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Abstract

Stochastic performance models provide a formal way of capturing and analysing
the complex dynamic behaviour of concurrent systems. Such models can be spec-
ified by several high-level formalisms, including Stochastic Petri nets, Queueing
networks and Stochastic Process Algebras. Traditionally, performance statistics
for these models are derived by generating and then solving a Markov chain
corresponding to the model’s behaviour at the state transition level. However,
workstation memory and compute power are often overwhelmed by the sheer
number of states in the Markov chain and the size of their internal computer

representations.

This thesis presents two parallel and distributed techniques which significantly
increase the size of the models that can be analysed using Markov modelling.
The techniques attack the space and time requirements of both major phases of
the analysis, i.e. construction of the Markov chain from a high-level model (state
space generation) and solution of the Markov chain to determine its equilibrium
distribution (steady-state solution). Space requirements are reduced through the
use of probabilistic and disk-based storage schemes. Time requirements are re-
duced by exploiting the compute power provided by a distributed memory parallel
computer or a network of workstations. Neither method places any restrictions

on the type of model that can be analysed.

Both techniques have been implemented in C++ on a 16-node Fujitsu AP3000
distributed memory parallel computer. The methods are applied to the analysis
of very large models of the order of 100 million states and 1 billion transitions.
The state generator delivers substantial speedups (85% efficiency on 16 nodes)
and exhibits good scalability which is confirmed by a theoretical performance
model. The steady-state analyser delivers competitive speedups for a sparse
linear equation solver (45% efficiency on 16 nodes). The other tools required
to build a complete parallel analysis pipeline have also been implemented, thus
providing an automatic way of obtaining performance measures for unrestricted

high-level system specifications with very large underlying Markov chains.
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Chapter 1

Introduction

1.1 Motivation and Objectives

The complexity of modern computer and communication systems is on the rise.
Whereas the automated systems of the past were usually controlled by one pro-
gram running on a single machine with a single flow of control, recent years have
seen the ascendancy of technologies such as parallel and distributed computing,
multi-threaded programming, multi-agent systems and advanced communication
networks. Systems based on these technologies typically consist of several co-
operating subsystems that execute concurrently and communicate with one an-
other using sophisticated protocols. Familiar examples of systems which exhibit
this structure include multiprocessor computers, flexible manufacturing systems,
telecommunications networks, railway signalling systems, distributed databases,

stock market dealing systems and air traffic control systems.

It is important to assess the performance of these systems before implementa-
tion. At best, a failure to meet design goals results in downtime while the system
undergoes a costly redesign and/or retrofit. At worst, in the case of safety criti-
cal systems, the results can be catastrophic. Unfortunately, attempts to predict
the dynamic behaviour of these systems using intuition or “rules of thumb” are

doomed to failure because designers cannot foresee the many millions of possi-
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ble interactions between components. Consequently the likelihood of problems

caused by subtle bugs like race conditions is high.

A more rigorous engineering approach which allows for the mechanical verification
of performance properties at design time is based on the construction and analysis
of a model of the system. A model is a simplified representation of the real world
which captures essential aspects of the system’s dynamic behaviour. Models
are specified using graphical or alphanumerical languages known as modelling

formalisms.

There are two main approaches to obtaining performance statistics from a model:
stmulation and analytical methods. Simulation is used to model systems at arbi-
trary levels of detail, producing inexact results bounded by confidence intervals.
However, there is a high cost and effort involved in constructing accurate models
and the length of execution time required to produce reliable results can be very
long. Analytical models, on the other hand, make use of formal, abstract mod-
els from which exact results can be obtained by generating and solving a set of

equations derived from the model.

This thesis focuses on a widely-used analytical performance modelling technique
known as Markov chain modelling. Markov chains model the low-level stochastic
behaviour of a system by describing what possible states the system may enter
and how the system moves from one state to another in time. Markov chains
are limited to describing systems that have discrete states and which satisfy the
fundamental property that the future behaviour of the system depends only on
the current state. Despite these limitations, Markov chains are flexible enough
to model the phenomena found in complex concurrent systems such as blocking,
synchronisation, preemption, state-dependent routing and complex traffic arrival
processes. In addition, tedious manual enumeration of all possible system states
and transitions in a Markov chain is not necessary. Instead, chains can be auto-
matically derived from several widely-used high-level modelling formalisms such
as Generalised Stochastic Petri nets, queueing networks, Queueing Petri nets and

Stochastic Process Algebras.
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A major difficulty associated with Markov modelling, is the state explosion prob-
lem, whereby workstation memory and compute power are overwhelmed by the
sheer number of the states that emerge from complex models and by the large
amount of storage required to represent individual states. Consequently, a major
challenge and focus of research is the development of methods and data struc-
tures which minimize the memory and runtime required to generate and solve
very large Markov chains. A common approach to this “largeness” problem is
to restrict the structure of the models that can be analysed. This allows for the
application of efficient techniques which exploit the restricted structure. We do
not adopt this approach, however, preferring to seek unrestricted scalable parallel
and distributed algorithms which leverage the compute power, memory and disk

space of several processors.

Our goal is a complete parallel analysis pipeline which allows for the automatic
derivation of performance objectives starting from a high-level system specifica-
tion. In addition to the core state generation and steady-state solution modules,
such a pipeline requires a flexible interface language front-end for system descrip-
tion, and a performance analyser back-end that combines the low-level results
given by the steady-state distribution and the state space into more meaningful

higher-level performance measures such as rewards and throughput measures.

1.2 Contributions

This thesis presents two novel parallel and distributed techniques for the gener-
ation and solution of very large Markov chains derived from stochastic models.
In contrast to many contemporary techniques for large Markov chains, the algo-
rithms do not require models to conform to a restricted structure or hierarchy,

nor do they require the state space to exhibit any regularity.

The first technique is a parallel dynamic probabilistic state space exploration
algorithm that generates a system’s underlying Markov chain by enumerating

the possible states that the system may enter. The algorithm stores compressed
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hash signatures instead of full state descriptors, so it has a very low memory usage
that is independent of the size of individual state vectors. The memory savings
come at a cost since there is a non-zero probability that distinct states may be
misidentified if they have the same compressed representation. However, this
probability can be quantified and can be made arbitrarily small. In addition, the
algorithm parallelises well, exhibiting excellent load balance, good speedups and
good scalability. The unique combination of probability and parallelism enables
us to rapidly explore state spaces that are an order of magnitude larger than
those obtainable using conventional exhaustive techniques. Careful analysis of
the communication patterns leads to an enhanced version of the algorithm which
has a lower communication overhead and which delivers even better speedups.
Theoretical performance models of both state generation algorithms confirm their

good scalability properties.

Having established the capability to generate large Markov chains, the second
technique developed is a parallel disk-based method which solves chains for their
steady-state distribution. The focus is on two scalable numerical methods for the
solution of large systems of linear equations, namely the Jacobi and Conjugate
Gradient Squared (CGS) algorithms. Parallel sparse matrix-vector multiplica-
tion emerges as the critical bottleneck in these methods. Exploitation of the
data locality typically found in automatically generated transition matrices leads
to an efficient disk-based matrix-vector multiply kernel that is characterised by
low per-processor memory usage, low communication cost and good load balance.
This kernel is embedded into a distributed high-performance solver software ar-
chitecture which makes use of two processes per node to allow for the overlap
of disk I/O with computation and communication. At a slightly higher memory
cost, the kernel allows for the complete overlap of disk I/O, communication and

computation.

The generation and solution techniques are implemented on a 16-node Fujitsu
AP3000 distributed memory parallel computer, along with the remaining tools

required for a complete parallel performance analysis pipeline. The resulting
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pipeline delivers good speedups and provides the capability to automatically de-
rive performance measures for models with underlying Markov chains of 100

million states and 1 billion transitions.

1.3 Thesis Outline

The layout of the rest of this thesis is as follows:

Chapter 2 presents background material. The relationship between physical
systems and stochastic models is discussed and four standard paradigms
for specifying stochastic models are reviewed. An overview of Markov the-
ory and the principles of iterative techniques for solving systems of linear

equations is presented.

Chapter 3 considers several contemporary approaches for the analysis of large
Markov chains. The first section reviews current methods for state space
generation, including probabilistic, symbolic, reduction-based and parallel
approaches. The second section surveys the latest methods for the solu-
tion of linear systems derived from Markov models, including Kronecker,

symbolic, “on-the-fly”, disk-based and parallel techniques.

Chapter 4 gives details of the new parallel state space generation algorithm. A
dynamic hash compaction storage scheme is described, analysed in terms
of its reliability and space complexity, and compared to existing proba-
bilistic techniques. The storage scheme is then integrated into a parallel
state generation algorithm. Analysis of communication patterns leads to
an enhanced parallel algorithm that has a lower communication overhead.
Theoretical performance models of the original and enhanced state space
generation algorithms quantify their benefits in terms of distributed run-
time, speedup and efficiency. The good speedups and scalability predicted
by the theoretical performance models are confirmed by observed results

from an implementation running on a Fujitsu AP3000 distributed memory
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parallel computer. Finally, the chapter discusses suitable choices for the

three hash functions upon which our algorithms are based.

Chapter 5 develops a parallel disk-based technique for determining the steady-
state probability distributions of very large Markov chains. The focus is on
two scalable numerical methods, namely the Jacobi and Conjugate Gradi-
ent Squared algorithms. The efficiency of the parallel sparse matrix-vector
multiplication operation that is central to both methods is improved in
two ways. Firstly, communication costs are reduced by permuting the rows
and columns of the transition matrix to exploit the structure induced by
distributed breadth-first search state generators. Secondly, a good load
balance is achieved by partitioning the transition matrix over processors
such that each processor is assigned the same number of non-zero elements.
A distributed matrix-vector multiplication kernel based on this mapping is
outlined, and integrated into a high-performance software architecture for a
parallel disk-based Markov chain solver. The architecture makes use of two
processes per node to overlap disk I/O with communication and computa-
tion. Numerical results from an implementation of the solver running on a
Fujitsu AP3000 distributed memory parallel computer show good speedups

and the capability to analyse extremely large models.

Chapter 6 describes the implementation of a complete parallel performance
analysis pipeline, comprising an interface language parser, a parallel state
space generator, a parallel matrix transposer, a parallel disk-based steady-
state solver and a parallel performance analyser. This pipeline provides the
ability to automatically derive performance statistics (such as mean buffer
occupancy or data throughput) for a wide variety of high-level models. The
implementation is in C++ and uses the Message Passing Interface (MPI)
standard. Each major module in the pipeline is discussed, concentrating
on data structures, algorithms, and the results of various optimization ex-

periments.

Chapter 7 summarises the main contributions of the thesis, discusses applica-
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tions, presents conclusions and considers future work.

Appendix A describes the two scalable high-level models that are used as

demonstration examples in Chapters 4 and 5.

Appendix B outlines the architecture of the Fujitsu AP3000 distributed mem-
ory parallel computer, and presents an accurate interprocessor communica-
tion cost model. The appendix also highlights a problem with the machine’s

ability to overlap communication and computation.

1.4 Statement of Originality

I declare that this thesis was composed by myself, and that the work that it
presents is my own except where otherwise stated. Some of the background
material has been previously presented as part of my M.Sc. dissertation [Kno96,
which concerned the development of a sequential performance analyser for timed

transition systems.

1.5 Publications

The material in Chapter 4 was presented at the 10th International Conference
on Modelling, Techniques and Tools (TOOLS ’98) in Palma de Mallorca, Spain
in September 1998 [KMHKO98]. An extended version of this paper was one of six
papers from the conference invited to appear in a Special Edition of Performance

Evaluation [KHMK99].

Chapter 5 formed the basis of a paper which was presented at the 3rd Inter-
national Meeting on the Numerical Solution of Markov Chains (NSMC ’99), in
Zaragoza, Spain in September 1999 [KH99].



Chapter 2

Background Theory

2.1 Introduction

This chapter presents background theory on the subject of stochastic modelling.
We begin by discussing how the performance of physical systems can be anal-
ysed using stochastic models. Four standard paradigms for specifying stochastic
models, viz. Stochastic Petri nets, Queueing networks, Queueing Petri nets and
Stochastic Process Algebras are reviewed. We refer mainly to [BK95], [Rei92],
[Hoc96], [HP93] and [Hil94].

Next we present an overview of Markov theory, which is the vehicle we use to
obtain performance statistics. Markov theory has been extensively reviewed in

the literature; here we refer to [Kle75], [KS60], [Ste94], [Goo88] and [BDMC94].

Determining the steady-state distribution of a Markov chain requires the ability
to solve a potentially very large system of linear equations. We therefore conclude
this chapter by reviewing two classes of iterative solution techniques for solving
general systems of linear equations, viz. classical iterative methods and Krylov

subspace techniques. We refer to [Var62], [HY81], [Ste94] and [Wei95].
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2.2 Physical Systems and Stochastic Models

Physical systems are usually very complex and detailed. In the early design
stages, it is therefore usually infeasible to construct a prototype or even a de-
tailed simulation of a system in order to study its performance, especially if
several design alternatives are being evaluated. Instead, it is often cheaper and
quicker to construct and analyse a high-level stochastic model of the system un-
der consideration. A stochastic model is a simplified representation of a physical
system that includes only essential aspects of the system’s dynamic behaviour.
Determining the right level of detail for the model, such that the results are
sufficiently accurate while the computational cost of analysing the model is rea-
sonable, is a subtle art that requires experience and ingenuity. Often, however,
even simple models are adequate to provide insight into trends and to assess the

relative performance of several design alternatives.

A stochastic model has one or more attributes which jointly characterise the
behaviour of the system it represents. These attributes may take on different
values as the system evolves. A vector of these attributes, known as the state
descriptor vector, characterises the configuration or state of the system at any
point in time. All possible states of the system may be obtained by a brute force
enumeration of all reachable values of the state descriptor starting from some
initial state. The resulting state graph describes how the system moves from
state to state and is isomorphic to a Markov Chain which can be solved (under
certain standard conditions) to determine the long-run proportion of time the

system spends in each state.

2.3 Modelling Formalisms

Stochastic models are specified using alphanumerical or graphical languages known
as modelling formalisms. This section describes four popular formalisms: Gener-
alised Stochastic Petri nets, queueing networks, Queueing Petri nets and Stochas-

tic Process Algebras. For each formalism, we describe what constitutes a state of
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the system and define a state descriptor vector. We also discuss the advantages

and disadvantages of each methodology.

2.3.1 Generalised Stochastic Petri Nets (GSPNs)

Petri nets are a graphical modelling formalism for describing the behaviour of
concurrently-executing asynchronous processes. Systems that have been success-
fully modelled with Petri nets include communication protocols, parallel pro-

grams, multiprocessor memory caches and distributed databases [Pet81, Rei92].

The simplest type of Petri nets are Place-Transition nets, which were originally
conceived by Carl Adam Petri as a formalism for establishing the correctness of
concurrent, systems. Place transition nets are directed graphs with two types of

node:

e places, drawn as circles, which model conditions or objects. Inside the
places are tokens, drawn as black dots, which represent the specific value
of a condition or object. A particular arrangement of the tokens across all

the places is known as a marking.

e transitions, drawn as rectangles, which model activities that change the

values of conditions and objects.

Arcs are drawn between places and transitions and vice versa to specify how

objects are changed by a certain activity.

A Petri net is defined by its structure and an initial marking. The formal defini-

tion of a Petri net is as follows:

Definition 2.1 A Place-Transition net is a 5-tuple PN = (P, T, 1,1, My) where

e P={p,...,pn} is a finite and non-empty set of places.

o T ={t1,...,tn} is a finite and non-empty set of transitions.
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e PNT =10.

e [ I": PxT — INg are the backward and forward incidence functions,
respectively. If I-(p,t) > 0, an arc leads from place p to transition t, and

if IT(p,t) > 0 then an arc leads from transition t to place p.

e My : P — INg is the initial marking defining the initial number of tokens

on every place.

token
transition
fires
place transition

Figure 2.1: Petri net transition firing

The dynamic behaviour of a Place-Transition net is determined by the enabling
and firing of transitions, which results in a flow of tokens between places. A
transition is enabled when each of its input places has at least one token on
it. An enabled transition may fire, removing a token from each input place and

depositing a token on each output place, as shown in Fig. 2.1.

Definition 2.2 The formal rules for the enabling and firing of transitions are as

follows [BK95]:

1. A marking of a Place-Transition net is a function M : P — Ny. M(p)

denotes the number of tokens in place p € P.
2. A transition t € T is enabled at M, iff M(p) > I (p,t),Vp € P.

3. A transitiont € T, enabled at marking M, may fire yielding a new marking
M' where
M'(p) = M(p) — I~ (p,t) +I"(p,1),¥p € P
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We say M' is directly reachable from M and write M — M'. Let —*
be the reflexive and transitive closure of —. A marking M' is reachable

from M iff M —* M’'.

Each distinct marking of a Petri net that is reachable from some initial marking
My corresponds to a state of the system. Thus the concepts of state and marking

are interchangeable in the context of Petri nets and a suitable state descriptor is:

M = (plap2’ s ap|P|)

The set of all markings that are reachable from M; constitute the state space or
reachability set of the Petri net. The connections between states form the state

graph, also known as the reachability graph.

From the reachability graph and the structure of the Petri net, Place-Transition
nets can be used to test a system for desirable correctness characteristics such
as freedom from deadlock, liveness and boundedness. However, since Place-
Transition nets do not include a notion of time, it is not possible to model
performance. Consequently, several classes of time-augmented Petri nets have
been developed, either by attaching time delays to transition firings, or by spec-

ifying sojourn times of tokens on places.

One of the most flexible and widely used time-augmented Petri net representa-
tions are Generalised Stochastic Petri nets (GSPNs) [ACB84]. GSPNs have two
types of transitions: immediate transitions and timed transitions. Once enabled,
immediate transitions fire in zero time, while timed transitions fire after an ex-
ponentially distributed firing delay. Firing of immediate transitions has priority

over the firing of timed transitions.

The formal definition of a GSPN is as follows:
Definition 2.3 A GSPN is a 4-tuple GSPN = (PN, Ty, T3, W) where

e PN = (P, T,I",I", My) is the underlying Place-Transition net.

e Ty C T is the set of timed transitions, T; # 0,
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e T, C T denotes the set of immediate transitions, Ti,NTy, =0, T =T, U T,
o W = (ws,...,w|) is an array whose entry w; is either

— a (possibly marking dependent) rate € R™ of an exponential distribu-
tion specifying the firing delay, when transition t; is a timed transition,
i.e. tz' € T1

or

— a (possibly marking dependent) weight € R™ specifying the relative
firing frequency, when transition t; is an immediate transition, i.e.

t; € 1.

If several immediate transitions are simultaneously enabled in a given marking,
then their weights are used to determine the relative frequency with which each
transition fires. In particular, given n simultaneously enabled immediate tran-
sitions tq,1s,...,t, with corresponding weights w;,wo, ..., w,, transition ¢; is

assumed to fire with probability w;/ >} _; wy.

The state space of a GSPN contains two types of markings. Since immediate
transitions fire in zero time, the sojourn time in markings which enable imme-
diate transitions is zero. Such markings are called vanishing markings because
these states will never be observed by an observer who randomly examines the
stochastic process of a GSPN, even though the stochastic process sometimes
visits them. On the other hand, markings which enable timed transitions only
will have an exponentially distributed sojourn time. Such markings are not left

immediately and are referred to as tangible markings.

Since no time is spent in vanishing markings, vanishing markings have no effect
on the resulting performance statistics derived for a GSPN, so they are often
eliminated during state space generation [CMT91, Kno96]. This approach re-
duces both the size of the state space and state graph and also the number of
states that have to be stored during state space exploration. The resulting tan-
gible reachability graph (TRG) is isomorphic to a continuous time Markov chain

(CTMC), allowing performance measures to be obtained by numerical solution
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Figure 2.2: A GSPN model and its

underlying tangible reachability graph
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of the underlying chain. Fig. 2.2 shows a simple GSPN model of a dual processor
machine and its underlying tangible reachability graph (with vanishing states

eliminated).

The graphical representations of GSPNs becomes complex for realistic models.
One way of reducing this complexity is to distinguish between individual tokens.
Coloured GSPNs (CGSPNs) [DCB93] make this distinction by attaching colour

to tokens and by defining firing modes on transitions.

Before formally defining a CGSPN, we must first define multisets and Coloured
Petri nets (CPNs). CPNs are the coloured variants of Place-Transition nets on

which CGSPNs are based.

Definition 2.4 A multiset m over a non-empty set S, is a function m € [S —
No]. The non-negative integer m(s) € INg is the number of appearances of the

element s in the multi-set m.

Definition 2.5 A Coloured Petri net (CPN) is a 6-tuple
CPN=(P,T,C,I~,I*, M), where

P is a finite and non-empty set of places,

T is a finite and non-empty set of transitions,

PN T=40,

C is a colour function defined from P U T into finite and non-empty mul-

tisets,

I~ and It are the backward and forward incidence functions defined on
PxT such that
I=(p,t),I"(p,t) € [C(t) = C ()|, V (p,t) € P x T,

My is a function defined on P describing the initial marking such that

My (p) € C(p),Vp € P.
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A marking M of a CPN is described in terms of the number of tokens of each
colour on each place. In particular, the multiset of tokens on place p € P is
denoted by M (p). By the definition of a multiset, M (p)(c) — INy denotes the

number of tokens on place p € P of colour ¢ € C(p).

Definition 2.6 The dynamic behaviour of a CPN 1is given as follows:

1. A transition t € T is enabled in a marking M w.r.t. a colour ¢ € C(t),

denoted by M|(t,c") >, iff M(p)(c) > I (p,t)(c')(c),Vp € P,c € C(p).

2. An enabled transition t € T may fire in a marking M w.r.t. a colour ¢ €
C(t) yielding a new marking M', denoted by M — M' or M|(t,c') > M',
with
M(p)(c) = M(p)(c) + I (p, 1) (¢)(c) = I™(p, 1)(c) (c), Vp € P,c € C(p).

Definition 2.7 A Coloured GSPN (CGSPN) is a 4-tuple
CGSPN = (CPN, Ty, Ty, W) where

e CPN = (P, T,C,I ,I",My) is the underlying Coloured Petri net.
e T\ C T is the set of timed transitions, Ty # 0,
o T, C T is the set of immediate transitions, Ty NTo =0, T =T, U Ty,

o W = (wi,...,w) is an array whose entry w; is a function of

[C(t;) — RT] such that Ve € C(t;) : wi(c) € R is either

— a (possibly marking dependent) rate of a negative exponential distribu-
tion specifying the firing delay with respect to colour c, if t; € Ty

or

— a (possibly marking dependent) firing weight with respect to colour c,

if t; € 1.

While CGSPNs provide a more compact representation than GSPNs, they do not
in fact have any additional modelling power over GSPNs, since every CGSPN may

be uniquely unfolded into a GSPN representing the same model.
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GSPNs provide a natural way of modelling features such as simultaneous resource
possession and synchronisation, but several difficulties arise when attempting
to model queues. Even simple scheduling strategies like FCFS are difficult to
represent with low-level Petri net elements. In addition, advance knowledge of
the maximum number of customers in a queue is required and it is difficult to

model service times given by complex distributions such as a Coxian distribution.

2.3.2 Queueing Networks

Queueing networks are a widely-used performance analysis technique for sys-
tems which can be naturally represented as a collection of interconnected queues.
Systems which have been successfully analysed with queueing networks include

computer systems and communications networks.

arrivals to departures
service service from service routing
centre centre centre probability
arrivals % i departures

to system - \ from system

I

/<>\ |
|
] 1-p
I
I
|
|

Q

_ /N ,

server queue

Figure 2.3: A simple queueing network

As shown in Fig. 2.3, a queueing network consists of three types of components:

e Service centres, each of which consists of one or more queues and one or

more servers. The servers represent the resources of the system available



18 Chapter 2. Background Theory

to serve customers. An arriving customer will be served immediately if a
free server can be allocated to the customer or if a customer in service is
preempted. Otherwise, the customer must wait in one of the queues until

a server becomes available.

e (Customers, who demand service from the service centres and which repre-
sent, the load on the system. Usually customers are grouped into classes,
where customers in one class exhibit similar behaviour and place similar

demands on service centres.

e Routes, which are the paths workloads follow through a network of service
centres. The routing of customers is determined by routing probabilities
which may be dependent on the state of the network and customer class.
If the routing is such that no customers may enter or leave the system, the
system is said to be closed. If customers arrive externally and eventually
depart, the system is said to be open. If some classes of customers are

closed and some are open, then the system is said to be mized.

To be fully specified, a queueing network requires the following parameters to be

defined:

e The number of service centres.

e The number of queues at each service centre. For each of these queues we

further need to define:

— The capacity of each queue, which may be infinite or finite with ca-

pacity k.

— The queue scheduling discipline, which determines the order of cus-
tomer service. Different customer classes may have different schedul-
ing priorities. Common scheduling rules include First-Come First-
Served (FCFS), Last-Come First-Served Preemptive-Resume (LCFS-
PR), Round Robin (RR) and Processor Sharing (PS).
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— For open classes of customers, we need to define an input source process
specifying the interarrival time distribution of each customer class at
each queue. For a Poisson arrival process with rate A, this distribution

is given by an exponential distribution with parameter .

e The number of servers at each service centre. For each of these servers we
further we need to define the service time distribution for each customer
class at each server. This is often exponential. More general distribu-
tions can be approximated using a Coxian or other phase-type distribution

[Ste94, pg. 51-52].

e The routing probability matriz for each customer class. This matrix specifies
the probabilistic routing of customers between service centres, with the
1jth element giving the probability that a customer leaving service centre
1 will proceed to service centre j. These transitions are assumed to be

instantaneous.

The state of individual service centres in a queueing network can be described by
a vector. For example, the state of a single-server centre with a Coxian service
distribution and blocking may be described by the number of customers in the
queue, the phase of service and a parameter to indicate whether or not the server
is blocked. The state descriptor of a queueing network as a whole may then
be built up by concatenating the vectors describing the state of the individual

service centres.

A certain class of queueing networks which satisfy quasi-reversibility [Kel79] can
be efficiently analysed using so-called product-form solution techniques, the two
most well-known of which are Mean Value Analysis (MVA) and the convolution
method. Unfortunately, these elegant algorithms fail if one of the prerequisites
for the product-form property is violated by the network. In particular, if phe-
nomena such as synchronization, simultaneous resource possession or blocking
occur, then usually no product-form queueing network model can be found. In

this case, strictly numerical procedures have to be used to obtain exact solutions.
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In particular, for finite queueing networks, a tangible reachability graph isomor-
phic to a Markov chain can be derived and solved for its steady-state distribution

(in the same way as for GSPN models).

Queueing networks are often easy to define, parameterise and evaluate. However,
their applicability is limited because they lack facilities to describe synchronisa-

tion mechanisms.

2.3.3 Queueing Petri Nets (QPNs)

Queueing Petri nets (QPNs) [Bau93] incorporate the concept of queues into a
coloured GSPN formalism. In this way, synchronisation mechanisms and queues
with various scheduling strategies can be integrated into one model. A QPN
extends the concept of a CGSPN by partitioning the set of places into two subsets:

queued places and ordinary places.

A queued place (see Fig. 2.4) consists of two parts: a queue and a depository
for tokens which have completed their service at this queue. Tokens, when fired
onto a queued place by any of its input transitions, are inserted into the queue
according to the scheduling strategy of the queue. Tokens in a queue are not
available to transitions. After completion of its service, the token is placed onto
the depository. Tokens on this depository are available to all output transitions
of the queued place. An enabled timed transition will fire after an exponentially

distributed time delay and an immediate transition fires with no delay, as in

GSPNs.

The formal definition of a QPN is as follows:

Definition 2.8 A Queueing Petrinet (QPN) is a triple QPN = (CGSPN, Py, P,)

where:

e CGSPN s the underlying Coloured GSPN

e P, C P is the set of queued places and
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[ ]
——
queue depository

Figure 2.4: A QPN queued place (left) and its shorthand notation (right)

e P, C P is the set of ordinary places, PLN P, =0, P = P, U P.

A state or marking M of a QPN consists of two parts M = (n,m) where n
specifies the state of all queues and m is the marking of the underlying CGSPN.
For a queued place p € P;, m(p) denotes the marking of the depository. The
initial marking M, of a QPN is given by M, = (0,mg) where 0 is the state
denoting that all queues are empty and my is the initial marking of the CGSPN.

There are three possible types of state transitions that may take place in a QPN:

e An enabled immediate transition may fire.

e An enabled timed transition may fire if no immediate transitions are en-

abled.

e A service in a queued place may complete if no immediate transitions are

enabled.

Similar to GSPNs, the firing of immediate transitions has priority over both the
firing of timed transitions and the service of tokens in queues. Thus, the state
space of a QPN comprises both vanishing and tangible states. By eliminating the
vanishing states during or immediately after state space generation, a tangible

reachability graph can be constructed in a similar manner as for GSPN models
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(except that now we use the extended QPN state descriptor and the new QPN
firing rules). In the usual way, this graph maps directly onto a Markov chain

which may be solved for its steady-state distribution.

QPNs allow for a convenient description of queues within a Petri net paradigm.
However, the complexity of the performance analysis, as determined by the size
of the state space, is still the same as that obtained by modelling the queue with

GSPN elements.

2.3.4 Stochastic Process Algebras (SPAs)

A process algebra (PA) is an abstract language which differs from the formalisms
we have considered so far because it is not based on a notion of flow. Instead,
systems are modelled as a collection of cooperating agents or processes which
execute atomic actions. These actions can be carried out independently or can

be synchronised with the actions of other agents.

Since models are typically built up from smaller components using a small set
of combinators, process algebras are particularly suited to the modelling of large
systems with hierarchical structure. This support for compositionality is comple-

mented by mechanisms to provide abstraction and compositional reasoning.

Two of the best known process algebras are Hoare’s Communicating Sequen-
tial Processes (CSP) [Hoa85] and Milner’s Calculus of Communicating Systems
(CCS) [Mil89]. These algebras do not include a notion of time so they can only
be used to determine qualitative correctness properties of systems such as the
freedom from deadlock and livelock. Stochastic Process Algebras (SPAs) ad-
ditionally allow for quantitative performance analysis by associating a random

variable, representing duration, with each action.

Here we will briefly describe the Markovian SPA PEPA [Hil94]. Other SPAs
include TIPP [RS94, HR94] and MPA [Buc94b] which are similar to PEPA,
while non-Markovian SPAs include SPADES [Str93, HS99] and EMPA [BDG94].

PEPA models are built from components which perform activities of form (o, r)
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where « is the action type and r € RT U T is the exponentially distributed rate
of the action. The special symbol T denotes an passive activity that may only

take place in synchrony with another action whose rate is specified.

Interaction between components is expressed using a small set of combinators,

which are briefly described below:

Sequential composition: Given a process P, («, r).P represents a process that
performs an activity of type «, which has a duration exponentially dis-

tributed with mean 1/r, and then evolves into P.

Constant: Given a process ), P def () means that P is a process which behaves

in exactly the same way as Q.

Selection: Given processes P and (), P + () represents a process that behaves
either as P or as (). The current activities of both P and () are enabled and

a race condition determines into which component the process will evolve.

Synchronization: Given processes P and () and a set of action types L, P DL<1 Q
defines the concurrent synchronized execution of P and () over the cooper-
ation set L. No synchronisation takes place for any activity « ¢ L, so such
activities can take place independently. However, an activity @ € L only
occurs when both P and @) are capable of performing the action. The rate
at which the action occurs is given by the minimum of the rates at which

the two components would have executed the action in isolation.

Cooperation over the empty set P l>;§1 (@ represents the independent con-

current execution of processes P and @) and is denoted as P||Q.

Encapsulation: Given a process P and a set of actions L, P/L represents a
process that behaves like P except that activities & € L are hidden and
performed as a silent activity. Such activities cannot be part of a coopera-

tion set.

PEPA specifications can be mapped onto continuous time Markov chains in a

straightforward manner. Based on the labelled transition system semantics that
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are normally specified for a process algebra system, a transition diagram or
deriwation graph can be associated with any language expression. This graph
describes all possible evolutions of a component and, like a reachability graph
in the context of GSPNs, is isomorphic to a CTMC which can be solved for its
steady-state distribution. Fig. 2.5 shows a PEPA specification of a multiproces-

sor system together with its corresponding derivation graph.

The main advantage of process algebras over other formalisms is their support
for compositionality, i.e. the ability to construct complex models in a stepwise
fashion from smaller building blocks, and abstraction, which provides a way to
treat components as black boxes, making their internal structure invisible. How-
ever, unlike the other formalisms we have considered, process algebras lack an
intuitive graphical notation so do not always present a clear image of the dynamic

behaviour of the model [Hil94].

2.4 Markov Theory

2.4.1 Stochastic Processes

As we have mentioned, the behaviour of a system can often be characterised by
enumerating all the states that the system may enter and by describing how the
system evolves from one state to another over time. In its most general form,

such a system can be represented by a stochastic process.

Definition 2.9 A random variable x is a variable whose value depends on
the outcome of a random experiment. If the value space of x is countable but
not necessarily finite, then the random variable is discrete and its behaviour is

characterised by a probability mass function:

px(z) = P{x = =}

If the value space of x is uncountable, then the random variable is continuous



26 Chapter 2. Background Theory

and its behaviour is characterised by a cumulative distribution function:

Fy(z) = P{x <z}

Definition 2.10 A stochastic process is a family of random variables {x(t)}
indezxed by the time parametert. If the time index set {t} is countable, the process
is a discrete-time process, otherwise the process is a continuous-time process.
The possible values or states that members of {x(t)} can take on constitute the
state space of the process. If the state space is discrete the process is called a

chain.

2.4.2 Markov Processes

In many cases, the future evolution of a system depends only on the current
state of the system and not on past history. Stochastic processes for which this
property holds are known as Markov processes. The memoryless behaviour of

Markov processes is formally characterised by the Markov property.

Definition 2.11 A stochastic process is a Markov process satisfying the Markov
property if, for all integers n and for any sequence ty,tq,...,t, such that to <

t1 <...<t, <tpy1 we have

P{x(tns1) <2 | X(tn) = Zn, X(tn1), - -, X(t0)} = P{x(t) < = | x(tn) = 20}

The Markov property requires that the next state can be determined knowing
nothing other than the current state, not even how much time has been spent
in the current state. A consequence of the Markov property is that the sojourn

time 7 spent in a state must satisfy:
P{r>s+t|7>t}=P{r>s} Vs,t>0 (2.1)

As we shall see, this condition places restrictions on the distribution of time spent

in a state.
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Definition 2.12 A homogeneous Markov chain is a Markov chain whose

probabilities are stationary with respect to time. That is:

P{x(t) <z | x(tn) = 2o} = P{x(t — ta) < | x(0) = zn}

Discrete-time Markov Chains

A discrete-time Markov chain (DTMC) is a Markov process with a discrete state
space which is observed at a discrete set of times. Without loss of generality, we
can take the time index set {t} to be the set of counting numbers {0,1,2,...}.
The observations at these times define the random variables xg, X1, X2, - - - at time

steps 0,1, 2,... respectively.

Definition 2.13 The variables xg, X1, - - - form a discrete-time Markov chain

if for alln (n=0,1,2,...) and all states x,, we have:

P{Xn+1=$n+1 | X0 = o, X1 =331,---,Xn=33n}

= P{Xn+1 = Tn+1 | Xn = xn}

A homogenous discrete-time Markov chain may be represented by a one-step

transition probability matrix P with elements:
Pij = P{Xn+1 =2 | Xn = 2i}

where y; represents the state of the system at discrete time-step ¢ € IN. That is,
pi;j gives the probability of x; being the next state given that x; is the current
state. Note that the entries of P must satisfy:
0<p;<1Vij and > pj=1Vi
J
Definition 2.14 Let Sy denote a subset of the state space S, and Sy its comple-

ment. Then Sy is closed or final if no single-step transition is possible from any

state in Sy to any state in Sp.
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Definition 2.15 A Markov chain is irreducible if every state can be reached
from every other state. Otherwise, the state space contains one or more closed

subsets of states and the chain is reducible.

Let f}m) denote the probability of leaving state x; and first returning to that
same state in m steps. Then the probability of ever returning to the state z; is
given by:
S~ f(m)
fi= Z f j
m=1

Definition 2.16 For any state x;:

e if f; =1 then z; is recurrent; else

e z; is transient.

Definition 2.17 State z; is periodic with period n if the Markov chain can
return to state x; only at a time step in the set {n,2n,3n,...} where n > 2 is the

smallest such integer. If n =1 then z; is aperiodic.

Definition 2.18 The mean recurrence time of recurrent state x; is

m=1

which is the average number of steps taken to return to state x; for the first
time after leaving it. If M; = oo, state x; is recurrent null; otherwise x; is

recurrent nonnull (also known as positive recurrent).

Theorem 2.1 The states of an irreducible Markov chain are either all transient
or all recurrent nonnull or all recurrent null. If the states are periodic, then they

all have the same period [Kle75, pg. 29].

The most important part of Markov chain analysis is to determine how much
time is spent in each of the states x;. For a discrete-time Markov chain, we
define:

wf" = P{xn = 2;)

as the probability of finding the Markov chain in state z; at time step m.
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Definition 2.19 Let z be a vector describing a probability distribution whose
elements z; denote the probability of being in state x;. Then, z is a stationary
probability distribution of a DTMC with one-step transition matriz P if and
only if zP = z.

Definition 2.20 The limiting probability distribution {7;} of a discrete-

time Markov chain is given by:

m; = lim rim

m—r0o0
Note that the existence of a stationary distribution of a Markov chain does not
necessarily imply the existence of a limiting probability distribution, and vice

versa. The next theorem addresses the issue of when the limiting and stationary

probabilities exist.

Theorem 2.2 In an irreducible and aperiodic homogeneous Markov chain, the
limiting probabilities {n;} exist and are independent of the initial probability dis-

tribution. Moreover one of the following conditions hold:

e FEvery state x; is transient or every state x; is recurrent null, in which case
m; = 0 for all x; and there exists no stationary distribution (even though the
limiting probability distribution exists). In this case, the state space must

be infinite.

e Every state x; is recurrent nonnull with m; > 0 for all z;, in which case the

set {m;} is a limiting and stationary probability distribution and

Tj = —

M.

J

In this case the m; are uniquely determined from the set of equations:

i 7
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If # = (m,m9,...) is a vector of limiting probabilities, Eq. 2.2 can be rewritten

as

T=m7P

where P is the transition probability matrix. The vector 7 is called the steady-

state solution of the Markov chain.

If the state space of the Markov chain is finite (which we will always assume is
the case), the chain is called finite; if, in addition, the chain is irreducible and

recurrent nonnull, then it is ergodic.

Continuous-time Markov Chains

A continuous-time Markov chain (CTMC) is a Markov process with a discrete
state space and a state that may change at any real-valued time instant. Its
defining characteristic is that it possesses the Markov property of Def. 2.11 at all

time indices.

For the case of a continuous-time Markov chain, the only sojourn time distri-
bution which satisfies the sojourn time condition of Eq. 2.1 is the exponential

distribution.

A homogeneous continuous-time Markov chain may be represented by a set of
states and an infinitesimal generator matriz () where g;;, represents the transition
rate between states x; and x; for ¢ # j. The parameter of the exponential
distribution of the sojourn time in state x; is given by —g;; where q;; = — 3=, qi;-

Note that, by construction, the entries of () must satisfy:
Z qij = 0 Vi
J

Definition 2.21 Let z be a vector describing a probability distribution whose
elements z; denote the probability of being in state x;. Then, z is a stationary
probability distribution of a CTMC with infinitesimal generator matriz @ if
and only if zQ) = 0.
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Definition 2.22 The limiting probability distribution {7;} of a continuous-

time Markov chain is given by:

m; = lim P{x(t) = z;}

t—o0

Theorem 2.3 In a finite, homogeneous, irreducible, continuous-time Markov
chain, the limiting probabilities {m;} always ezist and are independent of the ini-
tial probability distribution. Moreover, the set {m;} is also a stationary probability

distribution which can be uniquely determined by solving the set of equations:

;7 + Z‘h’jﬂ'i and Zm =1 (2.3)
i#] i

The set of equations given by Eq. 2.3 is sometimes also referred to as the set of

global balance equations. In vector form, they may be written as:

Q=10

where m = (my, 79, ...) is the stationary probability distribution (c.f. Def. 2.21).

Equivalently, this system can be written as
QTT‘_T =0

which allows for the application of general numerical methods for the solution of

linear systems of form Az = b.

2.5 Numerical Methods

2.5.1 Classical Iterative Techniques

This section considers some of the oldest and best-known iterative methods for
solving linear systems of the form Ax = b. These methods are based around
matrix splittings of form A = M — N where M is non-singular (i.e. det(M) # 0).

This splitting is used to define simple iterative schemes of form:

25D — MIN 2R e



32 Chapter 2. Background Theory

where ¢ = M~'b and neither the iteration matrix M ~'N nor ¢ depends on k.

In the case of solving Az = 0 (corresponding to the set of steady state equations

Q™7™ = 0 derived from a CTMC), the schemes reduce to the form:
.’,E(k+1) — M_lNl'(k)

From this equation, the desired solution can be seen to be the eigenvector of
the iteration matrix M 'N corresponding to the eigenvalue 1. The convergence
of these methods depends on the eigenvalues of the iteration matrix M~'N. In
particular, the rate of convergence is inversely proportional to the ratio |As|/|A]|
where \; and )\, are the dominant and the subdominant eigenvalues of the itera-
tion matrix respectively [Bar89]. Consequently, these methods are only guaran-
teed to converge if the iteration matrix is primitive, i.e. if it has one and only

one eigenvalue \; with |\;| = 1.

The three most commonly used classical iterative methods of this form are pre-

sented below.

Jacobi’s Method

Jacobi’s method [Var62, §3.1] [Ste94, §3.2.2] [HY81, §2.3] is a simple iterative
method based on the observation that solving Ax = b is equivalent to finding the

solution to the n equations:

n
Zaijxj:bi 7;:1,2,...,7'1,
J=1

Now, solving the ith equation for z; yields:
1
T; = _(bz — Zaijacj)
i i
which suggests the iterative method:
1
mgk—i—l) = _(bz — Z awacgk)) (24)
G g

where £ > 0 and z(? is an initial guess at the solution vector.
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If we write A = D — L — U where D = diag(a11, a2, ..., as,) and L and U are
strictly lower and upper triangular matrices respectively, Eq. (2.4) can be written

in matrix form as:

#* ) = D=YL 4+ U)z® + Db

where D™}(L + U) is the iteration matrix characterising the convergence be-
haviour of the algorithm. The Jacobi method does not always converge for all
types of matrices, but one class of matrices for which it is guaranteed to converge
is the class of diagonally dominant matrices [KGGK94]. Matrix A is diagonally

dominant if and only if |a;| > 3°;.; |ai;|-

Note that the calculations of the xgk)s are independent of one another which

means equation updates can be performed in parallel.

Gauss-Seidel

The Jacobi method can be improved on by using the newly computed results
for z; as soon as they are available within an iteration. The resulting method is
known as the Gauss-Seidel method [Var62, §3.1], [Ste94, §3.2.3] which is given
by:

7 = (b= Y ayal Y = 3 ayal) fas (2:5)

j<i §>i

In matrix form, Eq. 2.5 can be written as:
2* ) = (D — L) Y (Uz™ +b)

where (D — L) 'U is the iteration matrix characterising the convergence be-
haviour of the algorithm. This iteration matrix improves considerably on the
convergence properties of the Jacobi method. However, as was the case for the

Jacobi method, the Gauss-Seidel method is not always guaranteed to converge

[KGGKO4)].

Note that the computations of Eq. 2.5 appear to be serial in nature since the
(k)

calculations of the z;”’s now depend on one another. However, if A is sparse and

several coefficients are zero, then elements of the new iterate are not necessarily
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dependent on previous elements. By reordering the equations in this situation,
it is sometimes possible to make updates to groups of components in parallel

[BBC+94, §3, §4.4].

Successive Overrelaxation (SOR)

Successive Overrelaxation (SOR) [Var62, §3.1] [Ste94, §3.2.4] is an extrapolation
technique for accelerating the convergence of the Gauss-Seidel algorithm. The
extrapolation works by taking a weighted average of each element of the previous

iterate and each element of the newly-computed Gauss-Seidel iterate, i.e.

5D = gk o (1- w)wgk) (2.6)

i i

(k+1)

where T; is the ith element of the newly-computed Gauss-Seidel iterate and

o

., 1s ith element of the previous Gauss-Seidel iterate.

In matrix form, Eq. 2.6 can be written as:
g* ) = (D — wL) HwU 4 (1 — w)D)2® + w(D — wL) b
with iteration matrix

L,=(D—wL) 'Y(wU + (1 -w)D).

Note that if w = 1, the method reduces to the Gauss-Seidel algorithm. In the
case w > 1, we speak of overrelaxation and in the case w < 1, we speak of
underrelaxation. The SOR method converges only for values of w in the range

0<w<2.

In the case of solving Az = 0, the optimal value of w is that value which maximizes
the difference between the dominant and subdominant eigenvalues of L, thus
resulting in the fastest covergence rate. Unfortunately, methods for choosing
this optimal value of w are only known for very restricted classes of matrices
[HY81]. Consequently, implementations usually use heuristic adaptive parameter
estimation schemes to guess a value for w which is adjusted every few iterations

according to the rate at which the method is converging.
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2.5.2 Krylov Subspace Techniques

Krylov subspace techniques [Wei95] [FGN92| [Ste94, §4.3], also referred to as
projection methods, are a popular class of iterative methods for solving large
systems of linear equations. Many conjugate-gradient type algorithms and their
variants are included in this category. They derive their name from the fact that
they generate their iterates using a shifted Krylov subspace associated with the
coefficient matrix of the system. Before defining a Krylov subspace formally (c.f.
Eq. 2.8), we will first provide an overview of the advantages of Krylov subspace

techniques.

Krylov subspace techiques have been used to solve systems of linear equations
arising from a wide range of scientific and engineering applications including fluid
dynamics, atmospheric modelling, structural analysis and finite element analysis.
There are three main reasons for this widespread use. Firstly, the methods exhibit
good convergence behaviour while being parameter-free. The original conjugate
gradient algorithm, for example, provides the same order of convergence as opti-
mal SOR, but without the need for dynamic parameter estimation. Secondly, the
methods have become increasingly competitive with classical iterative methods
in terms of memory utilization. The most recently developed methods (e.g. CGS
[Son89], BiCGSTAB [Vor92], TFQMR [Fre93]) do not require storage of large
sequences of vectors (as does GMRES [SS86]), nor do they require multiplication
with the transpose of the coefficient matrix (as do BiCG [Fle76], QMR [FN91]
and CGNR/CGNE [Yan94]). Finally, the methods are well suited to implementa-
tion on parallel computers. Since most Krylov subspace methods compute one or
two matrix-vector products and several vector inner products every iteration, the
methods can be parallelised by distributing the matrix across processing nodes
and using the inner products as synchronization points. For a discussion of the
issues involved, see [Saa89] and [GKS95]. In practice, superlinear speedups have

been achieved [Bou95], probably as a result of efficient cache utilization.

The development of Krylov subspace techniques began in the early 1950s with the
conjugate gradient (CG) algorithm of Hestenes and Stiefel [HS52]. This algorithm
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is used to solve n x n linear systems of form Ax = b where A is a symmetric
positive definite (SPD) coefficient matrix. Matrix A is said to be positive definite
if z7 Az > 0 for all non-zero n-vectors x. The CG method is regarded as an
attractive algorithm for two main reasons. Firstly, the algorithm has very modest
memory requirements because it uses simple three-term recurrences. Secondly,
the algorithm has good convergence properties since the residual is minimized
with respect to some norm at each step. The generated residuals are also mutually

orthogonal, which guarantees finite termination.

Several algorithms have since been devised to generalise the CG algorithm to
allow for arbitrary (i.e. not necessarily symmetric or positive definite) coeffi-
cient matrices. Unfortunately, algorithms for non-symmetric coefficient matrices
cannot maintain both the short recurrence formulation and the minimization
property (see Faber and Manteuffel’s paper [FM84] for proof). Thus, by trading
off certain optimality conditions against the amount of memory required, three

main classes of CG variants have been developed:

e Algorithms which attempt to preserve both properties by transforming a
linear system based on a non-symmetric coefficient matrix A into an equiv-
alent system based on the symmetric positive definite matrix A” A (CGNR)
or AAT (CGNE). This approach is known as conjugate gradient applied to

the normal equations.

e “Pure” algorithms for non-symmetric A which are based on maintaining
either the short recurrence formulation (e.g. BiCG [Fle76]) or the mini-

mization property (e.g. GMRES [SS86]) but not both.

e “Hybrid” methods for non-symmetric A which seek to combine elements
of the short recurrence formulation with minimization properties that are
either heuristic (e.g. CGS), localized (e.g. BiCGSTAB) or quasi-optimal
(e.g. QMR). This class includes most of the more recently developed CG-
type methods such as CGS [Son89], QMR [FN91], BiCGSTAB [Vor92],
BiCGSTAB(l) [SF93], and TFQMR [Fre93]).



2.5. Numerical Methods 37
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Conjugate Krylov Subspace methods

Figure 2.6: An overview of Krylov subspace techniques



38 Chapter 2. Background Theory

Many authors have attempted to resolve the confusion resulting from the de-
velopment of all these methods by using unifying mathematical frameworks to
explore the relationships between them (see e.g. [Wei95|, [Wei94], [Gut93a] and
[AMS90]). Fig. 2.6 presents a conceptual overview of the most important tech-
niques. The arrows show the relationships between the methods, i.e. how the
methods have been generalised from their underlying basis-generating algorithms

and also how key concepts have been inherited from one algorithm to the next.

Principles of Krylov Subspace methods

To formalise the concept of a Krylov subspace method, we consider a linear
system Ax = b where A is a real n X n non-symmetric matrix and z,b € R".
Let zy be an initial guess at the solution vector x with corresponding residual
ro = b — Axg. Then, using the notation of Weiss [Wei95], Krylov subspace

techniques generate subsequent iterates z; according to the formula:
Ty = Tk—gy, + dk, dk € span(qk_,,k,k, . ,Qk—l,k) for k = 1, 2, . (27)

where ¢;_;x € R", 0, denotes the number of previous ¢ vectors used in the cal-
culation of new iterates and span(gx_s, k, - - -, Qk—1) is the vector space spanned
by all linear combinations of the n-vectors gx_s, ..., qx—1,. Usually all previ-
ous g vectors are used i.e. o, = k, in which case we speak of an ezract method.
However, sometimes methods are restarted every o, steps to limit their memory
consumption, i.e. ox = (k—1) mod 0,5+ 1. In this case, we speak of a restarted

method.
The q vectors are generated to fulfill two conditions:
e Firstly, each g, is a member of the Krylov subspace:
ICk—H—l(B? Z) = Span(z, BZ: BQZ, R Bk_iz) (28)

where B is an n X n matrix and z € R". For almost all Krylov subspace

methods of practical interest (and for all the methods discussed here), B =
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A and z = 1y, i.e. each g, lies in the Krylov subspace
Ki_is1(A,m) = span(rg, Arg, A?rg, ..., AF7iry) (2.9)

Eq. 2.9 characterises a broad class of methods known as Conjugate Krylov
Subspace (CKS) techniques. From the definition of g;_;; and Eq. 2.7, it
follows that

Equivalently,

i.e. the iterates lie in a shifted Krylov subspace associated with the coeffi-

cient matrix of the system.
e Secondly, the g vectors satisfy the orthogonality condition:
’I‘%quk_i,k =0 fori= 1,...,O'k (2-11)

where the Zj; are auxiliary non-singular matrices. This equation can be
considered a weak formulation of the condition that the residual is vanishing

for the true solution [Wei95]. Methods characterised by constant Zj, i.e.
Zy =17

are known as generalised CG methods and correspond to methods derived
from applying the CG algorithm to the normal equations and “pure” meth-
ods closely related to the basis construction algorithms of Lanczos and

Arnoldi.

Note that the choice of o reflects the depth to which the subspace of Eq. 2.8 is
constructed and also the depth to which the orthogonality condition of Eq. 2.11

is maintained.
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CG ALGORITHM

1. Initialise
e ro=0b— Axg
® Do =To
2. Iterate
e for k=1,2,...

Qg1 = TkT_lTk—l/pqupk—l
Tk = Th—1 + Og—1Pk—1

Tk = Th—1— Q_1APr_1

Br = i T/ TE-1Tk—1

Pk = Tk + BrPr—1

Figure 2.7: The conjugate gradient algorithm.

The Classical Conjugate Gradient Algorithm

We now discuss the classical conjugate gradient algorithm [HS52] in detail, and
show how it fits into the framework presented above. Fig. 2.7 presents the algo-
rithm, which provides an efficient means of solving linear systems of form Az = b
when A is symmetric positive definite (SPD). The central idea is to minimize the

function:

1
flze) = éfoxk —z"b (2.12)

which has a unique minimum (given SPD A) when its gradient

0
a—:]i:Axk_b:_rk

is zero, so the value of z; minimizing Eq. 2.12 is also the solution to Az = b.
To perform the function minimization, a sequence of search directions p; are

generated starting with py = ry; these are used to improve the iterates according
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to the recurrence:

Tk+1 = Tk + QP (2.13)

Tk+1 = Tk — akApk (214)

Per1 = Tki1+ OkDr (2.15)
where

riry
ap =
P APk

is chosen to minimize f(zyy1) over the subspace (pg,p1,.-.,px) and

T

B = Te+1Tk+1

Y = T
7']%17']9

is chosen to update the p vectors such that they are A-conjugate to one another,

i.e. such that the conjugacy condition
pZApj =0 forj<k

holds. Note that, since the p, are non-zero and non-zero A-conjugate vectors
are linearly independent, the algorithm should terminate in m < n steps (given

exact arithmetic).

Multiplying Eq. 2.13 on the left by — A and adding b yields the update formula for
the residuals given in Eq. 2.14. The residuals satisfy the orthogonality conditions:

rir;=0 and r{p;=0 forj <k (2.16)

An inductive proof of the first orthogonality condition (i.e. 7fr; = 0) is given in
[GL89, §10.2.5]; the proof may also be derived by specialising a similar proof for
the biconjugate gradient algorithm given [Fle76, §5]. The second orthogonality
condition (i.e. rjp; = 0) follows by rewriting Eq. 2.15 as

k
Pk =Tk + Br-17k-1 + Be1Bk—2Th2+ - -+ (Bo-1Bk—2 ... Bo)ro = D_viri (2.17)
i=0

Changing the index from £ to 7 and multiplying on the left by r; yields:

J
rhp; =D VirgTi =0 (2.18)
=0
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by the first orthogonality condition.

From Eq. 2.17, Eq. 2.13 can be rewritten as:

k—1
Tk = Tp—1 + Qg—1Pk—1 = To + Z YiTi (2.19)
i=0
Multiplying on the left by —A and adding b gives:
k—1
TR = To — Z ~; Ar; (2.20)
i=0

Applying this equation to itself to yield an expression for 7 in terms of ry yields

Ty = TO_'YOATO_’YIA'Fl_---_’Yk—lATk—l
= 19— YAry — 11 A(ro — Y Are) — Y2 A(ro — M1 A(ro — Y0 ATY)) — ...
- ’Yk—lA(To - ’Yk—zA(To — .. 7114(7’0 - 70147“0)) .- )

k
= To— ZéiAiT() (221)
i=1

i.e. v}, € span(rg, Arg, Arg, ..., AFry), which is the Krylov subspace spanned by
A and ry. It now follows from Eq. 2.19 that:

Ty € o + span(ro, Arg, A%rg, ..., AFrg) (2.22)

so the iterates lie in a shifted Krylov subspace spanned by A and ro. This property
holds for all exact conjugate Krylov subspace methods (cf. Eq. 2.10).

Note that Eq. 2.21 can be used to express 7 in polynomial form, i.e.

where

k=1

T(A) = (I 5AY

i=1
This representation is just a formal way of expressing 7, as a polynomial in A
applied to a starting residual; Wi(A) is not explicitly computed but is rather
implicitly computed as the algorithm proceeds. The importance of this resid-
ual polynomial representation will become apparent when considering the devel-

opment, of variants of the Bi-Conjugate Gradient algorithm such as CGS and
BiCGSTAB.
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Relating these results to the framework presented in the sections above, we see
the CG algorithm is an exact Krylov subspace method (i.e. o = k) with ¢;_; , =
rr—; and Zy = I. Substituting these parameters into Eq. 2.11 yields the first
orthogonality condition of Eq. 2.16 i.e. 7ir; = 0 for k # j. Also, from Eq. 2.22,
the g_;x are equivalently given by gz ;1 = A¥'ry, so B = A and z = ry. Since

Zy, = I is constant, CG falls into the class of generalised CG methods.

The convergence rate of the conjugate gradient algorithm depends on the spectral
condition number k = Kka(A) = Apnaz/Amin Where Apap and A, are the largest
and smallest eigenvalues of A respectively [GL89, §10.2.8]. In particular, the

error at iteration k is bounded by:

k
k—1
lella = llz = wella < 20l xonA(—f )

VR +1

where ||e||4 denotes the A-norm given by Vel Ae. Like optimal SOR, the rate
of convergence is proportional to k2. More complex convergence results taking

into account the entire spectrum of A are given in [SV86].

From Basis Construction Algorithms to Krylov Subspace Methods

Having considered the CG algorithm in detail, we now consider the evolution of

the broader class of Krylov subspace methods (c.f. Fig 2.6).

Many Krylov methods involve the construction of an orthogonal or biorthogonal
basis (c.f. Eq 2.24 and Eq. 2.25) for the Krylov subspace of Eq. 2.8. Algo-
rithms for constructing such bases have been known since the 1950s. Three of
the most important algorithms, and the Krylov methods that make use of them,

are described below:

e The symmetric Lanczos algorithm [Ste94, §4.5.1] uses short recurrences
to construct an orthonormal basis (v, vo,...,v;) for a symmetric matrix
A. At iteration k, the basis spans the Krylov subspace generated by A and

V1, i.e.

span(vi, va, ..., v) = Ki(vi,A) = span(vi, Avy,..., AF"1oy)
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Since the generated basis is orthonormal, the vectors vy, vs, ..., v, satisfy

the orthogonality condition

viv; =0 fori#j (2.24)

There is a close relationship between the symmetric Lanczos algorithm and
the classical conjugate gradient algorithm; in fact, the conjugate gradient
algorithm may be derived from the Lanczos algorithm and vice versa [GL89,

§9.3.1 and §10.2.6].

An obvious way to attempt to extend the CG method to non-symmetric
matrices is to multiply a non-symmetric system Az = b on both sides by
AT yielding:

ATAz = ATh =y

This leads to a technique for minimizing the two-norm of the residuals

(i.e. minimizing ||| = \/r% +73 +...+12) at each step (CGNR [Yan94,

§2.5]). Alternatively, one can solve the system:
AATZz =

for z and compute the desired solution as x = ATz This leads to a
technique for minimizing the two-norm of the error at each step (CGNE
[Yan94, §2.4]). However, these methods are not used in practice since they
exhibit poor convergence and accuracy, have high memory requirements

and require both row and column access to A.

The non-symmetric Lanczos algorithm [FGN92, §3.1] generalises the
symmetric Lanczos algorithm to the non-symmetric case. However, since
A is non-symmetric, it is now impossible to use a single short recurrence to
generate an orthonormal basis for A. Instead, the non-symmetric Lanczos
algorithm uses simple three-term recurrences to construct a pair of vector

sequences vi, Vg, ...,V and wq, Wo, ..., wy such that

span(vy, va, ..., v) = Kg(vr, A)

Span(wl, W2, - - - ’U)k) = K:k(wla AT)
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and such that the biorthogonality condition
wiv; =v]w; =0 fori#j (2.25)

is satisfied.

Fletcher’s Bi-Conjugate Gradient (BiCG) algorithm [Fle76] is a re-
formulation of the non-symmetric Lanczos algorithm. Since the residual-
minimizing property of CG has been lost, BiCG can produce highly os-
cilliating residuals and can break down. Despite this erratic convergence
behaviour and the need to perform matrix-vector multiplications with both
A and AT, BiCG is significant because it led directly to the development of

several more efficient techniques with faster and/or smoother convergence.

In the BiCG algorithm, it can shown that the residual at the kth step 7y
is computed as the initial residual ry multiplied by a matrix polynomial
of degree k (c.f. Eq. 2.23). The Conjugate Gradient Squared (CGS)
method improves on BiCG by applying this polynomial twice (like a con-
traction operator) to reduce 7y faster. The resulting convergence is much
faster than BiCG but is sometimes more erratic, resulting in large local
peaks in the convergence graphs. A further advantage of CGS is that it

removes the need to multiply with AT,

The BiCGSTAB method attempts to smooth the convergence of CGS by
using two different polynomials to reduce r instead of applying the same
polynomial twice. The first polynomial is the same as that used by BiCG
and the second is derived from GMRES(1) (see below). BiCGSTAB2
[Gut93a] extends the scheme to a hybrid combination of BiCG and GM-
RES(2) while BICGSTAB(/) [SF93] takes the generalisation to its logical
conclusion by combining BiCG and GMRES(l). BiCGSTAB(!) generally
converges better than BICGSTAB because it performs a better local mini-

mization and maintains a more stable underlying BiCG process [SV95].

e Arnoldi’s method [Ste94, §4.4.1] is another generalization of the symmet-

ric Lanczos method to non-symmetric matrices. However, instead of con-
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structing a biorthonormal basis for A by using short recurrences, Arnoldi’s

method uses long recurrences to generate a single orthonormal basis

(’01,’02, .. .,Uk)

that spans the Krylov subspace generated by A and v; i.e.

span(vy,va, ..., vx) = Kg(v1, A)

The algorithm is expensive because calculation of vy at the kth iteration

requires the use of vectors vy, vy, ..., Vg 1.

The Arnoldi process was central to the development of the Generalised
Minimum Residual (GMRES) algorithm [SS86]. The kth GMRES
iterate is given by:

T = To + 2k

where the correction z; is chosen from the Krylov subspace

Ki(A, 7o) = span(rg, Arg, A%rg, ..., A¥ 1) (2.26)

such that z; minimizes the two-norm of the kth residual,

I7kll2 = [|b — Ao + 2&)||2 = [|ro — Azil|2

Determining the correction zj involves constructing a basis for Ki(A,ro)
and then solving a k-dimensional least-squares problem for the coefficients
of that linear combination of the basis elements which minimizes the sum

of squares of the elements of the residual vector.

GMRES is optimal in the sense that it provides the smallest residual for
a fixed number of iteration steps. However, the cost of maintaining this
optimality increases with each iteration step. In practical implementations,
GMRES is therefore usually restarted every m iterations. This restarted
form is called GMRES(m). However, for reasonable values of m (say m >
20), GMRES(m) uses so much memory that it is generally not competitive

with other algorithms in terms of space.
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The QMR algorithm of Freund and Nachtigal [FN91] also takes a least
squares approach to minimizing residuals, but uses a cheaper quasi-optimal
property. In addition, it uses the biorthogonal basis of BiCG which can be
generated using short recurrences. The resulting algorithm requires less

memory than GMRES, but still requires multiplication with A and A”.

Since QMR is the result of applying quasi-minimal smoothing to the BiCG
algorithm, it may also be beneficial to apply quasi-minimal smoothing to
the CGS algorithm. Doing this leads to Freund’s Transpose-free QMR
(TFQMR) algorithm [Fre93] which, like CGS, has the advantage that
it does not involve multiplications with AT. CGS and TFQMR are closely
related since TFQMR may be derived from CGS by changing only a few
lines in the algorithm and the CGS iterates may be easily recovered from

the TFQMR process.

For the steady-state solver of Chapter 5 we use the CGS method because
it exhibits good convergence behaviour, it does not require multiplication
with AT and it has the lowest memory requirement of the algorithms for

non-symmetric matrices (requiring space for A and 7 n-vectors).



Chapter 3

Contemporary Methods for
Large Markov Chains

This chapter reviews several modern approaches to the problem of constructing
and analysing stochastic models with large underlying state spaces. Both ma-
jor phases in the analysis pipeline, i.e. state space generation and steady-state

solution, are considered.

3.1 State Space Generation Techniques

3.1.1 Introduction

The first challenge in the quantitative (and qualitative) analysis of stochastic
models of concurrent systems is to generate all reachable states or configurations
that the system can enter. The main obstacle to this task is the huge number
of states that can emerge from models of complex systems. This problem is
compounded by the large size of individual state descriptors. Consequently there
are severe memory and time constraints on the number of states that can be

generated using simplistic approaches based on explicit exhaustive enumeration.

This section presents an overview of a representative cross-section of sophisti-

cated contemporary approaches that have been developed in order to tackle this

48



3.1. State Space Generation Techniques 49

state explosion problem. The approaches can be classified into four categories:
probabilistic methods, which achieve large space savings at the cost of possibly
omitting states, symbolic state space techniques which make use of implicit state
representations, reduction techniques which attempt to reduce the size of the in-
dividual states, the number of states in the state space and/or the number of
arcs in the state graph, and parallel and distributed approaches, which are pri-
marily directed at using multiple processors to reduce time and increase available

memory.

3.1.2 Probabilistic Algorithms

A useful, but seemingly bizarre, method of dealing with a problem that seems to
be computationally infeasible is to relax the requirement that a solution should
always produce the correct answer. Adopting such a probabilistic or randomized
approach can lead to dramatic memory and time savings. At the same time, the
risk of producing an incorrect result needs to be quantified and kept very small

if the solution is to be useful in practice.

The Case for Probabilistic Algorithms

A good example of how probabilistic algorithms can be useful arises in the pri-
mality problem, for which no polynomial time algorithm is known. The problem
is to determine whether a given n-digit number x is prime. The natural solution
of dividing = by every smaller number has exponential complexity (in terms of
the number of digits n) and is infeasible even for moderate values of n such as
20 or 30. A slightly faster algorithm results from dividing by all prime numbers
less than /z, but this is still infeasible.

Fig. 3.1 shows a probabilistic algorithm for the primality problem (adapted from
[GL87]). Here k is a constant such as 20 or 30, GCD(z, y) is the greatest common
divisor function and J(y,z) — (—1,0,1) is the Jacobi symbol. Both GCD(z, y)
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function prime(z : integer) : boolean
begin
for n =1 to k£ do begin
y = a random number between 1 and x — 1
if GCD(z,y) # 1 then
return false
if 4@ 1/2 mod = # J(y,z) then
return false
end
return true

end

Figure 3.1: Probabilistic prime testing algorithm

and J(y, r) are simple functions that can be calculated quickly'.

The algorithm is based on the mathematical fact that if x is an odd prime num-
ber, then for every integer 1 < y < x — 1, it holds that GCD(z,y) = 1 and
y@ /2 mod z = J(y,x). If z is not prime, it can be proved that there is at
least a one in two chance that a randomly chosen y will violate one of these
conditions [GL87]. Therefore after k loop repetitions, the chance of incorrectly
reporting x as prime when it is in fact not prime, is less than 27%. By raising
k we can arbitrarily increase the reliability of the algorithm at logarithmic run
time cost. When £ is around 40, the algorithm is probably more reliable than

most computer hardware.

Besides yielding superior theoretical asymptotic run time bounds, the algorithm
also performs very well in practice. Indeed, while conventional methods are
limited to numbers with 30 digits or less, improved variants of this algorithm
have even smaller error probabilities of 2% and can verify the primality of 100-

digit decimal numbers in under 10 minutes [Rab80].

lsee e.g. http://www.utm.edu/research/primes/glossary for code for both functions
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Application to State Space Generation

Research into probabilistic algorithms for solving the primality problem has been
focused on reducing asymptotic run time bounds. By contrast, the application
of probabilistic methods to state space generation has been driven primarily by
a need to reduce memory requirements. In particular, the memory consumption
of explicit state space generation algorithms is heavily dependent on the layout
and management of a key data structure known as the explored state table. This
table prevents redundant work by identifying which states have already been en-
countered. Its implementation is particularly challenging because the table is
accessed randomly and must be able to rapidly store and retrieve information
about every reachable state. One approach is to store the full state descriptor of
each state in the table. This ezhaustive approach guarantees full coverage, but at
very high memory cost. Probabilistic methods use one-way hashing techniques to
drastically reduce the amount of memory required to store states. However, this
introduces the risk that two distinct states will have the same hashed representa-
tion, resulting in the misidentification and omission of states in the state graph.
Naturally, it is important to quantify this risk and to find ways of reducing it to

an acceptable level.

The next sections review three of the best-known probabilistic methods. In each
case, we include an analysis and discussion of memory consumption and the

omission probability.

Holzmann’s Bit-state Hashing Method

Holzmann’s pioneering bit-state hashing (or supertrace) technique [Hol91, Hol95]
was developed in an attempt to maximize state coverage in the face of limited
memory. The technique has proved popular because of its elegance and simplicity
and has consequently been included in many research and commercial verification

tools.

In Holzmann’s method, the explored state table takes the form of a bit vector
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T. Initially all bits in T are set to zero. States are mapped into positions in
this bit vector using a hash function A, so that when state s is inserted into the
table its corresponding bit T'[h(s)] is set to one. To check whether a state s is
already in the table, the value of T'[h(s)] is examined. If it is zero, we know that
the state has definitely not been previously encountered; otherwise it is assumed
that the state has already been explored. This may be a mistake, however, since
two distinct states can be hashed onto the same position in the bit vector. The
result of a hash collision will be that one of the states will be incorrectly classified
as explored, resulting in the omission of one or more states from the state space.
Assuming a good hash function which distributes states randomly, the probability
of no hash collisions p when inserting n states into a bit vector of ¢ bits is:

p= e = =1 (-)

1=0

Assuming the favourable case n << t and using the approximation e* ~ (1 + z)

for |z| << 1, we obtain:

2

n—1 —i/t En—l _i/t _n(n—l) n—n
p%HeZ/:e i=0 Z/:e 2%t — e 2t
=0

Since n? >> n for large n, a good approximation for p is given by:

The corresponding probability of state omission is ¢ = 1 — p. Unfortunately
the table sizes required to keep the probability of state omission very low are
impractically large. For example, to obtain a state omission probability of 0.1%
when inserting n = 10° states requires the allocation of a bit vector of 125TB.
The situation can be improved a little by using two independent hash functions
hy and hy. When inserting a state s, both T'[hi(s)] and T'[hs(s)] are set to one.
Likewise, we conclude s has been explored only if both T'[h(s)] and T'[hy(s)] are
set to one. Wolper and Leroy [WL93] show that now the probability of no hash
collisions is:

an3
prRe 2.
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However the table sizes required to keep the probability of state omission low
are still impractically large. Using more than two hash functions helps improve
the probability slightly; in fact it turns out that the optimal number of functions
is about 20 [WL93]. However, computing 20 independent hash functions on
every state is expensive and the resulting algorithm is very slow. The strength
of Holzmann’s algorithm therefore lies in the goal for which it was originally
designed, i.e. the ability to maximize coverage in the face of limited memory,

and not in its ability to provide complete state coverage.

Wolper and Leroy’s Hash Compaction Method

Holzmann’s method requires a very low ratio of states to hash table entries to
provide a good probability of complete state space coverage. Consequently, a
large amount of the space allocated to the bit vector will be wasted. Wolper
and Leroy observed that it would be better to store which bit positions in the
table are occupied instead [WL93|. This can be done by hashing states onto
compressed keys of b bits. These keys can then be stored in a smaller hash table

which supports a collision resolution scheme.

Given a hash table with m > n slots, the memory required by this scheme is:
M= mb+m)/8=m(b+1)/8

since we need to store the keys, as well as a bit vector indicating which hash table
slots are occupied. If we wish to construct the state graph efficiently, states also
need to be assigned unique state sequence numbers. Given s-bit state sequence

numbers, total memory consumption in this case is:
M=mb+s+1)/8.

In terms of the reliability of the technique, this approach is equivalent to a bit-
state hashing scheme with a table size of 2°, so the probability of no collision p
is given by:

n
PR e 20F1
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Wolper and Leroy recommend compressed values of b = 64 bits, i.e. 8-byte

compression.

Stern and Dill’s Improved Hash Compaction Method

Leroy and Wolper do not discuss exactly how states are mapped onto slots in
their hash table. It seems to be implicity assumed that the hash values used
to determine where to store the b-bit compressed values in the hash table are
calculated using the b-bit compressed values themselves. Stern and Dill [SD95]
noticed that the omission probability can be dramatically reduced in two ways —
firstly by calculating the hash values and compressed values independently and
secondly by using a collision resolution scheme which keeps the number of probes
per insertion low. This improved technique is so effective that it requires only 5
bytes per state in situations where Wolper and Leroy’s standard hash compaction

requires 8 bytes per state.

Given a hash table with m slots, states are inserted into the table using two
hash functions h(s) and hy(s). These hash functions generate the probe se-
quence R (s), R (s),..., AV (s) with A (s) = (hi(s) + ihe(s)) mod m for
1 = 0,1,...,m — 1. This double hashing scheme prevents the clustering as-
sociated with simple rehashing algorithms such as linear probing. A separate
independent compression function h3 is used to calculate the b-bit compressed

state values which are stored in the table.

Slots are examined in the order of the probe sequence, until one of two conditions

are met:

1. If the slot currently being examined is empty, the compressed value is in-

serted into the table at that slot.

2. If the slot is occupied by a compressed value equal to the hs(s), we assume

(possibly incorrectly) that the state has already been explored.
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Total memory consumption is the same as for Wolper and Leroy’s hash com-

paction method, i.e.

M=mb+s+1)/8

where we assume a bit vector indicates which hash slots are used, and s-bit unique
state sequence numbers are used to identify states for efficient construction of the

state graph.

Given m slots in the hash table, n of which are occupied by states, Stern and

Dill prove that the probability of no state omissions p is given by

()

k=0 |j=0 m—7J;Zom—1

This formula takes O(n?®) operations to evaluate. Stern and Dill derive an O(1)
approximation given by

2n+2mn—n2

+1
(2” . 1) RS e "

An upper bound for the probability of state omission q is

1
q < o [(m+1)(Hms1 — Hn—nt+1) — 1]

where H, = Y>}_; 1/k is the nth harmonic number [SD95|. This probability rises
sharply as the hash table becomes full, since compressed states being inserted are
compared against many compressed values before an empty slot is found. Stern
and Dill derive a more straightforward formula for the approximate maximum

omission probability for a full table (i.e. with m = n):

1
q~ ﬁm(lnm -1)

which shows the omission probability is approximately proportional to m Inm.
Increasing b, the number of bits per state, by one roughly halves the maximum

omission probability.
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3.1.3 Symbolic State Space Representations

An interesting technique for combating the state space explosion problem is to
represent the state space symbolically instead of explicitly. The strength of this
approach lies in its ability to exploit regularity and structure, resulting in compact

representations of certain very large state spaces.

A popular symbolic representation that is often used in the design and analysis
of digital circuits is the binary decision diagram (BDD) [Bry86]. Like a truth
table or a Karnaugh map, a BDD is a representation of a boolean function f :
{0,1}™ — {0,1}. Alternatively, in the context of state space exploration, a BDD
can be thought of as a data structure which represents a set of bit vectors of

equal length.

X1
1
0
X2
0
X3
1 1
0 X4
0 1
0 1

Figure 3.2: A binary decision diagram corresponding to the boolean function

(1 AN z3) V (23 A T4).

A BDD takes the form of a directed acyclic graph (DAG) where each vertex
has either zero or exactly two successors. The leaf vertices indicate the re-

sult of the function and are labelled by @ and . Each interior vertex is
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labelled by a variable, and its output edges are labelled 0 and 1 correspond-
ing to the two possible values of the variable. Fig. 3.2 shows a BDD corre-
sponding to the boolean function (z1 A x3) V (z3 A z4), or, equivalently, the set
{0011, 0111, 1011, 1100, 1101, 1110, 1111}. A vector z1x2x3x4 is in the set if and
only if a traversal of the graph from the root leads to a leaf node labelled .
At each stage of the traversal, the value of z; determines the output edge taken

from node z;.

begin
E=F ={so}
repeat
T = succ(F)
N=T-F
F=N
E=FUN
until (N = ()
end

Figure 3.3: Algorithm for symbolic state space generation.

Fig. 3.3 represents an algorithm which performs a symbolic state space traversal
starting from an initial state sy [PRCB94]. Here E, F, T and N are BDDs
representing sets of explored, from, to and new states respectively, while succ(F)
is a transition function that returns a BDD describing the set of successors of the

states in F'.

The algorithm processes several states simultaneously, since at each step it calcu-
lates all states reachable in one step from the set of states F'. Only the successor
states that are new are considered in the next iteration, and the algorithm ter-
minates when no new states are generated. The total number of iterations per-
formed thus depends on the depth of the state graph, i.e. the maximum number
of transitions from the initial state to the first occurrence of any of the reachable

states.

BDDs have been used to analyse certain circuits with more than 10%° states
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[BCM*92], which is many orders of magnitude beyond the bounds of known ex-
plicit state enumeration methods. However, BDDs are not always effective in
preventing a state space explosion — some common circuits like combinatorial
multipliers have BDDs that grow exponentially in the size of the input and cer-
tain common applications like directory-based cache coherence protocols exhibit
close-to-worst-case behaviour [SD98]. In addition, small differences in the bit
ordering used to encode states can have a tremendous influence on the size of
the resulting BDD. However, the problem of determining the optimal encoding
is known to be NP-complete [BW96]. Finally, the crucial factor in determining
memory consumption of BDD-based techniques is not the size of the final BDD,
but rather the peak size of the intermediate BDDs used in the state space con-
struction algorithm. This size can be larger than the final BDD by a factor of 10
or more [PRCBY4].

We conclude that BDDs are effective at representing certain very large state
spaces. However, their success depends on the state space being sufficiently
regular and on the application of heuristics regarding good bit orderings. Without
this, BDDs do not necessarily behave better than straightforward explicit state
space encodings [HMS99].

3.1.4 Reduction Techniques

Reduction techniques seek to reduce the size of the state vector, the number of
states in the space space and/or the number of arcs in the state graph. Unfortu-
nately, while many of these methods preserve logical properties, only a few can
be applied in context of performance analysis unless the user is willing to accept

approximate results.

Model transformations

It is often useful to apply reduction transformations to the system model before

the state space is generated. Besides reducing the size of the state space and
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state graph, this type of pre-processing also shortens the size of the state vector.
Reduction transformations are therefore usually applied before using methods
that are highly sensitive to the length of the state vector, such as BDD-based

approaches.

Three important types of model transformations are:

e System transformations. In some cases it is possible to use formalism-
specific system transformations to reduce the model to a simpler one.
Fig 3.4 shows some transformations from [Mur89] that can be applied to
Petri nets, including (a) fusion of series places, (b) fusion of series tran-
sitions, (c) fusion of parallel places, (d) fusion of parallel transitions, (e)
elimination of self-loop places and (f) elimination of self-loop transitions.
While these transformations preserve correctness properties, they do not

preserve performance analysis results.

e Redundant variable removal. The structure of models often preserves fixed
relationships between certain elements in the state vector. Such relation-
ships are often known at design time e.g. the number of customers in a
closed queueing network remains constant. In addition there is a well de-
veloped theory of structural invariants to automatically derive these rela-
tionships for Petri net models [BK95]. These invariants can be exploited to

safely reduce the size of the state vector by discarding superfluous elements.

e Remnant variable elimination. The future behaviour of a system usually
depends on all elements of the current state vector. Sometimes, however,
the evolution depends only on a subset of the elements in the state vec-
tor. This is especially the case for modular systems that consist of many
components each of which has its own internal state. State vector elements
outside of the subset may contain different values, but all values eventu-
ally lead to the same future behaviour. Such values are analogous to the

“don’t-care” values in Karnaugh maps and are known as remnant variables

[Valog].
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Figure 3.4: Six Petri net reduction transformations.
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Remnant variables do not affect the behaviour of the system or affect the
results of performance analysis, but they do contribute unnecessary states
to the state space and arcs to the state graph. To eliminate these values,
some verification tools support a special “don’t-care” value which can be
assigned to state vector elements. If an attempt is made to use a “dont-

care” value, a run time error is triggered.

Partial Order Methods

One of the main causes of the state space explosion problem is the fact that all
possible interleavings of concurrently enabled transitions are represented in the
state graph. Partial order methods attempt to alleviate this problem by regarding
concurrent executions as partial orders where concurrent independent transitions
should be left unordered. By independent we mean that the order of occurrence
of the transitions is irrelevant in terms of their overall effect on the state vector.
The most well known partial order methods are those based on stubborn sets

[Val91] and persistent sets [God96].

As an ideal application of the stubborn set method, Valmari [Val91] cites the
example of n independent processes, each of which executes k steps before halting.
Since the processes do not interact, the final result of the execution is independent
of the order in which the system is executed. Simulating the system in only
one order takes just nk + 1 steps instead of the (k + 1)™ steps that result from
considering all possible interleavings. In this way the size of the state graph
can be reduced, while preserving the ability to correctly answer many analysis

questions.

Of course the situation is more complicated in general, since processes do in-
teract. In this case, several problems relating to the preservation of verifica-
tion properties arise (c.f. [Val98, §7.4]), and restrictions must be placed on the
method. Researchers have therefore attempted to relax the constraints on com-
muting the order of atomic actions without making the theory too complicated

[GP93, KPV97].



62 Chapter 3. Contemporary Methods for Large Markov Chains

While there are partial order methods that can preserve logical properties (such
as boundedness, liveness or the existence deadlock), the effect of the methods on
the preservation of performance measures has not been studied. Intuitively, the
application of these methods to performance analysis is limited since the method
destroys the structure of the underlying Markov chain by removing arcs from the

state graph.

3.1.5 Parallel and Distributed Approaches

Various authors have proposed ways of tackling the high memory and time re-
quirements of exhaustive state space exploration by using shared-memory mul-
tiprocessors or by distributing the memory requirements over several computers

in a network.

Allmaier et al. [AH97] present a parallel shared memory algorithm for the analy-
sis of Generalised Stochastic Petri Nets (GSPNs). The shared memory approach
means that there is no need to partition the state space as must be done in the
case of distributed memory. This also brings the advantage of simplifying the
load balancing problem. However, it does introduce synchronisation problems
between the processors. Their technique is tested on a Convex SPP 1600 shared
memory multiprocessor with 4GB of main memory. The authors observe good
speedups for a range of numbers of processors employed and the system can

handle 4000 000 states with 2GB of memory.

Caselli et al. [CCM95] offer two ways to parallelise the state space generation for
massively parallel machines. In the data-parallel method, a marking of a GSPN
with ¢ transitions is assigned to ¢ processors. Each processor handles the firing
of one transition only and is responsible for determining the resulting state. This
method was tested on a Connection Machine CM-5 and showed computation
times linear in relation to the number of states. In the message-passing method
the state space is partitioned between processors by a hash function and newly
discovered states are passed to their respective processors. This method achieved

good speedups on the CM-5, but was found to be subject to load imbalance.
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Ciardo et al. [CGN9S8] present an algorithm for state space exploration on a
network of workstations. Their approach is not limited to GSPNs but has a
general interface for describing state transition systems. Their method partitions
the state space in a way similar to [CCM95] but they give no details of the
storage techniques they use. The importance of a hashing function which evenly
distributes the states across the processors is emphasised, but the method also
attempts to reduce the number of states sent between processors. It was tested on
a network of SPARC workstations interconnected by an Ethernet network and on
an IBM SP-2 multiprocessor. In both cases a good reduction in processing time
was reported although with larger numbers of processors, diminishing returns
occurred. The largest state space successfully explored had 4 500 000 states; this
required four hours of processing on a 32-node IBM SP-2.

Stern and Dill parallelise their static probabilistic state enumeration method as
part of the development of the Murg correctness verifier [SD97]. The state hash
table is distributed over nodes and states are assigned to nodes using a partition-
ing hash function. By aggregating messages sent between processors to improve
efficiency, their parallel algorithm is able to achieve good speedups on a network
of workstations and also on a distributed memory parallel computer. Using a net-
work of workstations (UltraSPARC processors connected via a 38MB/s Myrinet
with a low-latency active messaging system), state spaces for protocols with up
to 1200000 states are generated over 32 processors in about 26 seconds, cor-
responding to a speedup of 26.6. A 63 processor IBM SP-2 parallel computer

generates the same state space in 63 seconds, corresponding to a speedup of 44.2.

Finally, Stornetta [Sto95] and Ranjan et al. [RSBS96] present distributed mem-
ory algorithms for constructing BDDs in parallel. Stornetta uses a Meiko CS-2
parallel computer with 32 SparcStation 10 nodes (each with 32MB RAM) con-
nected by a fat tree network, while Ranjan et al. use a network of 4 DEC5000
workstations (each with 40MB RAM) connected by a 70MBit/s FDDI network.
In both cases, performance is poor owing to limited opportunities for parallelism

and high communication cost. Speedups over the sequential version are only
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achieved if the sequential versions run out of physical memory and are forced to
swap. However, the methods are effective at using the whole distributed memory

to enable the construction of very large BDDs with up to 10 million nodes.

3.2 Steady-State Solution Techniques

3.2.1 Introduction

Having generated the state space and state graph, the second major challenge in
the quantitative analysis of stochastic models is to map the state graph onto a
continuous time Markov chain (CTMC) and solve it to determine the long-run
proportion of time the system spends in each state. Given n states, this involves

solving the (possibly very large) set of sparse linear equations

@ =0, Ym=1

for m, where 7 is an n-vector of steady-state probabilities and () is the n x n
infinitesimal generator matrix derived from the Markov chain. Solution methods
for this set of equations are limited by the large amount of memory required to
store Q and 7, as well as any other vectors that are used during the solution
process. Another major limiting factor is the time complexity of algorithms for

linear equation solution (n® for direct methods).

This section reviews a range of contemporary steady-state solution techniques
which restrict the memory and/or time required for solution in various ways.
The techniques can be classified into six categories: Kronecker methods, which
use a memory-efficient tensor algebra representation for @), symbolic techniques
which use an implicit representation of the elements of (), “on-the-fly” methods
that construct matrix entries from the model description at solution time, disk-
based techniques which store ) on disk and parallel and distributed approaches,
which use multiple processors to reduce computation time and increase available

memory.
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3.2.2 Kronecker Methods

A limiting factor in the analysis of large Markov models is the space required to
store the generator matrix ). However, it is possible to represent () very com-
pactly if certain regularities in the structure of the model’s underlying CTMC
are ensured by the use of restricted modelling formalisms. These formalisms usu-
ally require a model to be composed of N submodels that interact in a limited
way. Under this assumption, the generator matrix () can be expressed as a set
of N smaller matrices which are combined by tensor (or Kronecker) operations.
This compact representation drastically reduces the memory requirements of ().
Unfortunately, for typical models, the spatial benefits do not extend to the com-
putational complexity of sparse matrix-vector operations, which can require up
to N times more computation than classical sparse matrix-vector multiplication

[BCDKY7].

Tensor algebra

Here we use the notation of [FPS98]|. Given matrix A of dimension (r; X ¢;) and
matrix B of dimension (ry X ¢3), the tensor product C = A ® B has dimensions
(rir9 X ¢1¢2) and consists of 71¢; blocks with dimension 75¢o. Elements in C' are
defined by assigning the element of C' in the (is, jo) position in block (i1, j;) the

value a;, j, bi,j,, i.e.

C{(ir,j1)iinngn)} = irjr Dino

As an example, consider the matrices

bi1 bia b3
air a2

A= B = ba1  bag  bos
A1 Q22
b31 b3y b33
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The tensor product C' = A ® B is given by:

a11b11 a11b12 a11b13 | aiebin  aiebiz  aiabis
a11b21  a11boa  a11ba3 | aiobar  aiobae  a1abos

a11b31 a11b32 a11b33 a12b31 a12b32 a12633

C=AQ® B=
ag1b11  a21b1a  a91bisz | agebir  axbia  agebis

a1b21  az1b9o a21b23 a22b91  a22b9o a22b23

(21031 21b32  a21bs3 | agebsr  agebsy  agbss

The tensor sum is defined for square matrices in terms of the tensor product as:
AeB=A®I,,+1,, ® B

where n; is the dimension of A, ny is the dimension of B and I, is the identity

matrix of dimension n;. For the example above, the tensor sum C = A& B is

given by:
ay + b b12 b13 a12 0 0
bo1 a1 + b bas 0 a12 0
C—A@B— bs1 bso a1 + bss 0 0 a1
a2 0 0 age + b1y b12 b13
0 a1 0 ba1 age + bao bas
0 0 a1 b3 b32 a2 + bss

The ® and @ operations are associative, so that @Y_, A®) and @)_, A®) are well

defined.

Stochastic Automata Networks

Plateau first proposed the use of Kronecker operations as an efficient means of
representing the generator matrices of Stochastic Automata Networks (SANs)
with limited interactions [Pla85]. SANSs represent collections of automata that
operate largely independently, performing [ocal actions, but interact infrequently
to perform synchronised actions (rather like process algebras). A stochastic

automata network consists of N components, the kth of which has n, states.
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Given N independent automata (executing only local actions) with generators
QW, QM. ....QWM), the global generator matrix of the overall system is given by:
N N
Q:@Q(k) — ZIH1®"'®IM_1®Q(k)®jnk+1®"'®lmv
k=1 k=1
Synchronised actions may be handled by incorporating the sum of two additional
tensor products for each synchronised action [FPS98]. Given E synchronising

events, the global generator matrix is now given by:
2E+N N .
2
Q=3 QQ;
k=1 i=1
where () is still a generator matrix but the individual Q§-i) matrices need not be.

In particular, the matrices characterising synchronising transitions are often very

sparse, and may consist of a single positive element.

Plateau’s original approach has subsequently been extended to allow transitions
to have functional rates that depend on the state of other parts of the system (pro-
vided there are no dependency cycles). In this case, the generator matrix keeps
the same representation but now the Qy) terms may contain functional elements.
Generalised tensor algebra concepts supporting this extension are presented in
[FPS98]. As further extensions of Plateau’s work, Kronecker representations have
been applied to other formalisms such as classes of queueing networks [Buc94a],

stochastic Petri nets [Don94, Kem96] and stochastic process algebras [Buc94b].

Matrix-vector multiplication

Classical numerical methods such as the Power method, Jacobi’s method, Gauss-
Seidel and SOR, as well as more advanced Krylov subspace methods [Buc99] have
all been applied to SANs. When used to solve systems represented using Kro-
necker algebra, these methods usally differ from their conventional counterparts

only in the way they realise matrix-vector product operations.

For dense matrices, the product

N .
T ® QW
i=1
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where Q) is of order n; and z is a vector of length [, n;, may be computed in

N N
H n; X Z n;
multiplications using the algorithm presented in [Fer98, FPS98|. This represents
a reduction in the theoretical complexity of a naive matrix-vector multiplication
operation which would require
N
(IT na)®
i=1
multiplications.

However, for sparse matrices the situation is very different. The complexity of
Kronecker-based matrix-vector multiplication operations on such matrices is in-
vestigated in [BCDK97]. For the sparse Q) matrices typically encountered in
practice, the computational effort required is higher than naive matrix-vector
multiplication, and can increase by up to a factor of NV in the worst case. The
authors conclude that “the real advantage of Kronecker-based methods lies ex-

clusively in their large memory savings”.

Actual vs. potential state space

Another problem with the Kronecker approach is that it works on the poten-
tial state space, representing all possible interleavings of the state spaces of the
component automata. This requires the allocation of solution vectors of length

N m;. This can result in much wasted space, since the actual state space may
be very much smaller, depending on the extent of synchronisation. Computa-
tional effort is also wasted by calculating solution vector entries that correspond
to “unreachable” states. Methods have therefore been devised to work with the

actual state space. These methods require a representation of the full state space

to be held in memory at solution time.

An approach developed by Ciardo and Miner based on BDD-like matrix dia-
grams [CM99] represents the state-of-the-art in Kronecker-based solution meth-
ods. Their method operates on the actual state space, and includes several opti-

misations to allow for efficient access to the matrix encoding as well as a cache to
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prevent duplication of floating point operations. This method is able to perform
238 Gauss-Seidel iterations on a Markov chain with 40 million states and 450
million non-zero transition matrix entries in three and a half days on a 450 MHz
Pentium-1I PC with 384 MB of memory. The resulting solution vector after this
time is only accurate to a precision of 10~°, however, since a single-precision
solution vector is used to save memory. In addition, the effective throughput of
transition matrix elements turns out to be only 2.5MB/s, which is very low (c.f.

Section 3.2.5).

3.2.3 Symbolic Steady-state Solution

As discussed in Section 3.1.3, symbolic techniques based on binary decision dia-
grams (BDDs) can be used to efficiently generate the very large state spaces of
certain structured systems. To derive performance statistics for these systems,
corresponding symbolic techniques are needed in order to represent the system’s
underlying continuous time Markov chain, and to solve it for its steady-state

distribution.

Compact representation of the CTMC

A symbolic data structure suitable for the representation of continuous time
Markov chains is the Multi-terminal Binary Decision Diagram (MTBDD) [FMY97],
also referred to as an Algebraic Decision Diagram (ADD) [BFG197]. MTBDDs
extend the range of conventional BDDs to arbitrary values, while maintaining
their domain as a multi-dimensional Boolean space. That is, a MTBDD repre-
sents a function f : {0,1}" — D where D is an arbitary finite range. If, for
example, D is the set {0,1}, the MTBDD represents a boolean function and
reduces to a BDD. If D is a finite set of real numbers, we have a function of
form f : {0,1}" — RR. This form is powerful enough to represent weighted di-
rected graphs or, equivalently, square sparse matrices. In the context of Markov

chains, this means that, given an m-bit state identifier, we can use a function
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f:{0,1}*™ — R to denote the transition rate between any two states in the

state space.

transition | vy ¢; Tr9 ¢ | value
051 o 0 0 1| 4
0400 130 |o o 1 o 3
P 3030 132 o 1 1 0| 3
020 2 2241 1 0 0 1 2
0010 2243 |1 1 0 1| 2
3592 |1 1 1 ol 1
otherwise 0
"1
Cq
)
¢y

Figure 3.5: A rate matrix of a simple CTMC, its corresponding transition encod-

ing and its MTBDD representation [HMS99].

Fig. 3.5 shows an example from [HMS99] which illustrates how the rate matrix
R of a small CTMC can be encoded as an MTBDD. The matrix is 4 x 4 so 2
bits (r1,72) are used to address its rows and 2 bits (¢;,co) are used to address
the columns. As with BDDs, different orderings of these bits result in different
MTBDDs sizes and the problem of determining the optimal ordering is NP-
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complete. However, a good heuristic is use an ordering which interleaves the
row and column bits. Applying this heuristic to the example gives the ordering
r1,C1, T2, 2. Fig. 3.5 shows how the entries of R are encoded using this ordering

and the corresponding MTBDD representation.

The main advantages of MTBDDs over conventional sparse matrix representa-
tions is that they combine all matrix entries with the same numerical value in a
single terminal vertex. In addition, given a good variable ordering, the sharing
of terminal vertices can be extended to the sharing of subgraphs, particularly for
matrices with a repetitive block structure. In this way, for example, the regular
block-structured rate matrix of a finite tandem queue with capacity ¢ = 2% — 1
(consisting of M/Coxy/1/c queue and an M/M/1/c queue in series) can be rep-
resented with just 30k + 3 MTBDD vertices, even though the state space grows
exponentially with k, being of size 22¢*1 [HMS99].

Symbolic solution

Direct methods like Gaussian elimination are not generally used for symbolic
solution since they introduce changes to the structure of the coefficient matrix.
These changes are expensive to reproduce in an MTBDD representation — not
only is fill-in (i.e. new elements introduced when subtracting rows) likely to
introduce many new terminal nodes, but considerable effort must be expended
to keep the MTBDD in canonical form at every step since pivotting destroys

regularity [HMPS96, BFG197]. Therefore iterative methods of form
D) _ (k) g

are used, where M is an MTBDD derived by applying simple operations to the
transition rate matrix R. This framework allows for the implementation of the
Power, Jacobi and Gauss-Seidel methods (c.f. Sec. 2.5.1), although the last

involves the explicit inversion a matrix which can lead to considerable fill-in.

Fig. 3.6 shows a symbolic iterative solution algorithm (adapted from [HMS99])

for solving a system with 2" states and an iteration matrix M to an accuracy of
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function iterative-solve(M, n, ¢)

begin
pP=1/2"
repeat

P' = vector-matrix-multiply(P,M)
T = max-abs(apply(P, P, —))
P=P

until value(T') < e

return P

end

Figure 3.6: Algorithm for iterative symbolic steady-state solution.

€ . Both the steady-state solution vector P and the iteration matrix M are rep-
resented as MTBDDs. The solution vector is initialised to be an MTBDD with
a single node with value 1/2" so that all states are assumed to be equiprobable.
During each iteration, P and M are multiplied using an MTBDD vector-matrix
multiplication operation to produce the BDD P’. This operation has the same
complexity as conventional sparse matrix-vector multiplication, with the added
advantage that, like other operations which combine BDDs, the procedure can
make use of sophisticated hashing techniques to avoid recalculations of interme-
diate results (see e.g. [Bry86]). However, extra overhead is needed to maintain

the MTBDD in reduced canoncial form.

The remaining steps of the algorithm compute the convergence criterion
[x®+D — 7 ®)|| <€

by applying the subtraction operator over P and P’ and using the max-abs op-
erator to determine the largest absolute value. If this value is less than ¢, the

algorithm terminates and returns the steady-state vector m represented by the

MTBDD P.

Implementations of MTBDD solution algorithms have been able to give approx-

imate solutions for the steady-state distributions of very large Markov chains
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with up to 10?7 states in only 9 iterations requiring just 28 seconds and 71MB
of memory [HMPS96]. The results are approximate because small probabilities
in the solution vector have to be rounded to zero during computation in order
to prevent the number of distinct probabilities values in the solution vector from

growing too large.

The chains in [HMPS96] were derived from finite state machines representing
digital circuits. Progress on applying MTBDDs to the solution of chains derived
from more complex formalisms (such as GSPNs and SPAs) has been slower,
since these chains generally have a more complex CTMC structure with less
regularity and more varied steady-state solution distributions with many distinct
values. The recent results showing that certain structured CTMCs which exhibit
exponential growth in the number of states can be represented with MTBDDs
that grow linearly in the number of nodes is a promising first step, although these
large models have yet to be solved. Further work is also needed to find efficient
symbolic variants of more powerful numerical techniques (such as Krylov subspace

techniques).

3.2.4 On-the-fly Methods

“On-the-fly” solution techniques [DS98b] seek to tolerate large state spaces by
avoiding explicit storage of the generator matrix. The idea is to derive generator
matrix entries as they are needed during each iteration using only the state space,
model description and transition rules. The advantage of this method is that it
can be applied to unrestricted models, and that no space (either on disk or in
memory) is required to store the transition matrix. However, the method is very
slow and memory must still be reserved to store the state space, in addition to

any vectors needed by the solution process.

Rows of the generator matrix can be generated on-the-fly in a simple way. The
state space is held in memory, either using a tree data structure or a hash table
and each state is associated with a unique index. The ith row of () can then

be computed by: (a) applying a successor function to the ith state s; in order
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to determine the tangible successor states and the rates of the corresponding
transitions and (b) searching the tree or hash table to determine the index of

each succesor state.

Generating rows of () is therefore straightforward, using similar functions and
lookups as those required during a full-scale state space exploration. However,
this limits the choice of numerical method to the Jacobi or Power methods which
typically converge slowly. Access to the columns of @ (i.e. the rows of QT) is
required to implement more powerful techniques like Gauss-Seidel (when applied
to the system Q77T = 0). Finding the entries in column 7 of @ involves finding
the set of predecessor states of state s; and corresponding incoming rates. This
can be done by executing the model “backwards” in time. For each Gauss-Seidel
step the model also needs to be executed “forwards” in order to determine the
diagonal element ¢; (unless of course extra memory is reserved to store these

elements).

Executing models backwards turns out to be a simple operation for SPNs. By
constructing a reverse model, i.e. a model in which all arcs are reversed and
where any marking-dependent rates are determined after transition firing, the
set of predecessor states can be quickly determined. The procedure is slightly
more complicated for GSPNs since it is necessary to recursively search through

networks of immediate transitions to determine the set of tangible predecessors.

For more complicated formalisms like Stochastic Activity Networks and Stochas-
tic Reward networks, it is “virtually impossible to define a reverse model in closed
or simple algorithmic form” [DS98b]. However, if the models are sparsely con-
nected and have small bounds on the number of tokens in places, it is possible to

use an algorithm which conducts an exhaustive search of all possible predecessors.

Since generating rows and columns are expensive, on-the-fly techniques are best
used with numerical techniques that exploit locality, such as Block Gauss-Seidel.
The idea is to generate and then cache matrix blocks in memory, using them

several times within an iteration. On every outer iteration, Block Gauss-Seidel
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uses off-diagonal matrix blocks once to calculate:

j=N
A T ~
j=Lj#i

where Q}; is a submatrix of @ and 7; is a subvector of the steady-state vector
7. Then several inner iterations are repeatedly performed to solve the diagonal
system:

T~ _ &
#whi = Ti

The more inner iterations that are performed, the better reuse is made of matrix
blocks and the fewer outer iterations are required. However, diminishing returns
are observed so typically the number of inner iterations has to be tuned to some

optimum for each model.

Deavours and Sanders further present a Block Gauss-Seidel technique that re-
quires only row access to the matrix ) at the cost of an extra solution vector.
Running on a 160MHz HP C-160 workstation, their method requires 39 762 sec-
onds (11 hours) and 57MB of memory to solve a model of a Kanban manfacturing
system with 2546 432 states and 24 460 416 non-zero entries in the generator ma-

trix to an accuracy of 1076.

In summary, on-the-fly solution techniques provide a way of solving unrestricted
models expressed in several different formalisms without explicitly storing the
transition matrix. However, the method is slow and memory is still required to

store the state space S as well as any vectors needed by the solution process.

3.2.5 Disk-based Solution Techniques

The concept of using magnetic disk as a buffer to store data that is too large
to fit into main memory is an idea which originated three decades ago with the
development of overlays and virtual memory systems. However, only recently,
with the widespread availability of large, cheap, high-bandwidth hard disks has
attention been focused on the potential of disks as high-throughput data sources

appropriate for use in data-intensive computations.
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In [DS97] and [DS98a], Deavours and Sanders make a compelling case for the
potential of disk-based steady-state solution methods for large Markov models.
They note that our ability to solve large matrices is limited by the memory re-
quired to store a representation of the transition matrix and by the effective
rate at which matrix elements can be produced from the encoding. As a general
rule, the more compact the representation, the more CPU overhead is involved
in retrieving matrix elements. Two common encodings are Kronecker represen-
tations and “on-the-fly” methods. Deavours and Sanders estimate the effective
data production rate of Kronecker and “on-the-fly” methods as being 2 MB/s
and 440 KB/s respectively on their 120 MHz HP C110 workstation. Recently
published results show that an implementation of a state-of-the-art Kronecker
technique running on a 450 MHz Pentium-II workstation yields an effective data

production rate of around 2.5 MB/s [CM99].

At the same time, modern workstation disks are capable of sustaining data trans-
fer rates of 5-10 MB/s (and even higher rates are possible if disks are interleaved).
This suggests that it would be worthwhile to store the transition matrix on disk,
given that enough disk space is available and given that we can apply an iter-
ative solution method that accesses the transition matrix in a predictable way.
Such an approach has the potential to produce data faster than both Kronecker
and on-the-fly methods, without any of the structural restrictions inherent in

Kronecker methods.

Deavours and Sanders demonstrate the effectiveness of this approach by devising
a sequential disk-based solution tool which makes use of two cooperating pro-
cesses. One of the processes is dedicated to reading disk data while the other
performs computation using a Block Gauss-Seidel algorithm, thus allowing for
the overlap of disk I/O and computation. The processes communicate using
semaphores and shared memory. As outlined in Sec. 3.2.4, the advantage of us-
ing Block Gauss-Seidel is that diagonal matrix blocks can be read from disk once,

be cached in memory and then reused several times.

The memory required by the disk-based approach is small — besides the shared
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memory buffers, space is only required for the solution vector itself. This enables
the solution of extremely large models with over 10 million states and 100 million
non-zero entries on a HP C110 workstation with 128MB RAM and 4GB of disk
space in just over 5 hours. These results confirm that disk-based methods are the
method of choice for solving large Markov models, provided enough disk space is

available to hold the transition matrix.

3.2.6 Parallel and Distributed Approaches

As was the case for state generation, several authors have tried to overcome the
high memory and time requirements of steady-state solution by using parallel

and distributed solution techniques.

In [MCC97], Caselli et al. extend their work concerning distributed state space
generation for GSPN models [CCM95] to include a distributed solution phase.
The solution process begins by distributing the transpose of the generator matrix
Q" across the processors in a row-wise fashion. As well as a portion of transition
matrix, each processor stores a full copy of the solution vector. This reduces the
communication load, at the cost of limiting the scalability of the technique. It-
erations are performed using a modified parallel Gauss-Seidel algorithm whereby
each processor applies a standard Gauss-Seidel iteration to its portion of the
matrix, using its private copy of the solution vector. No communication takes
place during an iteration. However, at the end of an iteration, only one processor
broadcasts its set of updated solutions. The processors take turns so that, given
N processors, the broadcast after iteration 7 is performed by processor ¢ mod N.
This reduces communication time further, but the convergence rate of the algo-
rithm is adversely affected. Using a network of four 75 MHz Pentium processors
with 32 MB RAM and connected by 100 Mb/s Ethernet, Caselli et al. are able to
solve systems of up to 590 000 states in about 10 minutes. The speedup over se-
quential solution varies depending on the model — for one example there is a slight

slowdown while for another there is a speedup of about 2 (i.e. 50% efficiency).

In [AKHO97], Allmaier et al. consider the solution of GSPN models on a shared
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memory multiprocessor using Horton’s multi-level algorithm [HL94]. The multi-
level algorithm uses aggregation-disaggregation type steps to solve recursively
coarsened representations of the original Markov chain. The algorithm has two
phases, viz. the aggregation phase and the iteration phase. During the aggre-
gation phase, a hierarchical system of coarsened CTMCs (called levels) is set
up. The smallest of these levels is small enough to be solved quickly and ex-
actly using a direct method. During the iteration phase, some smoothing Gauss-
Seidel iterations are performed on the current level, transition probabilities in
the next coarser level are updated, and an iteration is recursively conducted
on the next coarser level. At the coarsest level, the CTMC is solved exactly
to provide improved values for the probabilities of aggregates. These improved
values can then be propagated backwards to refine the lower-level probabilities.
While the aggregation phase is largely sequential and difficult to parallellise, the
iteration phase parallelises well if multiple threads are used. Using a Convex
SP1600 shared-memory multiprocessor with 4 GB of main memory, a CTMC
with 190 000 states and 1400000 arcs is solved in about 125 seconds on 8 proces-
sors. The corresponding speedup over sequential solution is 3.4 (i.e. an efficiency

of 42.5%).

Recently, Buchholz et al. reported results on the parallelization of Kronecker
methods using a cluster of workstations [BFK99]. Since the Kronecker repre-
sentation of the generator matrix is very compact, distribution of the matrix
poses no problems — the full Kronecker structure can be rapidly broadcast to
every processor. Since the Kronecker representation used is a hierarchical one
that partitions naturally into a block structure, submatrices are then assigned to
processors. For each n, x n, block assigned to a processor, 3 vectors of length
ng are required; this includes a portion of the global steady-state vector. Each
processor also needs one longer vector to store intermediate results. The solution
algorithm itself uses a master-slave architecture; a master process manages issues
such as normalisation and convergence monitoring, while several worker processes

implement a parallel two-level block Jacobi algorithm (with relaxation). As with
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other block solution methods, there is a delicate balance between the number
of inner and outer iterations required to achieve optimum convergence. To save
communication during outer iterations, updates to steady-state vector elements
are sent between processors only if there is a relatively large difference between
successive local iterates. Results are reported for a network of Sun workstations
connected by 100 Mbps Ethernet. For a flexible manufacturing system model
(c.f. Appendix A.2) with 1.6 million states and 14 million non-zero off-diagonal
entries in @), the time for solution is 4 890 secs using a dedicated master proces-
sor and a network of 4 UltraSPARC worker processors, each with 192MB and
a 270-300MHz CPU. The corresponding speedup is 1.70 (i.e. 42.5% efficiency).
For a larger model of a multiclass queueing system with 8 million states and 51
million non-zero off-diagonal entries in @), the time taken using 6 UltraSPARC
worker processors (167-300MHz) is 6 990 secs. This corresponds to a speedup of
1.78 (29.7% efficiency). In both cases, the accuracy of the solution is such that
the infinity norm of the normalised residual (given by ||r|| = max;|r;|) is less

than 1079,
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Probabilistic Dynamic
Distributed State Space

(Generation

4.1 Introduction

This chapter describes a novel parallel state space generation algorithm based on
a dynamic hash compaction storage scheme. To make this chapter self-contained,
as in the publication [KHMK99], we begin by summarising relevant background

material from Chapters 2 and 3 before giving full details of the new method.

Complex systems can be modelled using high-level formalisms such as stochastic
Petri nets, queueing networks and process algebras. Often the first phase in the
logical and numerical analysis of these systems is the explicit generation and
storage of the model’s underlying state space and state graph. The state space
consists of all reachable states or configurations that the system can enter starting
from some initial state, while the state graph describes transitions between states.
By examining the state space and state graph it is possible to detect transition
sequences that lead to unsafe states or undesirable situations such as deadlock.

Further, given the rate of movement between states, the state graph can be

80
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mapped on a Markov chain which can be solved to obtain performance statistics.

In certain cases, where the state space has sufficient structure, it is possible to
obtain an efficient analytical solution without the explicit enumeration of the
entire state space. Several ingenious techniques, predominantly based on the
theory of queueing networks, can be applied in such cases [BCMP75]. Further,
certain restricted hierarchical structures allow states to be aggregated and the
state space to be decomposed [Buc95, Kem96]. Here, however, we consider the

general problem where no symmetry or other structure is assumed.

Conventional methods for state space generation have high memory requirements
and are computationally intensive, which makes them unsuitable for generating
the very large state spaces of real-world systems. Two of the most promising
approaches that researchers have developed over the past decade in an attempt

to resolve this problem for structurally unrestricted state spaces are:

e Probabilistic methods: A probabilistic algorithm is one which uses ran-
domization techniques in an attempt to reduce the time and/or space com-
plexity of a problem. This improvement comes at a cost, however, since
there is a non-zero probability that the algorithm will produce an incor-
rect answer. In the context of state exploration algorithms, probabilistic
techniques based on hash compaction can result in dramatic memory sav-
ings if users are prepared to tolerate a risk of state omission. The best
known probabilistic state space generation algorithms are described in Sec-

tion 3.1.2.

e Parallel and distributed techniques: With the availability of distributed-
memory computers and high-speed workstation clusters, much attention
has been focused on reducing processing time using multiple processors.
The work carried out so far is described in Section 3.1.5 and has shown
that a good load balancing scheme and a careful analysis of communication

cost are important to achieve good speedups.

This chapter presents a new distributed probabilistic state exploration algorithm
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which combines these two approaches. The technique, which is based on a dis-
tributed dynamic hash compaction storage scheme, has several important advan-

tages:

e Memory consumption is low and independent of the number of elements in

the state descriptor.
e Access to states is simple and rapid.

e The algorithm has a low state omission probability which compares favourably
with the best probabilistic methods. Furthermore, the chance of state omis-
sion may be arbitrarily reduced by performing multiple runs with indepen-

dent sets of hash functions.

e Unlike existing probabilistic methods which are based on the static preal-
location of large blocks of memory, our algorithm uses dynamic memory

allocation, which ensures memory is only allocated as needed.

e The algorithm delivers good speedups and scalability.

The remainder of this chapter is organised as follows. After introducing sequen-
tial state space exploration in Section 4.2, we give details of the dynamic storage
allocation scheme in Section 4.3 and of the parallel state space generation algo-
rithm in Section 4.4. An enhanced communication-efficient version of the parallel
algorithm is presented in Section 4.5. A theoretical performance model for both
versions of the parallel algorithm is developed in Section 4.6 and numerical results
demonstrating the observed performance of the algorithm on a Fujitsu AP3000
parallel computer are given in Section 4.7. Section 4.8 discusses suitable hashing

and partitioning functions and Section 4.9 concludes and considers further work.

4.2 Sequential State Space Exploration

The goal of state space exploration is to map a high-level model description onto

its underlying low-level state space and state graph. Fig. 4.1 shows an outline of
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a simple sequential state space exploration algorithm. The core of the algorithm
performs a breadth-first search (BFS) traversal of a model’s underlying state
graph, starting from some initial state so. This requires two data structures: a
FIFO queue F' which is used to store unexplored states and a table of explored
states F used to prevent redundant state exploration. The resulting breadth-first
generation strategy is preferred over the alternative depth-first approach since it
enables efficient row-by-row generation of the state graph A. Also, as we will see
in Chapter 5, using a breadth-first approach induces a structure on the generator

matrix that can be exploited during the solution process.

begin

E = {so}

F.push(sy)

A=

while (F not empty) do begin
F.pop(s)
for each ¢ € succ(s) do begin

if s ¢ E do begin

F.push(s')
E=EU{s}
end
A=AU{id(s) — id(¢)}
end
end

end

Figure 4.1: Simple sequential state space generation algorithm

The function succ(s) in Fig. 4.1 returns the set of successor states of s. Some
formalisms (such as GSPNs) include support for “instantaneous events” which
occur in zero time. A state which enables an “instantaneous event” is known
as a wvanishing state. We will assume that our successor function implements
one of several known on-the-fly techniques available for eliminating vanishing

states [CMT91, Kno96], so that succ(s) returns a set of non-vanishing or tangible



84 Chapter 4. Probabilistic Dynamic Distributed State Space Generation

successor states. The case where s; is vanishing is not considered in Fig. 4.1,
but can be handled by initially inserting each s € succ(sg) into F' and setting

E = succ(sy)-

As the algorithm proceeds, it constructs A, the state graph. To save space, the
states are identified by a unique state sequence number given by the function
id(s). If we require the equilibrium state space probability distribution, we must
construct a Markov chain by storing in A the transition rate between state s
and s’ for every arc s — s'. The graph A is written to disk row by row as the

algorithm proceeds, so there is no need to store it in main memory.

4.3 Dynamic Probabilistic Hash Compaction

The memory consumed by the state exploration process depends on the layout
and management of the two main data structures of Fig. 4.1. The FIFO queue F’
can grow to a considerable size in complex models. However, since it is accessed
sequentially at either end, it is possible to manage the queue efficiently by storing
the head and tail sections in main memory, with the central body of the queue
held on disk. The table of explored states E, on the other hand, enjoys no such
locality of access, and has to be able to rapidly store and retrieve information
about every reachable state. A good design for this structure is therefore crucial

to the space and time efficiency of a state generator.

One way to manage the explored state table is to store the full state descriptor
of every state in the state table. Such exhaustive techniques guarantee complete
state coverage by uniquely identifying each state. However, the high memory
requirements of this approach severely limit the number of states that can be
stored. Probabilistic techniques use hashing techniques to drastically reduce the
memory required to store states. However, it is possible that the hash table will
represent two distinct states in the same way. If this should happen, the state
hash table will incorrectly report a state as previously explored. This will result

in incorrect transitions in the state graph and the omission of some states from
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the hash table. This risk may be acceptable if it can be quantified and kept very

small.

Some of the best known probabilistic techniques are Holzmann’s bit-state hashing
method [Hol91, Hol95], Wolper and Leroy’s hash compaction technique [WL93]
and Stern and Dill’s enhanced hash compaction method [SD95] (c.f. Section 3.1.2).
All these methods rely on static memory allocation since they pre-allocate large
blocks of memory for the explored state table. Since the number of states is not
known beforehand, the pre-allocated memory may not be sufficient, or may be a

gross overestimation.

We now introduce a new probabilistic technique which uses dynamic storage allo-
cation and which yields a very low collision probability. The system is illustrated
in Fig. 4.2. The explored state table takes the form of a hash table with several
rows. Attached to each row is a linked list which stores compressed state de-
scriptors and state sequence numbers. The state sequence numbers act as unique

identity tags, thus enabling the efficient construction of the state graph.

primary secondary
hash key hash keys
hl(si ) hZ(Si )
SR
( _ Y e v _ Y _
0 ha(sp) id(sp) ho(sg) id(sg) ( ha(s10) id(s1)
20949409 | 2 98318241 | 9 L40236897 10
. J - J
. Y e . Y
ho(s4) id(sg) hs(sg) id(sg)
L 71685177 | 4 16248711 | 8
- J N\ J
Y e Y
) ha(sg)  |id(sg) ha(s3)  |id(s3) ( ha(sg)  |id(sg) W ( hp(s7)  |id(s7)
(31118156 | o | | [ 50604823 | 3 | | L43591640 6 J L73576100 7
Co A R T
ete. [r------- R o e R o e LR R
. N A R G Loty
L ( ho(sy) | id(sy) W ( ho(ss) | id(ss)
-
L08783635 1 J L62703471 5

Figure 4.2: Layout of the explored state table under the dynamic probabilistic

hash compaction scheme
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Two independent hash functions are used. Given a state descriptor s, the primary
hash function h;(s) is used to determine which hash table row should be used
to store a compressed state, while the secondary hash function hy(s) is used to
compute a compressed state descriptor value (also known as a secondary key). If
a state’s secondary key hq(s) is present in the hash table row given by its primary
key hi(s), then the state is deemed to be the already-explored state identified by
the sequence number id(s). Otherwise, the secondary key and a new sequence
number are added to the hash table row and the state’s successors are pushed

onto the FIFO queue.

begin
H = {[h1(s0), ha(s0)]}
F.push(sy)
E={s0}
A=10
while (F not empty) do begin
F.pop(s)
for each s’ € succ(s) do begin
if [hy(s"), ha(s")] ¢ H do begin

F.push(s')
E=EU{s}
H = H U {[hi(s), ha(s')]}
end
A=AU{id(s) — id(s")}
end
end

end

Figure 4.3: Sequential dynamic probabilistic state space generation algorithm

Fig. 4.3 shows the complete sequential dynamic probabilistic state space genera-
tion algorithm based on our hash compaction technique. Here H represents the
state hash table of Fig. 4.2. Each state s € E has an entry of form [h;(s), ha(s)]

in H. Since it is now not necessary to store the full state space F in memory,
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the insertion of states into £ can be handled by writing the states to a disk file
as they are encountered. These states will only be required again during the

calculation of performance measures after the steady-state solution phase.

Note that two states s; and sq are classified as being equal if and only if h(s1) =
hi(s2) and ha(s1) = ha(sz). This may happen even when the two states are
different, so collisions may occur (as in all other probabilistic methods). However,
as we will see in the next section, the probability of such a collision can be kept
very small — certainly much smaller than the chance of a serious man-made error
in the specification of the model. In addition, by regenerating the state space
with different sets of independent hash functions and comparing the resulting
number of states and transitions, it is possible to further arbitrarily decrease the

risk of an undetected collision.

4.3.1 Reliability of the Probabilistic Dynamic State Hash
Table

We now calculate the probability of complete state coverage p. We consider a
hash table with r rows and ¢ = 2° possible secondary key values, where b is the
number of bits used to store the secondary key. In such a hash table, there are rt
possible ways of representing a state. Assuming that h;(s) and hsy(s) distribute
states randomly and independently, each of these representations are equally
likely. Thus, if there are n distinct states to be inserted into the hash table, the

probability p that all states are uniquely represented is given by:

rt)!
P G e -y

An equivalent formulation of Eq. 4.1 is:

n—1 : n—1 :

rt —1 7
— — 1—- — 4.2
p H rt =0 ( rt) ( )

1=0

Assuming n << rt and using the fact that e* &~ (1 + z) for |z| << 1, we obtain:

2

n—1 It nel n(n—1) nen
p ~ H e*’t/T = eZi:o 7Z/7’ = e 2t —= e 2rt
1=0
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Since n? >> n for large n, a simple approximation for p is given by:

n2

PR e 2t (4.3)

We now show that if n? << rt then this approximation is also a lower bound
for p (and thus provides a conservative estimate for the probability of complete

state coverage).

First we note that, for |z|] << 1 (in fact for any = < 0.683803),
(x+2%)?  (x+22)3
2l 3l

= 1-z—2°/2+52°/6+...

e @) = 1 (z+2?)+ +...

< 1l—-=z

Using this fact with = —i/rt in Eq. 4.2 yields:
n—1 i
— 1— —
P 1-1;[0 < Tt)

n—1

> He—(i/rt+i2/('rt)2)
1=0

— eXisy —(i/rtHi(rt)?)

~nn—1) nnm-1)(2n-1)
= e 2rt 6(rt)2

n? o _n(n=1)(@n-1)

n2 n(3rt—(n—1)(2n—1))
= (e‘?Tt) (e 6(rt)? ) (4.4)

Our approximation of Eq. 4.3 will be a safe lower bound for p if the term

n(3rt—(n—1)(2n—1))
e 6(rt)2

is greater than 1 (since then the approximation of Eq. 4.3 produces an omission
probability less than the lower bound of Eq. 4.4). Since e® > 1 for x > 0, the

term above will be greater than 1 when:
3rt—(n—1)(2n—1) >0

Our scheme is only useful if n? << rt (so that p is near 1), in which case the
above condition holds. Thus the approximation of Eq. 4.3 is also a lower bound

for p for all cases of practical interest.
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Assuming n? << rt, we can again use the fact that e® ~ (1 + ) for |z| << 1 in

Eq. 4.3 to approximate p by:

n2

~1—— 4.5
p 2rt ( )

Note that, since e™* > 1 — x, we have

n2

n2
>e 2t >] — —
b= - 2rt

so the simple formula of Eq. 4.5 is also a lower bound for p.

The corresponding upper bound for the probability ¢ that all states are not
uniquely represented, resulting in the omission of one or more states from the
state space, is of course simply:

n? n?

q=1-

2 and is inversely

Thus the probability of state omission ¢ is proportional to n
proportional to the hash table size r. Increasing the size of the compressed state

descriptors b by one bit halves the omission probability.

4.3.2 Space Complexity

If we assume that the hash table rows are implemented as dynamic arrays, the

number of bytes of memory required by the scheme is:

M = hr+n(b+s)/8. (4.7)

Here h is the number of bytes of overhead per hash table row and s is the number
of bits required to store a state sequence number. For a given number of states
and a desired omission probability, there are a number of choices for r and b
which all lead to schemes having different memory requirements. How can we
choose r and b to minimize the amount of memory required? Rewriting Eq. 4.6:

TL2

re —q2b+1 (48)
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number of states
q 106 107 108
MB b r | MB b r | MB b T

0.001 || 8.284 34 29104 | 86.87 38 181899 | 908.9 41 2273737
0.01 || 7.872 31 23283 | 82.84 34 291038 | 868.7 38 1818989
0.1 7470 28 18626 | 78.72 31 232831 | 828.4 34 2910383

Table 4.1: Optimal values for memory usage and the values for b and r used to

obtain them for various system state sizes and omission probabilities ¢

and substituting this into Eq. 4.7 yields

hn*  n(b+s)

qu2b+1+ 3

Minimizing M with respect to b gives:
oM n*(In2)h
ob q20+1

Solving for the optimal value of b at a specified state omission probability ¢ yields:
hnln2
bzlog2< na >+2
q

The corresponding optimal value of r can then be obtained by substituting b into

Eq. 4.8.

+n/8=0

Table 4.1 shows the the optimal memory requirements in megabytes (MB) and
corresponding values of b and r for state space sizes ranging from 10° to 10®. We
have assumed a state sequence number size of s = 32 bits and a hash table row
overhead of h = 8 bytes per row. The latter corresponds to a straightforward
dynamic array implementation that uses a 32-bit pointer to the start of the array
and a 32-bit word for the number of elements in the array. Note that 16 bits would
also suffice to store the number of elements in the array since, in the optimal case,
each hash row only contains an average of 30 to 50 entries and the variance of the
number of states allocated to each hash table row is low (assuming a good hash
function which distributes states according to a binomial distribution). In prac-
tice, it is difficult to implement schemes where b does not correspond to a whole

number of bytes. Consequently, 4-byte or 5-byte compression is recommended.
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4.3.3 Comparison with Contemporary Probabilistic Meth-

ods

We now compare the reliability and space complexity of our dynamic storage
scheme with the contemporary probabilistic methods described in Section 3.1.2.

For Holzmann’s method, the probability of state omission can be approximated

by

where [ is the length in bits of a large pre-allocated bit vector. However, to
obtain a low omission probability the ratio of states to bit vector entries must
be kept very small. Consequently, a large amount of the memory allocated for
the bit vector will be wasted. Our method solves this problem by providing
an extremely large “virtual” bit vector of size | = rt = r2® without physically
allocating memory space for the vector. Instead, our scheme effectively stores only
the positions in the bit vector that are occupied, resulting in dramatic memory

savings.

For Wolper and Leroy’s method, the state omission probability is

where ¢ = 2° and b is the number of bits used to store compressed states in a large
pre-allocated hash table. Our method improves on this probability by a factor of
r in the denominator. This is because each of our r hash table rows effectively
corresponds to a separate Wolper and Leroy hash table, and states are assigned
to the hash table rows using a primary hash function that is independent of the
secondary hash function used to compress states. Because each hash table row
contains only a few states, our method requires fewer bits per compressed value

to store states with the same omission probability.

Stern and Dill’s method has a complicated omission probability that depends on

the number of free slots in the explored state table. Given a hash table with m



92 Chapter 4. Probabilistic Dynamic Distributed State Space Generation

slots, n of which are used,

2n+2'mn—'n2

+1

20 _ 1 (MAD (25T~ 5 n D T T2t D(m—ntD? "

P
ob

where again b is the number of bits used to store compressed states in a large pre-
allocated hash table. For a full or nearly full hash table, this omission probability
rises rapidly since an insertion operation will involve comparisons with many
compressed values before a free slot is found. Our method does not have this
problem since the end of each row in our hash table behaves in the same way as a
free slot in a Stern and Dill hash table, thus limiting the number of comparisons

that need to be made when inserting.
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Figure 4.4: Contemporary static probabilistic methods compared with the dy-
namic hash compaction method in terms of omission probability

Fig. 4.4 compares the omission probability of contemporary static probabilis-
tic methods with that of our dynamic hash compaction method for state space
sizes of various magnitudes up to 108. The parameters used for each method are
presented in Table 4.2, and are selected such that the memory use of all four algo-

rithms is the same. The graph shows that our method yields a far lower omission
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Method Parameters Method Parameters
Holzmann | [ = 7.488 x 10° bits Wolper | b= 42 bits
M =914 MB and s = 32 bits
Leroy m = 10% slots
M =91.6 MB
Method Parameters Method Parameters
Stern b = 40 bits b = 40 bits
and s = 32 bits Dynamic | s = 32 bits
Dill m = 10.26 x 108 slots hash | 7 = 6000000 rows
M =914 MB h = 6 bytes
M =91.4 MB
(for n = 108)

Table 4.2: Parameters used in the comparison of omission probabilities

probability than both Holzmann’s method and Wolper and Leroy’s method. In
addition, our algorithm is competitive with Stern and Dill’s method and yields a

better omission probability when the hash table becomes full or nearly full.

4.4 Parallel Dynamic Probabilistic State Space

Exploration

We now investigate how our technique can be enhanced to take advantage of
the memory and processing power provided by a network of workstations or a
distributed-memory parallel computer. We assume there are N nodes available
and that each processor has its own local memory and can communicate with

other nodes via a network.

In the parallel algorithm, the state space is partitioned between the nodes so
that each node is responsible for exploring a portion of the state space and for

constructing part of the state graph. A partitioning hash function hy(s) —
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(0,...,N —1) is used to assign states to nodes, such that node i is responsible
for exploring the set of states F; and for constructing the portion of the state

graph A; where:

E; = {s:ho(s) =i}
Ai = {(81 — 82) : ho(Sl) = Z}

It is important that hg(s) achieves a good spread of states across nodes in order
to achieve good load balance. Naturally, the values produced by hg(s) should also
be independent of those produced by hi(s) and hy(s) to enhance the reliability
of the algorithm. Guidelines for choosing hash functions which meet these goals

will be discussed in Section 4.8.

The operation of node 7 in the parallel algorithm is shown in Fig. 4.5. Each
node 7 has a local FIFO queue F; used to hold unexplored local states and a hash
table H; representing a compressed version of the set Fj, i.e. those states which
have been explored locally. State s is assigned to processor hg(s), which stores
the state’s compressed state descriptor hs(s) in the local hash table row given
by hi(s). As before, it is not necessary to store the complete state space E; in

memory, since states can be written out to a disk file as they are encountered.

Node 7 proceeds by popping a state off the local FIFO queue and determining the
set, of successor states. Successor states for which hg(s) = ¢ are dealt with locally,
while other successor states are sent to the relevant remote processors via calls
to send-state(k, g, s). Here k is the remote node, g is the identity of the parent
state and s is the state descriptor of the child state. The remote processors must
receive incoming states via matching calls to receive-state(k, g, s) where k is
the sender node. If they are not already present, the remote processor adds the

incoming states to both the remote state hash table and FIFO queue.

For the purpose of constructing the state graph, states are identified by a pair of
integers (4, j) where ¢ = hg(s) is the node number of the host processor and j is
the local state sequence number. As in the sequential case, the index j can be

stored in the state hash table of node i. However, a node will not be aware of
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begin
if ho(so) = ¢ do begin
H; = {[h1(50), ha(s0)]}
F;.push(sy)

E; = {s0}
end else

H=FE; =0
Ai=0

while (shutdown signal not received) do begin
if (F; not empty) do begin
s = F;.pop()
for each s' € succ(s) do begin
if ho(s') =i do begin
if [hq(8"), ha(s')] ¢ H; do begin
H; = H; U{[h(s'); ha(s')]}
F;.push(s')

E,=E;U{s'}
end
A; = A; U {id(s) — id(s)}
end else

send-state(hg(s'), id(s), s')
end
end
while (receive-id(g, h)) do
A= A;U{g— h}
while (receive-state(k, g, s')) do begin
if [h1(8), ho(s")] ¢ H; do begin
H; = H;U{h(s"), ho(s")}
F;.push(s)

E;=E; U{s'}
end
send-id(k, g, id(s"))
end
end

end

Figure 4.5: Parallel state space generation algorithm for node ¢
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the state identity numbers of non-local successor states. Therefore, when a node
receives a state it returns its identity to the sender by calling send-id(k, g, h)
where k is the sender, ¢ is the identity of the parent state and h is the identity
of the received state. The identity is received by the original sender via a call to
receive-id(g, h). Fig. 4.6 summarises the main steps that take place to identify

and process each child s’ of state s in the case that h(s) # ho(s').

Node hg (s)
parent state
child state
node node
hg (s) ho (s)
sends receives
@ state s’ @ id(s’)
to node from node
ho (s”) hg (s”)
Node hq (s")

if [h1 (s"),ho(s")] inH
lookup id(s’)
else do begin
(@  insert [hy (") ,hy(s)] into H
issueid(s’)
push s’ onto stack F
end

Figure 4.6: Steps required to identify child state s’ of parent s.

Given a state graph consisting of a arcs and n states, and assuming a uniform
distribution of states across the N processors, the total communication cost (in
bytes) of our algorithm across all nodes is:

(N -1)

C(a,N) = N

a(C, + CS)

where C; and C reflect the cost of sending a state identity and a state descriptor

respectively.

In practice, it is inefficient to implement the communication as detailed in Fig. 4.5
and Fig. 4.6, since the network rapidly becomes overloaded with too many short

messages. Consequently state and identity messages are buffered and sent in
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large blocks. In order to avoid starvation and deadlock, nodes that have very few
states left in their FIFO queue or are idle broadcast a message to other nodes

requesting them to flush their outgoing message buffers.

The algorithm terminates when all the F;’s are empty and there are no out-
standing state or identity messages. The problem of determining when these
conditions are satisfied across a distributed set of processes is a non-trivial prob-
lem. From the several distributed termination algorithms surveyed in [Ray88],

we have chosen to use Dijkstra’s circulating probe algorithm [DFG83].

4.4.1 Reliability of the Parallel Probabilistic Algorithm

Using the parallel algorithm, two distinct states s; and so will be mistakenly
classified as identical states if and only if hg(s1) = ho(s2) and hi(s1) = hi(s2)
and hy(s1) = ho(sz). Since hg, hy and hy are independent functions, the reliability
of the parallel algorithm is essentially the same as that of the sequential algorithm

with a large hash table of Nr rows, giving a state omission probability of

n2

q

4.4.2 Space Complexity

In the parallel algorithm, each node supports a hash table with r rows. This
requires a total of Nhr bytes of storage. The total amount of space required for
the dynamic storage of n states remains the same as for the sequential version,
i.e. (b+ s)n/8 bytes. Thus the total memory requirement across all nodes is

given by:

M = Nhr +n(b+s)/8.
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4.5 An Enhanced Communication-efficient Par-

allel Algorithm

The state graphs of most stochastic models have many more arcs than states.
This is especially the case in large systems that have many transitions, several of
which may be enabled in each state. Further, even moderately complex systems
have long state descriptors of tens or hundreds of bytes, making it more efficient
to transmit hash keys instead of states wherever possible. By exploiting these two
properties, we can dramatically reduce the amount of communication performed

by our algorithm.

The algorithm described in the previous section (see Fig. 4.5) determines the
identity of a non-local successor state s’ by sending the full state descriptor s’ to
the remote node hg(s’). Node ho(s') inserts state s’ into its local hash table if
it is not already present, and then returns the identity of state s’. This action
is performed for every arc in the state graph that leads to a non-local successor
state. In most instances, however, state s’ will already be present in the hash
table (since the number of arcs in the state graph is usually much greater than
the number of states), so sending the full state descriptor was unnecessary. It
suffices in such cases to send only the hash keys required to look up the state

identity in the hash table.

Fig. 4.7 shows a communication-efficient algorithm which sends a minimal num-
ber of full state descriptors between nodes. As before, node 7 proceeds by popping
a state off the local FIFO queue F; and determining the set of successor states.
The function child(s, n) is used to determine the nth successor state of a parent
state s. Successor states for which hg(s) = i are dealt with locally in the usual
fashion; other successor states are temporarily stored in a small state lookup
table via a call to store-state(g, n, s') while their hash keys are sent to their
owner processors via a call to send-keys(k, g, n, [, m). Here g is the identity of
the parent state, n is the child number, s’ is the child state and k, [, m are the

partitioning, primary and secondary key values of s’ respectively.
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begin
if ho(so) = i do begin
H; = {[h1(s0), h2(s0)]}
F;.push(sp)

E; = {s0}
end else

while (shutdown signal not received) do begin
if (F; not empty) do begin
s = F;.pop()
for n =1 to [succ(s)| do begin
s’ = child(s,n)
if ho(s') = i do begin
if [hy(8"), ha(s")] ¢ H; do begin
H; = H; U {[h(s'), ha(s')]}
F;.push(s')
E; = E;U{s'}
end
A; = A; U {id(s) — id(s")}
end else do begin
store-state(id(s),n, s')
send-keys(hg(s'), id(s), n, hi(s'), ha(s"))
end
end
end
while (receive-keys(k, g, n, [, m)) do begin
if [I,m| ¢ H; do begin
send-id(k, g, retrieve-id(l, m), n, false)
end else
send-id(k, g, retrieve-id(l, m), n, true)
end
while (receive-id(k, g, h, n, f)) do begin
if (f = false)
send-state(k, retrieve-state(g, n))
delete-state(g, h)
end
while (receive-state(k, s')) do begin
F;.push(s')
Ei = Ez U {SI}
end
end
end

Figure 4.7: Communication-efficient state space generation algorithm for node ¢
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Remote processors receive incoming hash keys via matching calls to receive-
keys(k, g, n, [, m) where k is the sender node. If the hash keys [I, m] are present
in the hash table, the state is deemed to have been explored and its identity
is retrieved from the hash table via a call to retrieve-id(l, m). This identity is
returned to the parent node by calling send-id(k, g, h, n, f) where h is the iden-
tity of the child state and f is a flag set to true to indicate that the state was
present in the hash table. If the hash keys are not present in the hash table,
the state has not yet been encountered. Even so, the hash keys for the state are
inserted into the hash table, and an identity is issued. This identity is returned
to the parent node by calling send-id(k, g, h, n, f) where f is now set to false to
indicate that the state was not present in the hash table. The parent processor
needs to respond by sending this state so that it can be inserted into the remote

processor’s FIFO queue.

The parent processor receives returned identities via matching calls to receive-
id(k, g, h, n, f) where k is the sender node. If the present flag f is not set, the
original successor state descriptor s’ stored in the state lookup table is retrieved
using retrieve-state(g, h); the state s’ is then sent to node k via a call to send-
state(k, s'). Since the state descriptor s’ is now no longer required by the parent

processor, delete-state(g, h) removes it from the state lookup table.

Finally, incoming states are received via calls to receive-state(k, s') where k is
the sender node. Incoming states are added to the local FIFO queue, and are
written out to disk as part of the state space. Note how the activities of adding
the state to the state hash table and adding it to the local FIFO queue have been
separated. Also note that the algorithm is efficient in the sense that at most one

copy of each full state descriptor is ever sent.

Fig. 4.8 summarises the main steps that the communication-efficient algorithm

performs to identify each remote child s’ of state s.

Given a state graph consisting of a arcs and n states, and assuming a uniform

distribution of states across N processors, the communication cost (in bytes) of
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Node hq (s)
parent state
child state
T
node hq (s) node hq (s) | if present
sends receives : flag not set
hash keys id(s’) | node hq (s)
0
@ [hy (8") .hy (8] @ and ! @ sends state s’
to node present ! to node
hg (s”) flag from | hg (s))
node hg(s’) \y
if [hq (s"),h5(s)] inH do begin Node hg (s")
lookup id(s’")
present = true
end else do begin h s’ onto stack F
@ e [hy () .ho (8] into H ® push s’ onto stac
issueid(s’)
present = false
end

Figure 4.8: Steps required by the communication-efficient algorithm to identify

child state s’ of parent s.
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of the original algorithm.
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our enhanced algorithm is:

N =1 (G +C) +nC)

C(a,n,N) = N

where C}, C; and C reflect the cost of sending a hash key, a state identity and
a state descriptor respectively. Again, for efficiency reasons, real implementa-
tions (like ours) should buffer hash key, state and identity messages and send
them in large blocks. Fig. 4.9 compares the ratio of the communication load of
the enhanced algorithm to that of the original algorithm for various state graph
densities (as given by the ratio of arcs to states a/n) and a range of state de-
scriptor lengths. Using parameters taken from our implementation described in
Chapter 6, we set Cy = 12 and C; = 8. The graph shows that the enhanced
algorithm reduces the communication load substantially for graphs with a ratio
of arcs to states greater than 2 and that the reduction in communication load
increases with increasing state descriptor size and increasing graph density. For
graphs with a very low ratio of arcs to states and a short state descriptor, the
communication load in fact increases. However, models with such low ratios are
rare, and most of them correspond to simple queueing models that have simple

product-form solutions.

4.6 Theoretical Performance Model

We now develop a model for predicting the run-time and speedup of the original
and enhanced algorithms when implemented on a statically-routed wraparound
mesh of N processors. We assume that there are a arcs to be generated and that

there are a total of n unique states (nodes) in the state graph.

The model is based on the calculation of two key quantities: the computation time
Tw (a,n, N) required to generate arcs and search for states in the local hash table,
and the communication time Tc(a,n, N) required to send and receive non-local

states. Predicted run-time Tg(a, n, N) is then simply given by

TR(aan,N) = TW(aan,N) +Tc((1,,n, N)
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For the purposes of this analysis, we ignore the start-up period and termination
phase and we assume that the FIFO queue is never empty in any processor. These
are reasonable assumptions for problems with large state spaces — certainly for
any algorithm that runs for more than a few minutes. Further, the randomness in
the hash functions is assumed to achieve perfect load balancing so that, after the
start-up period and before the termination phase of the algorithm, all processors
operate functionally in the same way as per Fig. 4.5 (for the original algorithm)

and Fig. 4.7 (for the enhanced algorithm).

We assume a processor takes ¢ seconds to construct the destination state corre-
sponding to an arc in the state graph. Further, each local arc requires a search to
be performed on a row in the local hash table. Each processor’s hash table has r
rows and it takes an average of d seconds to scan each entry in a row. Note that
the value of c is likely to vary between models, depending on such factors as the
proportion of vanishing states in the state graph, while the value of d remains

constant between models.

Assuming ideal random hash functions which distribute states and arcs evenly
over processors, each processor will generate a/N (mostly non-local) arcs and
will process a/N local arcs. Each state hash table row on each processor will
contain an average of n/(2Nr) elements over the lifetime of the hash table. The
computation time Ty (a,n, N) is thus estimated by:

a dn

Tw(a,n,N)=—=|c+ —|.
wlan, N) =5 (C 2Nr>

The number of non-local arcs m generated per processor, assuming that new

destination states belong to each of the N processors with equal probability, is

simply
m_aN—l_a(N—l)
N N N2

The processing of a non-local arc is assumed to generate L bytes of data traffic.

For the original algorithm,

L=C+0C,
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where C; and C; are the costs of sending a state identity and a state descriptor

respectively. For the enhanced communication-efficient algorithm,

L=Cy+Ci+C

where (', is the cost of sending a set of hash keys.

To prevent the communication network from being overwhelmed by thousands
of short messages, state, identity and hash key messages are buffered and sent
in blocks between processors. The overhead associated with buffer management
for each block (i.e. the time spent packing and unpacking messages) is assumed
to be s seconds. We assume that buffers are transmitted over the network when
they become full with B bytes of data, using a blocking I/O cut-through transfer.
The total number of buffers that need to be sent is mL/B.

In Appendix B.4.1 we show that the time taken to communicate a message be-
tween two nodes in a 2D wraparound mesh with static wormhole routing is given
by:

te(l) = ts(l) + tn(z,y, t1, t2) + (1, A)

where:
e [ is the message length in bytes.
e 1 and y are the dimensions of the mesh.

e t; and ¢y are the per-hop flit latencies for transfers in the same direction

(i.e. X=X or Y—Y) and different directions (i.e. X—Y) respectively.
e ) is the maximum throughput of the underlying network.

e {4(l) is the startup time for a message of length [ bytes (usually proportional

to [).

e in(x,y,t1,1s) is the average hop time required for a header to travel between
sender and receiver. For a square mesh of N processors with z =y = /N

and a per-hop flit latency of t; =t = f seconds,

VN

th(Naf)%Tf-
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Appendix B.4.1 gives an exact formula for the general case of an x X y mesh

e #,(I,\) = Al is the transmission time that a message of | bytes requires to

traverse the link between sender and receiver.

Using this model, the total time Tx spent by each processor on communication

overhead is, on average:

Te(a,n,N) =m (M) _aN-1) ((s + tc(B))L>

B N? B
For a square mesh with a per-hop flit latency of f seconds, we have

a(N —1)

Tc(a,n,N) = N2

(s +t.(B) + (VN/2) + /\B)é)

The speedup of the algorithm executing on this architecture can now be calculated

as:

S(a,n,N) = Tw(a,n,1)/Tr(a,n,N)

= Tw(a,n,1)/ (Tw(a,n,N) + Tc(a,n, N))

and its efficiency is given by F(a,n, N) = S(a,n, N)/N;

Notice that the algorithm is not cost-optimal because its cost (the product of the

parallel run time and the number of processors used) is given by:
C(CL, n, N) = N(TW(aa n, N) + TC(aa n, N))

which cannot be proportional to Ty (a, n, 1) for large N, on account of the v/ N /2
term in T¢(a, n, N). Since it is impossible to maintain the efficiency at a constant
value by simply increasing the size of the state graph, the algorithm is techni-
cally not scalable for very large N. However, since (v N/2)f grows slowly and
is typically negligible in comparison with AB for moderate N, the algorithm’s

efficiency is maintained well for machines with up to a few hundred processors.
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4.7 Results

We have implemented the state generation algorithms of Fig. 4.5 and Fig. 4.7
on a Fujitsu AP3000 distributed memory parallel computer. Our implemen-
tation is written in C++ with support for two popular parallel programming
interfaces, viz. the Message Passing Interface (MPI) [GLS94] and the Parallel
Virtual Machine (PVM) interface [GBD194]. The generator uses hash tables
with » = 750 019 rows per processor and b = 40 bit secondary keys. Models are
specified using the interface language described in Chapter 6 which allows for
the high-level specification of a wide variety of stochastic models. The high-level
specification is then translated into a C++ class which is compiled and linked
with a library implementing the core state generator. The state space and state

graph are written to disk in compressed format as the algorithm proceeds.

The results were collected using up to 16 processors on the AP3000. Each pro-
cessor has a 300MHz UltraSPARC processor, 256 MB RAM and a 4GB local
disk. The nodes run the Solaris operating system and support MPI. They are
connected by a high-speed wormhole-routed network with a peak throughput of
65MB/s.

Interested readers can find further details of the implementation in Chapter 6,

while more details of the machine and its configuration are given in Appendix B.

4.7.1 The FMS Model

The first example we consider is a 22-place GSPN model of a flexible manufac-
turing system. This model, hereafter referred to as the FMS model, was initially
described in [CT93] and was subsequently used in [CGN98] to demonstrate dis-
tributed exhaustive state space generation. A full description of this model is
presented in Appendix A.2, although a complete understanding of the model is
not required here. It suffices to note that the model has a parameter k (corre-

sponding to the initial number of parts in the system), and that as k increases,
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Figure 4.10: The number of tangible states (n) and the number of arcs (a) in the

state graph of the FMS model for various values of &.
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so do the number of states n and the number of arcs a in the state graph (see

Fig. 4.10).

Run times and speedups

The graph on the left in Fig. 4.11 shows the time (defined as the maximum
processor run-time) taken to explore state spaces of different sizes (up to k = 9)
using 1, 2, 4, 8, 12 and 16 processors on the AP3000. Each observed run-time
value is calculated as the mean of four runs. The k = 8 state space (4459455
states) can be generated on a single processor in about 13 minutes 30 seconds;
16 processors require just 71 seconds. The k& = 9 state space (11058 190 states)
can be generated on a single processor in 36 minutes; 16 processors require just

182 seconds.

The graph on the right in Fig. 4.11 shows the speedups for the cases k£ =
4,5,6,7,8,9. The speedup for N processors is given by the run time of the
sequential generation (N = 1) divided by the run time of the distributed gener-
ation with NV processors. For £k = 9 using 16 processors we observe a speedup of
11.85, giving an efficiency of 74%. Most of the lost efficiency can be accounted
for by communication overhead and buffer management, which is not present in
the sequential case. Since speedup increases linearly in the number of processors
for £ > 6, there is evidence to suggest that our algorithm scales well, as predicted

by the analysis of Section 4.6.

Fig. 4.12 shows the corresponding run times and speedups for the communication-
efficient algorithm. For £ = 9 using 16 processors, the run time is 160 seconds,
a 12% improvement over the original algorithm. The corresponding speedup
on 16 processors is 13.47, giving an efficiency of 84% (vs. 74% for the original
algorithm).

Memory utilization is low — a single processor generating the k¥ = 8 state space
uses a total of 8MB RAM (18.8 bytes per state) while the £ = 9 state space

requires 141MB RAM (13.1 bytes per state). 9 bytes of the memory used per
state can be accounted for by the 40-bit secondary key and the 32-bit unique
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the original algorithm on 1, 2, 4, 8, 12 and 16 processors (left), and the resulting

speedups for £k =4,5,6,7,8 and 9 (right)
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state identifier; the remainder can be attributed to factors such as hash table
overhead and storage for the front and back of the unexplored state queue. By
comparison a minimum of 48 bytes would be required to store a state descriptor
in a straightforward exhaustive implementation (22 16-bit integers plus a 32-
bit unique state identifier). The difference would be even more marked with a
complex model that has a longer state descriptor, since the memory consumption

of our technique is independent of the number of elements in the state descriptor.

Larger state graphs
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Figure 4.13: Real time taken to generate state spaces up to £k = 12 using 16

processors (left) and distribution of states across processors for k£ = 12 (right).

Moving beyond the maximum state space size that can be generated on a single
processor, the graph on the left in Fig. 4.13 shows the real time required to
generate larger state spaces using the communication-efficient algorithm running
on 16 processors. For the largest case (k = 12), under 32 minutes are required
to generate a state space with 111414 940 tangible states and a state graph with
1078917632 arcs. The graph on the right in Fig. 4.13 shows the distribution of

the number of states generated by each processor for the case k£ = 12.

In comparison to the results reported above, Ciardo et al used conventional ex-
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haustive distributed generation techniques to generate the same sample model for
the case k£ = 8 in 4 hours using 32 processors on an IBM SP-2 parallel computer
[CGNO98|. They were unable to explore state spaces for larger values of k£ (c.f.
Fig 4.10).

To enhance our confidence in our results for the case £k = 12, we use Eq. 4.9 to
compute the probability of having omitted at least one state. For a state space
of size n = 108 states, the omission probability ¢ is given by:

n? 1016

=~ = = .000379
Nr2b+l 16 * 750 019 % 240

q

i.e. the omission probability is less than 0.05%. This is a small price to pay
for the ability to explore such large state spaces, and is probably less than the
chance of a serious (man-made) error in specifying the model. It is important
to stress that the omission probability applies to the entire state graph and does
not denote the average proportion of states that will be omitted or misidentified.
That is, there is a 99.95% chance that the state graph has been generated in its

entirety without omitting or misidentifying any of the 10® states whatsoever.

To further increase our confidence in the results, we changed all three hash func-
tions and regenerated the state space. This resulted in exactly the same number
of tangible states and arcs. This process could be repeated several times to

establish an even higher level of confidence in the results.

Validation of the performance model

The accuracy of the performance model presented in Section 4.6 has been assessed
by comparing observed runtimes and speedups with model predictions for the
FMS model. The model parameters used are given in Fig. 4.14. Note that the
model parameters for both the original and enhanced algorithms are exactly the
same, except for L, the amount of traffic generated by the processing of a non-

local arc.

Fig. 4.15 and Fig. 4.17 show predicted and observed run times over various state

space sizes for the original and enhanced algorithms respectively. Predicted run-
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Parameter description Value

N | number of nodes (variable)
a number of arcs in state graph (variable)
n | number of states in state space (variable)
comms induced by one non-local arc — original algorithm 56 bytes

comms induced by one non-local arc — enhanced algorithm | 20 + 48n/a bytes

B message buffer size 8192 bytes
F flit size 32 bits
x X y | mesh dimensions 8 x4
11 per-hop flit latency — same direction (X—X or Y—Y) 120ns
to | per-hop flit latency — change direction (X—Y) 170ns
A underlying network throughput 65.6MB/s

c cost of generating one arc 20.5 us

d cost of scanning one hash table entry 180 ns

s cost of buffer management (per buffer) 1050 us

r number of hash table rows per node 750019 rows

2500

Figure 4.14: Parameters used in the FMS performance model
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algorithm with £ =5,6,7,8 and 9

2500

2000

1500

1000

500

1 processor

2 processors
4 processors
8 processors

16 processors

(ARNEN

2e+06

4e+06

6e+06

8e+06 le+07

tangible states generated

1.2e+07

time (seconds)

2500

2000

1500

1000

500

T T

1 processor
2 processors
4 processors
8 processors

16 processors

(ARNEN

2e+06

4e+06

6e+06

8e+06 le+07

tangible states generated

1.2e+07

Figure 4.17: Observed (left) and predicted (right) real time taken to generate

FMS state spaces up to £k = 9 using the communication-efficient algorithm on 1,

2,4, 8,12 and 16 processors



speedup

114 Chapter 4. Probabilistic Dynamic Distributed State Space Generation

=
o
=
o

-
o

T

I I
B

A~ 0

T T

o x
[N
~oa

[y
w
T
1
=
w
T

= =
N} IS
T T
Fy ~ AR
1
N
N}
T

[N
[
T
[
[N
T

[y

o
T
\

=

o
T

speedup

P N W A O O N 0 ©
T
I

- N w R )] (o2} ~N 0 ©
T

AR

1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
number of processors number of processors

Figure 4.18: Observed (left) and predicted (right) FMS speedups for the

communication-efficient algorithm for £ = 5,6,7,8 and 9

times for the single processor case, which does not involve any communication,
are typically within 3% of the observed values, suggesting that our model for
Tw(a,n, N) is accurate. For the larger state spaces (k = 7,8,9) predicted run-
times for multiple processor runs involving communication are typically within
5% of the observed values, suggesting that our model for T¢(a, n, N) is also ac-
curate for large state spaces. However, for smaller state spaces (k = 4,5,6),
there is a tendency for the model to predict significantly faster distributed run
times than are actually observed. This trend is clearly evident in Fig. 4.16 and
Fig. 4.18 which show predicted and observed speedups for the original and en-
hanced algorithms respectively. This is not surprising since our model does not
take into account the start-up and termination phases which require a significant

proportion of run-time for small state spaces.

4.7.2 The Courier Protocol Model

The second example we consider is a 45-place GSPN model of software used in
the Courier telecommunications protocol [WL91|. Full details of the model are

given in Appendix A.3. As was the case for the FMS model, there is a scaling
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parameter & (corresponding to the sliding window size) which we will vary to

produce state graphs of different sizes (see Fig. 4.19).
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Figure 4.19: The number of tangible states (n) and the number of arcs (a) in the

state graph of the Courier model for various values of k.

Run times and speedups

The graph on the left of Fig. 4.20 shows the distributed run-time taken to explore
Courier state spaces of various sizes (up to k& = 6) using 1, 2, 4, 8, 12 and
16 processors on the AP3000. As for the FMS model, each observed value is
calculated as the mean of four runs. The k = 5 state space (5358 600 states) can
be generated on a single processor in 16 minutes 20 seconds; 16 processors require
only 89 seconds. The k = 6 state space (15410 250 states) can be generated on a

single processor in 51 minutes 45 seconds; 16 processors require just 267 seconds.

The corresponding speedups for the cases £ = 1,2,3,4,5,6 are shown in the
graph on the right of Fig. 4.20. For k = 6 using 16 processors, we observe a
speedup of 11.65, giving an efficiency of 73%.
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Figure 4.20: Real time taken to generate Courier state spaces up to k = 6 using

the original algorithm on 1, 2, 4, 8, 12 and 16 processors (left), and the resulting
speedups for £k =1,2,3,4,5 and 6 (right).
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Figure 4.21: Real time taken to generate Courier state spaces up to k = 6 using

the communication-efficient algorithm on 1, 2, 4, 8, 12 and 16 processors (left),

and the resulting speedups for & = 1,2,3,4,5 and 6 (right).
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Fig 4.21 shows the corresponding run times and speedups for the communication-
efficient algorithm. For k£ = 6 using 16 processors, the run time is 221 seconds,
a 17% improvement over the original algorithm. The corresponding speedup
on 16 processors is 14.07, giving an efficiency of 88% (vs. 73% for the original
algorithm). The enhanced algorithm delivers a better performance improvement
here than it did in the case of the FMS model because the Courier model has a
state descriptor that is about double the size of the FMS model (45 integers for the
Courier model vs. 22 integers for the FMS model). Consequently the enhanced
algorithm eliminates a greater proportion of the communication overhead (c.f.

Fig. 4.9).

Once again, memory utilization is low — a single processor generating the £k =5
state space uses a total of 91MB (17.4 bytes per state), while the £ = 6 state
space requires 175MB (11.6 bytes per state). This is far less than the 94 bytes
per state (45 16-bit integers plus a 32-bit unique state indentifier) that would be

required by a straightforward exhaustive implementation.

Larger state graphs
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Figure 4.22: Real time taken to generate state spaces up to £k = 8 using 16

processors (left) and distribution of states across processors for k = 8 (right)
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Moving beyond the maximum state space size that can be generated on a single
processor, the graph on the left of Fig. 4.22 shows the real time required to
generate larger state spaces using the communication-efficient algorithm running
on 16 processors. For the largest case (k = 8), under 26 minutes are required to
generate a state space with 94 322 250 states and a state graph with 710223 930
arcs. The graph on the right of Fig. 4.22 shows the corresponding assignment of

states to processors for the case k = 6.

As for the FMS model, the omission probability is very low (less than 0.05%),
and can be arbitrarily improved by repeatedly regenerating the state space with

independent sets of hash functions.

Validation of the performance model

Parameter description Value
N | number of nodes (variable)
a number of arcs in state graph (variable)
n | number of states in state space (variable)
comms induced by one non-local arc — original algorithm 102 bytes

comms induced by one non-local arc — enhanced algorithm | 20 + 94n/a bytes

B message buffer size 8192 bytes
F flit size 32 bits
z X y | mesh dimensions 8§ x4
t per-hop flit latency — same direction (X—X or Y—Y) 120ns
to per-hop flit latency — change direction (X—Y) 170ns
A underlying network throughput 65.6MB/s
c cost of generating one arc 27.5 us
d cost of scanning one hash table entry 180 ns
s cost of buffer management (per buffer) 1050 us
r number of hash table rows per node 750019 rows

Figure 4.23: Parameters used in the Courier performance model
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Figure 4.26: Observed (left) and predicted (right) real time taken to generate

Courier state spaces up to £k = 9 using the communication-efficient algorithm on

1, 2,4, 8, 12 and 16 processors
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This section compares the runtimes and speedups predicted by the theoretical
performance model of Section 4.6 with the observed results for the Courier model.
The model parameters used are given in Fig. 4.23. The parameters used to predict
the Courier model differ from those used for the FMS model in only two respects.
Firstly, the cost of generating an arc c is higher, since the Courier model has a
greater number of transitions and a higher proportion of vanishing states that
need to be eliminated. Secondly, the amount of traffic generated by the processing
of a non-local arc L differs since the two models have different state vector sizes.
As for the FMS model, the set of parameters used to make predictions for both

the original and enhanced algorithms is the same, with the exception of L.

Fig. 4.24 and Fig. 4.26 show predicted and observed run times over various state
space sizes for the original and enhanced algorithms respectively. For the larger
state space sizes (k = 4,5, 6) agreement for both the single and multiple processor
run times is excellent (within 5%). For the smaller state spaces (k = 1,2,3)
there is again a tendency for the model to predict faster distributed run times
than are observed, because the model does not take into account start-up and
termination overheads. Fig. 4.25 and Fig. 4.27 show the corresponding observed
and predicted speedups. The predicted speedup is particularly accurate for large
models, for both the original and enhanced algorithms. Predicted speedups for
smaller models are too high because of the ideal model assumptions we have

already mentioned.

4.8 Choosing Good Hash Functions

Recall that our technique is based on the use of the following three hash functions:

e the partitioning hash function hyo(s) — (0,1,..., N — 1), which assigns

state s to a processor.

e the primary hash function h;(s) — (0,1,...,7 — 1) which assigns state

s to a row in the hash table on processor hy(s).
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e the secondary hash function hy(s) — (0,1,...,2%—1) which maps state
s onto a b-bit compressed value; this compressed value is stored in row A (s)

of the hash table on processor hg(s).

The reliability of our technique depends on the behaviour of these hash functions
in three important ways. Firstly, hg and h; should randomly partition states
across the processors and hash table rows. Secondly, hy should result in a random
distribution of compressed values. Finally, Ay, h; and hy should distribute states

independently of one other.

Note that, while it is theoretically impossible to define a hash function that
creates random output data from nonrandom input data, in practice it is often
possible to produce a good imitation of random output data [Knu98]. In fact,
the Universal, class of hash functions developed by Carter and Wegman [CWT79]

was designed exactly for this purpose. The idea is to hash an /[-word key
K =x12913...2
onto the value
h(K) = (hi(x1) + ho(x2) + ... + hy(x;)) mod M

where each h; is an independent hash function. Carter and Wegman prove that
this strategy minimizes collisions regardless of the input data. Unfortunately,
calculating [ independent hash functions is too expensive for our purposes. Con-
sequently, we need to develop hash functions which are based on similar principles

as the Universal, class of functions, but which are cheaper to compute.

Before we consider each of the partitioning, primary and secondary hash func-
tions individually, consider the two general hash functions f; and f; shown in
Fig. 4.28. Both map an m-element state vector s = (s1, g, . - ., ;) Onto a 32-bit
unsigned integer by manipulating the bit representations of individual state vec-
tor elements. The xor operator is the bitwise exclusive or operator, rol is the

bitwise rotate-left operator and mod is the modulo (remainder) operator.
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fi(vector s, int shift) — uint32 fa(vector s, int shift; , int shifts) — uint32
begin begin
uint32 key = 0; uint32 key = 0;
int slide = 0; int slide; = 0, slides = 16, sum = 0;
for =1 to m do begin for =1 to m do begin
key = key xor (s; rol slide); sum = sum + s;
slide = (slide + shift) mod 32; key = key xor (s; rol slide;);
end key = key xor (sum rol slides);
return key; slide; = (slide; + shift;) mod 32;
end slideo = (slides + shift;) mod 32;
end

return key;

end

Figure 4.28: Two general hash functions for mapping states onto 32 bit unsigned

integers.

Hash function fi(s, shift) uses exclusive or to combine rotated bit representations
of the state vector elements. State vector element s; is rotated left by an offset
of (i x shift) mod 32 bits. The result is a simple, rapid function that provides a

reasonable distribution of hash values.

Hash function fs(s, shift;, shifty) is based on encoding not only element s; rotated
left by an offset of 4 x shift; mod 32, but also the sum }°;_; s; rotated left by an
offset of 7 X shift, mod 32. This technique makes the hash function resistant to
any symmetries and invariants that may be present in the model. This function
involves more computation than f; but provides an excellent distribution of hash

values.

We now make use of functions f; and f» to derive suitable choices for hg(s),
hi(s) and hy(s). The results presented in Section 4.7 made use of partitioning

and primary functions based on f; and a 40-bit secondary hash function based

on fg.
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4.8.1 Partitioning Hash Function

For the partitioning hash function, we use either
ho(s) = fi(s, shift) mod prime mod N

or

ho(s) = fa(s, shifty, shift;) mod prime mod N

where shift, shift; and shift, are arbitrary shifting factors relatively prime to 32

and prime is some prime number >> N.
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G 600000 |- B 600000 -
i g
f 400000 |- § 400000 |-
5 5
200000 B 200000
1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
processor processor
Figure 4.29: State distributions for the FMS model with £ = 9 and
N = 12 using ho(s) = fi(s,3) mod 5003 mod N (left) and ho(s) =

f2(s,3,5) mod 5003 mod N (right).

The graphs in Fig. 4.29 show the distribution of state assignments in the FMS
model with £ =9 and N = 12 for two partitioning hashing functions, one based

on fi, the other on fs.

Table 4.3 compares the performance of three partitioning hash functions over a
wider range of £ and N values. The functions considered are an ideal random
hashing function, a function based on f; (ho(s) = fi(s,3) mod 5003 mod N) and
a function based on fy (ho(s) = fa(s,3,5) mod 5003 mod N). The performance
is expressed in terms of oy, the standard deviation of the number of states

assigned to each processor. We assume that the ideal random hash function
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tangible N =28 N =12 N =16
states rnd f1 fo |md| fi fo | rnd fi fo
152712 | 129 7 78 | 108 | 164 89 | 95 48 99
537768 | 243 127 | 164 | 203 | 282 | 142 | 178 124 234
1639440 | 423 | 370 | 355 | 354 | 323 | 263 | 310 258 270
4459445 | 698 | 482 | 716 | 584 | 417 | 314 | 511 545 533
11058190 | 1100 | 1418 | 1942 | 919 | 1353 | 1118 | 805 | 1089 | 1345

© 00 g o ot

Table 4.3: Values of oy, the standard deviation of the number of states allocated

to each processor, for the FMS model using three partitioning functions.

distributes n states over IV processors such that the number of states assigned to

a processor follows a binomial distribution with parameters (n,1/N).

Both variants of the partitioning function give well-balanced state distributions.
However, the function based on f; is preferable, since f; involves less compu-
tation than fy;. The even distribution of states ensures good load balancing of
computation and communication overhead across processors, and also maintains

the reliability of our technique.

Ciardo et alinvestigate the problem of choosing a good partitioning hash function
that provides some measure of locality as well as good load balance [CGN98|.
Locality means that most of a state’s successors are assigned to the same processor
as the parent state, resulting in a lower communication load. The communication
load can be measured in terms of the number of cross-arcs between partitions,

i.e. the number of states sent from one processor to another.

One way to achieve locality is to use a partitioning hash function based on a small
subset of the state descriptor called the control set. Many of the transitions do not
alter the control set and therefore do not create cross-arcs. Fig. 4.30(a) shows the
communication patterns and state distributions that result from a partitioning

hash function based on a control set.

Unfortunately, there are several problems with this approach. Firstly, the use of a
control set often leads to an unsatisfactory load balance and uneven communica-

tion patterns that tend to deteriorate even further as the number of processors is
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0 1 2 3 4 5
0 | 104265 | 31123 | 10844 | 9345 | 9376 | 38528
1| 47925 | 107937 | 30878 | 11797 | 10062 9588
2 7640 | 47830 | 97875 | 28272 | 11235 9027
3 6729 6103 | 42542 | 83385 | 25288 9698
4 7750 5694 | 5541 | 36516 | 73881 | 24239
5| 27516 7962 | 6411 | 6494 | 33967 | 78219

ho(s) = (M(P1) + M(P2) - 1013 + M (P3) - 1013%) mod N
50.9% of arcs are cross-arcs

states allocated
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(a) Number of arcs from processor i to processor j (left) and distribution of states

across processors (right) for a hash function based on a control set [CGN98|.

0 1 2 3 4 5
0| 31639 | 28725 31642 | 28966 | 39539 | 24575
1 24938 | 31873 29438 | 31523 | 28608 | 39637
2| 39851 24920 | 31643 | 29207 | 31591 29080
3| 29120 | 39600 | 24948 | 31660 | 28884 | 31208
4| 31136 | 28971 39455 | 24502 | 31144 | 28843
5| 28846 | 31447 | 29093 | 39567 | 24238 | 31425

ho(s) = fi(s,3) mod 5003 mod N

83.0% of arcs are cross-arcs
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(b) Number of arcs from processor i to processor j (left) and distribution of states

across processors (right) for a hash function based on fi.

Figure 4.30: Communication patterns and state distributions for the FMS model

(k =5,N = 6) when using (a) a hash function based on a control set and (b) a

hash function based on f;.
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increased. Secondly, there is at present no way to automatically select a suitable
control set, so we have to rely on the user’s intuition to provide one. Finally, in
the context of our parallel dynamic hash compaction method, the use of a control
set may weaken the reliability of our algorithm since many states with similar
state descriptor elements will be assigned to the same processor. Quantifying
this effect precisely is difficult since it will depend on the model and the form of

the primary and secondary hash functions used.

Because of these problems, our partitioning hash function does not attempt to ex-
ploit locality. Instead we use a general hash function which can be automatically
generated and which leads to a very good load balance and even communication
patterns without affecting the reliability of our algorithm. Fig. 4.30(b) shows
the balanced communication patterns and state distributions of our partitioning

hash function.

Of course a user may wish to substitute a user-defined partitioning hash func-
tion if there is some application-specific feature which enables the exploitation
of locality while preserving both good load balance and the reliability of the

algorithm.

4.8.2 Primary Hash Function

For the primary hash function, we use either
hi(s) = fi(s, shift) mod r
or
hi(s) = fa(s, shifty, shifty) mod r

where shift, shift, and shift, are arbitrary shifting factors relatively prime to 32

and r, the number of rows in the hash table, is a prime number.

Table 4.4 compares the performance of three primary hash functions for the FMS
model. The functions considered are an ideal random hashing function, h;(s) =

fi(s,7) mod r and hy(s) = fo(s,3,5) mod r. We assume all states are inserted
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tangible hash table rows used o2

states random f1 fo random f1 fo
152712 | 123757 | 122349 | 123809 0.436 | 0.448 | 0.436
537768 | 274704 | 271493 | 274611 1.536 | 1.618 | 1.542
1639440 | 346769 | 345932 | 346 743 4.684 | 5.165 | 4.672
4459445 | 350002 | 350001 | 350001 | 12.741 | 14.670 | 12.741
11058190 | 350003 | 350003 | 350003 | 31.595 | 39.391 | 31.694

© 0 g o o

Table 4.4: Values of o2, the variance of the number of states allocated to each
hash table row, and the number of hash table rows used when applying three
primary hash functions to the states of the FMS model.

into a single hash table with r = 350003 rows. We express the performance of
the hash functions in terms of the number of hash table rows used and in terms of
02, the variance of the hash table row length. We assume that an ideal random
hash function distributes n states over r rows such that the number of states

assigned to each row follows a binomial distribution with parameters (n,1/r).

Both functions provide a good spread of states across hash table rows. If maxi-
mum computational speed is desirable the hash function based on f; provides a
reasonable distribution of states. However, the hash function based on f5 con-
sistently achieves a better spread of states, so the hash function based on f5 is

better if maximum reliability is the main concern.

4.8.3 Secondary Hash Function

For the secondary hash function, we consider 32-bit (4-byte) compression
based on either f; or fo:

ha(s) = fi(s, shift)
or

ho(s) = fals, shifty, shifty)

where shift, shift; and shifty are relatively prime to 32. Function f; has the
desirable property that it is resistant to symmetries and invariants in the model;

this prevents similar (but distinct) states from having the same secondary hash
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values. Consequently, f, gives a better spread of secondary values then f;. For
40-bit secondary hash keys (i.e. five-byte state compression), f; and f, can easily

be modified to produce a 40-bit hash key instead of a 32-bit hash key.

tangible unique secondary key values
k states random f1 fo
5 152712 152707 | 149694 152712
6 537768 537701 519530 537730
7 1639440 | 1638814 | 1540241 | 1639058
8 4459455 | 4454827 | 4063882 | 4456835
9 11058190 | 11029755 | 9544696 | 11043 283

Table 4.5: The number of unique secondary key values obtained by applying
three secondary hash functions to the states of the FMS model.

Table 4.5 compares the performance of the secondary hash functions hs(s) =
fi(s,7) and ha(s) = fo(s,3,5) with that of an ideal random hashing function
for the states in the FMS model. The performance is expressed in terms of
the number of unique secondary key values across all states. As before, we
assume that an ideal random hash function distributes n states over 232 possible
key values such that the number of states assigned to each key value follows a

binomial distribution with parameters (n,1/23%).

Hash function f; does not achieve a particularly good distribution of secondary
key values, while f, consistently achieves an excellent state distribution even

better than the ideal random hash function.

4.8.4 Hash Function Independence

It is important to ensure the independence of the values produced by hg(s), hi(s)

and hy(s). The following guidelines assist this:

e Some hash functions should be based on f; while others are based on fs;
hash functions which use the same base function should use different shifting

factors.
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e The hash functions should consider state vector elements in a different

order.

e the value of r used by hi(s) should not be the same as the value of prime

used by hg(s).

Table 4.6 shows the correlation between hash function values for various values
of k for the states of the FMS model. Here N = 256, r = 350003 and b =
32. The hash functions used are ho(s) = fi(s,3) mod 5003 mod N, hi(s) =
fi(s,7) mod r and hs(s) = fa(s,3,5). The results are presented in terms of
Tij, the correlation between the values produced by hash functions h;(s) and
h;(s). None of the correlations is significantly different from zero, assuming a
significance level of & = 0.05 in Pearson’s test for significant correlation. Here

the test statistic is given by:

t=— 4.10
. (4.10)
where
_ Yimiyi — (i) (i i) /n
(Ziz? — (Xizi)?/n)(Ziyf — (Zivi)?/n)
denotes the degree of correlation between the values z1, x9, ..., 2, and Y1, ¥y, - - ., Yn

(-1 <r<1),and
1—1r2

n—2

S, =
is the standard error of r.

The test statistic of Eq. 4.10 ¢ has a t-distribution with n — 2 degrees of freedom.
Using a t-table we can find the two critical probability values corresponding to
the given significance level. If ¢ has a value outside of the critical region bounded
by these probability values, the null hypothesis that 7 = 0 (i.e. that there is no

correlation) will be rejected.

Fig. 4.31 shows scattergrams of the hash function values of 10 000 states sampled
from the state space of the FMS model with £ = 7. The parameter values and
hash functions are the same as those used in Table 4.6. No unusual clusters or

patterns are observed in any of the scattergrams. The assumption that our hash



4.9. Conclusion

k=4 k=5 k=6 k=17 k=8
ror | 435x1073 | 1.17x 1073 | 4.38x107*| 3.63x107* | —5.80 x 1079
ro2 | 274x1073 | 593 x107* | —2.12 x107° | 8.56 x 107° | —2.37 x 104
o | 1.30x 1073 | 428 x 1073 | —1.66 x 107* | —1.41 x 10~* | —7.87 x 10~°

Table 4.6: Correlations between hash function values for the states of the FMS
model with £ = 4,5,6,7, 8.

functions distribute states independently of one another therefore seems to be

reasonable in the context of the FMS model.

4.9 Conclusion

We have presented a new dynamic probabilistic state exploration technique and
developed an efficient parallel implementation that exhibits good scalability. In
contrast to conventional state exploration algorithms, the memory usage of our
technique is very low and is independent of the length of the state vector. Since
the method is probabilistic, there is a chance of state omission, but the reliability
of our technique is excellent and the probability of omitting one or more states is
extremely small. Moreover, by performing multiple runs with independent sets
of hash functions, we can reduce the omission probability almost arbitrarily at

logarithmic computational cost.

Our results to date show good speedups and scalability. It is the combination of
probability and parallelism that dramatically reduces both the space and time
requirements of large-scale state space exploration. We note here that the same
algorithm could also be effectively implemented on a shared-memory multipro-
cessor architecture, using a single shared hash table and a shared breadth first
search queue. There would be no need for a partitioning function and contention
for rows in the shared hash table would be very small. Consequently, it should

again be possible to achieve good speedups and scalability.

Our technique is based on the use of hashing functions to assign states to pro-

cessors, hash table rows, and compressed state values. The reliability analysis
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Figure 4.31: Scattergrams of the hash function values of a sample of 10 000 states
taken from the state space of the FMS model with £ = 7.
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requires that the hash functions distribute states randomly and independently.
We have shown how to generate hashing functions which meet these requirements.
To illustrate the potential of our algorithm, we have explored a state space with
more than 10® tangible states and 10° arcs in under an hour using 16 processors

on an AP3000 parallel computer. The probability of state omission is less than

0.05%.

Previously, the memory and time bottleneck in the performance analysis pipeline
has been state space generation. We believe that our technique shifts this bot-
tleneck away from state space generation and onto stages later in the analysis
pipeline. The next chapter will therefore focus on developing a steady-state
analyser to solve the state graph’s underlying Markov chain for its equilibrium

probability distribution.



Chapter 5

A Distributed Disk-based

Solution Technique

5.1 Introduction

Having generated the state space and state graph, the next challenge is to find
the long run proportion of time the system spends in each of its states. This
can be done by mapping the state graph onto a continuous time Markov chain

(CTMC) which is then solved for its steady-state distribution.

Solving a CTMC with n states corresponds to solving the set of steady-state

equations of form:

WQZO: Zﬂ-zzl

where () is the n X n infinitesimal generator matrix and 7 is the n-element steady-
state solution vector. An equivalent formulation is Q¥ 7?7 = 0 which allows the
use of general algorithms for solving Az = b. Note that in general, we can assume
ai; = q; = —1 without loss of generality, since @7 can be transformed into
By where B = Q7D ! and y = DT with D = diag(q?,, ¢dy, ..., qL,). w7 is then

easily obtained as D~ 'y.

Contemporary methods for the solution of large Markov models were surveyed

in Chapter 3. Of these, by far the most promising generally applicable tech-

134
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nique for the large-scale solution of Markov models on a single processor is the
“disk-based” solution proposed by Deavours and Sanders [DS98a]. Their Block
Gauss-Seidel (BGS) solver reads generator matrix elements from disk, maintain-
ing high throughput by using two cooperating processes to perform disk I/O and
computation concurrently. The memory usage of the BGS solver is low with the
main requirement being the space for the solution vector. In this way, systems

of 10 million states and 100 million transitions can be solved on a workstation

with only 128MB RAM.

With the availability of distributed memory computers and high-speed worksta-
tion clusters, much attention has been focused on methods for distributed and
parallel state space generation. Using the techniques presented in Chapter 4,
it is now possible to generate very large state spaces of over 100 million states
and 1 billion transitions on a 16-node distributed memory parallel computer in
about half an hour. A single workstation is inadequate to solve models of this
scale — the amount of computation required is vast and the space required for the
solution vector alone (800MB) requires more memory than is available on most

workstations.

Corresponding distributed techniques which leverage the compute power, mem-
ory and disk space of several processors are therefore needed to solve these models.
This is the focus of this chapter, which considers disk-based solution techniques
for distributed memory computers. In particular, we consider two numerical
methods that are suited to parallel implementation: the Jacobi and Conjugate
Gradient Squared (CGS) algorithms. We discuss opportunities for parallelism
and show how the memory requirements of the CGS algorithm can be reduced

at the cost of extra disk space.

Achieving good parallel performance from sparse matrix problems is a challenge
which often arises in scientific computing. The situation is particularly difficult
when the bandwidth (i.e. the average number of non-zero elements per row) is
low. This is often the case with Markov models where there are usually only a

limited number of events that can occur in each state, leading to a limited num-
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ber of successor states. This problem manifests itself in the sparse matrix-vector
multiply operation which lies at the core of the Jacobi and CGS algorithms. How-
ever, by exploiting the structure induced by breadth-first search state generation
algorithms, we develop an efficient matrix-vector multiply kernel which exhibits

low memory use, low communication overhead and good load balance.

The kernel is combined with a high-performance distributed software architecture
which makes use of two processes per node to maximise the overlapping of disk
I/O with communication and computation. The resulting solver has been imple-
mented on a 16-node Fujitsu AP3000 distributed memory parallel computer. We
demonstrate the effectiveness of our tool by solving Markov chains of the order

of 100 million states and 1 billion transitions.

The rest of this chapter is organised as follows. Section 5.2 outlines the Ja-
cobi and Conjugate Gradient Squared algorithms and considers opportunities for
parallelism. Section 5.3 shows how sequential and distributed breadth first gener-
ators induce a structure on the generator matrix which can be used to develop an
efficient matrix-vector multiply kernel. Section 5.4 presents a software framework
for a high-performance distributed disk-based Markov solver. Results from an
implementation which embeds the matrix-vector multiply kernel in this frame-
work are presented in Section 5.5. Section 5.6 concludes and considers future

work.

5.2 Scalable Numerical Methods

A broad spectrum of sequential solution techniques are available for solving
steady-state equations [Ste94]. These include classical iterative methods, Krylov
subspace techniques and decomposition-based techniques. Many of these algo-
rithms are unsuited to distributed or parallel implementation, however, since
they rely on the so-called “Gauss-Seidel effect” to accelerate convergence. This
effect occurs when newly updated steady-state vector elements are used in the

calculation of other vector elements within the same iteration. In the case of
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sparse matrices, this sequential dependency can be alleviated by using multi-
coloured ordering schemes which allow parallel computation of unrelated vector
elements in phases; however, finding such orderings is a combinatorial problem of
exponential complexity. Consequently obtaining suitable orderings for very large

matrices is infeasible.

Most classical iterative methods, such as Gauss-Seidel and Successive Overrelax-
ation (SOR), suffer from this problem. An important exception is the Jacobi
method which uses independent updates of vector elements. The Jacobi method
is characterised by slow, smooth convergence and will be used as a base case for

comparison.

Krylov subspace methods [Wei95] (c.f. Section 2.5.2) are a powerful class of
iterative methods which includes many conjugate gradient-type algorithms. They
derive their name from the fact that they generate their iterates using a shifted
Krylov subspace associated with the coefficient matrix. They are widely used in
scientific computing since they are parameter free (unlike SOR) and exhibit rapid,
if somewhat erratic, convergence. In addition, these methods are well suited
to parallel implementation because they are based on matrix-vector products,

independent vector updates and inner products.

The most recently developed Krylov subspace algorithms (such as CGS [Son89],
BiCGSTAB [Vor92] and TFQMR, [Fre93]) are also particularly suited to a disk-
based implementation since they access A in a predictable fashion and do not
require multiplication with A”. Compared to classical iterative methods, how-
ever, Krylov subspace techniques have high memory requirements. We select
CGS for our study because it requires the least memory of these methods; fur-
ther we devise a scheme for reducing the total memory requirement (across all

processors) from 7 n-vectors to just 3 by storing intermediate vectors on disk.
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JACOBI ALGORITHM

1. Initialise

e Q7 is given and (¥ is an initial guess at the solution vector.
o (0 = _QTz©

e k=0
2. Iterate

o while ||r®||/|[z®|| > 1071 do

k=k+1
fori=0ton—1do
k k-1 k-1
) =0

r(B) = QT z(®)

3. Normalise z.

Figure 5.1: The Jacobi method [KGGK94].

5.2.1 Jacobi Method

The Jacobi method is a simple iterative method which is based on the observation

that a solution to Az = b satisfies:

= (bi — Y aijz;) /i

£

This suggests the iterative form

k+1 (b; — Zaw /aZZ

G

where & is the iteration counter (starting at 0) and 2(?) is an initial guess at the

solution vector. We can rework this equation in terms of the residual r = b — Ax
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n—1 (k)
§=0 Q355 ", SO

() _
bi — {

F =

by observing that r
n—1

o = (0 = Y a2l + agal®) fai = 1 fag; + 2
i=0

The algorithm based on this formulation appears in Fig. 5.1. Since calculations
of the xz(k)s are independent, vectors can be distributed and equation updates
performed in parallel. There is one matrix-vector product which may also be
performed in parallel, although this requires communication. Total storage re-

quirements across all processors amounts to 3 n-vectors (z(¥), z(*=1) and r).

The stopping condition we choose is |[7®]||./||2*)||o < € where € = 107'° and
||z||co denotes the infinity-norm (given by max; |x;|) of vector x. This is a good
measure of the quality of the solution relative to the size of elements in the

unnormalised solution vector.

5.2.2 Conjugate Gradient Squared Algorithm

The Conjugate Gradient Squared (CGS) algorithm [Son89] is a generalisation of
the classical Conjugate Gradient method (c.f. Fig. 2.7) in that it allows for a
general non-symmetric matrix A instead of requiring A to be symmetric positive
definite. The algorithm is shown in Fig. 5.2. Greek letters («, § and p) represent
scalar values while Roman letters (p,q,r etc.) represent n-vectors (with the
exception of the iteration counter k). The version we present here is known as
the true residual version since it explicitly calculates the residual in the last step
of every iteration. In our experience, the alternative updated residual method
exhibits more erratic convergence behaviour since it is prone to the accumulated

cancellation effects which occur in finite precision arithmetic.

CGS performs two matrix-vector multiplications, 6 vector updates and 2 vector
dot products per iteration. These operations give much scope for parallelism
since vectors can be completely distributed and calculation can proceed largely
independently. Communication is required for the matrix-vector multiplication,
the dot products and the calculation of vector norms involved in the convergence

test.
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CGS ALGORITHM

1. Initialise

e Q7 is given 1 2 3

e 2(0 is an initial guess at the solution x

o 70 = QT2 r Tw | M

o (0 = (0 r P | -

e p¥ =1

o p¥ =¢¥ =0 ro | pw | aw

e k=0

2. Iterate

e while ||[r®)||./||z*)|| > 107" do 1] 2] 3
k=Fk+1
p®) = (0 . p(k=1) r PR
B = pk) [ plk=1)
u = r*=D 4 g1 r g% |u
p® =+ B(g* Y + ppkY) R g |uw
v=Q"p" pw |v |m
o= p®) /(#0) . p) R
¢*® =u—av g |v |uf
u=u+q" qw u
z®) = k=) 4 oy zf
rk) = —QTz*) T Tw | m

3. Normalise z.

Figure 5.2: The CGS algorithm [Son89].
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The memory requirements of the CGS algorithm are high, since storage is re-
quired for a total of 7 n-vectors across all processors (p, ¢, r, u, v, z and m which
is a vector required by the distributed matrix-vector multiply). Not all of these
vectors are used at the same time, however, and it is possible to reduce the total
memory requirement to just 3 n-vectors at the cost of writing some intermediate
vectors to disk. The schedule which achieves this goal is shown to the right of the
CGS algorithm in Fig. 5.2. The numbered columns reflect the contents of the
n-vectors at each step of the algorithm. The notation z® indicates that vector
x is read from disk at the start of an operation and xy indicates the vector is

written to disk at the end of the operation.

The stopping condition is the same as for the Jacobi algorithm. Since the conver-
gence of the CGS algorithm is often erratic, this avoids false convergence problems

k+1)

associated with stopping conditions based on ||z**+) —z®) || and allows for fair

comparison of the two algorithms.

5.3 Distributed Sparse Matrix-vector Multiply

Kernel

The sparse matrix-vector multiply operation Q7z forms the core of both the
Jacobi and CGS algorithms. Consequently an efficient implementation of this
kernel is central to obtaining good performance. Ideal attributes of the kernel
include low communication cost, good load balance, good scalability and the
ability to overlap communication and computation. In addition, per-processor
memory requirements should be kept as low as possible since storing vectors of

double precision floating point numbers is expensive (usually eight bytes each).

In the following sections, we study the structure of the generator matrix @) as
typically produced by a large class of sequential and distributed state space gen-
eration tools. We then consider various state reordering strategies which can be
used during matrix tranposition to obtain an effective data distribution for Q7.

Finally, we present an efficient matrix-vector multiply kernel.
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5.3.1 Infinitesimal Generator Matrix Structure

Automated state space generation tools are widely used to map structurally unre-
stricted high-level models onto their underlying state spaces and generator matri-
ces. Typically this mapping is performed using a sequential breadth-first search
(BFS) traversal which assigns unique state sequence numbers to states in the
order in which they are encountered. Fig. 5.3(a) demonstrates how a sequential
BF'S generator induces a (mostly) lower-triangular structure on the resulting gen-
erator matrix (). The matrices shown in the figure are derived from a queueing
Petri net model of a telecommunications protocol with an underlying Markov

chain of 73 735 states and 295 591 transitions.

Distributed state space generators (e.g. [CCM95, CGN98, KMHK98]) use hash
functions to partition states across nodes so that each node is responsible for
exploring a portion of the state space and for constructing a portion of the gener-
ator matrix (). Each node performs a BFS-like exploration of a local state queue
in a manner similar to the sequential algorithm. Newly discovered states are
passed to their “owner” processors where they are inserted into the local queue
and assigned a local state sequence number. Given p processors, the ¢th of which
generates n; states, states in this scheme are identified by a pair of integers (3, j)
where i (0 < i < p) is the node number of the host processor and j (0 < j < n;)
is the local state sequence number. Fig 5.3(b) illustrates the resulting structure

induced by a distributed BF'S generator.

5.3.2 Matrix Reordering Strategies
Random reordering

The most efficient matrix-vector multiply algorithms for dense matrices are those
based on a block-checkerboard partitioning in which processors are assigned
n/\/pxn/./p blocks of matrix elements [KGGK94]. Such algorithmsrely on a bal-
anced distribution of elements across processors and regular interprocessor com-

munication that can be conducted in parallel. In general, however, sparse matri-
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Figure 5.3: The non-zero structure of the generator matrix ) as induced by

sequential and distributed breadth-first state generators.
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Figure 5.4: The structure of Q7 after state reordering and corresponding proces-

sor assignments.
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ces have an unbalanced non-zero structure so computation time is determined by
the block with the largest number of non-zeros. Ogielski and Aiello overcome this
problem by showing that randomly permuting the rows and columns of a sparse
matrix produces a well-balanced block allocation with high-probability [OA93].
The resulting matrix can then be used to good effect with well-known general al-

gorithms for parallel sparse matrix-vector multiplication [LG93, LPG94, HLP95].

In our case, the same random scattering effect can be achieved by using a pseudo-
random function f(4,5) : (0,...,n — 1) to assign state (¢,7) to a unique global

state number according to the mapping:

i—1

f(@,75) = (c1* (O_ nk +7) + ¢2) mod n (5.1)

k=0

where n; is the number of states generated by node 7, ¢; is a large prime and
co is an arbitrary offset. The global state number can then be used to partition
the states over the nodes in a straightforward fashion. Fig. 5.4(a) shows the
resulting layout of Q7 after the application of this mapping and a corresponding

block-checkerboard assignment of processors.

Approximate BFS reordering

The random remapping described above allows for the application of well-known
efficient matrix-vector multiplication algorithms for unstructured matrices, but
these suffer from high communication cost. One approach to alleviating this
bottleneck is to reorder the states of Q7 across processors to maximize data
locality and minimise communication. This goal maps directly onto a p-way
weighted graph partitioning problem. This problem involves subdividing the
vertices of a weighted graph into p equal partitions such that the number of
edges that straddle partitions is minimised and the sum of the vertex weights in
each partition is the same [KK98]. In our case the states in QT correspond to
the vertices of the graph, the transitions between states constitute the edges and
the number of non-zeros in a row are the vertex weights. This problem is NP-

complete. We can, however, obtain considerable data locality by using a rapid
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mapping which exploits the structure evident in Fig. 5.3(b). In particular, if we

assign state (7, ) to a global state number given by the function

i p—1
f,5) =n—=) min(j+1,nt) = > min(j, ng) (5.2)
k=0 k=i+1

we obtain the BFS-like structure for @Q* shown in Fig. 5.4(b). It is then a simple
task to assign blocks of consecutive states to processors such that the number
of non-zeros allocated to each processor is the same. This results in a row-wise
allocation of matrix-blocks to processors, as shown in Fig. 5.4(b). Note how this
mapping results in more rows being allocated to the lower-numbered processors

on account of the lower-triangular structure of the generator matrix.

5.3.3 Kernel Algorithm

We now outline a disk-based distributed sparse matrix-vector multiply kernel.
We assume that the states of Q7 have been reordered according to the approx-
imate BF'S mapping described above, resulting in an allocation of s; states to
processor 7. We will use the notation @);; to indicate the jth matrix block of
node i (0 < 4,7 < p). z; will be used to denote the distributed portion of

vector x of length s; allocated to node 1.

The algorithm for node ¢ which performs y; = Q%Lz; is outlined in Fig. 5.5.
Node i begins by multiplying matrix block Q% with x;. This is performed by

the procedure disk-multiply which reads blocks of non-zero elements from disk

as necessary. Then, for each j # ¢ and non-empty block QiTj, the node calls
request-subvector(j) which requests and receives from node j the subvector m
to be multiplied with that block. To minimize communication, the subvector m
contains only the range of elements in z; which are actually referenced by the

computation of Q};x;.

Nodes may use a dedicated thread to detect and service incoming requests for
elements of z;, thus allowing communication to proceed in tandem with the com-

putation. Alternatively, in the case of a thread-unsafe message passing library,
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function multiply-kernel (Q7,: matrix[s;|[n], = : vector[s;]) : vector[s;]

var gy . vector|s;]
m : vector|max;(s;)]
J,k,p : integer
begin
y=10

for k=0 to p—1 do begin
j=(i+ k) mod p
if Q7; is empty continue
if 7 # j do begin
m = request-subvector(j)
y = y + disk-multiply( Z-T]-, m)
end else
y = y + disk-multiply(Q};, z)
end
serve-requests(z)
return y
end

Figure 5.5: Distributed sparse matrix-vector multiply kernel for node %.
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non-blocking probe and send operations can be used to achieve the same effect.
Any requests that remain outstanding are processed by the serve-request proce-

dure.

The kernel algorithm as presented above blocks while waiting for remote subvec-
tors. This can be avoided by taking further advantage of non-blocking commu-
nication primitives. In particular, during the initial multiplication Q%x;, node %
can request the subvector required by the subsequent block (i + 1) mod p. This
subvector can be received into m using a non-blocking receive operation. At
the cost of an extra vector of length max;(s;), this procedure can be extended
to the remaining subblocks, thus reducing waiting time further by achieving the

complete overlap of communication and computation.

5.4 Distributed Disk-based Solver Architecture

This section describes a high-performance architecture for a distributed disk-

based Markov Chain solver that makes use of our matrix-vector multiply kernel.

The limiting factor governing the computation speed of disk-based methods is
usually disk throughput. This is especially the case with very large matrix files
where operating system file caching is likely to be ineffective. It is therefore
important for nodes to be able to overlap disk I/O and computation to achieve
maximum efficiency. To solve this problem, Deavours and Sanders propose a two-
process architecture which they use in their sequential disk-based Block Gauss-
Seidel (BGS) solver [DS98a] (c.f. Section 3.2.5). However, in a parallel context,
it is also important to overlap communication with disk I/O. We therefore pro-
pose a distributed disk-based architecture that has the added benefit of allowing

communication to proceed in parallel with disk I/O.

Fig. 5.6 shows the architecture. Each node has two processes: a Disk I/O pro-
cess dedicated to reading matrix elements from a local disk, and a Compute
process which performs the iterations using the matrix-vector multiply kernel.

The processes share two data buffers located in shared memory and synchronise
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Figure 5.6: Distributed disk-based solver architecture

via semaphores. Together the processes operate as a classical producer-consumer
system, with the disk I/O process filling one shared memory buffer while the
compute process consumes data from the other. The compute process also man-
ages interprocess communication. Interested readers are invited to consult Sec-
tion 6.2.4 for more technical details about this architecture and how it can be

realised in practice.

5.5 Results

We have implemented a distributed disk-based Markov solver which uses the
kernel described in Section 5.3.3 and the software architecture outlined in Sec-
tion 5.4. The solver is written in C++ and uses the Message Passing Interface
(MPI) [GLS94] standard so it is portable to a wide variety of parallel computers
and workstation clusters. The results presented here were collected using up to
16 processors on the AP3000. Further details of the implementation are given
in Chapter 6 while full details of the machine and its configuration are given in

Appendix B.



150 Chapter 5. A Distributed Disk-based Solution Technique

5.5.1 The FMS Model

The first example we consider is a 22-place GSPN model of a flexible manufac-
turing system (the FMS model). A full description of this model is given in
Appendix A.2. Fig. 4.10 shows the number of states and transitions in the model
in terms of the parameter £ (which corresponds to the initial number of parts in
the system). We use the same transition rates (many of them state-dependent)

as given in the original model specification [CT93].

The state spaces and generator matrices for the models were generated using the
distributed state generation algorithm presented in Chapter 4. The generator
matrices were then transposed and remapped in a distributed fashion according
to the reordering presented in Section 5.3.2. Both of these steps are rapid relative
to the time taken for solution; 16 processors generate and remap the k = 11 (54

million states) case in under 30 minutes of real time.

The resulting matrix blocks require 6 bytes of disk space per non-zero element —
4 for the column index and 2 used as an index into a vector of transition rates.
The largest model requires about 18000 distinct transition rates so this approach
is more economical than using 8 bytes to store each rate as a double precision
number. The number of non-zero entries in each block row is also stored; one byte
per block row is adequate since the bandwidth (i.e. the average number of non-
zero elements in a row) of the matrix is low (about 10). The latter information
may be stored in memory for rapid access, or, for extremely large models, read

in from disk during matrix-vector multiplication.

Table 5.1 presents the execution time (defined as maximum processor run-time)
in seconds required for the distributed solution of models using the CGS and
Jacobi methods. The models range in size from k& = 4 (35910 states) to k = 11

(54 million states) and runs are conducted on 1, 2, 4, 8, 12 and 16 processors.

The number of iterations and the per-node memory requirement for each run is
also shown. The number of CGS iterations varies slightly with p whereas the

number of Jacobi iterations remains constant. This occurs because the uniformly



5.5. Results 151
k=4 k=5 k=6 k=7 k=8 k=9 | k=10 || k =11
Jacobi time (s) 40.383 || 252.89 || 1160.0 || 4491.6
Jacobi iterations 1220 1500 1790 2095
p=1 | CGS time (s) 16.817 || 111.25 || 479.09 || 2191.1 || 30974
CGS iterations 125 172 191 231 262
Memory/node (MB) 20.9 23.8 33.4 61.0 | 131.5
Jacobi time (s) 27.912 || 161.95 || 790.33 || 3535.9
Jacobi iterations 1220 1500 1790 2095
p=2 | CGS time (s) 10.008 || 55.795 || 259.81 || 1082.1 || 13822
CGS iterations 125 154 189 217 279
Memory/node (MB) 20.5 21.9 || 27.00 41.3 78.0
Jacobi time (s) 24.574 || 113.51 || 633.99 || 2710.1
Jacobi iterations 1220 1500 1790 2095
p=4 || CGS time (s) 7.0795 || 35.578 || 165.86 || 725.89 || 2752.2
CGS iterations 132 148 186 227 258
Memory/node (MB) 20.3 21.1 23.8 31.5 51.2
Jacobi time (s) 27.427 || 90.455 || 406.46 || 1777.1 || 6835.4
Jacobi iterations 1220 1500 1790 2095 2410
p=2_8 | CGS time (s) 5.6017 || 26.682 || 106.98 || 458.67 || 1773.3 | 5850.3
CGS iterations 122 159 184 222 268 315
Memory/node (MB) 20.1 20.6 22.2 26.6 37.8 64.2
Jacobi time (s) 28.245 || 89.047 || 349.54 || 1590.6 || 5132.2 17187 | 44911
Jacobi iterations 1220 1500 1790 2095 2410 2730 || 3065
p =12 || CGS time (s) 6.6556 || 27.423 || 91.973 || 351.43 || 1293.3 || 4379.83 || 23558
CGS iterations 126 166 184 217 257 322 320
Memory/node (MB) 20.1 20.5 21.6 24.9 33.4 53.2 96.2
Jacobi time (s) 31.880 || 95.864 || 348.39 | 1316.1 || 4664.8 14636 || 38770
Jacobi iterations 1220 1500 1790 2095 2410 2730 | 3065
p =16 || CGS time (s) 7.1523 || 26.483 || 89.230 || 333.35 || 1183.2 | 3818.5 || 11058 || 62261
CGS iterations 123 162 185 227 254 317 329 391
Memory/node (MB) 20.1 20.4 21.3 24.1 31.1 47.6 83.5 102.0

Table 5.1: Real time in seconds required for the distributed solution of the FMS

model.
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distributed starting vector z(9) used to initialise the Jacobi method is unsuitable
for CGS since CGS’s starting vector should ideally not be close to the final
solution. Consequently we use a randomly-generated starting vector z(® for

CGS, with each processor using a different random seed.

Fig. 5.7 compares the convergence of the Jacobi method with that of the CGS
algorithm for the £ = 7 case in terms of the number of matrix-vector multipli-
cations performed. The Jacobi method exhibits smooth but slow convergence,
while the CGS algorithm exhibits rapid but erratic convergence. This trend also
holds for the other values of £k, with the CGS algorithm typically converging

about 4 times faster than the Jacobi method.

1 T T T T T T T T T

log10(residual norm/vector norm)

_10 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500
matrix-vector multiplications

Figure 5.7: Jacobi and CGS convergence behaviour for the FMS model with
k="1.

The largest model that can be solved on a single processor is the case k£ = 8
(4.5 million states). Fig. 5.8 compares the average time taken per distributed

CGS iteration for model sizes up to £ = 8 using various numbers of processors.
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Figure 5.8: Time per distributed CGS iteration in seconds relative to the number

of states (left) and number of transitions (right) in the FMS model.

The graph shows a dramatic reduction in run-time as processors are added —
for the case k = 8, 16 processors perform iterations at 25 times the speed of 1
processor. This superlinear speedup can be attributed to better caching of disk

I/O, resulting in higher data throughput.

Fig. 5.9 shows the speedup and efficiency achieved by the CGS method for small
FMS models with £ < 7 where variation due to caching effects does not play an
important role. The case k = 8 gives superlinear speedup due to caching effects
and is not shown. The speedup S, for p processors is given by the run time of a
sequential CGS iteration (p = 1) divided by the run time of a distributed CGS
iteration with p processors. Efficiency for p processors is given by S,/p. We see
that larger problem sizes produce better speedups, and that adding processors
increases the speedup for all but the smallest problems where communication
costs dominate. The efficiency graph shows that efficiency decreases as we add
more processors, as is to be expected when the problem size is maintained at
the same level. Note that, although the efficiencies reported here are lower than
those observed for the state space generation algorithm due to the nature of the
problem, they are competitive with the speedups reported in the literature for

parallel linear equation solvers (c.f. Section 3.2.6).
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Figure 5.9: CGS speedup (left) and efficiency (right) for the FMS model with
k=4,5,6,7.

Moving beyond the maximum problem size that can be handled on a single
processor, the k = 9 case (11 million states) is solved in little over an hour on
16 processors, while the k& = 10 case (25 million states) takes just over 3 hours.
In the latter case, the total amount of disk I/O across all nodes is in excess of
1.5TB, with the nodes jointly processing an average of 144MB of disk data every

second.

The case £k = 11 (54 million states) is solved in 17 hours 20 minutes on 16
processors. Here the total amount of disk I/O required is over 4TB, with the

nodes jointly processing an average of 67TMB of disk data every second.

We note that the main obstacles to solving the largest state space generated
(k = 12) is a practical limit imposed by insufficient shared disk space (10GB
available). Shared disk space is used to store the state space, the state graph
and the remapped transposed generator matrix. The peak requirement for this
space occurs during matrix transposition and remapping, and is about 13GB in
this case. For an estimated 450 CGS iterations, over 10TB of disk I/O would
be needed, requiring nearly 3 days of processing time if the 16 nodes sustain

an average of 48MB of disk data per second (i.e. 3MB/s each). Approximately

16
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187MB memory per node would be required.

5.5.2 The Courier Protocol Model

The second example we consider is a 45-place GSPN model of the Courier
telecommunications protocol software. This model is fully described in Ap-
pendix A.3. Like the FMS model, the Courier model has a scalable parameter k
(corresponding to the sliding window size). Fig. 4.19 shows the number of states

and transitions in the model in terms of &.

As for the FMS model, the state spaces and generator matrices for the models
were generated using the distributed state generation algorithm of Chapter 4,
and remapped according to the approximate BF'S ordering of Section 5.3.2. The
generation and remapping are very rapid — the £ = 7 (40 million states) case can

be generated and remapped in under 20 minutes of real time.

Table 5.2 presents the execution time (defined as maximum processor run-time)
in seconds required for the distributed solution of models using the CGS and
Jacobi methods. The models range in size from &£ = 1 (11700 states) to k = 7
(39.8 million states) and runs are conducted on 1, 2, 4, 8, 12 and 16 processors.
The number of iterations for convergence and memory use per processor are also

shown.

Fig. 5.10 compares the convergence of the Jacobi method with that of the CGS
algorithm for the £ = 4 case in terms of the number of matrix-multiplications
performed. As was the case for the FMS model, the Jacobi method begins by
converging quickly, but then plateaus, converging very slowly but smoothly. The
CGS algorithm, on the other hand, exhibits erratic rapid convergence that im-

proves in a concave fashion.

The largest model that can be solved on a single processor is the case k =6 (5.4
million states). Fig. 5.11 compares the average time taken per distributed CGS
iteration for model sizes up to k£ = 6 using various numbers of processors. Again,

there is a dramatic reduction in run-time as processors are added; this effect can
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k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8
Jacobi time (s) 33.647 || 278.18 || 1506.4 || 5550.3
Jacobi iterations 4925 4380 4060 3655
p=1 || CGS time (s) 2.1994 || 21.622 || 163.87 || 934.27 || 29134
CGS iterations 60 81 106 129 157
Memory/node (MB) 20.3 22.1 30.5 60.8 | 154.0
Jacobi time (s) 29.655 || 176.62 || 1105.7 || 4313.6
Jacobi iterations 4925 4380 4060 3655
p=2 || CGS time (s) 1.6816 || 13.119 || 93.28 || 509.90 || 7936.9
CGS iterations 57 84 107 131 148
Memory/node (MB) 20.2 21.1 || 25.45 41.2 89.7
Jacobi time (s) 25.294 || 148.45 || 627.96 || 3328.3
Jacobi iterations 4925 4380 4060 3655
p=4 | CGS time (s) 1.2647 || 8.4109 || 58.302 || 322.50 || 1480.5
CGS iterations 60 80 108 133 159
Memory/node (MB) 20.1 20.6 22.9 31.4 57.5
Jacobi time (s) 38.958 || 140.06 || 477.02 || 1780.9 || 6585.4
Jacobi iterations 4925 4380 4060 3655 3235
p=2_8 || CGS time (s) 1.4074 || 6.0976 || 39.999 || 204.46 || 934.76 || 4258.7
CGS iterations 61 82 109 132 155 17
Memory/node (MB) 20.0 20.3 21.7 26.5 414 81.6
Jacobi time (s) 32.152 || 133.58 || 457.23 || 1559.0 || 6329.2 || 11578 || 72202
Jacobi iterations 4925 4380 4060 3655 3235 2325 2190
p =12 || CGS time (s) 1.4973 || 5.9345 || 34.001 || 157.73 || 852.53 || 2579.6 || 21220
CGS iterations 58 83 104 129 156 189 180
Memory/node (MB) 20.0 20.3 21.3 24.9 36.1 66.2 99.7
Jacobi time (s) 41.831 || 125.68 || 506.31 || 1547.9 || 5703.4 || 11683 | 32329
Jacobi iterations 4925 4380 4060 3650 3235 2325 | 2190
p =16 || CGS time (s) 3.3505 || 7.1101 || 31.322 || 134.48 | 577.68 || 2032.5 || 13786 || 141383
CGS iterations 60 91 104 132 146 173 179 213
Memory/node (MB) 20.0 20.2 21.0 24.1 33.4 58.5 79.8 161

Table 5.2: Real time in seconds required for the distributed solution of the Courier

model.
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be attributed to better caching of disk I/O as processors are added.
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Figure 5.12: CGS speedup (left) and efficiency (right) for the Courier model with
k=1,2,34.

Fig. 5.12 shows the corresponding speedup and efficiency achieved by the CGS
method for small Courier models with £ < 4. As we observed for the FMS
model, larger problem sizes produce better speedups. Adding processors gen-
erally increases the speedup for a given problem size, although at some point
communication costs begin to dominate. For the case k£ = 1 with 16 processors,
there is even a slowdown over the single processor case because of the high com-
munications overhead. It would be an interesting challenge to derive a theoretical
performance model which determines the number of processors required to pro-
duce an optimal speedup for a given problem size, although the derivation of
such a model would be complicated by the need to account for the effect of disk
caching. The corresponding efficiency graph shows that efficiency decreases as we
add more processors, as is to be expected when the problem size is maintained

at the same level.

Moving beyond the maximum problem size that can be handled on a single
processor, the k = 6 case (15 million states) is solved in under 34 minutes using
16 processors, while the £ = 7 case (40 million states) is solved in 3 hours 50

minutes. In the latter case, the total amount of disk I/O across all nodes is in

16
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excess of 1'TB, with the nodes jointly processing an average of 83MB of disk data

every second.

The largest state space solved is the k = 8 case (94 million states) which takes
1 day 15 hours of processing time on 16 processors. The total amount of 1/0O
across all nodes is 3.4TB, with the nodes jointly processing an average of 24MB
disk data every second. This disk throughput of only 1.5MB/s per node is two to
three times lower than would normally be expected. Investigation revealed that
the poor performance is caused by high virtual memory paging activity. This
suggests that there is insufficient physical memory, even though the solver data
and program have a theoretical per node memory requirement of only 161MB
(while each node has 256 MB RAM). Further inspection showed that real per
node memory use is in fact much higher, since the MPI library uses 50MB for its
communication buffers (in this case the longest messages sent between processors
are 47MB long) and the operating system requires about 50MB of resident code,
essential system daemons etc. One way to reduce the program’s working set
of over 260MB so that it fits entirely within the available memory would be
to divide long messages into several smaller chunks, thus decreasing the size of

communication buffers used by the MPI library.

5.6 Conclusion

This chapter has presented a distributed disk-based method for solving very large
Markov chains. We have selected appropriate numerical methods and investi-
gated the structure of generator matrices produced by sequential and distributed
breadth-first state space generators. This structure has been exploited to develop
a matrix-vector multiply kernel which has low memory usage, low communica-
tion cost and good load balance. The kernel also provides opportunities for the

overlapping of communication and computation.

We have also described a software architecture for a distributed disk-based Markov

solver. This software architecture uses two processes per node which allows disk
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I/O to proceed concurrently with computation and communication. The solver
has been implemented on a 16-node distributed memory parallel computer and
used to solve models with of the order of 100 million states and 1 billion non-
zero elements. Solving such a large problem using a sequential solver running on
a single processor would be a daunting task indeed — besides the huge amount
of computation required, the memory needed to store the solution vector alone

would be over 800MB.

This study has concentrated on two scalable well-known numerical methods (Ja-
cobi and Conjugate Gradient Squared). Future work will focus on developing
distributed algorithms that also scale well but which use less memory and allow

for the reuse of matrix blocks as they are generated.



Chapter 6

A Parallel Performance Analysis

Pipeline

6.1 Introduction

This chapter places the work of Chapters 4 and 5 in context by describing an im-
plementation of a complete parallel performance analysis pipeline. The pipeline
accepts a high-level description of a dynamic performance model, generates the
underlying state space and state graph, derives and solves the steady-state equa-
tions of a Markov process and produces performance statistics. The modules in
the pipeline have been implemented in C++ using the Message Passing Interface
(MPI) standard, so the analysis pipeline can be ported to a wide range of parallel

computers and high-performance workstation clusters.

Section 6.2 gives an overview of the complete analysis pipeline. Each major mod-
ule is then described in detail, concentrating on more interesting implementation
aspects such as data structures, algorithms, and the results of various optimiza-

tion experiments.

The generality and unrestricted nature of our approach poses the problem of
developing an interface language which is powerful enough to specify a wide

variety of stochastic models. Section 6.3 presents such a high-level interface

161
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language while Section 6.4 presents a sample system specification.

6.2 Analyser Components

Model
Description
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User
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Figure 6.1: Main modules of the parallel performance analysis pipeline

Fig. 6.1 illustrates the major modules of the analysis pipeline. Control is passed

from module to module as follows:

e The parser translates a high-level model description (specified using the

interface language of Section 6.3) into a C++ class describing the same

model. We refer to the generated C++ class as “user code”.
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e The user code is compiled and linked with common library routines to
form a parallel state space generator for the model. The state space
generator uses the parallel probabilistic algorithm described in Chapter 4

to produce the distributed state space and distributed transition matrix.

e A parallel matrix transposer remaps and rebalances the transition ma-
trix (as described in Section 5.3.2) to derive the generator matrix required

by the steady-state solution process.

e Next the parallel steady-state solver determines the stationary distri-
bution of the Markov chain by solving the large set of linear equations
derived from the generator matrix. The solver makes use of the distributed

disk-based kernel described in Chapter 5.

e Finally, the user code is linked with common library routines to form a
parallel performance analyser. The performance analyser makes use of
the steady-state solution as well as the state space to produce performance

results.

The following sections consider each component in turn and describe some of the

more interesting implementation details.

6.2.1 The Parser

A simple recursive descent parser [ASU86| implements an interface language for
specifying a wide variety of high-level models (c.f. Section 6.3). The parser

accepts a user data file containing:

e A model description including the format of the state descriptor, an

initial state and rules governing transitions between states.

e A description of performance statistics to be computed in the form of

state or count measures.
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e User options relating to the state space generation and steady-state solu-

tion, such as desired accuracy or choice of solution method.

If there are no syntatic errors, the backend of the parser generates the user code
necessary for state space exploration and performance analysis. The user code
is encapsulated in a C+4 State class so that every model presents a uniform
high-level interface to external program modules such as the state space generator
and the performance analyser. In particular, the generated State class includes

methods to:

e Set up the current state as the initial state specified for the system.

e Determine the sets of timed and immediate transitions enabled by the cur-

rent state.

e Fire any enabled timed or immediate transition to determine the successor

state.

e Determine the (possibly state-dependent) rate or weight of any transition.

e (Calculate the partitioning, primary and secondary hash keys for the current

state, as required by the parallel probabilistic state exploration algorithm.

e Check that user-specified invariants apply to the current state.

e Compute performance statistics for the current state in the form of state

and count measures.

Since this high-level interface does not change from model to model, the relatively
small amount of code found in the model-specific State class can be compiled
and linked with precompiled library code to produce a parallel state generator
and a parallel performance analyser for the model. This reduces compilation time

considerably.
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6.2.2 The Parallel State Space Generator

The state space generation algorithm of Chapter 4 has been implemented in C++
using the Message Passing Interface (MPI) model of parallel computation. Under
this model, there is a fixed pool of NV worker processes, each of which executes a
copy of the same code!'. The behaviour of the workers is not identical, however,
since MPI allows worker processes to distinguish their behaviour from that of the

others based on their identity or rank.

As shown in Fig. 6.2, each worker process makes use of seven main data structures:

e A state hash table used to store and search for local states based on their
primary and secondary hash keys. The hash table has 750019 rows and

uses 40-bit secondary keys. The rows are implemented as dynamic arrays.

e A FIFO state queue used to store unexplored tangible states. This queue
can grow to be very large, but is accessed in a predictable fashion. Conse-
quently, the queue is divided into pages and managed so that only the front
and back pages of the queue are kept in memory, while the main body of

the queue is held on disk.

e A vanishing state stack used for the temporary storage of states dur-
ing elimination of vanishing states. The on-the-fly procedure used by the
analyser to eliminate states in which the system spends no time leads to
a decrease in the number of states generated, memory usage and transi-
tion matrix size. Interested readers can consult [CMT91] and [Kno96] for

further details.

e A set of message buffers used to implement efficient communication. Out-
going hash keys, states and identity messages are held in these buffers ac-
cording to their destination. When the size of a message buffer correspond-

ing to a particular destination exceeds a threshold, the messages in that

1Strictly speaking this applies only to the MPI-1 standard, since the recent MPI-2 standard

allows for the dynamic creation and destruction of processes.
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buffer are packed into a large block and sent. This prevents the network
from being flooded by many short messages, but introduces the possibil-
ity of starvation or deadlock. To prevent this, processors that have very
few states left in their FIFO queue broadcast a message to other nodes

requesting them to flush their outgoing message buffers.

e A state identity tracker used to store states while the state sequence
numbers of their successor states are established. The tracker takes the
form of a hash table with a small number of slots. Parent states are allo-
cated a free slot in the tracker until all their children have been identified
by the processors that own them. At this point a complete row of the tran-
sition matrix is written to disk and the slot is freed. The number of slots in
the tracker varies according to network conditions, with a maximum size of
4096 slots. If the number of slots required exceeds this maximum thresh-
old, new state exploration activity is temporarily suspended and a message
is broadcast to all other nodes requesting them to immediately send any
messages waiting in their state identity queues. By flushing their identity
queues, the nodes receiving the request return to the sender all outstanding
identities. This frees up all the slots in the sender’s identity tracker and

allows state space exploration activity to continue as normal.

e An AVL tree (height-balanced binary tree) used as an index into a vector
of common transition rates. Since transition rates are often fixed and are
seldom state-dependent, models typically have few distinct transition rates.
Thus, instead of storing a double precision floating point number to denote
each rate, it is more economical to store an index into a vector of common
transition rates. As entries are added to the transition matrix, a rapid
search mechanism is needed to establish whether an entry is already in the
store. An AVL tree is thus maintained to rapidly search for store items,
reducing the search complexity from O(n) for a linear search of the store

to O(log, n).

e A reusuable state pool used to enhance the efficiency of memory allo-
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cation. The exploration process involves the continuous creation of child
states and the destruction of explored states. By placing discarded states
in a circular buffer and recycling them instead of creating new states, the
overhead of operating system memory allocation calls can be avoided. If
the pool floods, or if there is an underflow, operating system allocation calls
are used as usual. The result is a dramatic improvement in run time of up

to 50%.

The main core of the state explorer implements both the original algorithm of
Fig. 4.5 as well as the communication efficient version of Fig. 4.7. Both algo-
rithms include facilities for checking invariants on every state as soon as they are
generated. This helps to detect unsafe or unexpected configurations caused by

specification errors.

In order to save disk space, the exploration algorithm writes the state space and
state graph to disk in compressed format. To find a good compression method,
we compared the compression ratio and encoding speed of three algorithms, viz.
our own LZ77 compression technique, the deflation algorithm (LZ77/Huffmann
combination) used by the gzip utility and provided by the z1lib compression
library?, and the LZW encoding provided by the UNIX utility compress [Sal98].
The UNIX compress utility was found to provide the fastest encoding speed
and competitive compression ratios, while the z1ib routines provided the best
compression ratios but the worst encoding speed. Consequently, compression is
implemented very simply by piping data directly to the compress utility using
the popen (open pipe) system call. Compression activity consumes about 15% of

the CPU during state exploration.

Experiments were also conducted to study the effect of introducing identity caches
on each node. The caches reduce the amount of communication needed to identify
child states by using a hash table of fixed size to store the identities of remote

states as they are received. Messages requesting the identities of child states are

2available from http://www.cdrom.com/pub/infozip/zlib/
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only sent if the relevant identities are not already present in the cache. While
this scheme was found to be effective for small numbers of nodes, it did not scale
to a large number of nodes. This is because the hit rate drops off as processors
are added, until eventually it is too low to compensate for the overhead of cache
lookup. Consequently, the final version of the state generator does not use this

data structure.

6.2.3 The Parallel Matrix Transposer

The output from the state space generator is the state space and a distributed
transition matrix R that corresponds to the state graph. The next step in the
analysis pipeline is to transform the distributed transition matrix R into the dis-
tributed transposed generator matrix Q7. Q7 is required since the steady-state
solution module solves a set of linear equations of form Az = b with A = Q7,
2z =7 and b = 0. The transposer also helps to improve the efficiency of sub-
sequent parallel matrix-vector multiplication operations in two ways. Firstly,
the rows and columns of Q7 are permuted to give the matrix a structure that
reduces the amount of communication required during matrix-vector multiplica-
tion. Secondly, non-zero entries in Q7 are balanced across processors to give each

processor a similar workload.

In the following, we will assume that the ith of N processors has generated n;
states of the state space (0 < i < N) and also the corresponding n; rows of the
state graph which we denote by R;. The total number of states generated is
n = YNt n;. We further assume that the state generator has used identifiers of
form (i, 7) to label states, where i is the processor number (0 < i < N) and j is

the local state sequence number (0 < j < n;). A transition between states (i, a)

and (7, b) at rate 4 is denoted by the transition matrix entry (i,a) % (j,b).
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Remapping, rebalancing and normalisation

A function remap(7,j) — (0,1,...,n— 1) is used to map state identifiers of form
(,7) onto a global state number. This mapping reorders the rows and columns
of the transition matrix, using either approximate breadth-first search reordering

(c.f. Eq. 5.2) or random reordering (c.f. Eq. 5.1).

Another function owner(k) — (0,1,..., N —1) is used to map global state & (and
the corresponding rows of Q) onto a host processor. Initially this mapping is

based on a straightforward allocation of n/N states per processor.

Following the initialization of the remap and owner functions, the ith processor
scans the entries in R; and compiles summary statistics about the distribution of
states that would result from a transposition and remapping. These statistics are
used to adjust the assignment of states to processors given by the owner function
so that the number of non-zeros in the rows of Q7 allocated to each processor is

the same.

As the scan proceeds the row sums of R are calculated and stored in a distributed
vector sum. For each row of R corresponding to transitions from state (7, j), the
row sum is stored in the vector element sum[remap(i, 7)]. This vector will be used
to normalise the rows of R such that all diagonal entries in Q7 are -1. For an

explanation of why it is safe to perform this normalisation, see Section 5.1.

Transposition

Having refined the owner function and calculated the sum vector, we are in a
position to carry out the transposition of R subject to the new state mapping

and normalisation of the transition rates.

Each processor ¢ now scans the entries in R; for a second time. Each non-zero
entry in R; of form

(4,a) = (4,0)
results in the transmission of the transposed and normalised matrix entry

b) w/ Sum{rgn)ap(i,a)]

remap(J, remap (i, a)
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to processor owner(remap(J,b)). Outgoing matrix entries are buffered according
to destination and sent in large blocks to prevent the network from being flooded

by many short messages.

Each processor stores the matrix entries it receives on disk. Storage of the entries
on each processor is divided into N files according to row index such that the
jth file on processor ¢ corresponds to entries in matrix block Q% These blocks
contain entries of form a % b where a and b are global state numbers (with
owner(a) = i) and p is a normalised transition rate. To manipulate these entries
into a more compact sparse matrix format, each block is sorted by row index
and written to disk in three separate files — one for the column indices, one for
transition rates and one for the number of non-zero entries in each row of the
block. Four bytes are required to store the column indices. As for the state
generator, an AVL tree and rate vector are used to store transition rates so only
2 bytes are needed for each rate instead of the 8 that would be needed for a
double precision floating point number. One byte is used to store the number of
non-zero entries in each row of the block. These disk files are now prepared for

the next phase, which is the disk-based steady-state solution process.

6.2.4 The Parallel Steady-state Solver

A parallel steady-state solver written in C+4++ implements the sparse matrix-
vector multiplication kernel algorithm of Fig. 5.5 in the context of the distributed
disk-based architecture of Fig. 5.6. Like the generator and the transposer, the
solver uses MPI so at startup time there are N worker processes (one per node).
Each worker or master process then creates a slave process using the fork()

system call.

Master and slave communicate by using standard System V interprocess commu-
nication (IPC) library calls to attach themselves to two shared memory buffers
used to channel data and to a set of semaphores used for synchronization pur-
poses. The slave process acts as a data producer, reading the data files prepared

by the matrix transposer and filling one of the shared memory buffers. While one
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shared memory buffer is filled, the master process consumes the data in the other
buffer. The slave process only handles disk I/O, whereas the master process is
responsible for all computation and communication with other master processes.
In this way maximum disk throughput is achieved through the overlap of disk

I/O with communication and computation.

To save memory, all vectors used by the solver, including the steady-state vector,
are completely distributed. Since matrix blocks contain different numbers of non-
zero elements and must be multiplied with portions of the steady-state vector
owned by other processes, there is a need for nodes to be able to process remote
requests for subvectors during computation. Ideally this should be handled by
using a dedicated thread to process subvector requests. However, the MPI library
we use is not thread-safe, so MPI_Iprobe() non-blocking probe operations are

used to periodically check for incoming subvector requests.

Optimizations

The solver includes some options to improve the efficiency of the matrix-vector

multiplication kernel at the cost of extra memory:

e The kernel algorithm blocks while waiting for remote subvectors to be ar-
rive. At the cost of an extra distributed solution vector, the non-blocking
communication primitives MPI_Isend() and MPI_Irecv() can be used to
receive subvectors required by subsequent blocks while the computation

with the current block proceeds.

Surprisingly, this optimization did not result in a significant performance
improvement when implemented on the Fujitsu AP3000 distributed mem-
ory parallel computer. Followup investigations revealed two deficiencies
in Fujitsu’s MPI implementation and hardware architecture: the “non-
blocking” MPI_Isend() call in fact blocks for the same length of time as a
blocking send, and communication requires such large amounts of CPU

overhead that virtually no user instructions are executed while data is
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actively being sent or received (see Appendix B.4.2 for a more complete
description of this problem). We anticipate, however, that this would a
worthwhile optimization on parallel machines that have more effective sup-

port for the overlap of communication and computation (such as the IBM

SP-2).

e By default, the number of non-zero entries in each row of each (non-empty)
generator matrix block is read in from disk during each iteration. Since
only one byte is required to store the number of non-zero entries in each
block row, solution speed can be improved by storing this information in
memory. Given n states, this can be done at an average cost of a vector of

n bytes per node.

Observations show that, for very large models where disk caching is ineffective,
the performance of the steady-state solver is limited by disk throughput of about
4-6 MB/sec. As a possible faster alternative, experiments were conducted to de-
termine the feasibility of storing the transition matrix in memory in compressed
form, and then decompressing it on each iteration. This approach is similar to
an “on-the-fly” method (c.f. Section 3.2.4), except that the transition matrix is
encoded using standard compression algorithms instead of the model description.
We used our own memory-based LZ77 compressor [Sal98] and z1ib compression
library routines to store the transition matrix. However, the compression ratios
achieved were unremarkable (less than 2:1) and, as for on-the-fly methods, the
high CPU overhead during decompression resulted in poor effective data through-

puts of under 1.5MB/s.

Other solution methods

Besides the Jacobi and CGS algorithms of Fig. 5.1 and Fig. 5.2, experiments were

also conducted with a variety of other numerical methods including:

e Alternative Krylov subspace methods, for example BICGSTAB [Vor92]
and BiICGSTAB2 [Gut93b]. Like CGS, these methods are based on matrix-
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vector multiplication operations and vector-vector inner products so they
can be easily parallelised. These methods showed slightly less erratic con-
vergence behaviour than CGS and similar speedups, but at the cost of a

higher memory requirement.

Methods based on asynchronous iterations [FS99], which avoid pro-
cessor idle time by eliminating as many synchronization points as possible.
Processors do not wait for each other, which means they can get out of phase
and perform a different number of iterations, often using out-of-date vec-
tor elements. Our observations with an asynchronous parallel Gauss-Seidel
algorithm confirm the observation in [FS99] that the method generally re-
quires more computation than synchronous methods and “it is only when
the load is not well balanced, or when communication between processors

is slow that this approach is advantageous.”

Block two-stage methods [MPS96], which are block iterative methods

that solve a linear system of form

where A;; are diagonal matrix blocks. When the diagonal blocks are large,
their solution is usually approximated using an iterative method. These
methods are called two-stage iterative methods and are characterised by
outer iterations performed using off-diagonal blocks and inner iterations
performed by repeatedly solving diagonal blocks. The Block Gauss-Seidel
algorithm used by the on-the-fly method of Section 3.2.4 and the sequential
disk-based method of Section 3.2.5 is an example of a two-stage iterative
method. Experiments with a parallel two-stage method that used Jacobi
for outer iterations and Gauss-Seidel for inner iterations produced poor
convergence results on our test models. However, these methods are worthy
of further investigation since the reuse of diagonal matrix blocks should

result in higher throughput due to better disk caching.
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6.2.5 The Parallel Performance Analyser

The final stage of the performance analysis sequence combines the low-level
steady-state distribution results with the state space to form more meaningful
higher-level performance measures such as throughput or mean buffer occupancy.
The parallel performance analyser supports two types of performance measures,
viz. state and count measures. The concept of these two types of measures

originated in the HIT-tool [BS87].

A state measure can be used to find the mean, variance and probability distribu-
tion of any real function of a state of the system. Examples include the average
number of tokens on a place in a Petri net, some transition’s enabling probability
or the distribution of customers at a particular set of queues in a queueing net-
work. Suppose we are interested in some performance measure m which has value
v; in state 7. Given n states, the steady-state distribution 7 = (71,79, ...,7,)
and the vector of real expression values v = (v1, vg, ..., v,) where v; is a function

of the elements of the ith state descriptor, the mean of m is calculated as:
n
E[m] = Z ;U5
i=1

We can regard v; as the contribution of the ith state towards the value of the
state measure. For example, if we are interested in the mean number of tokens
on a place p in a Petri net, v; represents the number of tokens on place p in state
i

The second moment of a state measure m is given by:

n

Em? = > mv;

=1

and hence the variance of m by:
Varlm] = E[m?] — (E[m])*
n n 2
= ZTI’Z’U? — (Zﬂ'ﬂ)i)
i=1 i=1

A count measure is used to determine the mean rate at which a particular event

occurs e.g. the mean rate of transition firing gives transition throughput. Given



176 Chapter 6. A Parallel Performance Analysis Pipeline

a system with n states, the steady state distribution 7 = (7, m9,...,7,) and a
function r; which returns the rate at which the event occurs when the system is

in state ¢, the mean of a count measure m is given by:

E[m| = Z T
i=1

The calculation of the variance of a count measure requires transient analysis,

which is not supported.

To assist in the computation of performance measures, the user code contains
methods for calculating the values of v; and r; for each state. Each process of
the parallel performance analyser reads the local steady-state distribution into
memory, taking into account the renumbering and reassignment of the state space
that took place during matrix transposition. The process then reads the local
state space state-by-state, using the methods in the user code to calculate the
contribution of the state towards each peformance measure. Finally a master
process collates the weighted performance measures across all the processes and

outputs the results.

6.3 Interface Language Specification

An interface language for a Markov chain analyser must meet several design

criteria relating to power of expression and ease of use. In particular:

e The language should be powerful enough to support the flexible high-level
description of Markov models based on a variety of formalisms, including
Generalised Stochastic Petri nets, Queueing networks, Queueing Petri nets,

Stochastic Process Algebras etc.

e It should be possible to verify basic functional properties which should hold
on the model. Facilities should be provided to specify system invariants that

apply to every state and to check for the existence of deadlocks.
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e It should be possible to specify a variety of performance results, includ-
ing state measures which compute the value of a real expression at every
state (such as buffer occupancy) and count measures which measure the

occurrence rate of events (such as transition throughput).

e The language should use concepts and constructs that are likely to be fa-

miliar to target users.

To meet these goals, we have adapted the interface language used by the se-
quential Markov chain analyser DNAmaca [Kno96]. The language has a simple
TEX-like syntax and uses elementary C/C++ expressions to specify model com-
ponents, system invariants and performance results. Consequently, it should be
familiar to users in academic environments while providing sufficient expressive

power.

The following symbols are used in the definition:

{ X }* denotes one or more occurrences of X

| separates alternatives

As in TgX, comments begin with %; the remainder of the input line is ignored.

6.3.1 Model Description

The underlying Markov chain describing a system may contain many millions
of states and transitions. To avoid explicit enumeration of all of these states
and transitions, it is necessary to use a high-level model description. The model
description specifies the components of a general state of the system, the rules

for and effects of transitions between states and an initial state of the system.

The state space generator maps this high-level description onto a low-level rep-

resentation consisting of the state space and state transition matrix.

model_description = \model {
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state_vector | initial_state | transition_declaration |
constant | help_value | invariant | state_output_function |
partitioning_hash_function | primary_hash_function |
secondary_hash_function | additional_headers

I

State Descriptor Vector

The state descriptor vector consists of a finite set of discrete components which,
when taken together, describe a state of the system; each unique assignment to

these components corresponds to one state.

A vector of elementary C++ variables (int, long, short, char etc.) is ideal for
this purpose. Elements with float or double types are also allowed, although
user-specified partitioning, primary and secondary hash functions will need to be
supplied in this case. Variables are declared in the same manner as they are in

C/C++:

state_vector = \statevector{

{ <type> <identifier> {, <identifier> }*; }x

type = basic C/C++ variable type;

identifier = valid C/C++ identifier;

Initial State

An initial state must be specified as the starting point of the reachability analysis;
this can be done using simple C/C++ assignments to the elements of the state

vector.
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initial_state = \initialstate {

{ <assignment> }*

assignment = C/C++ assignment to elements of the state vector

Transition declarations

Transitions describe how the system moves from state to state (via updates to
the current state vector). Since it would be virtually impossible to enumerate
successor transitions for every individual reachable state, a more general scheme
(similar to USENUM [Scz87]) is used. Possible transitions from the current state

are specified by describing:

e one or more enabling conditions involving elements of the state vector cor-

responding to the current state.

e an action to be taken if the transition is executed; this will involve an

assignment to the state vector elements of the next state.

e an indication of whether the transition from the current to the next state

is timed or instantaneous (i.e. the transition takes no time to execute).

e a rate (for timed transitions) or relative weight (for instantaneous transi-
tions) must also be specified; note that these rates and weights may be de-
noted by (possibly state-dependent) arbitrary expressions. If a non-positive
rate or weight is encountered during state exploration, the corresponding

transition firing will be ignored during analysis.

e an optional priority which allows transitions of a higher priority to preempt

lower priority transitions of the same type (i.e. timed or instantaneous).

Transitions from the current to the next state descriptor vector can be achieved

through C/C++ assignment statements, while enabling conditions can be given
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using C/C++ boolean expressions. Since the conditions and actions will form
part of the transition code encapsulated in a C++ State object, elements of the
current state descriptor can be referred to directly while elements of the next

state descriptor can be accessed via a next pointer.

transition_declaration = \transition{<identifier>}{
\condition{<boolean expression>}
\action{ { <assignment> }x }
\rate{<real expression>} | \weight{<real expression>}

\priority{<non-negative integer>}

boolean expression = C/C++ boolean expression
real expression = C/C++ real expression

assignment = C/C++ assignment

Constants and Help Values

It is convenient to allow for constant declarations and complicated formulae
which are used repeatedly during the evaluation of transition conditions and
rates/weights. Such values are called help values; this is a concept adopted from

the USENUM sequential Markov chain analyser [Scz87].

constant = \constant{<identifer>}{value}

help_value = \helpvalue{<type>}{<identifier>}{<expression>}

Invariants

Depending on the application domain, there may be invariant conditions which
should not be violated during the generation of the state space; these invariant
conditions can be expressed as C/C++ boolean expressions. The state generator

will issue a warning if it encounters any state which violates an invariant.



6.3. Interface Language Specification 181

invariant = \invariant{<boolean expression>}

Custom state output function (optional)

If a deadlock or a violation of a user-specified invariant occurs, the state generator
reports the event and outputs the state responsible for the error. A simple default
output function is provided; however, the user can also provide a custom output

function if desired.

state_output_function = \output {

{ <statements> }x*

statements = C++ statements to output elements of the state vector

Custom state hash functions (optional)

The state generator uses a probabilistic method of state space storage (c.f. Chap-
ter 4) which requires the computation of three hash keys for each state. The
partitioning hash key is an unsigned 32-bit integer which the state generator uses
to determine which processor a state should be assigned to (the state generator
performs the necessary mod operation depending on the number of available
processors). The primary hash key is an unsigned integer which determines the
hash table row the state should be inserted into (from 0 to 750018), while the

secondary hash key is a 40-bit integer used as a compressed state value.

Default hash functions that aim to provide a random distribution of states over
processors, hash table rows and compressed state values are provided (c.f. Sec-
tion 4.8). However, users may which to use application-specific knowledge to
write a set of functions which minimize the probability that two distinct states

map onto the same hash keys.

partitioning_hash_function = \taskhash {
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<C++ function body for the function:
unsigned int task_key()

which returns a 32-bit hash key>

primary_hash_function = \primaryhash {
<C++ function body for the function
unsigned int primary_key()

which returns an integer from O to 750018>

secondary_hash_function = \secondaryhash {
<C++ function body for the function
void secondary_key(unsigned int &secl, unsigned char &sec2)
which returns a 40-bit integer by assigning to the 32-bit

unsigned integer secl and the 8-bit character sec2>

Additional headers

Should the user require any C/C++ functions which are not usually included by
default (such as the advanced mathematical functions to be found in math.h),
the necessary #include statements can be placed in a header declaration. Class

definitions of user-defined classes can also be placed here.

additional_headers = \header {

<C++ include statements and/or class definitions>
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6.3.2 Generation Control

The user is able to control aspects of the state generation process, such as the
mazimum number of states to be generated or the mazimum cpu time that should
be spent on the generation. The user can also specify the level of feedback by

specifying the report style and the report interval.

generation_control = \generation {
{ \maxstates{<long int>} | \maxcputime{<seconds>} |

\reportstyle{full | short | none} | \reportinterval{<long int>}

6.3.3 Solution Control

Once the state space has been generated (using the model description), the re-
sulting state transition matrix must be solved for its steady state distribution.
The user is able to guide this steady-state solution process through parameters

such as:

e Solution Method. Possible solution methods include the Jacobi and Conju-

gate Gradient Squared (CGS) methods.

e Accuracy. This specifies the convergence criterion for the iterative methods.

These methods will terminate after k£ iterations with an “accuracy” of e if:

[EaSRAPS

— <
ECI*

where 7(*) is the residual at the kth iteration and e can vary between 102
and 2.22045 * 1071¢ (IEEE-754 machine epsilon for double precision). Re-
ported performance results are rounded to reflect this accuracy. If the

accuracy is not specified, the default is e = 1071°.
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e Mazimum Iterations (within which iterative methods should converge)

As with the generation of the state space, the user is able to set the required

level of reporting feedback.

solution_control = \solution {

{ \method{jacobi | cgs} |
\accuracy{<real>} |
\maxiterations{<long int>} |
\reportstyle{full | short | none} |
\reportinterval{<long int>}

I

6.3.4 Performance Measures/Results

Performance results provide a backward mapping from low-level results like prob-
abilities of states and rates of transitions to higher-level quantities like throughput
or mean buffer occupancy. Performance measures can generally be classified as

state or count measures (c.f. Section 6.2.5).

\performance_measures = \performance {

{ state_measure | count_measure }*

State measures

A state measure is used to determine the mean and variance of a real expression
which is defined at every state in the system, e.g. the average number of tokens
on a particular place of a Petri net or some transition’s enabling probability. The
mean, variance, standard deviation and probability distribution of state measures

can be computed.
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state_measure = \statemeasure{identifier}{
\estimator{ {mean | variance | stddev | distribution}* }

\expression{<real_expression>}

Count measures

A count measure is used to determine the mean rate at which a particular event

occurs e.g. the rate at which a transition fires yields transition throughput.

The occurrence of an event is specified according to three conditions:

e a precondition on the current state that must be true.
e a postcondition on the next state that must be true.

e transitions which must be fired during the transition from the current to

the next state.

The conditions can be specified as C++ expressions while the transitions can be
given in a list. Note that only the mean of count measures is available, since

computation of higher moments requires transient analysis.

count_measure = \count_measure{identifer}q{
\estimator{mean}
\precondition{<boolean expression>}
\postcondition{<boolean expression>}

\transition{ all | {<identifier>}* }

6.4 Example System Specification

The section illustrates how the interface language can be used to specify a real

system.
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Figure 6.3: A multimedia switch for handling voice and data traffic

Consider the multimedia teletraffic switch designed to handle delay-sensitive voice
traffic and delay-insensitive data traffic shown in Fig. 6.3 [AK93, pg. 133-137].
The switch has a capacity for s calls and is designed to give priority to voice
calls. If the switch is full and the number of data calls in the system exceeds a
certain threshold n, an arriving voice call may preempt a data call. If there are
less than n data calls and no free circuits in the switch, arriving voice calls will
be blocked. Waiting or preempted data calls are stored in a buffer with capacity
b.

There are v potential sources of voice calls. Each of these sources is governed
by a two-state Markov process which alternates between a silence phase and a
talkspurt phase. The mean duration of the silence phase is 1/\; and the mean
duration of a talkspurt phase is 1/u;. The data call arrival process is simpler,

being Poisson with parameter \o. Data calls are served at a rate of usy per circuit.

The interface language specification for this system is given below. We assume

that the switch capacity s = 72, the preemption threshold n = 50, the buffer size
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b = 200 and that there are v = 1000 voice sources, with A\; = 0.04 and p; = 1.0.
The data arrival rate is Ay = 43.0, and the data service rate is pus = 1.2 per

circuit.

\modelq{
\constant{ss}{72} % servers in switch
\constant{voice_source}{1000} % voice sources
\constant{buffer_size}{200} % buffer size

\constant{threshold}{50} % preemption threshold
\constant{lambda_0}{0.04} % voice silence 0->1
\constant{lambda_1}{1.0} % talk spurt 1->0
\constant{lambda_2}{43.0} % data call arrival rate
\constant{mu_2}{1.2} % data service rate
\statevector{

\type{int}{data,voice,buffer}
}

\helpvalue{int}{idle_voice_source}{voice_source - voice}
\invariant{ (voice + data) <= ss }
\initial{
data = 0;
voice = 0;
buffer = 0;
}

\transition{data_arrival}{
\condition{buffer < buffer_size}
\action{ next->buffer = buffer + 1; }
\rate{lambda_2}

}

\transition{serve}{
\condition{buffer > 0 && voice + data < ss}
\action{
next—->buffer = buffer - 1;
next->data = data + 1;
}
\weight{1.0}
}

\transition{data_service}{
\condition{data > 0}
\action{ next->data = data - 1; }
\rate{(double)mu_2*data}
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\transition{voice_arrivall}{
\condition{voice < ss && idle_voice_source}
\action{
if ( ((voice + data) >= ss) && (data > threshold)) {
if (buffer < buffer_size)
next->buffer = buffer + 1;
next->data = data - 1;
next->voice = voice + 1;
} else if ( ((voice + data) >= ss) && (data <= threshold) ) {
/* cannot preempt --> discard call */
} else if ((voice + data) < ss) {
next->voice = voice + 1;
}
}
\rate{ (double) lambda_O*idle_voice_source}

3

\transition{voice_service}{
\condition{voice > 0}
\action{ next->voice = voice - 1; }
\rate{ (double) lambda_1*voice}

}

\performance{
\statemeasure{mean voice} {
\estimator{mean variance distribution}
\expression{voice}

3

\statemeasure{mean data} {
\estimator{mean variance distribution}
\expression{data}

}

\statemeasure{mean buffer} {
\estimator{mean variance distribution}
\expression{buffer}

3

\countmeasure{blocking rate} {
\estimator{mean}
\precondition{1}
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\postcondition{voice == next->voice}
\transition{voice_arrival}

}

\countmeasure{voice throughput}{
\estimator{mean}
\transition{voice_service}

}

\countmeasure{data throughputl}{
\estimator{mean}
\transition{data_service}

}
}

\solution{
\method{cgs}
\accuracy{1e-10}

}
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Conclusion

7.1 Summary of Thesis Achievements

This thesis has addressed the challenge of constructing and solving very large
continuous time Markov chains derived from dynamic specifications of complex

concurrent systems.

Conventional methods for Markov chain analysis are limited to small chains be-
cause they have very high time and space requirements. This problem has been
attacked on two fronts: parallelism has been used to reduce time requirements,
while probabilistic and disk-based storage techniques have been used to reduce
space requirements. In contrast to many of the contemporary approaches dis-
cussed in Chapter 3, the novel generation and solution techniques developed in
Chapter 4 and Chapter 5 do not place any restrictions on the type of system that
can be analysed. Nor are the techniques limited to any particular formalism, be-
ing applicable to a wide class of stochastic models that includes Stochastic Petri

nets, Queueing networks, Queueing Petri nets and Stochastic Process Algebras.

The parallel dynamic probabilistic state space generation algorithm described in
Chapter 4 is the first major contribution of this work. This algorithm rapidly
enumerates the large number of low-level states that a system can enter and

constructs a graph which describes how the system moves from state to state.

190
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The use of hash compaction means that memory requirements are very low and
independent of the length of the state vector. Since the method is probabilis-
tic, there is a risk that states may be misidentified or omitted from the state
graph. However, this probability has been quantified and has been shown to be
extremely low. Uniquely for a probabilistic scheme, the algorithm makes use of
dynamic memory allocation. This avoids the problems of over or under-allocation
associated with a traditional static memory allocation. Further, the algorithm
parallelises well and has an enhanced variant with a low communication over-
head. A theoretical performance model shows that the algorithm delivers good
speedups and exhibits good scalability. These properties are confirmed by re-
sults from an implementation running on a Fujitsu AP3000 distributed memory
parallel computer. State spaces of over 100 million states and 1 billion arcs are
generated across 16 nodes in just over half an hour, with an omission probabil-
ity of under 0.05%, i.e. there is a 99.95% chance that the state graph has been
generated in its entirety without omitting or misidentifying any states whatso-
ever. Further, the omission probability may be arbitrarily reduced at logarithmic

runtime cost.

The distributed disk-based solution technique of Chapter 5 is the second major
contribution of this work. This technique determines the long-run probability of
being in each state by mapping the state graph onto a Markov chain and then
solving a large sparse set of linear equations derived from the chain. The fo-
cus is on two numerical methods that are suited to parallel implementation, viz.
the Jacobi and Conjugate Gradient Squared (CGS) algorithms. Parallel sparse
matrix-vector multiplication emerges as the critical bottleneck in these methods.
The efficiency of this operation is improved in two ways. Firstly, the states of
the chain’s transition matrix are remapped in order to improve data locality.
Secondly, the remapped matrix is distributed across processors such that the
number of non-zero elements allocated to each node is the same, thus ensuring a
good load balance. Per processor memory requirements are low since transition

matrix elements are not stored in memory but are kept on disk and read in as
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needed. In addition, all vectors held in memory are completely distributed and
the number of vectors stored in memory is kept to a minimum by writing unused
intermediate vectors to disk. We have described and implemented a distributed
high performance solver architecture that makes use of two processes per node to
overlap disk I/O with computation and communication. The resulting parallel
solver delivers good speedups and is able to solve systems of the order of 100
million states and 1 billion transitions. Solving such a large problem on a single
machine would be a daunting task indeed — besides the huge amount of compu-

tation required, the memory required to store the solution vector alone would be

over 800MB.

To place the main contributions in context, the remaining tools for a complete
parallel performance analysis pipeline have been implemented in C++ using the
Message Passing Interface (MPI) standard. Chapter 6 describes the final toolset
which comprises an interface language parser, a parallel state space generator,
a parallel matrix transposer, a parallel steady-state solver and a parallel per-
formance analyser. This pipeline provides an efficient and seamless way of au-
tomatically obtaining performance measures for unrestricted high-level system

specifications with very large underlying state spaces and state graphs.

7.2 Applications

In this section, we highlight the applicability of our contributions to the general

area of the correctness and performance analysis of concurrent systems.

Our perspective in this thesis has been focused on the parallel generation and
solution of large Markov models for the purposes of performance analysis. How-
ever, the ability to generate and manipulate large state spaces derived from model
specifications is also of interest to those concerned with the correctness analy-
sis of concurrent systems. In this context, our parallel state space generation
algorithm can be applied to the construction of the labelled transition systems

used by researchers in the model checking community. Support for this can be
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provided by simply annotating each arc in the state graph with an action name
rather than a transition rate. Furthermore, the existing state space generation
algorithm already provides basic correctness checks, such as deadlock detection
and detection of “unsafe” states through the assertion of user-specified invariants.
Although our parallel solution algorithm has less relevance to correctness anal-
ysis, model checking algorithms also manipulate very large transition matrices.
Consequently, a parallel disk-based approach may be appropriate when verifying

certain logical formulae on very large state spaces.

Although we have considered unrestricted, non-hierarchical systems, our tech-
niques can also be applied to structured methods for compositional reachability
analysis [Gia99] and compositional performance analysis [Hil94, Her99]. These
methods generate and solve submodels in a modular fashion, and apply state
space reduction rules as submodels are synthesised. Support for this can be
provided by extending the interface language to allow for the specification of
submodels and by extending the state generator so that it can combine indepen-
dently generated submodel state spaces subject to synchronisation constraints.
The resulting framework would support larger, less restricted submodels, and

would allow for very large intermediate and final state space sizes.

Finally, while our framework incorporates explicit support only for transitions
that fire immediately or after an exponentially distributed delay, general (non-
exponential) firing delays can be approximated by using phase-type distributions.
A phase-type distribution is the distribution of the time to absorption in a net-
work of exponential stages. Fach exponential stage i is associated with a rate
u; and a set of routing probabilities p;; describing the probabilities of routing a
client from stage 7 to stage j (where j includes the absorbing stage). A good
example of a phase-type distribution is the Erlang, distribution, which is formed
as a series of n exponential stages with the same rate . This distribution is
often used to approximate a deterministic delay of length n/u. Since phase-type
distributions can themselves be specified at a low-level as CTMCs, no modifica-

tions to the interface language are required to support them, although extensions
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allowing for their compact specification could be added. Note that the price paid
for this increased modelling realism is an increased state space size (since now
the stage of the each phase-type distribution is an additional component of the

state descriptor).

7.3 Future Work

This section discusses some ideas for future work that would improve the capacity,

efficiency and applicability of our methods.

The capacity of the parallel state space generation algorithm could be improved
by using magnetic disk to support a larger state hash table. Since the state
hash table is accessed randomly, this does not at first appear to be feasible.
However, lookup operations on states in the state table can be delayed, and then
periodically checked en masse against a state table that is read from disk in a
linear fashion. This idea has already been shown to work well using a static
probabilistic algorithm in a single processor context [SD98|, where storing over
95% of the state table on disk resulted in a slowdown of only 25%. There is no
reason to suspect that equally good results could not be obtained in a parallel

context using our dynamic algorithm.

The capacity and efficiency of the parallel disk-based solver could be improved
by developing scalable numerical methods that have lower memory requirements
and lower communication overheads, and that reuse matrix blocks as they are
generated. Lower communication overheads and higher processor utilizations
could be achieved by using asynchronous iterations [FS99]. Under this approach
all synchronisation points between processors are eliminated and processors ex-
change data on an infrequent, asynchronous basis. Although in general more
computation is required to achieve convergence relative to a synchronous scheme,
communication overhead is lower and all idle time is eliminated. Reuse of matrix
blocks could be accomplished using two stage methods [MPS96]. During each

“outer” iteration, these methods reuse diagonal matrix blocks several times to
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perform several “inner” iterations. However, in order to avoid load balancing
problems, the distribution of states over processors would need to be adjusted

according to the size of the diagonal blocks.

It is possible to solve for the stationary distribution of a finite continuous-time
Markov chain if and only if the chain is irreducible, i.e. if every state communi-
cates with every other state. Therefore, a useful addition to our toolset would
be a parallel functional analyser that performs a strongly connected component
analysis of the states in a given state graph. If transient states are found, they
should be eliminated, and if more than one strongly connected component ex-
ists, the states in each component should be analysed as separate Markov chains.
Unfortunately, all known efficient algorithms for the connected component anal-
ysis of directed graphs require some sort of depth-first search of the state graph,
which makes them difficult to parallelise [Ste97]. Consequently it would be in-
teresting to investigate connected component analysis algorithms that are based

on a breadth-first search strategy and thus amenable to parallel implementation.

In real systems, performance targets are often specified in terms of response time
distributions. For example, in a transaction processing environment it might be
required that 95% of all transactions complete in under 30 seconds. In such sit-
uations, it is useful to know the distribution of the passage time [She93, Kul95]
between two given states in the state graph. Convolving the distributions of the
state holding times across all possible paths between the states is a computation-

ally expensive task, but one that is well suited to parallel implementation.

Finally, although transitions with non-exponential firing delays can be approxi-
mated using phase-type distributions, systems with exponential and determinis-
tic firing delays could be modelled and analysed exactly by using the techniques
proposed by Lindemann for Deterministic and Stochastic Petri nets (DSPNs)
[Lin98]. Steady state analysis of such models that have concurrently enabled de-
terministic transitions typically involves the solution of several very large systems
of integral and linear equations. A parallel disk-based approach could therefore

be beneficial.
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Model Descriptions

A.1 Introduction

This appendix presents the full specification and description of the two models
that were used as demonstration examples in Chapters 4 and 5. Section A.2
describes a model of a flexible manufacturing system, while Section A.3 presents
a model of software used in the Courier telecommunications protocol. Both
models have a scalable parameter which allows for the generation of state spaces
and state graphs of various sizes. Consequently, they have been widely used in
the literature as testbeds for state space generation and/or steady state solution

algorithms.

A.2 The FMS Model

A.2.1 Model Description

Fig. A.1 shows a 22-place Generalized Stochastic Petri net model of a flexible
manufacturing system. This model, which we will refer to as the FMS model, was
initially described in [CT93] and was subsequently used in [CGN98] to demon-

strate distributed exhaustive state space generation.
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Figure A.1: The FMS Generalised Stochastic Petri net [CT93].
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The FMS model describes an assembly line with three types of machines (M1, M2
and M3) which assemble four types of parts (P1, P2, P3 and P12). Initially
there are k unprocessed parts of each type P1, P2 and P3 in the system. There
are no parts of type P12 at start-up since these are assembled from processed
parts of type P1 and P2. For our purposes, k is a useful scaling parameter since
different values of k£ produce underlying state graphs with different numbers of

states and transitions.

Three machines of type M1 process parts of type P1. One machine of type M2
processes parts of type P2, although this machine can also process parts of type
P3 if no parts of type P2 are available. Two machines of type M3 assemble
parts of type P1 and P2 to form parts of type P12. When parts of any type
are finished, they can be shipped (via transitions tP1ls,tP2s,tP3s,tP12s), in
which case the same number of unprocessed parts enters the system to maintain

a constant inventory.

Unprocessed parts of types P1, P2 and P3 are moved between machines using
pallets, each of which holds one part. Processed parts of type P1 and P2 (required
by M3 to make parts of type P12) also need to be moved in this way, but two
(one of each type) can share one pallet. The total number of pallets available in
the system remains constant and is given by N, = |3k/2|, while the total number
of pallets requested in a given marking is r = #(P1) + #(P2) +#(P3) + #(P12).
If the number of pallets requested exceeds the total number of pallets available,

contention for the pallets is approximated using a processor-sharing policy.

Table A.1 presents the rates and weights, many of them state-dependent, assigned
to the transitions in the FMS model. Note how the sharing of the pallets (in terms
of the number available N, and the number required r) is reflected in the rates
assigned to transitions tP1,tP2,tP3 and tP12. The immediate transitions tPle
and tP1j (resp. tP2e and tP2j) describe the relative likelihood that a finished
part of type P1 (resp. P2) will ezit the system (and be shipped) as opposed to
joining with a part of type P2 (resp. P1) to form a part of type P12.
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Timed Transition Rate (min ')

tP1 #(P1) min(1, N,/r)
tP2 #(P2) min(1, N,/r)
tP3 #(P3) min(1, N,/r)
tP12 #(P12) min(1, N,/r)
tP1M1 #(P1M1)/4
tP2M2 1/6
tP3M?2 1/2
tP12M3 #(P12M3)
tP1s 1/60
tP2s 1/60
tP3s 1/60
tP12s 1/60

Immediate Transition Weight
tPle vs. tP1j 0.8 vs. 0.2
tP2e vs. tP2j 0.6 vs. 0.4

Table A.1: Transition rates and weights in the FMS model.

A.2.2 Performance Measures

Ciardo and Trivedi propose a single performance measure v describing the “pro-

ductivity” of the FMS:

) = 4000, + 600 + 100¢3 + 1100612

where ¢, x € {1,2,3,12} is the throughput (per minute) for parts of type z
(given by the throughput of transitions ¢P1,¢tP2,tP3 and tP12 respectively).
The multiplicative constants reflect the net benefit of producing a part of the

corresponding type.

Table A.2 presents the calculated values of v for different values of &, as published
in [CT93] (for £ < 5), and as calculated by the parallel performance analyser (for
k < 11). The computed results for £ < 5 agree with the published results to
3 significant figures. The low accuracy used to compute the published results

probably accounts for the lack of agreement observed beyond this precision.
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29.154731
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Table A.2: Published (left) and computed (right) values of the FMS “produc-
tivity” performance measure v, in terms of k, the initial number of unprocessed
parts of type P1, P2 and P3.

A.2.3 Analyser Input File

The FMS model can be specified using the interface language of Section 6.3 as

follows:

\model{
% FMS flexible manufacturing system from Ciardo and Trivedi 1993
\constant{kk}{9}

\statevector{
\type{short}{P1, P1iwMi, PiM1, Pid, Pls, M1, P1iwP2}
\type{short}{P12s, P12M3, M3, P12wM3, P12}
\type{short}{P2, P2wM2, P2M2, M2, P2d, P2s, P2wP1}
\type{short}{P3, P3M2}
\type{short}{P3s}

}

\initial{
P1 = Kkk;
PiwM1l = O;
P1M1 = 0;
Pi1d = 0;
Pls = 0;
M1 = 3;
PiwP2 = 0;
P12s = 0;
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P12M3 = 0;
M3 = 2;
P12wM3 = 0;
P12 = 0;

P2 = kk;
P2wM2 = 0;
P2M2 = 0;
M2 = 1;
P2d =
P2s
P2wP1
P3 = Kkk;
P3M2 = 0;
P3s = 0;

2

0
0;

0;

\constant{Np}{3*kk/2}
\helpvalue{int}{r}{(P1+P2+P3+P12)}
\helpvalue{double}{min}{ (Np < r) ? (double) Np/r : 1.0 }

\transition{tP1s}{
\condition{P1ls > 0}
\action{next->P1s = 0; next->P1 += Pis; }
\rate{1.0/60.0}

}

\transition{tP1}{
\condition{P1 > 0}
\action{next->P1 = P1 - 1; next->P1wMl = PiwM1 + 1; }
\rate{(double) Pil*min}

}
\transition{tM1}{
\condition{(P1wM1 > 0) && (M1 > 0)}
\action{
next->P1wMl1 = P1wMl - 1; next->M1 = M1 - 1;
next->P1M1 = P1M1 + 1;
}
\weight{1.0}
}
\transition{tP1M1}{
\condition{P1M1 > 0}
\action{

next->P1M1 = P1M1 - 1;
next->M1 = M1 + 1; next->P1d = P1d + 1;
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}
\rate{(double) PiM1/4.0}

3

\transition{tPle}{
\condition{P1d > 0}
\action{next->P1d = P1d - 1; next->Pls = next->P1s + 1; }
\weight{0.8}

}

\transition{tP1j}{
\condition{P1d > 0}
\action{next->P1d = P1d - 1; next->P1wP2 = next->P1wP2 + 1; }
\weight{0.2}

}

\transition{tP12s}{
\condition{P12s > 0}
\action{
next—->P12s = 0;
next->P1 = P1 + P12s; next->P2 = P2 + P12s;
}
\rate{1.0/60.0}
}

\transition{tP12M3}{
\condition{P12M3 > 0}
\action{
next->P12M3 = P12M3 - 1; next->P12s = P12s + 1;
next->M3 = M3 + 1;
}
\rate{(double) P12M3}
}

\transition{tM3}{
\condition{(M3 > 0) && (P12wM3 > 0)}
\action{
next->P12wM3 = P12wM3 - 1; next->M3 = M3 - 1;
next->P12M3 = P12M3 + 1;
}
\weight{1.0}
}

\transition{tP12}{
\condition{P12 > 0}
\action{next->P12 = P12 - 1; next->P12wM3 = P12wM3 + 1; }
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\rate{(double) P12*min}
}

\transition{tx}{
\condition{(P1wP2 > 0) && (P2wP1 > 0)}
\action{
next->P1wP2 = P1wP2 - 1; next->P2wP1
next->P12 = P12 + 1;
}
\weight{1.0}
}

P2wP1 - 1;

\transition{tP2}{
\condition{P2 > 0}
\action{next->P2 = P2 - 1; next->P2uwM2
\rate{(double) P2*min}

}

P2wM2 + 1; }

\transition{tM2}{
\condition{(P2wM2 > 0) && (M2 > 0)}
\action{
next->P2wM2 = P2wM2 - 1; next->M2 = M2 - 1;
next->P2M2 = P2M2 + 1;
}
\weight{1.0}
}

\transition{tP2M2}{
\condition{P2M2 > 0}
\action{
next->P2M2 = P2M2 - 1;
next->P2d = P2d + 1; next->M2 = M2 + 1;
}
\rate{1.0/6.0}
}

\transition{tP2j}{
\condition{P2d > 0}
\action{ next->P2d = P2d - 1; next->P2wPl1 = P2wP1 + 1; }
\weight{0.4}

}

\transition{tP2e}{
\condition{P2d > 0}
\action{ next->P2d = P2d - 1; next->P2s = P2s + 1; }
\weight{0.6}
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\transition{tP2s}{
\condition{P2s > 0}
\action{next->P2s = 0; next->P2 = P2 + P2s; }
\rate{1.0/60.0}

}

\transition{tP3}{
\condition{P3 > 0}
\action{next->P3 = P3 - 1; next->P3M2 = P3M2 + 1;}
\rate{(double) P3*min;}

}

\transition{tP3M2}{
\condition{(M2 > 0) && (P3M2 > 0)}
\action{next->P3M2 = P3M2 - 1; next->P3s = P3s + 1;}
\rate{1.0/2.0}

}

\transition{tP3s}{
\condition{P3s > 0}
\action{next->P3s = 0; next->P3 = P3 + P3s; }
\rate{1.0/60.0}
}
}

\performance{

\statemeasure{idle machines of type M1}{
\estimator{mean variance distribution}
\expression{M1}

}

\statemeasure{idle machines of type M2}{
\estimator{mean variance distribution}
\expression{M2}

}

\statemeasure{idle machines of type M3}{
\estimator{mean variance distribution}
\expression{M3}

}

\countmeasure{throughput of parts of type P1}{
\estimator{mean}
\transition{tP1}
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}

\countmeasure{throughput of parts of type P2}{
\estimator{mean}
\transition{tP2}

}

\countmeasure{throughput of parts of type P3}{
\estimator{mean}
\transition{tP3}

}

\countmeasure{throughput of parts of type P12}{
\estimator{mean}
\transition{tP12}
}
}

\solution{
\method{cgs}
}

A.3 The Courier Protocol Model

A.3.1 Model Description

Fig. A.2 shows a 45-place Generalized Stochastic Petri net model of software used
in the Courier telecommunications protocol. This model was initially described
in [WL91] and was subsequently used in [DS97] and [DS98b] to demonstrate

sequential disk-based solution techniques.

The Courier Petri net models the ISO Application, Session and Transport net-
work layers involved in the flow of data from a sender (pl to p26) to a receiver
(p27 to p46) via a network (c.f. Fig. A.2). Messages are conveyed between layers

by “Courier” tasks which act as active data buffers.

The transport layer fragments data, which is modelled as two paths between
pl3 and p33. The path via t8 carries all fragments before the last one to p33.

Acknowledgements for these fragments are sent back to the sender, but no data
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Figure A.2: The Courier Protocol Software Generalised Stochastic Petri net

[WL91].
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is delivered to the higher layers on the receiver side. The path via t9 carries the
last fragment of each message block. Acknowledgements for these fragments are
generated and a data token is delivered upwards via ¢27. The average message
length is determined by the ratio of the weights on the immediate transitions ¢8
and t9. This ratio, known as the fragmentation ratio, is given by ¢1 : ¢2 (where
gl and ¢2 are the weights associated with transitions ¢8 and t9 respectively). As

in [DS97], we will assume a fragmentation ratio of one.

The transport layer is further characterized by two important parameters: the
sliding window size k (pl4) and the transport space m (p17). As in [DS97], we

will set m =1 and vary k£ to produce underlying state graphs of different sizes.

The rates of the timed transitions in the model were determined by observing an
implementation of the software running on a Sun workstation. 5000 messages of
1000-bytes each were sent and the execution time noted. Table A.3 presents the

resulting transition rates and weights.

Timed Transition Rate Value
rl 5000/0.57
72 5000/4.97
r3 5000/1.09
r4 5000/10.37
b 5000/4.29
r6 5000/0.39
r7 5000/0.68
r8 5000/2.88
79 5000/3.45
r10 5000/1.25
Immediate Transition Weight Value
ql vs. q2 1.0 vs. 1.0

Table A.3: Transition rates and weights in the Courier Protocol model.

A.3.2 Performance Measures

Woodside and Li propose several performance measures. The most important is

A, the data throughput rate, which is given by the throughput of transition #21.




208 Appendix A. Model Descriptions

Further, there are some measures which determine task utilizations. In particu-
lar, Piranspt = Pr{pl12 is marked} = Pr{transport task 1 is idle}. Similarly they
define Piqanspe for p32, Pyegs1 and Pyegso using p6 and p4l, and Pieng and Preey
using pl and p46.

k=1 k=2 k=3 k=4 k=5 k=6

A 74.3467 120.372 150.794 172.011 187.413 198.919

Piena 0.01011 0.01637 0.02051 0.02334 0.02549 0.02705

Precw 0.98141 0.96991 0.96230 0.95700 0.95315 0.95027

Piess1 0.00848 0.01372 0.01719 0.01961 0.02137 0.02268

Piess0 0.92610 0.88029 0.84998 0.82883 0.81345 0.80197

Piranspt 0.78558 0.65285 0.56511 0.50392 0.45950 0.42632

Py ansp2 0.78871 0.65790 0.57138 0.51084 0.46673 0.43365

k=1 k=2 k=3 k=4 k=5 k=6 k=17 k=28

A 74.3467 120.372 150.794 172.011 187.413 198.919 207.690 214.477
Piend 0.01011 0.01637 0.02051 0.02334 0.02549 0.02705 0.02825 0.02917
Precy 0.98141 0.96991 0.96230 0.95700 0.95315 0.95027 0.94808 0.94638
Psesst 0.00848 0.01372 0.01719 0.01961 0.02137 0.02268 0.02368 0.02445
Piesso 0.92610 0.88029 0.84998 0.82883 0.81345 0.80196 0.79320 0.78642
Pyranspt 0.78558 0.65285 0.56511 0.50392 0.45950 0.42632 0.40102 0.38145
Piransp2 0.78871 0.65790 0.57138 0.51084 0.46673 0.43365 0.40835 0.38871

Table A.4: Published (top) and computed (bottom) values of the Courier Proto-
col performance measures in terms of the transport window size k.

Table A.4 presents the calculated values of these performance measures for dif-
ferent values of k, as published in [WL91] (for values of £ < 2) and [DS97] (for
values of 3 < k < 6). Also presented are the performance measures as calculated
by the parallel performance analyser (for values up to k£ < 8). The computed
results for £ < 6 are in complete agreement with the published results, except
for Piesso in the £ = 6 case (a calculated value of 0.80197 vs. a published value
of 0.80196).

A.3.3 Analyser Input File

The FMS model can be specified using the interface language of Section 6.3 as

follows:
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\model{

% Courier Protocol Model from Woodside and Li 1991

\constant{kk}{8}
\constant{mm}{1}

\constant{r1}{(5000.
\constant{r2}{(5000.
\constant{r3}{(5000.
\constant{r4}{(5000.
\constant{r5}{(5000.
\constant{r6}{(5000.
\constant{r7}{(5000.
\constant{r8}{(5000.
\constant{r9}{(5000.
\constant{r10}{ (5000

\constant{q1}{1.0}
\constant{q2}{1.0}

\statevector{
\type{short}{ pl,
\type{short}{ pii,
\type{short}{ p20,
\type{short}{ p29,

0/0.57)%
0/4.97)%
0/1.09)%
0/10.37)}
0/4.29)%
0/0.39)%
0/0.68)%
0/2.88)%
0/3.45)%}
.0/1.25)}

p2, p3,

p4,

pl2, p13, pi4,
p21, p22, p23,

p30, p31, p32,
p39, p40, p41,
pl0 = pl2 = p32
p44 = pd46 = 1;

p8 = p9 = pii
p18 = pl19 = p20
p24 = p25 = p26
p30 = p31 = p33

p5,
p15,
p24,
p33,
p42,

o O O O

- e

p34 = p35 = p36 = p38 = p40 = p42 = 0;

\type{short}{ p38,

}

\initial{
pl = p3 = pb6 =
p37 = p39 = p4l =
p2 = pd= pb=
pi13 = plb5 = pl6 =
p21 = p22 = p23 =
p27 = p28 = p29 =
p43 = p45 = 0;
pl4 = kk;
pl7 = mm;

}

\transition{t1}{

\condition{pl > O
\action{next->pl =
\rate{r7}

}

pl - 1; next->p2 =

pé, p8,
pl6, pl7,
p25, p26,
p34, p35,
p43, p44,

p2 + 1;}

P9,
pis8,
p27,
p36,
p45,

pl0 }
pl9 }
p28 }
p37 }
p46 }
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b
\transition{t2}{
\condition{p2 > 0 && p3 > 0}
\action{
next->p2 = p2 - 1; next->p3 = p3 - 1;
next->pl = pl + 1; next->p4 = p4 + 1;
}
\weight{1.0}
}
\transition{t3}{
\condition{p4 > 0 && p6 > 0}
\action{
next->p4 = p4 - 1; next->p6 = p6 - 1;
next->p3 = p3 + 1; next->p5 = pb + 1;
}
\rate{r1}
b
\transition{t4}{

\condition{p5 > 0}
\action{next->p5 = p5 - 1; next->p8 = p8 + 1;}
\rate{r2}

}

\transition{t5}{
\condition{p8 > 0 && p10 > 0}
\action{
next->p8 = p8 - 1; next->pl0 = pl0 - 1;
next->p6 = p6 + 1; next->p9 = p9 + 1;
}
\weight{1.0}
}

\transition{t6}{
\condition{p9 > 0 && p12 > 0 && p17 > 0}
\action{
next->p9 = p9 - 1; next->pl2 = pl2 - 1; next->pl7 = pl7 - 1;
next->p10 = p1l0 + 1; next->pll = pll + 1;
}
\rate{r1}
}

\transition{t7}{
\condition{pil > 0}
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\action{
next->piil
next->p12

}

\rate{r8}

}

pll -

\transition{t8}{

1;

pl2 + 1; next->pl13 = pl13 + 1;

\condition{p12 > 0 && p13 > 0 && pi14 > 0%}

\action{
next->pi12
next->p15

}

\weight{q1}

}

pld +

\transition{t9}{

1;

pl2 - 1; next->pl4 = pl4 - 1;

\condition{p12 > 0 && p13 > 0 && pi14 > 0}

\action{
next->p12
next->p16

}

\weight{q2}

}

pl2 -
pl6 +

\transition{t10}{
\condition{p15 > 0}
\action{

next->p15
next->p12
}
\rate{r5}
}

pi5 -
pl2 +

\transition{t11}{
\condition{p16 > 0}
\action{

next->p16
next->p12
}
\rate{r5}
}

plé -
pl2 +

\transition{t12}{
\condition{p20 > 0}
\action{

1;

—
-

=
~ e

1;

[N
~ e

1;

next->pl13 = pl3 - 1; next->pl4 = pl4 - 1;

next->p18 = pl18 + 1;

next->pl9 = pl19 + 1;
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next->p20 = p20 - 1;
next->pl4 = pl4 + 1; next->pl2 = pl12 + 1;
}
\rate{r3}
}
\transition{t13}{
\condition{p12 > 0 && p18 > 0%}
\action{
next->pl2 = pl2 - 1; next->pl8 = p18 - 1;
next->p21 = p21 + 1;
}
\weight{1.0}
}
\transition{t14}{
\condition{p12 > 0 && p19 > 0}
\action{
next->pl2 = pl12 - 1; next->pl9 = p19 - 1;
next->p22 = p22 + 1;
}
\weight{1.0}
}
\transition{t15}{
\condition{p12 > 0 && p23 > 0%}
\action{
next->pl2 = pl12 - 1; next->p23 = p23 - 1;
next->p20 = p20 + 1;
}
\weight{1.0}
}
\transition{t16}{
\condition{p21 > 0}
\action{
next->p21 = p21 - 1;
next->pl2 = pl2 + 1; next->p24 = p24 + 1;
}
\rate{r6}
}
\transition{t17}{
\condition{p22 > 0}
\action{

next—->p22 = p22 - 1; next->pl2 = pl12 + 1;
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next->pl7 = p17 + 1; next->p25 = p25 + 1;
X
\rate{r6}
b

\transition{t18}{
\condition{p26 > 0}

\action{next->p26 = p26 - 1; next->p23 = p23 + 1;}
\rate{r4}
}
\transition{t19}{
\condition{p27 > 0%}
\action{
next->p27 = p27 - 1;
next->p32 = p32 + 1; next->p26 = p26 + 1;
}
\rate{r3}
}
\transition{t20}{

\condition{p24 > 0}
\action{next->p24 = p24 - 1; next->p28
\rate{r4}

}

p28 + 1;}

\transition{t21}{
\condition{p25 > 0}
\action{next->p25 = p25 - 1; next->p29
\rate{r4}

}

p29 + 1;}

\transition{t22}{
\condition{p32 > 0 && p33 > 0}
\action{
next->p32
next->p27
}
\weight{1.0}
}

p32 - 1; next->p33 = p33 - 1;
p27 + 1;

\transition{t23}{
\condition{p32 > 0 && p28 > 0}
\action{
next->p32
next->p30

p32 - 1; next->p28 = p28 - 1;
p30 + 1;
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}
\weight{1.0}
b
\transition{t24}{
\condition{p32 > 0 && p29 > 0%}
\action{
next->p32 = p32 - 1; next->p29 = p29 - 1;
next->p31 = p31 + 1;
}
\weight{1.0}
}
\transition{t25}{
\condition{p30 > 0}
\action{
next->p30 = p30 - 1;
next->p32 = p32 + 1; next->p33 = p33 + 1;
}
\rate{r5}
}
\transition{t26}{
\condition{p31 > 0}
\action{
next->p31 = p31 - 1;
next->p34 = p34 + 1; next->p32 = p32 + 1;
}
\rate{r5}
}
\transition{t273}{
\condition{p34 > 0 && p32 > 0%}
\action{
next->p34 = p34 - 1; next->p32 = p32 - 1;
next->p33 = p33 + 1; next->p35 = p35 + 1;
}
\weight{1.0}
}
\transition{t28}{
\condition{p35 > 0 && p37 > 0}
\action{
next->p35 = p35 - 1; next->p37 = p37 - 1;
next->p32 = p32 + 1; next->p36 = p36 + 1;

}



A.3. The Courier Protocol Model

215

\rate{r9}
}

\transition{t29}{

\condition{p36 > 0 && p39 > 0}

\action{
next->p36
next->p38

}

\weight{1.0}

}

\transition{t30}{

\condition{p4l > 0 && p38 > 0}

\action{
next->p41
next->p39

}

\rate{r1}

}

\transition{t31}{
\condition{p40 > 0}

\action{next->p40 = p40 - 1; next

\rate{r2}
}

\transition{t32}{

\condition{p42 > 0 && p44 > 0}

\action{
next->p42
next->p43

}

\weight{1.0}

}

\transition{t33}{

\condition{p43 > 0 && p46 > 0}

\action{
next->p43
next->p44

}

\rate{ri}

}

\transition{t34}{

p36 - 1; next->p39
p38 + 1; next->p37

p4l - 1; next->p38
p39 + 1; next->p40

p42 - 1; next->p44
p43 + 1; next->p4l

p43 - 1; next->p46
p44 + 1; next->p4b

p39
p37

p38
p40

->p42

pa4
pa1

p46
p45

p42 + 1;}
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\condition{p45 > 0}
\action{next->p45 = p45 - 1; next->p46 = p46 + 1;}
\rate{r10}
}
}

\performance {
\countmeasure{lambda (data throughput)}{
\estimator{mean}
\transition{t21}
}

\statemeasure{psend}{
\estimator{mean variance distribution}
\expression{p1}

}

\statemeasure{precv}{
\estimator{mean variance distribution}
\expression{p46}

}

\statemeasure{psessi}{
\estimator{mean variance distribution}
\expression{p6}

}

\statemeasure{psess2}{
\estimator{mean variance distribution}
\expression{p41}

}

\statemeasure{ptranspl}{
\estimator{mean variance distribution}
\expression{p12}

}

\statemeasure{ptransp2}{
\estimator{mean variance distribution}
\expression{p32}
}
}

\solution{
\method{cgs}
}
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AP3000 Technical Overview

B.1 Introduction

This appendix describes the architecture of the Fujitsu AP3000 parallel computer
[ITS97] which was used to collect the results presented in Chapters 4 and 5. We
also consider the AP3000’s performance in terms of its communication latency

and the degree to which it is possible to overlap communication and computation.

B.2 Node Architecture

The Fujitsu AP3000 parallel server is a distributed memory parallel computer
based on a grid of 64-bit UltraSPARC nodes connected by a dedicated high-
speed network (the AP-net). Fig. B.1 shows this architecture and the structure
of each processing node. Each node runs the Solaris operating system and has
a 300MHz UltraSPARC processor, 256 MB RAM and a 4GB local disk with an
uncached throughput of 6MB/s.

Access to the processing nodes is controlled by a queueing system. More specifi-
cally, the 60 processing nodes are partitioned into groups of up to 16 processors
and user tasks are assigned to partitions by a control workstation. Client work-

stations use an external LAN connection to submit batch and interactive jobs to

217
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300MHz
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Control Network (Ethernet)
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station station station station station

@

Figure B.1: AP3000 architecture.

the control workstation, which in turn makes use of a dedicated control network
to map user tasks onto processing nodes. Batch jobs have sole use of all the

processing nodes in the partition to which they were assigned.

B.3 Communication Network Architecture

The nodes of the AP3000 are connected into a 2D wraparound mesh topology by
a high-speed network known as the AP-net. The AP-net is made up of Routing
Controllers (RTCs) which are responsible for low-level message routing and bar-
rier synchronisation operations. Each node is connected to an RTC by a Message

Controller (MSC) card attached to a high speed 1/O bus (the SBus).

To reduce communication latency, the RTCs support wormhole (or cut-through)
routing. Under this scheme, messages are divided into small 4-byte pieces called

flits. Flits in a message header determine the routing path of the message, and
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subsequent message flits are routed over the same path. The flits are pipelined,
so intermediate processors do not wait for the entire message before forwarding
incoming flits. Wormbhole routing is faster than conventional store-and-forward

routing and uses less memory.

User-level access to the AP-net is provided by a hierarchy of communication

libraries, as shown in Fig. B.2.

- N\
User program

L J
p . ) User

APlib MPI PVM Level
L J
- N\

MPlib
L J
- N\
Solaris 2.x ] [ SPPIib Operating
\ g System
p ~ Level
MSC

L J

Figure B.2: AP3000 communications library hierarchy.

At the application level, users can chose from three different programming in-
terfaces, viz. MPI (Message Passing Interface) [GLS94], PVM (Parallel Virtual
Machine) [GBD*94] and APLib (Fujitsu’s own communications library). These
programming interfaces are based on a common hardware-independent library
called MPLib, which implements reliable end-to-end message passing operations.
In turn, MPLib makes use of SPPlib, a low-level communications library which
provides direct access to the MSC hardware without the need for a system call.
Services provided by SPPIlib include MSC initialisation, unreliable send and re-
ceive (MPLib is responsible for higher-level services such as error checking), mes-

sage buffer management and barrier synchronisation operations.
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B.4 Performance Issues

B.4.1 Communication Cost

The time taken to communicate a message between two nodes in a 2D wraparound

mesh with static wormhole routing is given by:
tc(m) = ts (m) + th(l’, Y, tl: t2) + tb(ma A)

where:

e {s(m) is the startup time required to prepare a message of length m bytes
for transmission. This includes time taken to add headers, trailers, error
correction information, as well as time to execute the routing algorithm.
Our experiments on the AP3000 have shown that ¢, depends on the message

size m (in bytes) as follows:

(0.0116m + 88)us  if m < 1024
ts(m) =< (0.0116m + 115)us if 1024 < m < 16384

310us otherwise

The constant startup time for messages over 16K may be related to the
size of the communications buffers used by the MSC card, many of which
are 16K (or small integer multiples thereof). Longer messages may be
repeatedly packed into these buffers in a pipelined fashion, thus avoiding

the linear increase in latency experienced with smaller messages.

e tn(x,y,t1,ts) is the hop time required for a header to travel between the
sender and the receiver. Here x and y are the dimensions of the mesh while
t; and o are the per-hop flit latencies for transfers in the same direction
(i.e. X=X or Y—Y) and different directions (i.e. X—Y) respectively. For
an r X y 2D wraparound mesh, the average number of hops between two
randomly-selected (but distinct) processors I(x, %) is the sum of every possi-

ble communication distance divided by the number of possible destinations
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(xzy — 1), ie.

el Y

Moy = > X (il+i)|/(@y-1)

i=— |25t ] j=—|%52)

This simplifies to:

(z + y)(zy) — z(y mod 2) — y(z mod 2)

o) = A(zy — 1)

where a mod b denotes the remainder when a is divided by b. Since the
batch partition that we used to collect results allocates processing nodes at

random from an 8 x 4 grid, we will use a value of /(8, 4) ~ 3.10.

The AP3000 uses a routing strategy called XY routing which routes mes-
sages in two phases — first in the X direction, then in the Y direction.
Transfers in the same direction (X—X or Y—Y) require ¢; = 120ns while
transfers which change direction (X—Y) require ¢, = 170ns. Exactly one
change of routing direction is required whenever the sender and receiver are
not in the same mesh column or row. If the sender and receiver are selected
at random, this event occurs with probability:

-1y -1
Ty — 1

ph(ﬂfay) =

The average hop time (in seconds) is therefore given by:

th(z,y, t1, t2) = Uz, y)t1 + (t2 — t1)pa(z, y)

For the particular case of the AP3000’s 8 x 4 wraparound mesh, we have

1(8,4) =~ 3.10, p(8,4) = 0.677,t; = 120ns and t, = 170ns giving a value of
th ~ 405ns.

e t,(m, \) is the transmission time that a message of size m bytes requires to
traverse the link between the sender and receiver, given that the link has an
underlying throughput of A\ bytes per second and uses cut-through routing.
The AP-net’s RTCs are theoretically capable of transferring data at up
to 200MB/s. In practice, however, the performance of the SBus (which
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connects the MSC to the RTC) limits effective throughput to a measured

maximum of A = 65.6 MB/s. We therefore use a value of

ty(m, \) = Am = (65.6 MB/s)"'m ~ 14.89m ns

As with many modern parallel computers, the hop time ¢ of the AP3000 is very
small compared to the setup time ¢; and message transmission time ¢, even for

small values of m. Ignoring the term gives:

te(m) = ts(m) + tp(m, A)

From this simple model of the communication cost, the throughput 7(m) ob-
tained when sending a message of m bytes between two processors on the AP3000

can be calculated as:

Fig. B.3 assesses the accuracy of this model by comparing observed and modelled
throughputs for various messages sizes on the AP3000. Each of the observed
results is a throughput average calculated from 25 measurements of the round
trip time taken to transmit a message from one node to another and back again.
The results predicted by the model agree with the observed throughputs to an

accuracy of within 3% for messages longer than 512 bytes.

B.4.2 Overlapping Communication and Computation

An important requirement for efficient parallel programming is the ability to hide
communication latency by overlapping communication and computation. This
feature can yield dramatic performance improvements, especially when dealing
with sparse, irregular problems that run on machines where communication is

handled autonomously by an intelligent communication controller.

The MPI standard supports the overlap of communication and computation via
the calls MPI Isend() and MPI Irecv() which initiate (but do not complete)

send and receive operations. While these non-blocking operations are in progress,



B.4. Performance Issues 223

m T(m) (MB/s) % 65—
Obs. | Model | err. o observed

64 | 0.843 | 0.697 | -17.32
128 | 1.493 | 1.368 | - 8.37 /
256 | 2.315 | 2.638 | 13.95 o 1
512 | 4.940 | 4.923 | - 0.35 as | :
1K | 8574 | 8.686 | 1.31 :
1088 | 7.505 | 7.388 | - 1.56
2K | 12.113 | 11.817 | - 2.44
4K | 17.828 | 17.898 | 0.39 ,
8K | 24.271 | 24.098 | - 0.71 | 1
16K | 28.457 | 29.146 | 2.42 20 ’
32K | 40.176 | 40.110 | - 0.16
64K | 49.409 | 49.782 | 0.75

55 |- 8

/
40 | i
)
/
/
35 | -
;

30 | B

throughput T(m) (MB/s)

15 - .

128K | 56.711 | 56.607 | - 0.18 10 1
256K | 60.990 | 60.772 | - 0.36 st -
512K | 62.664 | 63.094 | 0.69 S
1MB 64.183 64.323 0.22 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K256K512K1MB

message size m (bytes)

Figure B.3: Observed and modelled values of AP3000 throughput 7'(m) (in
MB/sec) in terms of the message size m.

programs proceed with other instructions. The completion of a non-blocking op-
eration can be detected by using the MPI_Test () function; alternatively programs

can wait for a non-blocking call to complete by using the MPI Wait () function.

Experiments on the AP3000 reveal two major deficiencies in Fujitsu’s MPI im-

plementation and hardware architecture:

e While the non-blocking receive operation MPI_Irecv() behaves correctly
and returns from the call almost immediately, the non-blocking send oper-
ation MPI_Isend() does in fact block. The blocking time is similar to the
time taken for the blocking MPI_Send () call, which suggests that the two

calls share the same implementation.

e Despite the presence of a dedicated Message Controller (MSC) card with
DMA facilities, communication still requires a large amount of CPU in-
tervention. CPU utilization during non-blocking operations is such that
virtually no user instructions are executed while data is being actively sent

or received.
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Similar experiments conducted on an IBM SP-2 show that the SP-2 does not
suffer from these problems. The SP-2’s non-blocking send call returns almost
immediately and background communication takes place with a relatively small
amount of CPU overhead. Engineers from Fujitsu have acknowledged these prob-
lems with the AP3000 and say they are caused by the complex nature of MPI
transfer protocols. At present they have no plans to address the problem since
doing so would involve a complete redesign of the APnet device driver and MPI

library.

An attempt to circumvent the blocking MPI_Isend() problem by implementing a
true non-blocking send operation using light-weight threads was partially success-
ful. However, the large amount of CPU intervention during the send operation
severely limits opportunities for concurrency. In addition, Fujitsu’s MPI library

is not thread-safe, so correct operation under this system cannot be guaranteed.

As a result of these problems, the design of the steady-state solver described
in Chapter 5 was oriented towards minimizing communication by exploiting the
nearly lower-triangular structure of the transition matrix. Note, however, that
the matrix vector kernel still allows for the overlapping of communication and

computation on machines that have effective support for this feature.
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