Y m
i] i = 1

(1 − pmiss)E[Y m
i]+

pmiss

∑m
j=0

(

m
j

)

E[Y j
i]Rj−i

max i > 1

5.5. Rotational Position Ordering 205

where

E[Y m
i] =

m
∑

j=0

(

m

j

)

E[((R + S)i)
j]E[T m−j

k]

The service time pdf, fXi
(x), cannot be obtained analytically, and is expensive to

evaluate numerically. Hence, it is very difficult to calculate the response time pdf,

fW (x), exactly, either analytically or numerically. However, fW (x) can be readily

approximated from its first four moments (calculated from Equation (5.15) using

the Generalised Lambda Distribution (GLD) [71] (see Section 2.4)).

5.5.3 RAID 01 Extension

There are quite a number of difficulties involved in extending this model of a disk

drive with RPO to RAID 01. The main difficulty is that, similarly to the case

of bulk arrivals, we cannot assume that the queues in the fork-join queue are in-

dependent making it feasible to use the maximum order statistic approximation

for the response time distribution. However, unlike the case of bulk arrivals, we

also cannot assume total dependence between the queues. This is because of the

larger service time distributions for smaller queue lengths. If we assume the same

queue length and find the maximum service time using the maximum order statis-

tic, this service time will be dominated by the larger service times of the shorter

queues suggesting there is never any queueing. This is not possible with such a

large service time and highlights the fact that this system is not fully dependent.

Whether there is queueing at each queue in the array and how long these queues

are becomes very important in this case.

To address this we consider different queueing situations for the component queues

206 Chapter 5. Workload Modelling

in the fork-join queue. First we consider the case when there is no queueing at any

queue in the fork-join queue. We approximate this will happen with a probability

of (π0)
n for an n-queue system. In this case each queue with have an individual

response time of only the service time X1. These service times are independent

of each other and therefore the response time of the system can be approximated

by finding the maximum order statistic for these. Similarly if there is queueing

at all the queues in the fork-join queue (with probability (1 − π0)
n) we assume

totally dependent queueing and find the maximum of the n service times. Since

there is guaranteed to be queueing at each queue, we only consider service times

for queues with 1 or more customers queueing. With this maximum service time,

we find the response time of a single queue with this service time. We assume that

these two problems are independent (whether there is queueing or not) and there-

fore for systems of queues with both queueing present in some queues and not in

others, we find the maximum of the response times of the queues with queueing

and those without. The response time of an n queue fork-join queue can then be

approximated as (in terms of the random variables)

Wn =
n
∑

i=0

(

n

i

)

(1 − π0)
n−iπi

0 max(Qn−i, max
j=1,...i

X1j
) (5.17)

where Qn−i is the case of n−i queues with queueing where the maximum has been

found of their service times and maxj=1,...i X1 is the maximum of i service times

with no queueing. In addition, to simplify the model, for the case of Qn−i, we use

a standard FCFS M/G/1 queue with a service time distribution that averages all

the possible queue lengths given queueing (i.e.
Pn

i=1 πiXi

1−π0
).

The second difficulty with the RAID 01 RPO model is the implementation. As

5.5. Rotational Position Ordering 207

previously stated we use the Generalised Lambda Distribution to approximate ser-

vice time and response time distributions and densities for this model. The GLD

provides inverse distributions and densities. Equation (5.17) needs to find the

maximum order statistic of cdfs derived using the GLD. This involves compli-

cated manipulation of the inverse distribution and densities. The additional com-

plications of using the GLD combined with this new method make it both labour

intensive and difficult to apply. It is an area for future work.

Simulation

We incorporate RPO into our simulation by parameterising the service time dis-

tribution sampler with the current queue length of each queue. The sampler then

takes as many combined samples of seek and rotation time as there are jobs in

the queue at that moment and chooses the minimum of these to be the position-

ing time of the request starting service. This can be used for either single disk

simulation or RAID simulation.

Validation

Service Time

In order to validate our service time model of Equation (5.16), we measured ser-

vice times for various fixed queue lengths. Figure 5.22 plots measured and mod-

elled mean service times against constant queue lengths. We observe moderate

agreement between model and measurement with similar trends. We note that

208 Chapter 5. Workload Modelling

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 0 5 10 15 20 25 30 35

M
ea

n
se

rv
ic

e
tim

e
(m

s)

Queue length

Measurement
Model

Figure 5.22: Comparison of measured and modelled mean 1-block read request
service times for various fixed queue lengths.

these results are based on using a value of pmiss = 0.05 according to manufac-

turer advice. However, substantially better agreement is observed for a value of

pmiss = 0.17. It is possible that this higher value may be correct in the context of

our experiments, since our experiments consist entirely of random I/O workloads

with no spatial or temporal locality and consequently will produce more aggres-

sive seeks. One avenue of future work is to devise experiments to determine the

exact value of pmiss for our specific disk drive and workload.

I/O Request Response Time

Figures 5.23 and 5.24 demonstrate the change in mean response time when differ-

ent values are chosen for the queue length at which it is assumed that the service

time distribution no longer changes for increasing queue lengths. A straight line

is plotted to indicate the measured response time. For higher assumed maximum

5.5. Rotational Position Ordering 209

queue lengths, we observe excellent agreement between model and measurement

for mean response times independent of arrival rate and request size. It can be

observed, particularly for smaller sized requests and smaller arrival rates (e.g.

Figures 5.23(a), 5.23(b), 5.24(a)), that the assumed maximum queue length does

not have to be very high before convergence of the mean response times is ob-

served. The impact of RPO on disk performance is magnified for larger request

sizes and arrival rates. In many of these cases it can be observed that if RPO is

not modelled (i.e. when the assumed maximum queue length is 1), the modelled

mean response time is very high or the model is saturated (e.g. Figures 5.23(e),

5.24(c), 5.24(d)), whereas this does not occur in RPO-enabled measurements.

Although the mean response times show excellent agreement between model and

measurement, our modelled variances compare less favourably with measure-

ments. Table 5.5 presents variances for the same cases as Figures 5.23 and 5.24

using an assumed maximum queue length chosen at the length that the respective

mean response time converges. For increasing arrival rates, the model presents

significantly smaller variances than the measurements. Inevitably, this will affect

skew and kurtosis (input parameters for the GLD with the mean and variance) to

an even greater degree.

To test the accuracy of the GLD approximation that we use to approximate our

response time densities, we first compare the approximation with a known pdf. In

Figure 5.25, we compare our single disk model (from Chapter 3) with the GLD

approximation of it, for single block transfers and arrival rate 0.01 requests/ms.

We observe good agreement between approximate and exact models.

In Figures 5.26 and 5.27 we present GLD approximations of the I/O request re-

210 Chapter 5. Workload Modelling

 15

 20

 25

 30

 35

 0 1 2 3 4 5 6 7 8

M
ea

n
R

es
po

ns
e

T
im

e
(m

s)

Assumed Maximum Queue length

1 block
Measurement-1b

2 block
Measurement-2b

(a)

 26

 28

 30

 32

 34

 36

 38

 40

 42

 44

 0 1 2 3 4 5 6 7 8

M
ea

n
R

es
po

ns
e

T
im

e
(m

s)

Assumed Maximum Queue length

3 block
Measurement-3b

4 block
Measurement-4b

(b)

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10

M
ea

n
R

es
po

ns
e

T
im

e
(m

s)

Assumed Maximum Queue length

6 block
Measurement-6b

7 block
Measurement-7b

(c)

 0

 50

 100

 150

 200

 0 2 4 6 8 10 12

M
ea

n
R

es
po

ns
e

T
im

e
(m

s)

Assumed Maximum Queue length

8 block
Measurement-8b

(d)

 0

 50

 100

 150

 200

 250

 300

 0 2 4 6 8 10 12

M
ea

n
R

es
po

ns
e

T
im

e
(m

s)

Assumed Maximum Queue length

9 block
Measurement-9b

(e)

Figure 5.23: Mean response time against assumed maximum queue length and
measurements for different sized read requests on a single disk with arrival rate
0.03 requests/ms.

5.5. Rotational Position Ordering 211

 15

 20

 25

 30

 35

 40

 45

 0 1 2 3 4 5 6 7 8

M
ea

n
R

es
po

ns
e

T
im

e
(m

s)

Assumed Maximum Queue length

1 block
Measurement-1b

2 block
Measurement-2b

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10

M
ea

n
R

es
po

ns
e

T
im

e
(m

s)
Assumed Maximum Queue length

3 block
Measurement-3b

4 block
Measurement-4b

(b)

 0

 50

 100

 150

 200

 250

 300

 0 2 4 6 8 10 12

M
ea

n
R

es
po

ns
e

T
im

e
(m

s)

Assumed Maximum Queue length

6 block
Measurement-6b

(c)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 2 4 6 8 10 12 14 16

M
ea

n
R

es
po

ns
e

T
im

e
(m

s)

Assumed Maximum Queue length

7 block
Measurement-7b

(d)

Figure 5.24: Mean response time against assumed maximum queue length and
measurements for different sized read requests on a single disk and arrival rate
0.04 requests/ms.

212 Chapter 5. Workload Modelling

λ = 0.03 λ = 0.04
Blocks Measured Modelled Measured Modelled
1 129.3658 71.4639 234.3871 105.61
2 208.1058 110.839 383.8498 184.18
3 320.1849 175.285 822.2696 330.98
4 628.6987 280.2 2081.566 614.12
6 1568.488 737.56 10598.82 2494.2
7 3055.687 1229.4 25867.46 5745.9
8 6824.624 2106.4 sat sat
9 11976.34 3809.4 sat sat

Table 5.5: Measured and modelled variances for read request response times on a
single disk with different sized requests and arrival rate λ requests/ms.

sponse time density of various request sizes and arrival rates of 0.03 and 0.04 re-

quests/ms. Again we use a maximum queue length chosen at the length that the

respective mean response time converges. We generally observe good agreement

between model and measurement. However, the increase in difference between

measured and modelled variances for larger request sizes causes increasing dis-

agreement between model and measurement, despite still having excellent agree-

ment for mean response time.

The simulation model works in a very similar way to the analytical model, finding

the minimum joint seek and rotation time of a number of samples. In Figure 5.28,

we compare some of the cases shown previously for the analytical model with

the simulation model and device measurements. In Figure 5.28(a) we consider

the case of 6-block reads to a single disk with an arrival rate of 0.03 requests/ms.

In Figure 5.26(b) we observed excellent agreement for this case for pdfs of the

analytical model and device measurements. Here we observe that the analytical

and simulation models are very close and accurately model the device measure-

ments. We then consider a case where the analytical model was less impressive.

In Figure 5.27(d) we observed poor agreement for pdfs of the analytical model

5.5. Rotational Position Ordering 213

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 10 20 30 40 50 60

pr
ob

ab
ili

ty

mean response time

Generalised Lambda Distribution
Model

Figure 5.25: Comparison of actual model and Generalised Lambda Distribution
approximation of the response time model for a 1-block read request to a single
disk, with an arrival rate of 0.01 requests/ms.

and device measurements for the case of a 7-block read with an arrival rate of

0.04 requests/ms. Figure 5.28(b) compares the cdfs for this case. The simulation

and analytical model are still very close but do not follow the trends of the device

measurements.

It is very straightforward to extend the simulation for RAID 01 with RPO enabled.

Figure 5.29 involves a high arrival rate at the array (0.06 requests/ms), such that

RPO should be expected. We plot two simulation cdfs, one with RPO enabled

on the simulator and the second with RPO disabled. It is clear from the graph

that for large arrival rates (and hence long queue lengths) incorporating RPO into

any RAID or disk model is crucial. In addition we observe excellent agreement

between the simulation and measurements.

214 Chapter 5. Workload Modelling

(a) 4 block (b) 6 block

(c) 7 block (d) 8 block

Figure 5.26: Comparison of measurements and approximations of the modelled
pdfs for response times of different sized read requests to a single disk with arrival
rate 0.03 requests/ms.

5.5. Rotational Position Ordering 215

(a) 3 block (b) 4 block

(c) 6 block (d) 7 block

Figure 5.27: Comparison of measurements and approximations of the modelled
pdfs for response times of different sized read requests to a single disk with arrival
rate 0.04 requests/ms.

216 Chapter 5. Workload Modelling

(a) 6-block , λ = 0.03 (b) 7-block , λ = 0.04

Figure 5.28: Response time cdf of simulation and analytical models against mea-
surement for read requests on a single disk with RPO enabled and arrival rate λ
requests/ms.

Figure 5.29: I/O request response time distributions of 4-disk RAID 01 with 4-
block read requests and an arrival rate of 0.06 requests/ms.

Chapter 6

Conclusion

6.1 Summary of Thesis Achievements

The main objective of this thesis has been to create models of I/O request response

time in zoned RAID systems. We have presented a comprehensive set of models of

zoned RAID systems for various different RAID levels and expected workloads.

No single work prior to this has presented a unified approach for deriving a disk

and RAID model of different levels under different workloads. Furthermore, by

illustrating how the model can be adapted for different RAID levels and workloads

it is clear that the model can be extended if necessary for other possible situations

not currently modelled in this thesis. Another unique attribute of this thesis is that

all results are presented as full response time distributions or densities. Prior work

has focused only on deriving mean response times.

The disk drive model presented in this thesis builds on existing work [139] to

217

218 Chapter 6. Conclusion

create a full response time distribution of a zoned disk drive. This was a key

contribution as no analytical queueing network model existed of a zoned disk

drive that provided the full response time distribution. All the work that follows

in the thesis employs and adapts this initial disk drive model.

We presented a summary of methods for approximating the response time of fork-

join queues and chose the maximum order statistic approximation. Again, this

ensures that full response time distributions can be calculated as opposed to other

work which only provides approximations for the mean response time. This can

be used in tandem with the zoned disk drive model to calculate response time

distributions of disk arrays.

With these foundations in place we introduced our models of RAID 0, 01 and 5.

We introduced extensions to the fork-join queueing model to enable modelling

the intricacies of RAID systems. RAID 5 write requests specifically require more

complicated extensions which provided another novel contribution of this thesis.

We studied several different approaches to modelling partial stripe write RAID 5

requests, by considering the pre-read and partial stripe together and averaging

their service times and implementing multiclass and priority queueing networks

and compared the benefits of each method.

We initially created a model for Markovian arrival streams consisting of requests

of a constant size. We then relaxed this and considered requests whose size is

determined from a specified probability distribution. We derived response time

distributions for disk and RAID systems with Markovian bulk arrival streams. We

assumed requests arrive according to a First Come First Served queueing disci-

pline and then attempted to implement a more realistic model where scheduling is

6.2. Applications 219

decided by the shortest positioning time. In developing models for these situations

we have had to develop some new results and approximations in queueing theory,

specifically in the area of queues with bulk arrivals and queues with state depen-

dent service time distributions. In addition we were faced with the non-trivial

task of applying these new results to the specific requirements of our existing disk

drive and RAID models.

To complement this analytical model, we developed a queueing-based discrete

event simulation that mimicked the situations that the analytical model supports.

This can be used to validate and improve the analytical model and as a stand-

alone simulation model. We consistently show that the simulation model com-

pares favourably with device measurements and the analytical model compares

favourably with both simulation and device measurements. There is very little

work in the performance analysis of any application area that compares device

measurements, simulation and analytical model and even less that shows good

agreement between the three (as illustrated in the study in [110]).

6.2 Applications

The research in this thesis has direct applications for storage system design and

analysis. There is an unrelenting business demand for fast, reliable storage. Much

of this data is ultimately stored on RAID systems, which are deployed either as

standalone storage solutions or as the building blocks of virtualised storage infras-

tructures. The detailed understanding of RAID system performance is therefore

critical to determining whether or not application-level quality of service demands

220 Chapter 6. Conclusion

will be met by a given storage infrastructure.

The disk drive and RAID performance models presented in this thesis can be

applied to any hard disk drive and hardware RAID system. The models can be

easily parameterised from disk and RAID system specifications and will provide

response time distributions from which it can be observed if a certain choice of

disks, RAID level and combination of the two best meets the needs of the user,

fulfilling service level agreements and quality of service performance expectations

while lowering costs and providing a required standard of reliability.

A performance model of a virtualised storage system could be developed from an

effective performance model of a disk array. The physical resources underlying a

virtualised storage system consist of tiers of disk arrays. Each tier has a different

cost per capacity ratio. A performance model of virtualised storage architectures

can therefore be developed from the existing physical model, with intelligent data

management that minimises physical storage size over the data lifecycle.

Expanding storage capacity requirements must be met both with new storage tech-

nology and data placement strategies for optimal space efficiency. The develop-

ment of a definitive performance model of the physical storage system can estab-

lish and refine data placement strategies.

The simulation presented in this thesis is a useful extension to the existing JINQS

software. It can be applied to any fork-join queue simulation, hard disk drive or

RAID simulation.

The analytical queueing results developed here do not only have applications in

disk storage systems. The work with bulk arrivals has many application areas, for

6.3. Future Work 221

example hospital arrivals during major incidents and passengers boarding trains.

Similarly there are often situations in which queueing jobs consist of subtasks to

be serviced and the work here on different sized requests will be applicable. One

other application area for state dependent service times occurs with cell discarding

in ATM networks [27]. The analytical results presented in this thesis can all be

directly applied for these and other application areas.

6.3 Future Work

There are a number of possible extensions to the work presented in this thesis:

This thesis always assumes that there is a constant stream of random I/O requests.

We do this since random requests are more difficult to model than sequential re-

quests. However the model could be easily adapted in all instances for sequential

requests. This would enable the model to represent commonly occurring disk

access patterns with temporal and spatial locality.

The RAID 5 write analytical and simulation models presented are stripe-aligned

for a constant sized request in the analytical model and for any sized request in

the simulation. These need to be extended so a RAID 5 write request can start in

any position in a stripe to better represent actual RAID procedures.

The model for RAID 01 with bulk arrivals currently assumes only full stripe read

or write requests. It should be extended for any fixed request size. A more com-

plex task would be to extend the bulk arrival disk model for a RAID 5 system. In

addition the bulk arrival model could be adapted to accept the variety of workloads

222 Chapter 6. Conclusion

that our standard model accepts: mixtures of read and write requests, mixtures of

random and sequential access and a variety or request sizes.

Similarly, the disk model that employs rotational positioning ordering should be

extended to match the workload conditions of our other models. As discussed in

the thesis, extending the disk model with RPO to RAID systems is a non-trivial

problem, but should be persevered with. Again, either disk or RAID model should

take workloads that consist of mixtures of read and write requests and different

sizes. It is particularly important to adapt this model to support bulk arrivals, since

bulk arrivals will always provide larger queue lengths requiring RPO.

The simulation presented in this thesis offers a number of areas for improvement.

It can be made more general to represent other RAID levels and configurations

and combinations of read and write requests and random and sequential I/O. Sim-

ulation results currently underestimate the device measurements because RAID

controller overheads are not currently incorporated into the model. This has been

because they are hard to distill from device measurements and we have had diffi-

culty discovering the value of these overheads from RAID system manufacturers.

We have assumed throughout that each disk or RAID system has a Markovian

arrival stream with or without bulk geometric arrivals. It would be interesting to

compare this assumption with real I/O traces to analyse the justification for this

assumption. If necessary the model could be developed to accept non-Markovian

arrival streams. Our analytical model for Markovian bulk arrivals permits any

discrete probability distribution for the batch size. In this work we have chosen

a geometric distribution to clearly illustrate our model; however, it would be an

interesting and constructive addition to define a discrete probability distribution

6.3. Future Work 223

based on I/O traces of bulk arrivals to a typical RAID system which would easily

fit into our existing analytical result.

Caching is an interesting and practically useful aspect that merits further investi-

gation and integration into our model for both the disk and RAID models.

Throughout this work we have validated our models against the same type of hard

disk drive and RAID system. To verify our models, it would be useful to vali-

date them against other models of disks and RAID systems produced by different

manufacturers.

With a satisfactory performance model, a future project based on this work would

be to extend the RAID model to be component parts in a performance model of

a virtualised tiered storage system. Using the performance model, optimal data

placement strategies can be devised for a disk drive, RAID system and tiered

storage system.

Bibliography

[1] J. Abate, G. Choudhury, and W. Whitt. An introduction to numerical
transform inversion and its application to probability models. In W. K.
Grassman, editor, Computational probability, chapter 8, pages 257–323.
Springer, 2000.

[2] J. Abate and W. Whitt. The Fourier-series method for inverting transforms
of probability distributions. Queueing Systems Theory and Applications,
10(1-2):5–88, 1992.

[3] J. Abate and W. Whitt. Numerical inversion of Laplace transforms of prob-
ability distributions. INFORMS Journal on Computing, 7(1):36, 1995.

[4] D. Anderson. You don’t know jack about disks. Queue, 1(4):20–30, 2003.

[5] D. Anderson and W. Whittington. Disk drive technology. Tutorial at 5th
USENIX Conference on File and Storage Technologies (FAST), February
2007.

[6] M. Andrews, M. A. Bender, and L. Zhang. New algorithms for the disk
scheduling problem. In Proc. 37th Annual Symposium on Foundations of
Computer Science, pages 550–559, Oct 1996.

[7] H. P. Anvin. The mathematics of RAID 6, March 2007. http://www.

kernel.org/pub/linux/kernel/people/hpa/raid6.pdf.

[8] S. W. M. Au-Yeung. Response Times in Healthcare Systems. PhD thesis,
Imperial College London, January 2008.

[9] S. W. M. Au-Yeung, N. J. Dingle, and W. J. Knottenbelt. Efficient approx-
imation of response time densities and quantiles in stochastic models. In
4th ACM Workshop on Software and Performance (WOSP), pages 151–155,
January 2004.

224

BIBLIOGRAPHY 225

[10] O. I. Aven, E. G. Coffman, and Y. A. Kogan. Stochastic Analysis of Com-
puter Storage. D. Riedel Publishing Company, 1987.

[11] E. Bachmat. Average case analysis of disk scheduling, increasing subse-
quences and spacetime geometry. Algorithmica, 49(3):212–231, November
2007.

[12] S. Balsamo, L. Donatiello, and N. M. Van Dijk. Bound performance mod-
els of heterogeneous parallel processing systems. IEEE Transactions on
Parallel and Distributed Systems, 9(10):1041–1056, 1998.

[13] J. Banks, J. S. Carson II, B. L. Nelson, and D. M. Nicol. Discrete-Event
Simulation. Prentice Hall, 3rd edition, 2001.

[14] P. Biswas, K. K. Ramakrishnan, and D. Towsley. Trace driven analysis of
write caching policies for disks. SIGMETRICS Performance Evaluation
Review, 21(1):13–23, 1993.

[15] D. Bitton and J. Gray. Disk shadowing. In Proc. 14th International Confer-
ence on Very Large Data Bases (VLDB ’88), pages 331–338, San Francisco,
CA, USA, 1988. Morgan Kaufmann Publishers Inc.

[16] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi. Queueing Networks
and Markov Chains: Modelling and Performance Evaluation with Com-
puter Science Applications. John Wiley & Sons, Inc., 1998.

[17] O. J. Boxma, G. M. Koole, and Z. Liu. Queueing-theoretic solution meth-
ods for models of parallel and distributed systems. In Proc. Performance
Evaluation of Parallel and Distributed Systems Solution Methods, pages
1–24, 1994.

[18] P. H. Brill and M. J. M. Posner. Level crossings in point processes applied
to queues: Single server case. Operations Research, 25(4):662–674, 1977.

[19] J. S. Bucy, G. R. Ganger, and Contributors. The DiskSim Simulation En-
vironment Version 3.0 Reference Manual. School of Computer Science,
Carnegie Mellon University, 3.0 edition, January 2003.

[20] W. A. Burkhard and J. D. Palmer. Rotational position optimization (RPO)
disk scheduling. Technical Report CS2001-0679, University of California
at San Diego, La Jolla, CA, 2001.

[21] M. L. Chaudhry and J. G. C. Templeton. A First Course in Bulk Queues.
John Wiley & Sons, 1983.

226 BIBLIOGRAPHY

[22] P. M. Chen and E. K. Lee. Striping in a RAID level 5 disk array. SIGMET-
RICS Performance Evaluation Review, 23(1):136–145, 1995.

[23] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson.
RAID: High-Performance, Reliable Secondary Storage. ACM Computing
Surveys, 26(2):145–185, June 1994.

[24] S. Chen, J. A. Stankovic, J. F. Kurose, and D. Towsley. Performance eval-
uation of two new disk scheduling algorithms for real-time systems. Real-
Time Systems, 3(3):307–336, 1991.

[25] S. Chen and D. Towsley. The design and evaluation of RAID 5 and par-
ity striping disk array architectures. IEEE Transactions on Parallel and
Distributed Systems, 17(1-2):58–74, 1993.

[26] S. Chen and D. Towsley. A performance evaluation of RAID architectures.
IEEE Transactions on Computers, 45(10):1116–1130, 1996.

[27] D. I. Choi, C. Knessl, and C. Tier. A queueing system with queue length
dependent service times, with applications to cell discarding in ATM net-
works. Journal of Applied Mathematics and Stochastic Analysis, 12(1):35–
62, 1999.

[28] R. W. Conway, W. L. Maxwell, and L. W. Miller. Theory of Scheduling.
Addison-Wesley Publishing Company, 1967.

[29] D. R. Cox. Renewal Theory. Chapman and Hall, 1962.

[30] A. E. Dashti, S. H. Kim, and R. Zimmermann. Zoned-RAID for multime-
dia database servers. In Proc. 10th International Conference on Database
Systems for Advanced Applications (DASFAA), April 2005.

[31] H. A. David. Order Statistics. John Wiley and Sons, Inc, 1981.

[32] P. J. Denning. Effects of scheduling on file memory operations. In Proc.
AFIPS Spring Joint Computer Conference, volume 31, pages 9–21, 1967.

[33] P. J. Denning and J. P. Buzen. The operational analysis of queueing net-
work models. ACM Computing Surveys (CSUR), 10(3):225–261, Septem-
ber 1978.

[34] H. Diepers. Key-parameters of vertical magnetic recording. In Proc. VLSI
and Microelectronic Applications in Intelligent Peripherals and their Inter-
connection Networks, May 1989.

BIBLIOGRAPHY 227

[35] N. J. Dingle. Parallel Computation of Response Time Densities and Quan-
tiles in Large Markov and Semi-Markov Models. PhD thesis, Imperial Col-
lege London, 2004.

[36] A. Duda and T. Czachórski. Performance evaluation of fork and join syn-
chronization primitives. Acta Informatica, 24(5):525–553, 1987.

[37] F. Durbin. Numerical inversion of Laplace transforms: an efficient im-
provement to Dubner and Abate’s method. Computer Journal, 17(4):371–
376, 1974.

[38] A. J. Field. JINQS: An Extensible Library for Simulating Multiclass
Queueing Networks. Imperial College London, August 2006. http:
//www.doc.ic.ac.uk/˜ajf/Research/manual.pdf.

[39] Fujitsu. MAN3367FC Series Disk Drives- Product/Maintenance Manual.
Fujitsu, April 2002.

[40] S. Ghandeharizadeh, D. J. Ierardi, D. Kim, and R. Zimmermann. Place-
ment of data in multi-zone disk drives. In Proc. 2nd International Baltic
Workshop on Databases and Information Systems, June 1996.

[41] M. E. Gomez and V. Santonja. Characterizing temporal locality in I/O
workload. In Proc. International Symposium on Performance Evaluation
of Computer and Telecommunication Systems (SPECTS), San Diego, CA,
2002.

[42] W. J. Gordon and G. F. Newell. Closed queuing systems with exponential
servers. Operations Research, 15(2):254–265, 1967.

[43] C. C. Gotlieb and G. H. MacEwen. Performance of movable-head disk
storage devices. Journal of the ACM, 20(4):604–623, 1973.

[44] W. J. Gray, P. Wang, and M. Scott. An M/G/1-type queuing model with ser-
vice times depending on queue length. Applied Mathematical Modelling,
16(12):652 – 658, 1992.

[45] D. Gross and C. M. Harris. Fundamentals of Queueing Theory. John Wiley
& Sons, 3rd edition, 1998.

[46] E. J. Gumbel. The maxima of the mean largest value and of the range. The
Annals of Mathematical Statistics, 25(1):76–84, March 1954.

[47] T. R. Haining and D. D. E. Long. Management policies for non-volatile
write caches. In Performance, Computing and Communications Confer-
ence (IPCCC ’99), pages 321–328. IEEE, February 1999.

228 BIBLIOGRAPHY

[48] C. M. Harris. Queues with state-dependent stochastic service rates. Oper-
ations Research, 15(1):117–130, 1967.

[49] P. G. Harrison. Teaching M/G/1 theory with extension to priority queues.
IEE Proc. Computers and Digital Techniques, 147(1):23–26, January 2000.

[50] P. G. Harrison and W. J. Knottenbelt. Quantiles of sojourn times. In E. Ge-
lenbe, editor, Computer System Performance Modelling in Perspective: A
Tribute to the Work of Professor Kenneth C. Sevcik, chapter 10, pages 156–
194. Imperial College Press, 2006.

[51] P. G. Harrison and N. M. Patel. Performance Modelling of Communication
Networks and Computer Architectures. Addison-Wesley, 1993.

[52] P. G. Harrison and S. Zertal. Queueing models with maxima of service
times. In Proc. 13th International Conference on Computer Performance
Evaluations, Modelling Techniques and Tools, pages 152–168, 2003.

[53] P. G. Harrison and S. Zertal. Calibration of a queueing model of RAID sys-
tems. In Proc. Workshop on Practical Applications of Stochastic Modelling
(PASM), 2004.

[54] P. G. Harrison and S. Zertal. Queueing models of RAID systems with max-
ima of waiting times. Performance Evaluation, 64(7-8):664–689, August
2007.

[55] H. O. Hartley and H. A. David. Universal bounds for mean range and
extreme observation. The Annals of Mathematical Statistics, 25(1):85–99,
March 1954.

[56] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers, 4th edition, 2007.

[57] W. W. Hsu and A. J. Smith. The performance impact of I/O optimiza-
tions and disk improvements. IBM Journal of Research and Development,
48(2):255–289, 2004.

[58] A. Huffman and J. Clark. Serial ATA Native Command Queueing.
Whitepaper, Intel Corporation and Seagate Technology, July 2003.

[59] S. S. Isukapalli. Uncertainty analysis of transport-transformation models.
PhD thesis, Rutgers, The State University of New Jersey, 1999.

[60] G. L. Choudhury J. Abate and W. Whitt. On the Laguerre method for nu-
merically inverting Laplace transforms. INFORMS Journal on Computing,
8(4):413–427, 1996.

BIBLIOGRAPHY 229

[61] J. R. Jackson. Networks of waiting lines. Operations Research, 5(4):518–
521, 1957.

[62] D. M. Jacobson and J. Wilkes. Disk scheduling algorithms based on ro-
tational position. Technical Report HPL-CSP-91-7rev1, HP Laboratories,
1991.

[63] R. G. Miller Jr. Priority queues. The Annals of Mathematical Statistics,
31(1):86–103, 1960.

[64] R. H. Katz, D. W. Gordon, and J. A. Tuttle. Storage system metrics for
evaluating disk array organizations. Technical Report UCB/CSD-91-611,
EECS Department, University of California, Berkeley, Dec 1990.

[65] D. G. Kendall. Stochastic processes occurring in the theory of queues and
their analysis by the method of the imbedded Markov chain. The Annals of
Mathematical Statistics, pages 338–354, 1953.

[66] C. Kim and A. K. Agrawala. Analysis of the fork-join queue. IEEE Trans-
actions on Computers, 38(2):250–255, 1989.

[67] M. Y. Kim and A. N. Tantawi. Asynchronous disk interleaving: Approx-
imating access delays. IEEE Transactions on Computers, 40(7):801–810,
July 1991.

[68] S. H. Kim, H. Zhu, and R. Zimmermann. Zoned-RAID. ACM Transactions
on Storage (TOS), 3(1):1–17, March 2007.

[69] L. Kleinrock. Queueing Systems - Volume I: Theory. John Wiley and Sons,
1975.

[70] A. Kuratti and W. H. Sanders. Performance analysis of the RAID 5 disk ar-
ray. In Proc. IEEE International Computer Performance and Dependability
Symposium (IPDS), pages 236–245, Erlangen, Germany, 1995.

[71] A. Lakhany and H. Mausser. Estimating the parameters of the General-
ized Lambda Distribution. Algo Research Quarterly, 3(3):47–58, Decem-
ber 2000.

[72] A. S. Lebrecht, N. J. Dingle, and W. J. Knottenbelt. Modelling and val-
idation of response times in zoned RAID. In Proc. 16th IEEE Interna-
tional Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), September 2008.

230 BIBLIOGRAPHY

[73] A. S. Lebrecht, N. J. Dingle, and W. J. Knottenbelt. A response time
distribution model for zoned RAID. In Proc. 15th International Confer-
ence on Analytical and Stochastic Modelling Techniques and Applications
(ASMTA), pages 144–157, June 2008.

[74] A. S. Lebrecht, N. J. Dingle, and W. J. Knottenbelt. Validation of large
zoned RAID systems. In Proc. 24th UK Performance Engineering Work-
shop (UKPEW), pages 246–261, July 2008.

[75] A. S. Lebrecht, N. J. Dingle, and W. J. Knottenbelt. Modelling zoned RAID
systems using fork-join queueing simulation. In Proc. 6th European Per-
formance Engineering Workshop (EPEW), pages 16–29, July 2009.

[76] A. S. Lebrecht, N. J. Dingle, and W. J. Knottenbelt. A performance model
of zoned disk drives with I/O request reordering. In Proc. 6th International
Conference on Quantitative Evaluation of Systems (QEST), pages 97–106,
September 2009.

[77] A. S. Lebrecht, N. J. Dingle, W. J. Knottenbelt, P. G. Harrison, and S. Zer-
tal. Using bulk arrivals to model I/O request response time distributions in
zoned disks and RAID systems. In Proc. 4th International Conference on
Performance Evaluation Methodologies and Tools (VALUETOOLS), Octo-
ber 2009.

[78] A. S. Lebrecht and W. J. Knottenbelt. Response time approximations in
fork-join queues. In Proc. 23rd UK Performance Engineering Workshop
(UKPEW), July 2007.

[79] E. K. Lee. Performance Modeling and Analysis of Disk Arrays. PhD thesis,
University of California at Berkeley, 1993.

[80] E. K. Lee and R. H. Katz. An analytic performance model of disk arrays.
SIGMETRICS Performance Evaluation Review, 21(1):98–109, 1993.

[81] J. D. C. Little. A proof for the queueing formula: L = λW . Operations
Research, 9:383–387, 1961.

[82] Y. C. Liu and H. G. Perros. A decomposition procedure for the analysis
of a closed fork/join queueing system. IEEE Transactions on Computers,
40(3):365–370, March 1991.

[83] D. Marquardt. An algorithm for least-squares estimation of nonlinear pa-
rameters. SIAM Journal on Applied Mathematics, 11:431–441, 1963.

BIBLIOGRAPHY 231

[84] R. Van Meter. Observing the effects of multi-zone disks. In Proc. USENIX
Annual Technical Conference, pages 19–30, 1997.

[85] D. W. Miller and D. T. Harper. Performance analysis of disk cache write
policies. Microprocessors and Microsystems, 19(3):121–130, April 1995.

[86] I. Mitrani. Probabilistic Modelling. Cambridge University Press, 1998.

[87] J. A. Morrison. Sojourn and waiting times in a single-server system with
state-dependent mean service rate. Queueing Systems, 4(3):213–235, 1989.

[88] R. Nelson and A. N. Tantawi. Approximate analysis of fork/join synchro-
nization in parallel queues. IEEE Transactions on Computers, 37(6):739–
743, June 1988.

[89] R. Nelson, D. Towsley, and A. N. Tantawi. Performance analysis of par-
allel processing systems. IEEE Transactions on Software Engineering,
14(4):532–540, 1988.

[90] S. Park and H. Shin. Rigorous modeling of disk performance for real-
time applications. In Proc. International Conference on Real-Time and
Embedded Computing Systems and Applications, pages 486–498, 2003.

[91] D. A. Patterson, G. Gibson, and R. H. Katz. A case for redundant arrays of
inexpensive disks (RAID). In Proc. International Conference on Manage-
ment of Data (SIGMOD), 1988.

[92] D. A. Patterson and J. L. Hennessy. Computer organization and design:
the hardware/software interface. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 3rd edition, 1993.

[93] H. G. Perros. Queueing networks with Blocking. Oxford University Press,
1994.

[94] J. S. Plank. A tutorial on Reed-Solomon coding for fault-tolerance in
RAID-like systems. Technical Report CS-96-332, University of Tennessee,
1997.

[95] J. S. Plank. Erasure codes for storage applications. Tutorial at 4th USENIX
Conference on File and Storage Technologies (FAST), 2005.

[96] R Development Core Team. R: A Language and Environment for Statisti-
cal Computing. R Foundation for Statistical Computing, Vienna, Austria,
2008.

232 BIBLIOGRAPHY

[97] M. Reiser and S. Lavenburg. Mean-value analysis of closed multichain
queuing networks. Journal of the ACM, 27(2):313–322, April 1980.

[98] A. Riska and E. Riedel. Disk drive level workload characterization. In Proc.
USENIX ’06 Annual Technical Conference (ATEC), Boston, MA, 2006.

[99] S. M. Ross. Introduction to Probability Models. Academic Press, 6th edi-
tion, 1997.

[100] C. Ruemmler and J. Wilkes. Unix disk access patterns. In Proc. Usenix
Winter Conference, pages 405–420, San Diego, CA, 1993.

[101] C. Ruemmler and J. Wilkes. An introduction to disk drive modeling. Com-
puter, 27(3):17–28, 1994.

[102] J. Rydning and D. Reinsel. Worldwide hard disk drive 2009–2012 fore-
cast: Navigating the transitions for enterprise applications. IDC Market
Analysis, Document 216394, February 2009.

[103] R. A. Sahner and K. S. Trivedi. Performance and reliability analysis us-
ing directed acyclic graphs. IEEE Transactions on Software Engineering,
13(10):1105–1114, 1987.

[104] R. A. Scranton, D. A. Thompson, and D. W. Hunter. The access time myth.
Technical Report RC10197, IBM, 1983.

[105] Seagate. Barracuda ES Data Sheet. http://www.seagate.com/docs/
pdf/datasheet/disc/ds_barracuda_es.pdf.

[106] Seagate. Economies of Capacity and Speed: Choosing the most cost-
effective disc drive size and RPM to meet IT requirements. Whitepa-
per, Seagate, May 2004. http://www.seagate.com/content/pdf/
whitepaper/economies_capacity_spd_tp.pdf.

[107] M. Seltzer, P. Chen, and J. Ousterhout. Disk Scheduling Revisited. In Proc.
USENIX Winter Technical Conference, pages 313–324. USENIX Associa-
tion, 1990.

[108] E. Shriver, A. Merchant, and J. Wilkes. An analytic behavior model for disk
drives with readahead caches and request reordering. In Proc. ACM SIG-
METRICS Joint International Conference on Measurement and Modeling
of Computer Systems, pages 182–191. ACM, 1998.

[109] A. J. Smith. Cache memories. ACM Computing Surveys, 14(3):473–530,
1982.

BIBLIOGRAPHY 233

[110] A. Symington and P. Kritzinger. A hardware test bed for measuring IEEE
802.11g distribution coordination function performance. In Proc. 17th
IEEE International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS), pages 61–67,
September 2009.

[111] L. Takács. Priority queues. Operations Research, 12(1):63–74, 1964.

[112] A. Talbot. The accurate numerical inversion of Laplace transforms. Journal
of the Institute of Mathematical Applications, 23:97–120, 1979.

[113] A. Thomasian and G. Fu. Anticipatory disk arm placement to reduce seek
time. International Journal of Computer Systems Science & Engineering,
21(3):173–182, 2006.

[114] A. Thomasian and C. Han. Affinity-based routing in zoned mirrored disks.
The Computer Journal, 48(3):292–299, 2005.

[115] A. Thomasian and A. N. Tantawi. Approximate solutions for M/G/1
fork/join synchronization. In Proc. 26th Conference on Winter Simulation
(WSC ’94), pages 361–368, San Diego, CA, USA, 1994.

[116] D. Towsley, C. G. Rommel, and J. A. Stankovic. Analysis of fork-join
program response times on multiprocessors. IEEE Transactions on Parallel
and Distributed Systems, 1(3):286–303, July 1990.

[117] R. Treiber and J. Menon. Simulation study of cached RAID 5 designs. In
Proc. 1st IEEE Symposium on High-Performance Computer Architecture,
pages 186–197, 1995.

[118] P. Triantafillou, S. Christodoulakis, and C. Georgiadis. Optimal data place-
ment on disks: A comprehensive solution for different technologies. IEEE
Transactions on Knowledge and Data Engineering, 12(2):324–330, 2000.

[119] K. S. Trivedi. Probability and Statistics with Reliability, Queuing and Com-
puter Science Applications. Prentice Hall, 1982.

[120] M. Uysal, G. A. Alvarez, and A. Merchant. A modular, analytical through-
put model for modern disk arrays. In Proc. 9th International Symposium
on Modeling, Analysis and Simulation of Computer and Telecommunica-
tion Systems (MASCOTS). IEEE Computer Society, 2001.

[121] D. Vadala. Managing RAID on Linux. O’Reilly, 2003.

234 BIBLIOGRAPHY

[122] Nico M. van Dijk. Why queuing never vanishes. European Journal of
Operational Research, 99(2):463–476, 1997.

[123] E. Varki. Mean value technique for closed fork-join networks. In Proc.
ACM SIGMETRICS Joint International Conference on Measurement and
Modeling of Computer Systems, pages 103–112, 1999.

[124] E. Varki. Response time analysis of parallel computer and storage systems.
IEEE Transactions on Parallel and Distributed Systems, 12(11):1146–
1161, November 2001.

[125] E. Varki and L. W. Dowdy. Analysis of balanced fork-join queueing net-
works. In Proc. ACM SIGMETRICS Joint International Conference on
Measurement and Modeling of Computer Systems, pages 232–241, 1996.

[126] E. Varki, A. Merchant, and H. Chen. The M/M/1 fork-join queue with
variable sub-tasks. Unpublished – http://www.cs.unh.edu/˜varki/
publication/open.pdf.

[127] E. Varki, A. Merchant, and X. Qiu. An analytical model of disk arrays
under synchronous I/O workloads. Technical report, Univ. of New Hamp-
shire, Jan 2003.

[128] E. Varki, A. Merchant, J. Xu, and X. Qiu. Issues and challenges in the
performance analysis of real disk arrays. IEEE Transactions on Parallel
and Distributed Systems, 15(6):559–574, June 2004.

[129] E. Varki and S. X. Wang. A performance model of disk array storage sys-
tems. In Proc. Computer Measurement Group International Conference
(CMG), December 2000.

[130] S. Varma and A. M. Makowski. Interpolation approximations for symmet-
ric fork-join queues. In Proc. 16th IFIP Working Group 7.3 International
Symposium on Computer Performance Modeling Measurement and Evalu-
ation (Performance), pages 245–265, 1994.

[131] F. Wan, N. J. Dingle, W. J. Knottenbelt, and A. S. Lebrecht. Simulation and
modelling of RAID 0 system performance. In Proc. 22nd Annual European
Simulation and Modelling Conference (ESM), pages 145–149, September
2008.

[132] M. Wang, A. Ailamaki, and C. Faloutsos. Capturing the spatio-temporal
behavior of real traffic data. Performance Evaluation, 49(1-4):147–163,
2002.

BIBLIOGRAPHY 235

[133] Wikipedia. Standard RAID levels, April 2009. http://en.wikipedia.
org/wiki/Standard_RAID_levels.

[134] R. W. Wolff. Poisson arrivals see time averages. Operations Research,
30(2):223–231, 1982.

[135] S. Wolfram. The Mathematica Book. Wolfram Media, 5th edition, 2003.

[136] T. M. Wong and J. Wilkes. My cache or yours? Making storage more
exclusive. In Proc. USENIX Annual Technical Conference, pages 161–175.
USENIX Association, 2002.

[137] W. S. Wong and R. J. T. Morris. Benchmark synthesis using the LRU cache
hit function. IEEE Trans. Computers, 37(6):637–645, 1988.

[138] B. L. Worthington, G. R. Ganger, and Y. N. Patt. Scheduling algorithms
for modern disk drives. In Proc. ACM SIGMETRICS Joint International
Conference on Measurement and Modeling of Computer Systems, pages
241–251, 1994.

[139] S. Zertal and P. G. Harrison. Multi-RAID queueing model with zoned
disks. In Proc. High Performance Computing and Simulation Conference
(HPCS’07), June 2007.

