GENERALISED MARKOVIAN ANALYSIS OF TIMED
TRANSITION SYSTEMS

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE,
FACULTY OF SCIENCE
AT THE UNIVERSITY OF CAPE TOWN
IN FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

MASTER OF SCIENCE

By
William J. Knottenbelt
June 1996

Supervised by
Prof P.S. Kritzinger

Abstract

This dissertation concerns analytical methods for assessing the performance of concurrent
systems. More specifically, it focuses on the efficient generation and solution of large Markov
chains which are derived from models of unrestricted timed transition systems. Timed tran-
sition systems may be described using several high-level formalisms, including Generalised
Stochastic Petri nets, queueing networks and Queueing Petri nets. A system modelled with
one of these formalisms may be mapped onto a Markov chain through a process known
as state space generation. The Markov chain thus generated can then be solved for its
steady-state distribution by numerically determining the solution to a large set of sparse

linear equations known as the steady-state equations.

Existing techniques of state space generation are surveyed and a new space-saving prob-
abilistic dynamic state management technique is proposed and analysed in terms of its
reliability and space complexity. State space reduction techniques involving on-the-fly elim-
ination of vanishing states are also considered. Linear equation solvers suitable for solving
large sparse sets of linear equations are surveyed, including direct methods, classical itera-
tive methods, Krylov Subspace techniques and decomposition-based techniques. Emphasis
is placed on Krylov subspace techniques and the Aggregation-Isolation technique, which is

a recent decomposition-based algorithm applicable to solving general Markov chains.

Since Markov chains derived from real life models may have very large state spaces, it
is desirable to automate the performance analysis sequence. Consequently, the new state
management technique and several linear equation solvers have been implemented in the
Markov chain analyser DNAmaca. DNAmaca accepts a high-level model description of a
timed transition system, generates the state space, derives and solves the steady-state equa-
tions and produces performance statistics. DNAmaca is described in detail and examples

of timed transition systems which have been analysed with DNAmaca are presented.

ii

Acknowledgements

I would like to express my thanks and appreciation to:

o My supervisor, Prof Pieter S. Kritzinger, for his guidance and skilful management

throughout the past 18 months.
o My family for their love, support and encouragement.

e My fellow DNA lab colleagues and my fellow Masters students in the Department of

Computer Science, for their companionship and encouragement.

e Michael Sczittnick, the author of USENUM, for the use of his Markov Chain analyser
and his assistance with USENUM model specifications.

e DNA lab member Heinz Kabutz, for extensively beta-testing DNAmaca on several

models produced during the course of his masters thesis.

o Peter Kemper, from the University of Dortmund, Germany, for helping me to verify
the results produced by DNAmaca by running USENUM models with large state

spaces using the computer resources at the University of Dortmund.

¢ Farooq Khan and Prof Djamal Zeghlache, both from RST department of L’Institut
National des Télecommunications, FEvry, France, for beta-testing DNAmaca and for

suggesting the teletraffic switch application.

¢ Abderezak Touzene, from King Saud University, Saudi Arabia, for his advice and

assistance while implementing his Aggregation-Isolation algorithm.

e DNA lab staff member Andrew Hutchison, for his willing assistance with modelling

test cases using the MicroSnap queueing network analyser.

iii

Roya Ulrich, currently at the International Computer Science Institute, Berkeley,

California, for her help with USENUM and performance analysis concepts.

The Electrical Engineering department at the University of Cape Town for the use of
their 4-processor SPARC 20 during the results-collection phase.

Sandi Donno and Aleks Strez, our local system adminstrators, for keeping my com-

puting environment running smoothly.

The South African Foundation for Research and Development (FRD) for funding this

research.

v

Contents

Abstract

Acknowledgements

1 Introduction

1.1

1.2

1.3

Motivation and Objectives oL
Other Work o o
1.2.1 USENUMo

1.2.2 MARCA o e

Dissertation Outline o

2 Background theory

2.1

2.2

2.3

Introductiono
Modelling Formalisms o o
2.2.1 Generalised Stochastic Petri Nets (GSPNs)
2.2.2 Queueing Networks oo s
2.2.3 Queueing Petrinets (QPNs). o L
Markov Theory e
2.3.1 Stochastic Processes o o o
2.3.2 Markov Processes L o

il

iii

3 State Space Exploration Techniques 24

3.1 Introduction L e 24
3.2 Traditional state space exploration techniques 25
3.2.1 Exhaustive dynamic techniques L. 26
3.2.2 Probabilistic static techniques Lo 27

3.3 A new probabilistic dynamic techniqueo L 31
3.3.1 Reliability analysis o o 33
3.3.2 Approximation Lo 35
3.3.3 Space complexity Lo 36

3.4 Vanishing state elimination oL, 40
4 Steady State Solution Techniques 47
4.1 Introduction oL e e e 47
4.2 Direct methods L 50
4.2.1 Gaussian Elimination L 000000, 50
4.2.2 LU Decomposition o 52
4.2.3 Grassman’s Algorithm L L oL 54

4.3 Classical iterative methods oo Lo 55
4.3.1 Jacobi’s Method 56
4.3.2 Gauss-Seidelo 57
4.3.3 Successive Overrelaxation (SOR) 57

4.4 Krylov subspace techniques oo oL 58
4.4.1 Principles of Krylov Subspace Techniques 60
4.4.2 Basis construction algorithms 63
4.4.3 Generalised CG Techniques 66
4.4.4 Conjugate Krylov Subspace Techniques 77

vi

4.5 Decomposition-based techniques oo 0000 88
4.5.1 Principles of Decomposition-based Techniques 88

4.5.2 Aggregation-Isolation algorithm 91

5 Interface Language Specification 97
5.1 Introduction L L e 97
5.2 Language elements L L o e 98
5.2.1 Model Description oo 98

5.2.2 Generation Control o oL 102

5.2.3 Solution Control o 103

5.2.4 Performance Measures/Results 104

5.2.5 Output options L e 106

6 The DNAmaca Performance Analyser 107
6.1 Introduction L 107
6.2 DNAmaca Components it 107
6.2.1 The Parser e 109

6.2.2 The State Space Generator 110

6.2.3 The Functional Analyser. 114

6.2.4 The Steady State Solver L. 115

6.2.5 The Performance Analyser, 118

7 Example Timed Transition Systems and Solutions 121
7.1 Imtroduction Lo e 121
7.2 Multimedia teletraffic switcho o 0o oL 121
7.3 Interactive computer system Lo Lo Lo, 125
7.4 TFTP telecommunications protocol 126

vii

8 Conclusion
8.1 Summary

8.2 Futurework

A DNAmaca model files

A.1 Multimedia teletraffic switch model

A.2 Interactive computer system model,

A3 TFTP communications protocol

Bibliography

viii

131

131

132

134

134

136

139

149

Chapter 1

Introduction

1.1 Motivation and Objectives

When developing a complex concurrent system, such as a telecommunications protocol or
a railway signalling control system, it is important to prevent costly redesigns and serious
errors by assessing the correctness and performance of the system before implementation.
This can be achieved by constructing and analysing an abstraction or model which captures
the essential aspects of the system’s behaviour. In this dissertation we will concern ourselves
with eflicient ways of establishing the performance of concurrent systems starting from such

a system model.

There are two general approaches to obtaining performance statistics for a system: analytical
methods and simulation. Analytical methods make use of formal, abstract models from
which exact results can be obtained by solving a set of equations derived from the model.
Simulation, on the other hand, can be used to model systems at arbitrary levels of detail,
producing inexact results bounded by confidence intervals. The accuracy of the results may
be improved by extending simulation execution time and/or by making the model more
detailed. However, relative to analytical models, there is a high cost and effort involved
in constructing accurate simulation models and the length of execution time required to
produce reliable results can be extremely long. For example, in simulations of modern high-
speed slotted networks, where a very large number of events occur in short periods of time,

the simulation of 8000 framing periods, corresponding to an elapsed system time of just 1

CHAPTER 1. INTRODUCTION 2

second, requires almost four hours of processing time on a SPARC5 workstation [Ulr95, pg.

105]. An analytical model of the same system requires just 20 seconds to solve.

This dissertation focuses on a widely-used analytical technique known as Markov chain
modelling. Markov chains model the low-level stochastic behaviour of a system by describ-
ing what possible states the system may enter and how the system moves from one state to
another in time. Markov chains are limited to describing such systems which have discrete
states and which satisfy the property that the future behaviour of the system only depends
on the current state. Despite these limitations, Markov chains are a flexible representa-
tion capable of modelling the phenomena found in complex concurrent systems, including
blocking, synchronisation, preemption, state-dependent routing and complex traffic arrival

models.

Markovian models of real-life systems may involve many hundreds of thousands, or millions,
of states. It is thus infeasible to manually specify each of the states and the transitions
between states. Several high-level formalisms from which Markov chains can be derived
have thus come about. Examples of such formalisms are Generalised Stochastic Petri nets
[AMCBS84], queueing networks and Queueing Petri nets [BB89]. Systems specified with one
of these high-level formalisms are known as timed transition systems. Performance statistics
for these systems can be obtained by mapping the states of the system onto a Markov chain

and then solving a set of linear equations to determine the chain’s steady-state distribution.

Since it is possible to derive a Markov chain model from any formalism describing a timed
transition system, it thus makes sense to have a tool which implements the complete per-
formance analysis sequence on general timed transition systems. That is, the tool should
accept a high-level model description, derive a Markov chain through a state space explo-

ration, and then solve the chain to produce performance statistics.

A major problem which immediately presents itself in the design of such a tool is the state
space explosion problem. One approach to this problem is to restrict the structure of system
models, for example, by imposing a hierarchy. This allows for the application of efficient
analysis techniques which exploit the restricted structure. We will not adopt this approach,
however, since we seek techniques which can be used to derive performance statistics for
general unrestricted timed transition systems. In particular, we will investigate efficient
techniques for two problems: generating large state spaces and solving large sets of linear

equations.

CHAPTER 1. INTRODUCTION 3

The generality of our approach also poses the problem of developing an interface language
which is general enough to handle the description of any timed transition system. We

propose such a language.

There are two general Markov chain solvers that the author is aware of: USENUM [Scz87],
developed around 1987 at the University of Dortmund, and MARCA [Ste91] developed at
the University of North Carolina. We have developed our own analyser called DNAmaca,

which makes two main contributions:

¢ DNAmaca uses a new probabilistic dynamic state management technique. This results

in considerable memory savings over conventional exhaustive or static techniques.

e DNAmaca includes implementions of four classes of applicable sparse linear equa-
tion solvers, namely direct methods, classical iterative techniques, Krylov Subspace

techniques and decomposition-based techniques.

With DNAmaca we are able to solve general, unrestricted Markov chains of as many as

500000 tangible states with only 64 Mb RAM.

1.2 Other Work

In this section, we review the Markov chain analysers USENUM and MARCA. We describe
their state and transition representations, interface languages, state state exploration al-
gorithms and steady-state solution techniques. We also briefly review some application
packages which make use of the analysers as their underlying solution engines. The reader
is referred to chapters 3 and 4 for explanations of the technical terms and abbreviations

used in this section.

1.2.1 USENUM

USENUM [Scz87] is a Markov chain analyser developed at the University of Dortmund by
Michael Sczittnick in 1987. The analyser was originally implemented on a B52000 system
using SIMULA, then rewritten in C for use on UNIX systems. With USENUM, it is
possible to analyse models with up to about 100000 states (both vanishing and tangible)
on a machine with 64 Mb RAM.

CHAPTER 1. INTRODUCTION 4

State and Transition representation: In USENUM, a state is represented as an
integer-valued row state descriptor vector. Transitions from the current state to the next

state are specified by:

¢ an enabling condition expressed as a conditional C expression on elements of the

current state vector.

e a transition effect expressed as C assignments to elements of the next state vector

based on operations on the elements of the current state vector.

e a transition rate or weight. In the case of a timed transition, this is the mean
transition firing rate while, in the case of an instanteous transition, this is a relative

transition firing probability. The transition rate or weight may be state-dependent.

Interface Language: A model is specified across six files using a simple interface lan-
guage containing C code fragments. Fach of these files controls an aspect of the Markov

chain generation and solution process. In particular, the user specifies:

e A control or master file.

¢ A model description file which specifies the high-level structure of the model, includ-
ing a description of the state vector, an initial starting state and rules for transitions

between states.

¢ A state generation control file which controls aspects of the state space exploration

process, such as the maximum number of states.

¢ A functional analysis control file which allows for the specification of invariants
which should hold on each generated state and which contains options for the detection

of recurrent and transient state classes.

¢ A steady-state solution control file which specifies options such as the steady-state
method to be used, the desired accuracy of the solution and the maximum number of

iterations.

¢ A quantitative analysis file which specifies performance statistics in the form of

state and count measures.

CHAPTER 1. INTRODUCTION 5

Three C programs are automatically generated from these files: a state space generator, a
functional analyser and a combined steady-state and performance analyser. These programs

are compiled and executed in sequence.

State Space exploration algorithm: USENUM uses an exhaustive depth-first search
state space exploration algorithm which stores statesin a hash table of linked lists. USENUM
does not perform on-the-fly vanishing state elimination during state space generation. In-
stead, it eliminates vanishing states using matrix multiplication and inversion operations

before beginning the steady-state solution. Timeless traps can be detected.

Numerical solution techniques: USENUM supports three classes of steady-state solu-

tion techniques:

¢ Direct methods: LU decomposition and Grassmann’s algorithm.

¢ Classical Iterative methods: Jacobi Over-relaxation (JOR) and Successive Over-

relaxation (SOR).

¢ Decomposition-based techniques: Block SOR.

Krylov subspace techniques are not implemented. However, transient analysis is supported

through randomization and matrix powering.

Applications: Two front-end graphical applications have been developed which make use
USENUM as their underlying solution engine: MACOM [KMCS90], a queueing network
analyser tailored to telecommunications models and QPN-Tool [BK94], a Queueing Petri
net analyser. Both applications run on SUN UNIX workstations under the SunView window

system. Both automatically generate USENUM files from models without user intervention.

1.2.2 MARCA

MARCA (MARkov Chain Analyser) [Ste91] [Ste94, §10.2] is a Markov Chain analyser
developed at North Carolina State University by Professor William J. Stewart. The package
is written in FORTRAN and runs on UNIX systems.

CHAPTER 1. INTRODUCTION 6

State and Transition representation: In MARCA, a state is represented as an integer-
valued row vector with elements known as buckets. Each bucket is viewed as containing a
number of balls which represent the value of the corresponding vector elements. Transitions
are represented by movements of balls from one bucket to another, and the rate of transition
is defined as the rate at which the source bucket loses balls to the destination bucket. Such

transitions can be timed or instantaneous.

Interface language: MARCA models are specified using a data file and two FORTRAN
subroutines called RATF and INSTANT. The data file contains a description of the state
descriptor vector, a maximum value for each bucket in the state descriptor, an initial state,
and a list of transitions which can occur between buckets. The data file may also con-
tain information such as the solution method for computing the steady-state distribution;

alternatively, this information may be entered interactively during the solution process.

The subroutine RATFE must be written to return the rate at which transitions occur between
every possible pair of source and destination buckets, as well as the destination states that
result from these transitions. The RATE subroutine is not restricted to changing to the
source and destination buckets only, but may define the destination state completely. Note
that this implies that the total number of balls in a state descriptor need not be conserved

but can be created and destroyed as needed.

The subroutine INSTANT must examine destination states and determine whether or not
they are vanishing. If they are, the subroutine must return a possible set of destination states

and associate with each the probability that it is the result of the instanteous transition.

State Space exploration algorithm: MARCA implements an exhaustive breadth-first
search state space exploration algorithm which stores states in a list. On-the-fly vanishing
state elimination is performed during state space generation. There is no timeless trap

detection.

Numerical solution techniques: MARCA implements four classes of steady-state so-

lution methods:

¢ Direct methods: Sparse GGaussian elimination.

CHAPTER 1. INTRODUCTION 7

¢ Classical Iterative methods: SOR, symmetric SOR (SSOR), power method, fixed-

point iterations with preconditioning.
¢ Krylov Subspace methods: Arnoldi method (2 variants), GMRES (3 variants).

¢ Decomposition-based techniques: An iterative aggregation/disaggregation solver
for nearly completely decomposable (NCD) chains. MARCA includes a unique facility

for detecting near-decomposable components of the transition matrix.

After the steady-state vector has been computed, MARCA determines the distribution of
the balls in each of the buckets and the mean and standard deviation of the distributions.
For more complex performance measures, MARCA allows the user access to the list of states

and the steady-state probability vector.

In addition, MARCA supports transient analysis through randomization, Runge-Kutta,

Adams ODE solver and matrix powering techniques.

Applications: A graphical front-end application for MARCA, known as XMARCA [KS95],
has been developed. XMARCA is a sophisticated queueing network analyser which runs
under the X-window system on UNIX systems. XMARCA allows users to build queueing
networks from components such as stations, queues, servers and connectors and then anal-
yse them using MARCA. XMARCA automatically generates the relevant MARCA files,
including the RATFE and INSTANT subroutines, and there is no need for user intervention.

1.3 Dissertation Outline

The layout of the rest of this dissertation is as follows:

Chapter 2 presents background material. In particular, we discuss three formalisms for
describing timed transition systems, as well as the Markov theory necessary for their anal-

ysis.

Chapter 3 tackles the problem of efficient state space generation. We consider traditional
state space exploration techniques and introduce a new probabilistic dynamic technique

which is analysed in terms of its reliability and space complexity. The chapter concludes

CHAPTER 1. INTRODUCTION 8

with a consideration of strategies for the efficient elimination of vanishing states which can

occur in several time-augmented Petri net representations.

Chapter 4 presents a taxonomy of linear equation solvers, including direct methods, clas-
sical iterative methods, Krylov Subspace techniques and decomposition-based techniques.
Particular attention has been paid to Krylov Subspace techniques and the Aggregation-
Isolation algorithm [Tou95] which is a recently developed decomposition-based technique

applicable to solving general Markov Chains.

Chapter 5 considers the requirements involved in designing a general interface language
for specifying timed transition systems. A language which meets these requirements is

presented.

Chapter 6 presents the DNAmaca performance analyser, which implements many of the
concepts outlined in the previous chapters. DNAmaca provides a complete performance
analysis sequence including model specification, state space generation, functional analysis,

steady-state solution and the computation of performance statistics.

Chapter 7 illustrates the effectiveness of DNAmaca as a modelling tool by considering

three examples of timed transition systems.

Chapter 8 presents conclusions and suggestions for future work.

Chapter 2

Background theory

2.1 Introduction

In the first section of this chapter, we discuss three formalisms for performance modelling
which fall into the class of timed transition systems: Generalised Stochastic Petri nets

(GSPNs), queueing networks and Queueing Petri nets (QPNs).

A timed transition system has one or more attributes which jointly characterise its be-
haviour. These attributes may have different values from time to time. A vector of these
attributes, known as the state descriptor vector, characterises the configuration or state of
the system at any point in time. All possible states of the system may be obtained by
enumerating all possible values of the state descriptor. After defining each formalism, we
describe what constitutes a state of the system and define a state descriptor vector whose
components completely describe a state of the system. We also discuss the advantages and

disadvantages of each methodology. We refer mainly to [BK95], [Rei92] and [LZGS84].

In the second section, we present an overview of Markov theory, which is the vehicle we
will use for obtaining performance statistics from system models. Markov theory has been
extensively covered in the literature; here we refer to [Kle75], [KS60], [Ste94] [BK95] and
[BDMCT94].

CHAPTER 2. BACKGROUND THEORY 10

2.2 Modelling Formalisms

2.2.1 Generalised Stochastic Petri Nets (GSPNs)

Petri nets are a modelling formalism for describing the behaviour of concurrently-executing
asynchronous processes. FExamples of systems which have been successfully modelled with
Petri nets include communication protocols, parallel programs, multiprocessor memory

caches and distributed databases [Pet81, Rei92].

The simplest kind of Petri nets are Place-Transition nets, which were originally conceived
by Carl Adam Petriin 1962 as a formal means of establishing the correctness of concurrent

systems. Place-Transition nets consist of four components [BK95]:

places, drawn as circles, which model conditions or objects.

e tokens, drawn as black dots, which represent the specific value of the condition or

object.

e transitions, drawn as rectangles, which model activities that change the values of

conditions and objects.

e arcs, drawn between places and transitions and vice versa, which specify which objects

are changed by a certain activity.

Definition 2.1 A Place-Transition net is a 5-tuple PN = (P, T,I~, 1", My) where

o P={py,...,pn} is a finite and non-empty set of places.

T =A{t1,...,tn} is a finite and non-empty set of transitions.
o PNT =10.

o =, It : P xT — INg are the backward and forward incidence functions, respectively.
If I=(p,t) > 0, an arc leads from place p to transition t, and if It (p,t) > 0 then an

arc leads from transition t to place p.

o My : P — INg is the initial marking defining the initial number of tokens on every

place.

CHAPTER 2. BACKGROUND THEORY 11

Definition 2.2 The dynamic behaviour of a Place-Transition net is determined by the en-

abling and firing of transitions, given as follows [BK95]:

1. A marking of a Place-Transition net is a function M : P — INg, where M (p) denotes

the number of tokens in p.
2. A transition t € T is enabled at M, iff M(p) > I~ (p,t),Vp € P.

3. A transitiont € T, enabled at marking M, may fire yielding a new marking M’ where
M'(p) = M(p) = I (p.t) + I*(p,t),¥p e P

4. We say M' is directly reachable from M and write M — M’'. Let —* be the
reflexive and transitive closure of —. A marking M' is reachable from M iff M —*

M’

Using Place-Transition nets, we can test that a system has certain desirable correctness
characteristics such as freedom from deadlock, liveness and boundedness. However, since
Place-Transition nets do not include a notion of time, it is not possible to model the perfor-
mance of a system. Consequently, several classes of time-augmented Petri nets have been
developed, either by attaching time delays to transition firings or by specifying sojourn

times of tokens on places.

One of the most flexible and most widely used time-augmented Petri net representations
are Generalised Stochastic Petri nets (GSPNs) [AMCB84]. GSPNs have two different types
of transitions: tmmediate transitions and timed transitions. Once enabled, immediate tran-
sitions fire in zero time, while timed transitions fire after an exponentially distributed firing

delay. Firing of immediate transitions has priority over the firing of timed transitions.

The formal definition of a GSPN is as follows:
Definition 2.3 A GSPN is a f-tuple GSPN = (PN, Ty, T3, W) where

o PN = (P, T,I7,It, My) is the underlying Place-Transition net.
o 11 C T is the set of timed transitions, Ty # 0,

o 1Ty, C T denotes the set of immediate transitions, Ty NTy =0, T =T, U T}

CHAPTER 2. BACKGROUND THEORY 12

o W= (wy,...,wy) is an array whose entry w;

— is a (possibly marking dependent) rate € Rt of an exponential distribution spec-

ifying the firing delay, when transition t; is a timed transition, i.e. t; € Ty or

— is a (possibly marking dependent) weight € Rt specifying the relative firing fre-

quency, when transition t; is an tmmediate transition, t.e. t; € Ts.

Each distinct marking that is reachable from some initial marking My corresponds to a
state of the system. Thus the concepts of state and marking are interchangeable in the

context of GSPNs and a suitable state descriptor is:

M = (p17p27' . 7pn)

where n = |P|. The set of all markings that are reachable from M, constitute the state

space or reachability set of the Petri net.

The state space of a GSPN contains two types of markings. Since immediate transitions
fire in zero time, the sojourn time in markings which enable immediate transitions is zero.
Such markings are called vanishing markings because these states will never be observed
by an observer who randomly examines the stochastic process of a GSPN, even though the
stochastic process sometimes visits them. On the other hand, markings which enable timed
transitions only will have an exponentially distributed sojourn time. Such markings are not

left immediately and are referred to as tangible markings.

Since no time is spent in vanishing markings, vanishing markings have no effect on the
resulting performance statistics derived for a GSPN and they are often eliminated during

or immediately after state space generation.

The graphical representation of GSPNs becomes very complex for realistic models. One way
of reducing this complexity is to distinguish between individual tokens. Coloured GSPNs
(CGSPNs) [DCB93] make this distinction by attaching colour to tokens and by defining

firing modes on transitions.

Before formally defining a CGSPN, we must first define multisets and Coloured Petri nets
(CPNs). CPNs are the coloured variants of Place-Transition nets on which CGSPNs are
based.

CHAPTER 2. BACKGROUND THEORY 13

Definition 2.4 A multiset m over a non-empty set S, is a function m € [S — INg].
The non-negative integer m(s) € INg is the number of appearances of the element s in the

multi-set m.

Definition 2.5 A Coloured Petri net (CPN) is a 6-tuple
CPN=(P,T,C.I~, 1", My), where

o P is a finite and non-empty set of places,

o T is a finite and non-empty set of transitions,

e PN T =0,

o (is a colour function defined from P U T into finite and non-empty sets,

I~ and It are the backward and forward incidence functions defined on Px T such
that
I_(p,t),f+(p,t) € [C(t) - C(p)MS]vv (pvt) € Px T;

My is a function defined on P describing the initial marking such that
Mo(p) € C(p)us,Vp € P.

Definition 2.6 The dynamic behaviour of a CPN is given as follows:

1. A transition t € T is enabled in a marking M w.r.t. a colour ¢’ € C(t), denoted by
M[(t,c') >, iff M(p)(c) > I~ (p,t)(c')(c),Vp € P,c € C(p).

2. An enabled transition t € T may furthermore fire in a marking M w.r.t. a colour
€ C(t) yielding a new marking M', denoted by M — M' or M[(t,c") > M', with
M'(p)(c) = M(p)(c) + I*(p,t)(c')(c) = I~ (p,)(')(¢),Vp € P.c € C(p).

Definition 2.7 A Coloured GSPN (CGSPN) is a 4-tuple
CGSPN = (CPN, Ty, T3, W) where

e CPN = (P, T,C,I~,I", My) is the underlying Coloured Petri net.

o 11 C T is the set of timed transitions, Ty # 0,

CHAPTER 2. BACKGROUND THEORY 14

o 1Ty, C T is the set of immediate transitions, Ty NTy =0, T =T, U Ty,

o W = (wi,...,wy|) is an array whose entry w; is a function of

[C(t;) — RT] such that Ye € C(t;) : wi(c) € RY

— is a (possibly marking dependent) rate of a negative exponential distribution spec-

ifying the firing delay with respect to colour ¢, if t; € Ty or

— is a (possibly marking dependent) firing weight with respect to colour ¢, ift; € Ts.

Note that CGSPNs do not have any additional modelling power over GSPNs since every
CGSPN may be uniquely unfolded into a GSPN representing the same model.

GSPNs provide a natural way of modelling synchronisation, but several difficulties arise
when attempting to model queues [BK95, pg. 152-153]. Even simple scheduling strategies
like FCFS are difficult to represent with low-level Petri net elements; in addition, advance
knowledge of the maximum number of elements in a queue is required and it is extremely

difficult to model service times given by complex distributions, e.g. a Coxian distribution.

2.2.2 Queueing Networks

Queueing networks [BCMP75, LZGS84, Wal88b] are a widely-used performance analysis
technique for those systems which can be naturally represented as networks of queues.
Systems which have been successfully analysed with queueing networks include computer

systems, communication networks and flexible manufacturing systems.

A queueing network consists of three types of components:

e Service centres (see I'ig. 2.2.2), each of which consists of one or more queues and
one or more servers. The servers represent the resources of the system available to
service customers. An arriving customer will immediately be served if a free server
can be allocated to the customer or if a customer in service is preempted. Otherwise,

the customer must wait in one of the queues, until a server becomes available.

e Customers, which demand service from the service centres and which represent the
load on the system. Usually customers are grouped into classes, where customers in

one class exhibit similar behaviour and normally place similar demands on the centres.

CHAPTER 2. BACKGROUND THEORY 15

arrivals departures
—_—

queue

servers

Figure 1: A service centre in a queueing network

¢ Routes, which are the paths which workloads follow through a network of service
centres. The routing of customers may be dependent on the state of the network. If
the routing is such that no customers may enter or leave the system, the system is
said to be closed. If customers arrive externally and eventually depart, the system is
said to be open. If some classes of customers are closed and some are open, then the

system is said to be mized.
To be fully specified, a queueing network requires the following parameters to be defined:

e The number of service centres.

e The number of queues at each service centre. For each of these queues we further

need to define:

— The capacity of each queue, which may be infinite or finite of capacity k.

— The queue scheduling discipline, which determines the order of customer ser-
vice. Different customer classes may have different scheduling priorities. Com-
mon scheduling rules include First-Come First-Served (FCFS), Last-Come First-
Served Preemptive-Resume (LCFS-PR), Round Robin (RR) and Processor Shar-
ing (PS).

CHAPTER 2. BACKGROUND THEORY 16

— For open classes of customers, we need to define an input source distribution
specifying the arrival distribution of each customer class at each queue. This

distribution is usually given by an exponential distribution with parameter A.

e The number of servers at each service centre. For each of these servers we further

we need to define:

— The service time distribution for each customer class at each server. This
is usually exponential with parameter p. More general distributions can be

approximated using a Coxian distribution [Ste94, pg. 51-52].

¢ The routing probability matrix for each customer class. This matrix specifies
the probabilistic routing of customers between service centres, with the ijth element
giving the probability that a customer leaving service centre ¢ will proceed to service

centre j. These transitions are assumed to be instantaneous.

The state of individual service centres in a queueing network may be described by a vector.
For example, the state of a single-server centre with a Coxian service distribution and
blocking may be described by the number of customers in the queue, the phase of service
and a parameter to indicate whether or not the server is blocked. The state descriptor of a
queueing network as a whole may then be built up by concatenating the vectors describing

the state of the individual service centres.

A certain class of queueing networks which satisfy reversibility [Kel79] can be efficiently anal-
ysed using so-called product-form solution techniques, the two most well-known of which
are Mean Value Analysis (MVA) and the convolution method. Unfortunately, these ele-
gant algorithms fail if one of the prerequisites for the product-form property is violated by
the network. In particular, if phenomena such as synchronization, simultaneous resource
possession, blocking or batching occur, then usually no proper product-form queueing net-
work model can be found. In this case, strictly numerical procedures have to be used. In

particular, one may always derive and solve a Markov chain model of the system.

Queueing networks are widely used because they are often easy to define, parameterise and

evaluate. However, they lack of facilities to describe synchronisation mechanisms.

CHAPTER 2. BACKGROUND THEORY 17

2.2.3 Queueing Petri nets (QPNs)

Queueing Petri nets (QPNs) [Bau93] attempt to incorporate the concept of queues into
a coloured GSPN formalism. In this way, synchronisation mechanisms and queues with
various scheduling strategies can be integrated into one model. A QPN extends the concept
of a CGSPN by partitioning the set of places into two subsets: queued places and ordinary

places.

A queued place (see Fig. 2.2.3) consists of two parts: a queue and a depository for tokens
which have completed their service at this queue. Tokens, when fired onto a queued place by
any of its input transitions, are inserted into the queue according to the scheduling strategy
of the queue. Tokens in a queue are not available for transitions. After completion of its
service, the token is placed onto the depository. Tokens on this depository are available to
all output transitions of the queued place. An enabled timed transition will fire after an
exponentially distributed time delay and an immediate transition fires with no delay, as in

GSPNs.

N
S

gueue depository

Figure 2: A queued place and its shorthand notation

The formal definition of a QPN is as follows:

Definition 2.8 A Queueing Petri net (QPN) is a triple QPN = (CGSPN, Py, P,)

where:

o CGSPN s the underlying Coloured GSPN
o P C P is the set of queued places and

o P, C P is the set of ordinary places, PN\ Py, =0, P = Py U P,.

CHAPTER 2. BACKGROUND THEORY 18

A state or marking M of a QPN consists of two parts M = (n,m) where n specifies the
state of all queues and m is the marking of the underlying CGSPN. For a queued place
p € P1, m(p) denotes the marking of the depository. The initial marking My of a QPN is
given by Mo = (O, mg) where O is the state describing that all queues are empty and mq
is the initial marking of the CGSPN.

There are three possible types of state transitions that may take place in a QPN:

e An enabled immediate transition may fire.
e An enabled timed transition may fire if no immediate transitions are enabled.

e A service in a queued place may complete if no immediate transitions are enabled.

Similar to GSPNs, the firing of immediate transitions has priority over both the firing of
timed transitions and the service of tokens in queues. Thus, the state space of a QPN
comprises both vanishing and tangible states. As for GSPNs, these states are usually

eliminated during or immediately after state space generation.

QPNs allow for a convenient description of queues within a Petri net paradigm. However,
the complexity of the performance analysis, determined by the size of the state space, is

still the same as that obtained by modelling the queue with CGSPN elements.

2.3 Markov Theory

2.3.1 Stochastic Processes

As we have mentioned, the behaviour of a system can often be characterised by enumerating
all the states that the system may enter and by describing how the system evolves from one
state to another over time. In its most general form, such a system can be represented by

a stochastic process.

Definition 2.9 A random variable Y is a variable whose value depends on the outcome
of a random experiment. If the value space of y is countable but not necessarily finite, then
the random variable is discrete and its behaviour is characterised by a probability mass

function:

pxla) = P{x = 2}

CHAPTER 2. BACKGROUND THEORY 19

If the value space of x is uncountable, then the random wvariable is continuous and its

behaviour is characterised by a cumulative distribution function:

Fo(z) = P{x <z}

Definition 2.10 A stochastic process is a family of random variables {x(t)} indexed by
the time parameter t. If the time index set {t} is countable, the process is a discrete-time
process, otherwise the process is a continuous-time process. The possible values or states
that members of {x(t)} can take on constitute the state space of the process. If the state

space is discrete the process is called a chain.

2.3.2 Markov Processes

In many cases, the future evolution of a system depends only on the current state of the
system and not on past history. Such memoryless systems can be represented by Markov
processes. Stated formally, Markov processes satisfy the Markov property which states that
for all integers n and for any sequence tg,t1,...,1,; such that 5 < t; < ... < ¢, < n we

have

P{x(t) <x [x(tn) = Tn, X(ta=1), -5 X(t0)} = P{x(t) <@ | x(tn) = 20}

This property requires that the next state can be determined knowing nothing other than the
current state, not even how much time has been spent in the current state. A consequence

of the Markov property is that the sojourn time 7 spent in a state must satisfy:
Plr>s+t|r>t}=P{r>s} Vs,t>0 (1)

As we shall see, this condition places restrictions on the distribution of time spent in a state.

Definition 2.11 4 homogeneous Markov chain is a Markov chain whose probabilities

are stationary with respect to time. That is:

P{x(t) <z | x(tw) =2} = P{x(t = t,) <2 | x(0) = 2}

CHAPTER 2. BACKGROUND THEORY 20

Discrete-time Markov Chains

A discrete-time Markov chain is a Markov process with a discrete state space which is
observed at a discrete set of times. Without loss of generality, we can take the time index
set {t} to be the set of counting numbers {0,1,2,...}. The observations at these times

define the random variables xg, 1, X2, - .. at time steps 0, 1,2, ... respectively.

Definition 2.12 The variables xg, X1, ... form a discrete-time Markov chain if for all

n (n=1,2,...) and all states x,, we have:

P{Xn—l—l = Tn+i | X0 = 205 X1 = T1y5--+5Xn I$n}

= P{Xnt1 = Tny1 | Xn = Tn}

For a discrete-time Markov chain, the only sojourn time distribution which satisfies the

sojourn time condition of Eq. (1) is the geometric distribution.

A homogenous discrete-time Markov chain may be represented by a one-step transition

probability matrix P with elements:

Pi; = P{xnt1 = 25 | Xn = 25}

where x; represents the state of the system at discrete time-step ¢ € IN. That is, p;; gives
the probability of z; being the next state given that z; is the current state. Note that the

entries of P must satisfy:

J

Definition 2.13 Let Sy denote a subset of the state space S, and Sy its complement. Then
So is closed or final if no single-step transition is possible from any state in Sy to any

state in Sp.

Definition 2.14 A Markov chain is irreducible if every state can be reached from every
other state. Otherwise, the state space contains one or more closed subsets of states and

the chain is reducible.

CHAPTER 2. BACKGROUND THEORY 21

Let f](m) denote the probability of leaving state z; and first returning to that same state in

m steps. Then the probability of ever returning to the state z; is given by:
S~)
m
fi=> 1
m=1

Definition 2.15 For any state x;:

o if f; =1 then z; is recurrent; else

o if f; <1 in which case x; is transient.

Definition 2.16 State x; is periodic with period 1 if the Markov chain returns to state
x; only at time steps 1,2n,3n,... where 1 > 2 is the smallest such integer. If n = 1 then

z; is aperiodic.

Definition 2.17 The mean recurrence time of recurrent state x; is

o0

M; = Z mf](m)
m=1

which is the average number of steps taken to return to state x; for the first time after
leaving it. If M; = oo, state x; is recurrent null; otherwise M; < oo and z; is recurrent

nonnull.

Theorem 2.1 The states of an irreducible Markov chain are either all transient or all
recurrent nonnull or all recurrent null. If the states are periodic, then they all have the

same period [Kle75, pg. 29].

The most important part of Markov chain analysis is to determine how much time is spent
in each of the states z;. We define:
w0 = Py = 2;)
i TP WXm =
as the probability of finding the Markov chain in state z; at time step m.
Definition 2.18 Let z be a vector describing a probability distribution whose elements z;

denote the probability of being in state x;. Then, z is a stationary probability distri-
bution of a DTMC with one-step transition matriz P if and only if zP = z.

CHAPTER 2. BACKGROUND THEORY 22

Definition 2.19 The limiting probability distribution {7;} of a discrete-time Markov
chain is given by:

W= Jim)"
Note that the existence of a stationary distribution of a Markov chain does not necessarily
imply the existence of a limiting probability distribution, and vice versa. The next theorem

addresses the issue of when the limiting and stationary probabilities exist.

Theorem 2.2 In an irreducible and aperiodic homogeneous Markov chain, the limiting
probabilities {m;} always exist and are independent of the initial probability distribution.

Moreover one of the following conditions hold:

o Lvery state x; is transient or every state x; is recurrent null, in which case 7; = 0 for
all z; and there exists no stationary distribution (even though the limiting probability

distribution exists). In this case, the state space must be infinite.

o Every state x; is recurrent nonnull with =; > 0 for all x;, in which case the set {7;}

s a limiting and stationary probability distribution and

In this case the 7; are uniquely determined from the set of equations:

Zﬂ']‘ = mp;; subject to Zm =1 (2)

If 7 = (m1,m32,...) is a vector of limiting probabilities, Eq. (2) can be rewritten as
Tm=nP

where P is the transition probability matrix. The vector 7 is called the steady-state solution

of the Markov chain.

The states of a recurrent nonnull discrete-time Markov chain are said to be ergodic, as is the
Markov chain itself. If the state space of the Markov chain is finite (which we will always
assume is the case), the chain is called finite; if, in addition, the chain is irreducible, then

it is ergodic.

CHAPTER 2. BACKGROUND THEORY 23

Continuous-Time Markov Chains

A continuous-time Markov chain is a Markov process with a discrete state space and a state

that may change at any time. The formal definition is as follows:

Definition 2.20 The stochastic process {x(t)} forms a continuous-time Markov chain
if for all integers n and for any sequence tg, 11, ..., toy1 With tg < 11 < ... < t, < ly41
we have:

P{x(tn41) = @nt1 | X(o) = o, X(t1) = 21, ., X1 = 24)}
= P{X(tn-l-l) = Tpy1 | X(tn) =

For the case of a continuous-time Markov chain, the only sojourn time distribution which

satisfies the sojourn time condition of Eq. (1) is the exponential distribution.

A homogeneous continuous-time Markov chain may be represented by a set of states and an
infinitesimal generator matriz () where);;, © # j represents the exponentially distributed
transition rate between states z; and x;. The parameter of the exponential distribution of
the sojourn time in state z; is given by —};; where (J;; = — Z#Z» ();;. Note that the entries
of) must satisfy:

> Q=0 Vi
j

Definition 2.21 Let z be a vector describing a probability distribution whose elements z;
denote the probability of being in state x;. Then, z is a stationary probability distri-
bution of a CTMC with infinitesimal generator matriz ¢ if and only if Q) = 0.

Theorem 2.3 In a finite, homogeneous, irreducible, continuous-time Markov chain, the
limiting probabilities {m;} always exist and are independent of the initial probability distri-
bution. Moreover, the set {m;} is also a stationary probability distribution which can be
uniquely determined from solving the set of equations:
q;;7; + Z(Zijﬂ-i and Zm =1 (3)
it ;
The set of equations given by Eq. (3) is sometimes also referred to as the set of global

balance equations. In vector form, they may be written as:

) =0

where m = (71,73, ...) is the steady-state probability vector.

Chapter 3

State Space Exploration

Techniques

3.1 Introduction

The first step in the analytical performance analysis of general timed transition systems is
to determine what the reachable states in a system are and how they relate to one another.
We will approach this problem by using explicit state enumeration techniques; note that if
the underlying model has certain pre-existing structural properties, or if the only objective
is to decide the correctness of the system being modelled, then other techniques exist to
handle very large state spaces [Kem95, BT94]. The objective here, however, is to generate

the state spaces of unrestricted systems for the purpose of performance analysis.

Most state space generation techniques use a depth first search (DFS) approach. This
requires the use of two data structures. First, a DFS stack is needed to store unexplored
states. Second, a table of explored states must be maintained in order to avoid redundant
state exploration. Given a DIF'S stack 5, a set of explored states F, an initial state s; and
a function succ(s) which yields the set of successors states of state s, F'ig. 3 presents an

outline of a basic state exploration algorithm.

The DFS stack is accessed sequentially and is limited by the depth of the state graph; thus
it is usually not critical to memory requirements. However, the table of explored states

must hold enough information to determine whether states encountered are new, or have

24

CHAPTER 3. STATE SPACE EXPLORATION TECHNIQUES 25

push(S5, s;)

B ={si}

while (5 not empty) do begin
pop(S,$)
for each s’ € succ(s) do begin

if &' ¢ ' do begin

push(9, s’)
E=FU{s}
end
end
end

Figure 3: Basic state space exploration algorithm

in fact been explored before. That is, one has to be able to rapidly store and retrieve
information about every reachable state. Consequently, the layout and management of
the explored-state table is crucial to both the time and space efficiency of a state space

generation technique.

It is worthwhile to note that information about transitions between states can be obtained
efficiently as the DFS search proceeds. As each unexplored state s is popped off the DF'S
stack, the function succ(s) finds the set of enabled transitions at state s and then fires
each one to determine the successor states. Provided information about the firing rates of
these enabled transitions is available, we can easily adapt the algorithm to construct the
infinitesimal generator matrix of transition rates between states. Note that the generator
matrix need not be stored in memory; instead, as each state is popped off the DFS stack,

the matrix can be written to secondary storage row-by-row for later use.

3.2 Traditional state space exploration techniques

State space exploration algorithms are distinguished by two aspects:

¢ Memory allocation strategy. Static techniques preallocate large blocks of memory
for the explored-state table. Since the number of states in the system is in general
not known beforehand, the preallocated memory may not be sufficient (resulting in a

failure of the method) or may be a gross overestimation (resulting a waste of resources,

CHAPTER 3. STATE SPACE EXPLORATION TECHNIQUES 26

especially in a multi-user environment). Dynamic techniques, on the other hand,

allocate memory only as needed; the more states, the more memory is allocated.

¢ Reliability. Frhaustive techniques store the complete state space and guarantee
complete state space coverage. However, storing the complete state space uses a large
amount of memory; this severely limits the number of states that can be explored.
Probabilistic techniques use space-saving techniques (usually based on hashing) to
drastically reduce the memory required to store states. However, this reduction comes
at the price of possibly incorrectly recording a state as explored when it is in fact an
unexplored state. This can result in the omission of a state (and also some or all
of its successors) from the hash table. Since omitting states will result in incorrect
information about the transitions between states - and thus incorrect performance

statistics - it is important to keep the probability of missing even one state small (say
less than 1%).

This framework can be used to classify traditional state exploration algorithms into two

main groups: exhaustive dynamic techniques and probabilistic static techniques.

3.2.1 Exhaustive dynamic techniques
Linked list/dynamic array

Perhaps the most obvious way of tackling the problem of explicit state enumeration is to
use a dynamic array or a linked list to store the complete state descriptor of every state

encountered so far. This simple scheme is shown in Fig. 4.

(1,2,004 (2,3,0,1,3, (0,1,2,3,4,
0,0,0,2,3, 1,0,0,2,3, 5,6,7,8,9, etc...
2,3,0,0,0) 4,1,0,1,1) 0,1,2,3,4)

Figure 4: Simple linked list state storage scheme

This approach is used by the MARCA [Ste91, KS95] analyser. It guarantees complete
state space coverage and is attractive for it’s simplicity of coding. However, given a state
descriptor of d bytes, storage for n states requires dn bytes of memory (assuming optimal
storage in a dynamic array). This can be extremely limiting considering that the state

descriptor size d may easily be hundreds of bytes long. For example, given 32MB of available

CHAPTER 3. STATE SPACE EXPLORATION TECHNIQUES 27

memory and a state descriptor of 100 bytes, this approach limits the state space to about

320000 states.

This method also involves a considerable search overhead whenever a state is popped off the
exploration stack. “Unsuccessful” searches of the list/dynamic array (which establish that a
state has not yet been explored) involve n state descriptor comparisons, while “successful”
searches (which establish that a state has already been explored) involve on average 4 state

descriptor comparisons.

Hash table with full state information

The large search overhead incurred by the list method can be remedied by using a hash
table with separate chaining to break up the state list into several smaller lists/dynamic
arrays. Given r rows in the hash table, a hash function hy based on the contents of a state
descriptor s is used to return a key hq(s). The value of hq(s) ranges from 0 to r — 1 and
denotes which of the rows in the hash table should contain the state. This arrangement is

shown in Fig. 5.

This is the approach adopted in the USENUM analyser [Scz87] and the correctness analyser
of the DNAnet Petri net tool [ABK95]. It guarantees complete state space coverage and
reduces search times to an average n/r state descriptor comparisons for unsuccessful searches
and an average n/2r comparisons for successful searches. However, memory requirements
for the scheme are greater since there is now hash table overhead to consider. Given h bytes

of overhead for each hash table row, total memory required is dn + rh bytes.

3.2.2 Probabilistic static techniques
Holzmann’s bit-state hashing method

Holzmann’s bit-state hashing method [Hol91, Hol95] maximizes state coverage in the face
of limited memory by minimising the memory used to store the explored-state table. Here
the table takes the form of a bit vector T. A hash function h is used to map states onto
positions in this bit vector. Initially all bits in T are set to zero. When a state s is inserted
into the table, its corresponding bit T[h(s)] is set to one. To check whether a state s is

already in the table, the value of T'[h(s)] is examined. If it is zero, the state has not yet been

CHAPTER 3. STATE SPACE EXPLORATION TECHNIQUES

hash
key

~=

2,31,6,7,4

(54321, (6,4,6,4,0,

23120, ———| 23458, 1,5,4,0,0,
1,2,0,0,1 7,3.2,1,2

)) 3,5,6.3.2)

((74312 A (432,73, (234,12,
1,2,85,3, — 3,2,1,4,0, 04,2,1,2,
0,0,2,3,1, 2,3,0,2,1] 345,21

)))

(2,7,433,
1,0,0,0,2,
3,4,5,1,2)

——
(1,2,00,4
0,0,0,2,3, -

2,3,0,0,0)

(3,7,432
3,4,6,3.2,
2,34,1,2)

(6,3,2,0,0, (4,4,2,1,2, (7,5,4,3,2,
321,11, 0,3,45,0, 21200,
3,5,6,9,0) 3,2,1,2,3) 3,4,1,2,3)

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| —————

| (01234
4 || serse

|

|

|

|

|

|

|

|

|

|

|

|

|

)

(5.3.2,1,2,
35321,
2,3,452)

0,1,2,3,4)
~—

(23013, (7.6.3.2.1, (42111, (19,732,
100,23, 234,21, 1,6,4,3,2, 701,64,
4,1,0,1,1) 0,0,0,0,0) 1,2,3,4,5) 0.3,1,2,9)

Figure 5: Hash table with full state information

CHAPTER 3. STATE SPACE EXPLORATION TECHNIQUES 29

explored; otherwise it is assumed that the state has already been explored. The problem is
that two distinct states can hash to the same hash value, with the result that one of the
states will be incorrectly classified as explored. Given n states to be inserted into the table

and a bit vector of ¢ bits, the probability of no hash collisions p is given by:

I VR (e R V DI

tn (t—n)! tr

By using Stirling’s approximation for n! and assuming the favourable case of n << t, Wolper
and Leroy [WL93] approximate the probability of no hash collisions p as:

n2

prRe T
where n is the number of states and ¢ is the size of the bit vector. Unfortunately the table
sizes required to keep p very low (as we require) are impractically large. The situation can
be improved a little by using two independent hash functions Ay and hy. When inserting
a state s, both T[hqi(s)] and Thz(s)] are set to 1; we only conclude s has been explored
if T[h1(s)] and T[ha(s)] are set to one. Now Wolper and Leroy show the probability of no
hash collisions is approximately

p A e_iL?S
but the table sizes required to keep p low are still impractically large. The strength of
Holzmann’s method thus lies in its ability to maximize coverage in the face of limited

memory and not in it’s ability to provide complete state space coverage.

Leroy and Wolper’s hash compaction method

The problem with Holzmann’s bit-state hashing method is that the ratio of states to hash
table entries must be kept extremely low if our aim is to provide a good probability of
complete state space coverage. Consequently, a large amount of the memory allocated for
the bit vector is wasted. Wolper and Leroy [WL93] observed that it would be better to
store which positions in the table are occupied instead. This can be done by hashing states
onto compressed values of k bit keys; these keys can then be stored in a smaller hash table
which supports a collision resolution scheme. Given a hash table with m > n slots, the
memory required by this scheme is approximately (mk+m)/8 bytes, since we need to store

the keys, as well as information about which hash table slots are occupied.

CHAPTER 3. STATE SPACE EXPLORATION TECHNIQUES 30

This approach simulates a bit-state hashing scheme with a table size of 2%, so the probability

of no collision is approximately given by
pre 2k

Leroy and Wolper recommend using compressed values of k = 64 bits, i.e. 8-byte compres-

sion.

Stern and Dill’s improved hash compaction method

In their description of standard hash compaction, Leroy and Wolper give no details of how
states are mapped onto slots in the smaller hash table; it is implicitly assumed that hash
values (used to determine where in the hash table to store the k-bit compressed values) are
calculated using the k-bit compressed values. However, Stern and Dill [SD95] observed that
the omission probability can be dramatically reduced in two ways. Firstly, by calculating
the hash values and compressed values independently and, secondly, by using a collision
resolution scheme which keeps the number of probes per insertion low. This improved
technique is so effective that it requires only 5-bytes per state in situations where Wolper

and Leroy’s standard hash compaction requires 8-bytes per state.

Given a hash table with m slots, states are inserted into the table using two hash func-
tions h1(s) and hy(s) which generate the probe sequence h(9(s), AN (s),..., K™D (s) with
h)(s) = (hi(s) + ihy(s)) mod m for i = 0,1,...,m — 1. This double hashing scheme
prevents the clustering associated with simple rehashing algorithms such as linear probing.
A separate independent compression function h3 is used to calculate the k-bit compressed

state values which are stored in the table.

The complete procedure for inserting a state s into the table is as follows:

o h3(s) is calculated to determine the state’s compressed value.

e hi(s) and hy(s) are used to determine a probe sequence h(9)(s), A1(s),.... h("=1(s)
for inserting the state s. Slots are probed in this order, until one of two conditions

are met:

— If the slot currently being probed is empty, the compressed value is inserted
into the table at that slot and the state’s successors are pushed onto the state

exploration stack.

CHAPTER 3. STATE SPACE EXPLORATION TECHNIQUES 31

— If the slot is occupied by a compressed value equal to the hs(s), we assume
(possibly incorrectly) that the state has already been explored. No states are

pushed onto the state exploration stack.

Given m slots in the hash table, n of which are occupied by states, the probability of no

state omissions p is given approximately by

[

k=0 |5=0 J =0 m—1

This formula takes O(n?) operations to evaluate. Stern and Dill derive a O(1) approximation
given by
2n+2mn—n2

m+1 n

(Qk _ 1) (m+1)ln(m—n+1)_2(m—"+1)+12(m+1)(m—n+1)2 -n

p=
2k

Stern and Dill also derive a more straightforward formula for the approximate maximum

omission probability ¢ for a full table (i.e. with m = n):
1
q~ Q—km(ln m—1)

which shows the omission probability is approximately proportional to mIn m. Increasing

k, the number of bits per state, by one roughly halves the maximum omission probability.

3.3 A new probabilistic dynamic technique

None of the methods mentioned above has the advantage of being both probabilistic and
dynamic. In this section we propose a new technique which uses dynamic storage allocation
while yielding a good collision avoidance probability. We use a hash table of linked lists (as
used in an exhaustive, dynamic technique) but instead of storing full state descriptors in

the lists, we store compressed state descriptors (as in hash compaction).

Two independent hash functions are used. The primary hash function hy is used to deter-
mine which hash table row should be used to store a compressed state and the secondary
hash function hs is used to compute the compressed state descriptor values. Both Ay and
ho are assumed to distribute states randomly and independently of one another; the Hjs

class of hash functions defined by Carter and Wegman [CW79] satisfies this property. If a

CHAPTER 3. STATE SPACE EXPLORATION TECHNIQUES 32

state’s secondary key is already present in the hash table row given by its primary key, then
the state is deemed to have been explored and no further action is taken. Otherwise, the
secondary key is added to the hash table row and its successors are pushed onto the state

exploration stack. This scheme is illustrated in Fig. 6.

primary secondary

hash key / haSh\I/keyS\

N

1 5[84920 ~—=(00983] }—={64940] |
(12503 J—={g3025| J={23432| J={89532| |
(54221| §—={40000|]
(08621| +—={47632| }—={12344| }—={37042| }={53376] |

- 00~

I
I
I
I
I
I
|
I
I
I
I
I
I
I
I
I
I
|
I
I
I
I
I
I
I
I
I
J

[49754 HZOOOO H87654 H54621 J

Figure 6: Hash table with compressed state information

[

The complete procedure for inserting a state s into the table is as follows:

e The primary key hq(s) is calculated to determine which row of the hash table should
hold the new state.

o The secondary key ha(s) is calculated and compared to the secondary keys stored in

the hash table row given by hq(s).

o If the secondary key is already present, the state is deemed to have been “explored”
and no further action is taken. Otherwise the secondary key is added to the hash

table row and the state’s successors are pushed onto the state exploration stack.

Note that two states s; and sy are classified as being equal if and only if hy(s1) = h1(s2)
and hy(s1) = ha(sz2); this may happen even when the two state descriptors are different, so

that collisions may occur, as in all other probabilistic methods.

CHAPTER 3. STATE SPACE EXPLORATION TECHNIQUES 33

3.3.1 Reliability analysis

We will now calculate the probability of complete state space coverage. We are given that:

e there are r rows in the hash table.
o there are t = 2° unique secondary key values.

e hy(s) is the primary hash function used to determine which hash table row should

hold state s. It returns key values from 0 to r — 1.

o hy(s) is the secondary hash function which returns a compressed state vector. Its key

values range from 0 to ¢ — 1.
e hy(s) and hg(s) distribute states randomly and independently of one another.

e there are n unique states sy, $2,...,5, to be inserted into the hash table.

Let X' be a random variable denoting the number of states allocated to row (,1 < { < r,
given that there are n unique state identifiers to be inserted into the table. Then, since
we assumed that Ay distributes states randomly, X" will have a binomial distribution with

parameters n and p = 1/r, i.e.,

P{X} =j}= (ZL) (%)](1_ %)n—j _ (Z‘) (r —Ti)nﬁ

Denoting the number of clashes in row ¢ by €, and considering the case when there are j

states in row £, we have:

L M=)t =2)...(t—j+1 !
N [| U B S

ti (t—jNv
where t = 2° is the number of unique secondary key values and b is a positive integer

denoting the number of bits used to store the secondary key. Then,

P(Ci=0) = 3 PICy=0\X] = jJP{X] = j)

i=

L& n) (r=1)"¢

CHAPTER 3. STATE SPACE EXPLORATION TECHNIQUES 34

If C'. denotes the total number of clashes across all rows r of the hash table, the probability
p of no clash in any row of the hash table is simply given by:

p = P{CT = 0}
(P{Ce})

L& n) (r=1)"¢ '
)

since it is assumed that the primary hash function distributes states randomly. The prob-

ability ¢ of omitting at least one state is of course simply ¢ = 1 — p.

An experiment was conducted to compare the values of p computed from Eq. (4) against
values obtained from a simulation. Using a small hash table of r» = 128 rows and b = 10 bit
keys, experiments were performed with n = 50,100, 150,...,500 states. Fach experiment
was repeated 10000 times and the proportion of runs where clashes occurred was noted. The

analytical and simulated results (with 95% confidence intervals) are presented in Fig. 7.

07 T T T T T T T T T

analytical —
simulation ~o—

0.6 |

0.5

04

P(omission)

03 [

0.2

0.1 |

0 coe®®® - | | | 1 1
0 50 100 150 200 250 300 350 400 450 500
number of states

Figure 7: Analytical vs. simulated results for the probability of state omission ¢

CHAPTER 3. STATE SPACE EXPLORATION TECHNIQUES 35

3.3.2 Approximation

Evaluating the right hand side of Eq. (4) involves O(n?) operations. However, an O(1)
approximation can be found through an approach similar to that used by Stern and Dill

[SD95] in their analysis of improved hash compaction.

We consider inserting n states into the hash table, one at a time. Let Ny be the event that
no omission takes place when the (k 4 1)st state is inserted into the hash table, given that

the previous k states have been inserted without any omissions.

The probability of event N, will depend on the number of secondary key comparisons that
have to be made when inserting state s;4q into the target row given by it’s primary hash

key h1(sg4+1). If there are j items in the target row,

. j .
PN X} (o =G} =1- TR A=)

since (14 na) ~ (14 2)" for |z| << 1 (here 1/t is very small). We have already established
that

PIXE () =) = (") (2yi(1 - Ly

J

Thus by the law of total probability,

k
> PN 0) = VP i) =)

i=0

P{Ny}

1

k
iy (’;) Ly Ly
(1) (G- by o=t

Applying the binomial theorem yields:

4

P{N) = (1(1_%)+1—%)k

X
[}
|
2
—~
(@)
~—

CHAPTER 3. STATE SPACE EXPLORATION TECHNIQUES 36

Now let N/ be the unconditional event that no omission takes place when inserting the
(k 4+ 1)st state into the hash table. Stern and Dill show that the probability p of no

omission when inserting all n states is given by:
p = P{N/_ AN/ _yA...ANj}
= P{N]_{|N._oA...ANIP{N_sA...ANJ}
= P{N,_1}P{N/_5A...AN{}

which, when applied recursively, yields:

PIﬁP{Nk}

k=0

Now we can substitute the expression for P{Ny} from Eq. (5) to yield:

= e T2t (6)

If n(n — 1) << 2rt (as will be the case in practical schemes where ¢ << 1), we can use the
fact that e” = (14 z) for || << 1 to approximate p by:
-1
EECUES)
27t

so that probability ¢ of an omission is:

n(n—1) n(n—1)
1% 79 T o (7)

Thus the probability ¢ of omitting a state is O(n?) and is inversely proportional to the hash
table size r. Increasing the size of the compressed bit vectors b by one bit approximately

halves the omission probability.

3.3.3 Space complexity

If we assume that the hash table rows are implemented as dynamic arrays, the number of

bytes of memory required by the new scheme is:

M = hr 4 nb/8. (8)

CHAPTER 3. STATE SPACE EXPLORATION TECHNIQUES 37

Here h is the number of bytes of overhead per hash table row. For a given number of states
and a desired omission probability, there are a number of choices for r and & which all lead
to schemes having different memory requirements. How can we choose r and b to minimize

the amount of memory required? Rewriting Eq. (7):

n(n—1)
S (9
and substituting this into Eq. (8) yields
hn(n—1) nb
M~ =g Ty

Minimizing M with respect to b gives:

OM _ n(n—1)(In2)h B
ob 2b+1g Fn/8=0

Solving for b yields:
h(n —1)In2
b%b&<j£7£:L>+2 (10)

As an example, consider designing a system for up to n = 2000000 states and a desired
maximum omission probability ¢ = 0.01. We will assume a dynamic array overhead of 8
bytes for each row of the hash table, i.e. i = 8. This corresponds to a straightforward
implementation using one 32 bit word for the number of elements in the array and a 32
bit pointer to the start of the array. Solving equation (10) gives b = 32 and substituting b
into equation (9) yields r = 46 566 for a total memory consumption of about M = 8.4 MB.
Fig. 8 shows the omission probabilities for such a hash scheme as calculated using the O(1)

approximation of equation (6).

Fig. 9 shows the amount of memory required for other choices of b and r and confirms that

b = 32 bit with r = 46 566 rows is the optimal configuration for n = 2000 000 and ¢ = 0.01.

Table 1 shows the the optimal memory requirements in megabytes (MB) and the corre-

sponding values of b and r for state space sizes ranging from 10° to 10%.

In practice, it is difficult to implement schemes when b does not correspond to whole number
of bytes. Practical considerations also dictate that we should take into account the limited
memory resources available on typical workstations. Tables 2 and 3 thus compare the
number of states that can be stored using 4-byte and 5-byte compression for various memory

sizes and omission probabilities g. The results show that 5-byte compression is better for

CHAPTER 3. STATE SPACE EXPLORATION TECHNIQUES 38

001 T T T T T T T T T T T T T T T T T T

0.009 | —

0.008 - —

0.007 |- —

0.006 - —

0.005 | —

0.004 - b

omission probability

0.003 1

0.002 |- _

0.001 | —

0
0.10203040506070809 1 1112131415161.71819 2
number of states (millions)

Figure 8: Omission probabilities for b = 32 and r = 46 566

high reliability runs where ¢ = 0.001, while 4-byte compression is better for low reliability
runs where ¢ = 0.1. For the intermediate case of ¢ = 0.01, 4-byte compression performs
better when there is less than 64MB memory available, while 5-byte compression is better

when 64MB or more is available.

number of states

q 10° 10° 107 108

MB b r | MB b r | MB b r | MB b r

0.001 || 0.4061 31 2328 | 4.483 34 29104 | 48.96 38 1818997 | 530.7 41 2273737
0.01 || 0.3649 28 1863 | 4.061 31 23283 | 44.83 34 291038 | 489.6 38 1818989
0.1 0.3238 24 2980 | 3.649 28 18626 | 40.61 32 116415 | 448.3 34 2910383

Table 1: Optimal values for memory usage and the values for b and r used to obtain them
for various system state sizes and omission probabilities ¢

CHAPTER 3. STATE SPACE EXPLORATION TECHNIQUES

13

12.5

12

11.5

11

10.5

10

memory required (MB)

r=745058 '

r=372529

32

number of bits per compressed state (b)

34 36

38 40

39

Figure 9: Memory required for various values of b and r for n = 2 000 000 states and ¢ = 0.01

Available memory (megabytes)

q 8 16 32
n T n T n T
0.001 || 1.49 x 105 257039 | 2.52 x 10° 739670 | 4.1 x 105 1952386
0.01 || 1.91 x 10° 42676 | 3.68 x 10° 157997 | 6.9 x 10° 553219
0.1 | 1.99 x 10° 4614 | 3.96 x 10° 18287 | 7.9 x 10° 71853

q 64 128 256
n T n T n T
0.001 || 6.41 x 10 4792060 | 9.77 x 10° 11114490 | 1.46 x 107 24714769
0.01 || 1.24 x 107 1793662 | 2.14 x 107 5315710 | 3.52 x 107 14409217
0.1 || 1.4 x 107 277693 | 2.99 x 107 1041894 | 5.65 x 107 3723296

Table 2: Number of states that can be stored and optimal number of hash rows for 4-byte
compression given various memory sizes and omission probabilities ¢

CHAPTER 3. STATE SPACE EXPLORATION TECHNIQUES 40

Available memory (megabytes)
q 8 16 32
n r n r n r

0.0001 || 1.58 x 10° 11378 | 3.13 x 10° 44516 | 6.13 x 10° 170706
0.001 || 1.60 x 10° 1161 | 3.20 x 108 4635 | 6.40 x 10° 18455

0.01 || 1.60 x 10° 116 | 3.20 x 108 465 | 6.40 x 109 1860
0.1 1.60 x 10° 12 | 3.20 x 10° 47 | 6.40 x 10° 186

q 64 128 256
n T n T n T

0.0001 || 1.18 x 107 631990 | 2.21 x 107 2212877 | 3.97 x 107 7174652
0.001 || 1.27 x 107 73149 | 2.51 x 107 287412 | 4.94 x 107 1110770
0.01 || 1.28 x 107 7437 | 2.56 x 107 20691 | 5.10 x 10”7 118329
0.1 1.28 x 107 745 | 2.56 x 107 2979 | 5.11 x 107 11912

Table 3: Number of states that can be stored and optimal number of hash rows for 5-byte
compression given various memory sizes and omission probabilities ¢

3.4 Vanishing state elimination

In this section we consider an “on-the-fly” technique for reducing the number of states that
are stored in the explored-state table. Reducing the number of states during the state space
exploration phase reduces both the memory required to store the state space as well as the

effort required to solve for the steady state of the underlying Markov chain.

There are two types of transitions in timed transition systems: timed transitions which fire
with an exponential delay and instantaneous transitions which, as their name implies, take
no time to fire. If one or more instantaneous transitions are enabled in a given state, no
time will be spent in that state and the state is vanishing. We will let V denote the set
of vanishing states in a system. If, on the other hand, one or more timed transitions but
no instantaneous transitions are enabled in a state, time will be spent in the state and the

state is tangible. We will let T denote the set of tangible states in a system.

A crucial step in performance analysis is determining what proportion of time is spent in
each of the system’s reachable states. Given n states, this involves solving the set of steady

state equations

7)) = 0 subject to Zﬂ'k =1
k=0

where 7 = (71, 7g,...,T,) is the n-vector of steady-state probabilities and @ is the n X n

CHAPTER 3. STATE SPACE EXPLORATION TECHNIQUES 41

infinitesimal generator matrix of transition rates between states. For every s € V, the
steady state probability is by definition zero; the only function vanishing states serve is
to help define the way the tangible states relate to one another. In fact, vanishing states
are usually eliminated before solving the steady state equations using a two-step process
[BDMC194, §8.5.1]. Given n, = |V] vanishing states and n; = |T| tangible states, the

generator matrix ¢ is first partitioned into the form:

Qt Qt,v

Q=
Pv,t Pv

where) is the ny X ny matrix of transition rates between tangible states, ()¢, is the ny X n,
matrix of transition rates from tangible to vanishing states, P, is the n, X n, matrix of
transition probabilities between vanishing states and P, ; is the n, X n; matrix of transition
probabilities between vanishing and tangible states. Then the n; x n; matrix @’ representing
the transitions between tangible states once vanishing states have been eliminated is given
by:

Q' '=Qi+ Q1 yNP,: (11)

where

N = i(Pv)n = -P)

The matrix @4, N P, ; represents the effective rates of transition firing sequences which start
and end at tangible states but which pass through one or more vanishing states. Calculating

N is usually computed using LU-decomposition, which is an operation of O(n2) complexity.

This method reduces the size of the generator matrix from n X n to ny X ny, thus decreasing
the effort needed to solve the steady state equations. However, the method can only be
applied once) has been generated, i.e. at a point where it is too late to save memory

during the state generation process. It also involves a time-consuming inversion operation.

Instead, it is possible to calculate the matrix of transition rates between tangible states @’
directly during state space generation using a process known as “on-the-fly” elimination of

vanishing states.

Fig. 10 illustrates the principle of the algorithm. On the left is part of a reachability graph
constructed using a simple DFS algorithm. States 1, 5, 6, 7 and 8 are tangible and states
2, 3 and 4 are vanishing. We wish to modify the DFS algorithm so that it now constructs

CHAPTER 3. STATE SPACE EXPLORATION TECHNIQUES 42

Figure 10: A simple example of vanishing state elimination

the tangible reachability graph shown on the right, where all vanishing states have been

eliminated and the effective transition rates between tangible states have been calculated.

Fig. 11 presents the modified algorithm. The idea is to use two stacks during state space
generation: one stack St is used to store unexplored tangible states in a usual DFS fashion,
while another stack Sy is used as temporary storage for information about those vanishing
states which are currently being eliminated. This information takes the form of a record

< 8,7 > where s is the state in question and r is the rate of entry into the state.

The algorithm begins by initialising S7 with the initial tangible states of the system, given

some (possibly vanishing) initial state s;.

Then, as each tangible state s is popped off S7, unexplored tangible successors of s are
pushed back onto S7, while any vanishing successors of s are pushed onto Sy. Any state
pushed onto Sy is immediately explored in a DFS fashion; vanishing sucessors are pushed
back onto Sy while unexplored tangible successors are pushed onto Sy. This continues until

Sy is empty and all the tangible successors of s have been established.

Rates between tangible transitions are determined by using the information stored on Sy
together with the functions prob(s,s’) and rate(s, s’) to propagate transition probabilities
through clusters of vanishing states. prob(s,s’) gives the probability of a transition from
state s € V to state &', while the function rate(s, s’) gives the rate of a transition from s € T’

to state s'.

CHAPTER 3. STATE SPACE EXPLORATION TECHNIQUES 43

/* initialise Sp with initial tangible states */
if s; € T' do begin
push(Sr, s;)
F = {Sl}
end else do begin
push(Sy, < s;,1.0 >)
while (Sy not empty) do begin
pop(Sy, < v,p >)
for each v’ € succ(v) do begin
if v € T do begin
if ' ¢ F do begin

push(Sr,v')
E=Fu{J}
end

end else do begin
p’ = p*prob(v,v’)
if p’ > e push(Sy, < v, p’ >)
end
end
end
end

/* perform state space exploration, eliminating vanishing states */
while (S7 not empty) do begin
pop(Sr, s)
for each s’ € succ(s) do begin
if s/ € T do begin
transition(s, s’, rate(s, s'))

if s ¢ E do begin

push(St,s’)
E=FuU{s}
end

end else do begin
push(Sy, < ¢’ rate(s, s') >)
while (Sy not empty) do begin
pop(Sv, < v,p >)
for each v’ € suce(v) do begin
p’ = p*prob(v,v’)
if v/ € T do begin
if v ¢ E do begin

push(Sr, v')
E=FU{J}
end

transition(s, v, p’)
end else if p’ > € push(Sy,< v/, p’ >)
end
end
end
end
store s and tangible successors of s on secondary storage for later use

end

Figure 11: State space exploration algorithm with on-the-fly vanishing state elimination

CHAPTER 3. STATE SPACE EXPLORATION TECHNIQUES 44

Since our aim is to explore the state space for the purposes of performance analysis, reach-
ability graph information has been explicity incorporated into the algorithm, through the
use of the transition function. A call to transition(s, s’, r) denotes that there is a transition
firing sequence from s € T to s’ € T with an effective transition firing rate of r. This
reachability graph information need not be stored in memory but can be written out state

by state to secondary storage for later use.

Cycles of vanishing states pose an interesting problem. Since we do not have an explored-
state table for vanishing states, some method is necessary to preventing an infinite loop
while exploring the states on Sy . Considering the reachability graph in Fig. 12 for example,

vanishing states 2, 4 and 5 form a cycle; this cycle has the potential to cause an infinite

loop when the states on Sy are explored in DFS fashion.

Figure 12: A more complicated example of vanishing state elimination involving a cycle

There are two solutions to this problem. One is to have a local explored-state table for
clusters of vanishing states so that cycles can be recognised. Once cycles have been iden-
tified, Eq. (11) can then be applied locally to each cluster. Applying this strategy to the
example, we consider eliminating the vanishing states 2, 3, 4 and 5 to determine the effective

transition firing rates between tangible state 1 and it’s tangible successor states 6, 7 and 8.

CHAPTER 3. STATE SPACE EXPLORATION TECHNIQUES 45

We have
Q=(000) Qu=(5300)
0 0 0 1.25 0 0.625 1.25
0.6 0 0 . 0.1 1 025 0.5
P, = N=(I-P) =
0 06 0 05 0 125 0.5
0 0 0.5 0.25 0 0.625 1.25
so that

Q' = Qi+ Qu.(I—P)'P,, = (1.8 2.325 3.875)

The other way of dealing with cycles is simply to drop vanishing states whose propagated
effective entry rate p’ falls below a certain threshold value €. This has been implemented in
the algorithm shown in Fig. 11. This method is simpler than the first since it does require
a local explored-state table for vanishing states, nor does it involve matrix inversion. It

works by approximating the matrix

N=(I-P)'=>(P)
n=0
by computing N as
k
N = (P)"
n=0

for some large value of k. This works since it can be shown that
(P,)"—0 as n— o

for any substochastic P, with at least one row sum < 1. Goodman [Goo88, pg. 158-160]
gives a proof for this result (albeit in the context of the long-term behaviour of transient

states in an absorbing Markov Chain).

Fig. 13 shows a cycle of vanishing states that cannot be eliminated using either of the two
methods we have considered. The first method of vanishing state elimination, i.e. applying
Q' locally, will fail since (I — P,)™! does not exist, while the second technique, i.e. dropping
vanishing states when the propagated entry rate p’ falls below ¢, will enter an infinite loop
since the propagated probability in the cycle never falls below 1. Final strongly connected

components of vanishing states such as that formed by states 2, 4 and 5 are known as

CHAPTER 3. STATE SPACE EXPLORATION TECHNIQUES 46

Figure 13: A timeless trap involving states 2, 4 and 5

timeless traps. Timeless traps correspond to functional errors in the Markov chain and
render performance analysis impossible. To detect timeless traps, it is better to use the
first elimination method since timeless traps will manifest themselves as errors during the
calculation of (I — P,)~!, whereas the second technique will enter an infinite loop unless
heuristic techniques are used. An example of such a heuristic technique is an “elimination
timeout” which expires after a large number of attempts has been made to eliminate a

cluster of states on Sy.

Chapter 4

Steady State Solution Techniques

4.1 Introduction

Once the state space of a system has been generated, the next stage in the performance
analysis sequence is to establish what proportion of time the system spends in each of its
states. This phase is by far and away the most resource-intensive phase in the performance
analysis sequence, both with regard to the amount of memory used and the computational

power required.

As described in Chapter 2, finding the steady state distribution = = (71,72, ...m,) of an
irreducible finite discrete time Markov Chain (DTMC) with discrete-valued state space

S ={1,2,...n} involves solving a set of equations of form:
r=7P, > m=1 (12)

where P is the n X n one-step transition probability matrix and 7 is the chain’s stationary
probability distribution vector of order n. The corresponding formula for a continuous time

Markov Chain (CTMC) is:

7 =0, >m =1 (13)

where () is the infinitesimal generator matrix. Note that systems (12) and (13) are related
since (under certain regularity conditions) a CTMC may be transformed into its associated

embedded DTMC [SMC90].

47

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 48

In both cases above, we wish to solve for 7. Several standard algorithms for solving linear
systems of form Az = b exist. We may make use of these algorithms by rewriting Eq. (12)
as:

(I- Pzt =0

and Eq. (13) as:
—QTﬂ'T -0

Both formulations result in a singular homogeneous system of linear equations of form:
Az =0 (14)

where A is a (possibly very large) real and unsymmetric sparse n X n matrix with the

following properties [Bar89]:

o a;; <0fore,j=1,2,...,nand i # j.

Yo ia;;=0for j =1,2,...,n (i.e. A has zero column sums).
e A is irreducible.

e a;; = 1. This can be stated without loss of generality since Az can be transformed
to By where B = AD™! and y = Da with D = diag(a1, a2, ...a,,). Once we have

solved for y, = is easily obtained as = D™ !y.

There are two general classes of methods for solving linear systems of form Az = b: direct
methods compute an exact solution in a fixed number of arithmetic operations determined
by the size of the problem (direct methods are generally O(n?)), while iterative methods

2)

form a sequence of vectors (9, 2V, 2(®) . which converges to the solution of Az =b.

Iterative methods converge at a unknown rate, i.e. the number of operations to obtain a
given accuracy is unknown, but they have several advantages over direct methods when

dealing with large systems [Ste94, pg. 61-62]:

e Unlike direct methods, iterative methods do not modify the matrix A. This
simplifies the sparse storage scheme, avoids matrix fill-in and prevents accumulation

of round-off error in elements of A.

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 49

o Iterative methods generally only involve matrix-vector operations of the form
Az or ATz, These matrix vector products can be calculated efficiently using a good

sparse matrix storage scheme.

e Iterative methods allow the user to control the accuracy of the solution. Direct
methods always compute the solution to full machine precision, which may be unnec-

essary.

o Iterative methods are ideal for conducting a sequence of experiments where the
parameters from one run to the next vary only slightly. In this case, the result vector

from the previous run may be used as a good starting vector for the next run.

Direct methods, however, are still useful for smaller state spaces or for those ill-conditioned

matrices where iterative methods take a very large number of iterations to converge.

We distinguish between three main classes of iterative methods for solving large sparse

nonsymmetric linear systems:

¢ Classical iterative methods such as Gauss-Seidel and SOR [Var62, §3.1]. These
techniques have been known for decades and are characterised by low memory require-
ments and smooth convergence. However, convergence is often slow, and the methods
cannot be easily parallelised. Moreover, the SOR technique requires estimation of the

over-relaxation parameter.

¢ Krylov subspace techniques such as Biconjugate Gradient (BiCG) [F1e76], Bicon-
jugate Gradient Stabilised (BiCGSTAB) [Vor92] and Conjugate Gradient Squared
(CGS) [Son89]. These algorithms are based on the original Conjugate Gradient
method [HS52] which is a popular solution technique for linear systems involving sym-
metric positive definite coefficient matrices. These methods are parameter free and

provide rapid, if somewhat erratic, convergence. The methods are easily parallelised.

¢ Decomposition-based techniques such as the Aggregation-Isolation (AI) algo-
rithm and the Aggregation-Isolation Relaxed (AIR) [Tou95] algorithm. These al-
gorithms are based on divide-and-conquer techniques and are characterised by low

memory requirements and rapid smooth convergence behaviour.

We will now consider the various direct and iterative methods available for solving systems

of form Az = 0.

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 50

4.2 Direct methods

4.2.1 Gaussian Elimination

Gaussian elimination [EWK90, §8.3] [GL89, §3.2] [Ste94, §2.2.1] is probably the most well-
known technique for solving the system Az = b in the case where A is nonsingular. By
adding multiples of rows to each other, it systematically reduces the system [A | b] to
produce an equivalent upper triangular system [U | ¢]. This upper triangular system can

then be solved by back substitution.

Reducing [A | b] to [U | ¢] involves n — 1 steps. At the kth reduction step, the elements in
the kth row which lie below the pivot element ayp are eliminated by subtracting multiples
of the kth row (the pivot row) from every row below the kth row. After the kth step, the

system will have been reduced to:

a11 412 T ain | b1
22 ce Az, | bo

Akl Gk jk+1 - Qkn | bk

0 a;,k-l—l e a;‘n b;

0 a;’b,k-l—l U a;‘%n b;’b

where the modified elements are given by:

a;»j = a;—myag; j=k+1LEk...on i=k4+1,k ... ,n
b; = b, — mpbe 1=k+1,k,....n
with
ik

1=k+1,k,...,n.

miE =

ALk
After n — 1 reduction steps, the original system will have been reduced to the upper tri-
angular system [U | ¢]. A simple back substitution process can then be used to find the

solution vector z as follows:

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 51

Ty = Cn/unn

n

zi = (¢ — Z wijxi)/ug t=n—1,n—2,...,1
j=i+1

This standard Gaussian elimination cannot, however, be applied to our matrix A directly
since A is singular. To handle the singularity, there are two main approaches [Ste94, pg.

73-74):

e The “replace an equation” approach. Here, an equation (usually the last) is replaced
by >>;2; = 1 which removes the singularity. Even though any equation could be
replaced, the last is chosen because this reduces fill-in and the operation count (for
example, replacing the first row leads to massive fill-in since multiples of the first row

are added to every other row).

This approach is generally not used in computer implementations, however, since any
accumulated rounding error in the calculation of x, will be propagated through the

back-substitution phase.

e The “remove an equation” approach. Since A is singular of rank (n — 1), one of the
equations is redundant and may be removed; this yields n—1 equations in n unknowns.
If we now set z, = 1 and solve the remaining non-singular system of order n — 1 for

its probability vector &, the final probability vector is given by normalising (&, 1).

To prevent loss of accuracy, a system of row interchanges called partial pivoting is usually
applied when solving general systems of equations [EWK90]. At the kth step, the kth
column from the pivot element downwards is searched for the element of the largest modulus;

i.e. we determine row 7 such that:

lare] = max - ai|

Rows r and k are then interchanged. However, pivoting is unnecessary in our case since
an error analysis of Gaussian elimination as applied to irreducible Markov Chains [Ste94,

§2.7.4] shows that Gaussian elimination without pivoting is already a stable way to calculate

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 52

the stationary probability vector of the irreducible Q-Matrix A (once the singularity has

been removed as outlined above, of course).
The algorithm for solving the singular system Az = 0 by Gaussian elimination is:

(GAUSSIAN ELIMINATION

1. Reduce A to upper triangular form

e fork=1ton—-1do
fori=k+1tondo miy = ayp/ar
fori=%k+1tondo

for j = k41 to ndo a;; = a;; — my * ag;
2. Back substitute
e sum=1,2, =1

e fori=n—-1,n-2,...,1do

20 = = (Sl aijey) fai

& sum = sum+ x;

3. Normalize

e fori=1ton dox; =a;/sum

4.2.2 LU Decomposition

LU Decomposition [EWK90, §8.6] [GW89, §2.5], [GLR9, §3.2.5] [Ste94, §2.2.2] is the process
of factorizing a matrix A into the product of a lower diagonal matrix L an upper triangular

matrix U, i.e.

A=1LU

where it is usual to assume that one of L and U are unit diagonal matrices i.e. either
lii=1 for 1=1,2,...,n
in which case the process is known as Doolittle decomposition, or

u; =1 for ¢=1,2,...,n

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 53

in which case the process is known as Crout decomposition.

LU Decomposition is closely related to Gaussian elimination; in fact, Gaussian elimination
can be used to find an LU factorization of A, where L is given by a unit lower diagonal

matrix of multipliers and U is the upper diagonal matrix at the end of the reduction phase.

The general formulas for the elements of L and U (Crout Reduction) are:
lj = i — Y9 Lk J

i
w; = aj— (a — S0 Lpwjr) /[l 1< j

(15)

=1,2,...,n
2,3,...,n

<i i
<7 7J

b

An algorithm to perform a memory-efficient in-place LU factorisation of an arbitrary matrix

A may be found in [BDMC194, pg. 31].

Once we have a LU decomposition of A, we can quickly solve for z by forward and backward

subsitution (an O(n?) process):

1. Solve Ly = b for y.

2. Solve Uz = y for .

It can be shown that an LU decomposition exists for any matrix A derived from an irre-
ducible Markov Chain; further, for such matrices, no pivoting is necessary to ensure stability

[Ste94, pg. 66].

In the context of solving Markov Chains, full LU Decomposition has two important advan-

tages over standard Gaussian elimination:

e The inner products of Eq. (15) may be accumulated in double precision [GW89, pg.
109-110]; this yields improved accuracy.

e Storing the information about L allows for the application of iterative refinement
[EWK90, §8.12]. This is a technique used to obtain maximum machine accuracy in
the face of representation and rounding errors introduced by a floating point system.
If we have an inexact decomposition LU with solution #, we can improve the solution

using the residual vector r = b — Az. The procedure is:

repeat until convergence {

set 7 = b — A% (usually calculated in double precision)

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 54

solve Ly = r
solve [z = Y

set r =12+ 2

Iterative refinement is computationally quite cheap, since each iteration is O(n?) (L
and U are triangular) and usually only one iteration is required to obtain an answer

to full machine precision.

4.2.3 Grassman’s Algorithm

Grassmann’s algorithm [GTHS85] [KGB87] [BDMCT94, pg. 32-34] [Ste94, §2.5] is a variant
of Gaussian elimination which appears to be even more stable since the algorithm does not
involve any subtraction operations (or negative numbers). This means that problems such

as loss of significance and the accumulation of rounding errors are minimized.

The algorithm is based on two key ideas which take advantage of the special structure of

the matrix A:

o The properties of A (i.e. a;; > 0, a;; <0, and > a;; = 0) are invariant under the

row operations of Gauss elimination.

e Subtractions which could lead to loss of significance occur only during the calculation

of diagonal pivot elements.

Now, since A always has zero column sums, diagonal pivot elements do not have to be
calculated by subtraction. Instead, the off-diagonal elements in the column can be summed
and the result negated; this produces a more accurate result at the cost of slightly more

numerical operations. The full version of Grassmann’s algorithm is given below:

(GRASSMANN’S ALGORITHM [GTHS85]

1. fork=n,n-1,...,2do

o 5= ay

e a;, = aik/s, Vi< k

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 55

o a;; = a;; + apap;, Vi, 7 <k
2. sum=1,21 =1
3. for j=2,3,...,N do

R Y] ,
® Tj =) p_q ThQky

e sum = sum + x;

4. z;=x;/sum, j=1,2,...,N

Note that both column and row access to the matrix A is required. For smaller problems,
a dense two-dimensional matrix representation suffices, but for larger problems, a sparse

matrix scheme supporting column links is required.

Since Gaussian elimination is already stable, the extra time and space demands of Grass-
mann’s algorithm mean that its extra precision is only really necessary when the problem

is very ill-conditioned.

4.3 Classical iterative methods

In this section we consider some of the oldest and most well-known iterative methods for
solving linear system of form Ax = b. These methods are based around matrix splittings of
form A = M — N where M is non-singular. This splitting is used to define simple iterative
schemes of form:

Thy1 = M 'Nap+e¢
where neither the iteration matrix M ~!'N nor ¢ depends on k.

In our case of solving Az = 0, the schemes reduce to the form:
Thy1 = M™IN Tk

From this equation, the desired solution can be seen to be the eigenvector of the iteration
matrix M 1N corresponding to the eigenvalue 1. Thus the convergence of these methods
depends on the eigenvalues of the iteration matrix M ~!N. In particular, the rate of conver-
gence is inversely proportional to the ratio |Ag|/|A;| where Ay and Ay are the dominant and

the subdominant eigenvalues of the iteration matrix respectively [Bar89]. Consequently,

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 56

these methods are only guaranteed to converge if the iteration matrix is primitive, i.e. if it

has one and only one eigenvalue A; with |A;| = 1.

The methods presented here have very modest memory requirements, using only two vectors

(z*+D) 2(*)) and requiring only row (but not column) access to the matrix A.
The three most commonly used classical iterative methods of this form are presented below.
4.3.1 Jacobi’s Method

Jacobi’s method [Var62, §3.1] [Ste94, §3.2.2] [HY81, §2.3] is a simple iterative method
based on the observation that solving Az = b is equivalent to finding the solution to the n

equations:
n
g ag;r; =0, 1=1,2,...,n
7=1

Now, solving the ith equation for z; yields:

1
z; = —(b; — Zaz’j%‘)

G g
which suggests the iterative method:
k41 1 k
2 = o > aya) (16)
1 i

where k > 0 and 2(©) is an initial guess at the solution vector.

If we write A = D — L — U where D = diag(a11, g2, - . ., @nyn) and L and U are strictly lower

and upper triangular matrices respectively, Eq. (16) can be written in matrix form as:
d*) = DHL 4+ U)a® + D

where D™Y(L + U) is the iteration matrix characterising the convergence behaviour of the

algorithm.

Note that the calculation of the xgk)’s are independent of one another which means equation

updates can be performed in parallel.

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 57

4.3.2 Gauss-Seidel

The Jacobi method can be improved on by using the computed results for z; as soon as
they are available within an iteration. The resulting method is known as the Gauss-Seidel

method [Var62, §3.1], [Ste94, §3.2.3] which is given by:
k+1 k+1 k
xf) _ (b; — Zazng) _ Zaing))/a“' (17)
j<i J>i
In matrix form, Eq. (17) can be written as:

2*) = (D —)" (U2™ +b)

where (D — L)7! is the iteration matrix characterising the convergence behaviour of the

algorithm.

Note that the computations of Eq. (17) appear to be serial in nature since the calculations
of the xgk)’s now depend on one another. However, if A is sparse and several coefficients are
zero, then elements of the new iterate are not necessarily dependent on previous elements.
By reordering the equations in this situation, it is possible to make updates to groups of

components in parallel [BBCT94, §3, §4.4].

4.3.3 Successive Overrelaxation (SOR)

Successive Overrelaxation (SOR) [Var62, §3.1] [Ste94, §3.2.4] [BDMC194, §3.1.3] is an ex-
trapolation technique for accelerating the convergence of the Gauss-Seidel algorithm. The
extrapolation works by successively taking a weighted average of each element of the pre-

vious iterate and each element of the newly-computed Gauss-Seidel iterate, i.e.
$£k+1) = wfgk—l_l) +(1- w)xgk) (18)

(k+1)

where T, is the ith element of the newly-computed Gauss-Seidel iterate and acgk) is ¢th

element of the previous iterate.

In matrix form, Eq. (18) can be written as:
) = (D — L) ™ (WU 4+ (1 —w)D)a® + w(D —wl)™'

with iteration matrix

Ly,=(D—wl)y wU + (1 -w)D)

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 58

Note that if w = 1, the method reduces to the Gauss-Seidel algorithm. In the case w > 1,
we speak of over-relaxation and in the case w < 1, we speak of under-relaxation. The

Gauss-Seidel method converges only for values of w in the range 0 < w < 2.

In the case of solving Az = 0, the optimal value of w is that value which maximizes the
difference between the dominant and subdominant values of L, thus resulting in the fastest
covergence rate. Unfortunately, methods for choosing this optimal value of w are only known
for very restricted classes of matrices [HY81]. Consequently, implementations usually use
heuristic adaptive parameter estimation schemes to try to home in on the appropriate value
of w by guessing a value which is adjusted every few iterations according to the rate at

which the method is converging.

4.4 Krylov subspace techniques

Krylov subspace techniques [Wei95] [SW95] [FFGN92] [Ste94, §4.3] are a popular class of
iterative methods for solving large systems of linear equations. They derive their name
from the fact that they generate their iterates using a shifted Krylov subspace associated
with the coefficient matrix of the system. Many conjugate-gradient type algorithms and
their variants fall into this category. Before defining a Krylov subspace formally, we will

first provide an overview of the advantages of Krylov subspace techniques.

Krylov subspace techniques have proved useful for solving systems of linear equations aris-
ing from a wide range of scientific and engineering applications such as fluid dynamics,
atmospheric modelling, structural analysis and finite element analysis. There are three

main reasons for this widespread use of Krylov subspace techniques:

¢ The methods are parameter free, yet still provide good rates of convergence. The origi-
nal conjugate gradient algorithm, for example, provides the same order of convergence

rate as optimal SOR but without the need for dynamic parameter estimation.

¢ Krylov subspace techniques have become increasingly competitive with classical it-
erative methods in terms of memory utilization. This is because the most recently
developed conjugate gradient-type algorithms for non-symmetric matrices (e.g. CGS,

BiCGSTAB, TFQMR) do not require storage of large sequences of vectors (as does

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 59

GMRES), nor do they require multiplication with the transpose of the coefficient
matrix (as do BiCG, QMR and CGNR/CGNE).

e The methods are well suited to implementation on parallel and vector computers.
Most Krylov subspace methods compute one or two matrix-vector products and sev-
eral vector inner products every iteration; the methods are thus easily parallelised
by distributing the matrix among processing nodes and by using the inner products
as synchronisation points. For a general discussion of the issues involved see [Saa89]
and [GKS95] and for case studies see [ME90], [Bou95] and [Taf95]. In practice, su-
perlinear speedups (corresponding to efficiencies of over 100%) have been achieved
in both symmetric multiprocessing environments and high-speed distributed environ-

ments [Bou95]. This can probably be attributed to efficient cache utilization.

The development of Krylov subspace techniques began in the early 1950s with the conjugate
gradient (CG) algorithm of Hestenes and Stiefel [HS52]. This algorithm is used to solve
n x n linear systems of form Az = b where A is a symmetric positive definite (SPD)
coefficient matrix. The CG method is regarded as an attractive algorithm for two main
reasons. Firstly, the algorithm has very modest memory requirements because it uses simple
three-term recurrences. Secondly, the algorithm has good convergence properties since the
residual is minimized with respect to some norm at each step. The generated residuals are

also mutually orthogonal, which guarantees finite termination.

Several algorithms have since been devised to generalise the CG algorithm to allow for
arbitrary (i.e. not necessarily symmetric or positive definite) coefficient matrices. Unfortu-
nately, algorithms for non-symmetric coefficient matrices cannot maintain both the short
recurrence formulation and the minimization property (see Faber and Manteuffel’s paper
[F'M84] for proof). Thus, by trading off certain optimality conditions against the amount

of memory required, three main classes of CG variants have been developed:

o Algorithms which attempt to preserve both properties by transforming a linear system
based on a non-symmetric coefficient matrix A to an equivalent system based on the
symmetric positive definite matrix AT A (CGNR) or AAT (CGNE). This approach is

known as conjugate gradient applied to the normal equations.

o “Pure” algorithms for non-symmetric A which are based on maintaining either the

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 60

short recurrence formulation (e.g. BiCG [Fle76]) or the minimization property (e.g.

GMRES [SS86]) but not both.

e “Hybrid” methods for non-symmetric A which seek to combine elements of the short
recurrence formulation with minimization properties that are either heuristic (e.g.
CGS), localized (e.g. BICGSTAB) or quasi-optimal (e.g. QMR). This class includes
most of the more recently developed CG-type methods such as CGS [Son89], QMR
[F'N91], BiCGSTAB [Vor92], BiCGSTAB(/) [SF'93], and TFQMR [Fre93]).

Many authors have attempted to resolve the confusion resulting from the development of
all these methods by using unifying mathematical frameworks to explore the relationships
between them (see e.g. [Wei95], [Wei94], [Gut93a] and [AMS90]). Fig. 4.4 presents a more
conceptual overview of the most important techniques. The arrows show the relationships
between the methods i.e. how the methods have been generalised from their underlying
basis-generating algorithms and also how key concepts have been inherited from one algo-
rithm to the next. Readers unfamiliar with Krylov subspace techniques might like to use

figure 4.4 as a top-level reference throughout the next three sections.

A more rigorous mathematical framework and classification scheme is presented in the next

section.

4.4.1 Principles of Krylov Subspace Techniques

We consider the linear system

Az =b (19)

where A is a real n X n matrix and z,b € IR"; in general A is non-symmetric and is
not positive definite. Let g be an initial guess at the solution vector z with corresponding
residual 79 = b— Axg. Then, using the notation of Weiss [Wei95], Krylov subspace techniques

generate subsequent iterates z; according to the formula:

T = Th—oy, + di, di € span(qr—o, ks-- ., qr—1,k) fork=1,2,... (20)

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 61

Symmetric Lanczos Non-symmetric Lanczos Arnoldi Process
uses short recurrences uses short recurrences uses long recurrences
to generate orthogonal to generate biorthogonal to generate orthogonal

basis for symmetric matrix A basis for arbitrary matrix A basis for arbitrary matrix A

I
! |
. |
| | CcG BiCG [GMRES !
! |
! Classical Conjugate CG applied to double system o) Generalised T
1) . Biconjugate Gradients - . [
1 Gradient algorithm) Minimal RESidual |
| (for non-symmetric A)) \
(for SPD A) (for nonsymmetric A) |
I
! |
I R — e A I
: CG applied CG applied | residual quasi-optimal least-
\ to A'A ! polynomial quares minimization|
! | squared of residual
| |
' l
' CGNR \ \ CGNE | CGS \ QMR
I
I
1 _Con]ugate Gradlgnt Qonjugate Gradlgnt : (Bi)Conjugate Gradient Quasi-Minimal
: using normal equations using norm'al'equlatlons | Squared Residual
I (residual minimizing) (error minimizing) I
I
I
I
L . |
Generalized CG methods refo.rmed QMR smoothing of
residual CGS auxiliary
polynomial sequence
BiCGSTAB | TFQMR
(Bi)Conjugate Gradient Trans_pos_e_—free
Squared Stabilised Quasi-Minimal
Residual
better residual 1-dimensional local
polynomial residual minimization
allowing
complex roots L-dimensional local
residual minimization

| BIiCGSTAB(L) |
(Bi)Conjugate Gradient
Squared Stabilised
with L-dimensional

residual minimization

Conjugate Krylov Subspace methods

Figure 14: An overview of Krylov Subspace Techniques

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 62

where ¢._; , € IR" and o}, denotes the number of previous ¢ vectors used in the calculation
of new iterates. Usually all previous ¢ vectors are used i.e. o = k, in which case we speak
of an exact method. However, sometimes methods are restarted every o,.; steps to limit
their memory consumption, i.e. o = (kK — 1) mod o0,.5 + 1. In this case, we speak of a

restarted method.

The ¢ vectors are generated to fulfill two conditions:

o Iirstly, each ¢;—; 1 is a member of the Krylov subspace:
Kip_iz1(B,2) = span(z, Bz, B%z,..., B"2) (21)

where B is an arbitrary n X n matrix and z € IR”. For almost all Krylov subspace
methods of practical interest (and for all the methods discussed here), B = A and

Z =Ty, i.e. each gy_; lies in the Krylov subspace
Kr_iv1(A,ro) = span(A, Arg, A?r, ..., AF7irg) (22)

Equation (22) characterises a class of methods known as Conjugate Krylov Subspace

(CKS) techniques. From the definition of ¢z_; and equation (20), it follows that

Ty € Th_o, +Ki(A, o) (23)

i.e. the iterates lie in a shifted Krylov subspace associated with the coefficient matrix

of the system.
e Secondly, the ¢ vectors satisfy the orthogonality condition:
E Zvqpi =0 fori=1,...,04 (24)

where the Zj are auxiliary non-singular matrices. Methods characterised by constant
Zr, i.e.
Ly =7

are known as generalised CG methods and correspond to methods derived from ap-
plying the CG algorithm to the normal equations and “pure” methods closely related

to the original basis construction algorithms of Lanczos and Arnoldi.

Note that the choice of oy reflects the depth to which the subspace (21) is constructed and
also the depth to which the orthogonality condition (24) is maintained.

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 63

4.4.2 Basis construction algorithms

Many Krylov methods involve the construction an orthogonal or biorthogonal basis for the
Krylov subspace of equation (21). Algorithms for doing this have been known since the
1950s, and it is these algorithms which formed the foundation of modern Krylov subspace
techniques. The three most important basis-generating techniques include the symmetric

Lanczos algorithm, the non-symmetric Lanczos algorithm and Arnoldi’s method.

Symmetric Lanczos

The symmetric Lanczos algorithm [Ste94, §4.5.1] was originally devised by Cornelius Lanc-
zos as a means of determining the eigenvectors and eigenvalues of a symmetric n X n matrix
A. At the kth iteration, the algorithm constructs an orthonormal basis (v1,v2,...,v;) and

an k x k symmetric tridiagonal matrix

ar B
By ay f3
B3 a3z 4
T, =
Bk
Br ag
such that T} = VkTAVk where V is the n x k matrix with columns vy, vy,...,v5. T} is

constructed such its eigenvalues are approximations to a subset of the eigenvalues of A.
Given the initial conditions ||v1]lz = 1, 1 = 0 and vy = 0, the orthonormal sequence vy is

computed using the short recurrence:

Tpp1 = Avp — apvp — Brvg—q
Vg1
VE+1 TP E———
(| 9%+11l2
where
ap = v;{Avk

Br

llve—1ll2

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 64

The basis (v1,vs,...,v;) so generated spans the Krylov subspace generated by A and v,
i.e.

span(vhv% .. -avk) = ICk(?Jl,A) = Span(vl,A?Jl, . ‘7Ak—1v1)

In exact arithmetic, the algorithm terminates after n steps with the eigenvalues of T,
the same as those of A (assuming no breakdown). When finite precision arithmetic is
used, however, the Lanczos algorithm has poor numerical properties. In particular, the

orthogonality of the vectors vy is often lost, which leads to inaccurate eigenvalue estimates.

There is a close relationship between symmetric Lanczos and classical Conjugate Gradient
algorithm; in fact, the Conjugate Gradient algorithm may be derived from the Lanczos

algorithm and vice versa [GL89, §9.3.1 and §10.2.6].

Non-symmetric Lanczos

The non-symmetric Lanczos algorithm [FGN92, §3.1] is a generalization of the symmetric
Lanczos algorithm to non-symmetric A. At the kth iteration, the matrix A is reduced to a

tridiagonal system

ar fPo
Y2 az B3
T, - Y3 as P
Bk
Ve Ok

with the eigenvalues of matrix A eventually given by those of the tridiagonal system 7T,.
However, since A is non-symmetric, it is now impossible to use a single short recurrence

to generate an orthonormal basis for A. Instead, the non-symmetric Lanczos algorithm

constructs a pair of vector sequences vy, v, ..., v and wy, woy, ..., wy such that
span(vy, ve,...,v5) = Kg(vy, A) (25)
span(wy, wo, ..., wg) = Kg(wy, AT) (26)

and such that the biorthogonality condition

wlv; =vliw; =0 fori#j (27)

7

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 65

is satisfied. Given vectors vy, wy € IR™ with ||v1|]2 = 1 and ||wq]|2 = 1, the sequences wy and

v can be calculated using simple three-term recurrences:

Tpp1 = Avp — apvg — Brvp—

ATwy — apwy, — ypwg—
Vk41

1411l
WE4+1

@t ll2

W41

Vg1 =

WE41

where

wkTAvk
= wlv
L Vk

wkT_lAvk
B = k1%
Wy _1Vk—1
N vg_lAka
kK = —7T
”g—lwk—l
Unfortunately, the calculation of the coefficients used in the construction of vg4q and wgyq
involves division by wkTvk, which may be zero or close to zero even if wy # 0 and v # 0.
Breakdowns of this type are known as serious breakdowns and can be avoided by using

block look-ahead algorithms which relax the biorthogality condition [Nac91, §3].

Fletcher’s Bi-Conjugate Gradient algorithm [Fle76] is a reformulation of the non-symmetric
Lanczos algorithm. As we shall see, it suffers from possible breakdowns in its underlying

Lanczos process.

Arnoldi’s method

Arnoldi’s method [Ste94, §4.4.1] is another generalization of the symmetric Lanczos method
to non-symmetric matrices. However, instead of constructing a biorthonormal basis for A
by using short recurrences, Arnoldi’s method uses long recurrences to generate a single

orthonormal basis (v1,vg, ..., v;) spanning the Krylov subspace generated by A and vy i.e.
Span(vlv V2500 e ?Jk) = ICk(vlv A)

Since short recurrences cannot be used, the matrix A is no longer reduced to a tridiagonal

system, but one based on an upper Hessenberg matrix Hy (upper Hessenberg means that

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 66

Hi(i,7) = 0 for ¢ > 74 1). The core of Arnoldi’s method which actually constructs the

orthonormal basis is known as the Arnoldi process and is given by the following algorithm:
1. Initialise
o Choose vector vy with ||v1]|2 =1
2. Iterate
e forj=1,2,....k
fori=1,2,...,7
hi; = viTAvj
bjgr = Avj = iy hijvi
hivrj = 18j4ll2
virr = Vi1 /R

Note that after k steps the algorithm has generated:

e an n X k orthonormal system Vj with columns vy, v9,...,v;.

e a (k+1)x k upper Hessenberg matrix Hy. The first k& rows of this matrix are given
by Hy = ViT AV}, and represent the matrix A in the basis (v1,v2,...,v;); the last row

has only one non-zero element which is hj1q ; = ||9;41]|2-

The algorithm cannot break down, but is expensive because calculation of v at the kth
iteration requires the use of vectors v{, vy, ..., v5_1. The Arnoldi process was central to the

development of the Generalised Minimum Residual (GMRES) algorithm.

4.4.3 Generalised CG Techniques
Classical Conjugate Gradient Algorithm

The classical conjugate gradient algorithm provides an efficient means of solving linear
systems of form (19) when A is symmetric positive definite (SPD). The central idea is to

minimize the function:

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 67

1
flag) = 596;‘5%13% —2Th (28)

which has a unique minimum (given SPD A) when its gradient

af
Y App — b= —
D T Tk

is zero, so the value of 2}, minimizing equation (28) is also the solution to equation (19). To
perform the function minimization, a sequence of search directions py are generated starting

with pg = rg; these are used to improve the iterates according to the recurrence:

Tpp1 = Tp A+ agpk (29)
Thp1 = Tk — apApy (30)
Pk+1 = Tky1 + Bkp (31)
where
rir),
aj =
Pi Apy,
is chosen to minimize f(xy41) over the subspace (po,p1,...,px) and
TkT+1Tk+1
B, = [eaaThat
T Tk

is chosen to update the p vectors such they are A-conjugate to one another, i.e. such that

the conjugacy condition
pEAp; =0 forj <k (32)
holds. Note that, since the p; are non-zero and non-zero A-conjugate vectors are linearly

independent, the algorithm should terminate in m < n steps (given exact arithmetic).

Multiplying equation (29) on the left by —A and adding b yields the update formula for the

residuals given in equation (30). The residuals satisfy the orthogonality conditions:

rir; =0 and rlp; =0 forj<k (33)

An inductive proof of the first orthogonality condition (i.e. rir; = 0) is given in [GL89,
§10.2.5]; the proof may also be derived by specialising a similar proof for the biconjugate

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 68

gradient algorithm given [Fle76, §5]. The second orthogonality condition (i.e. rfp; = 0)

follows by rewriting equation (31) as

k
Pk =T+ Br17h—1 + Br—1Br—2mi—2 + -+ (Bre1Br—2 ... fo)ro = >_viri (34)

=0
Changing the index from k to 7 and multiplying on the left by ry yields:
T d T
repi =) yiriri=0 (35)
=0
by the first orthogonality condition.
From equation (34), equation (29) can be rewritten as:
k-1
Tp = Tp—1 + Qk—1Pk—1 = o + Z YiTi (36)
=0
Multiplying on the left by —A and adding b gives:
k-1
Th=T0— Y ViAr; (37)
=0

Applying this equation to itself to yield an expression for ry in terms of ry yields

ry = To— YoAro—11Ari— ... — Y 1ArE
= To— ’}/0147‘0 — ’}/114(7‘0 — ’}/0147‘0) — ’}/214(7‘0 — ’}/114(7‘0 — ’}/0147‘0)) — ...
— ’}/k—lA(TO — ’}/k_QA(TO — .. ’}/114(7‘0 — ’}/0147‘0)) .)

k
= ro— > &iAlr (38)
=0

i.e. 7 € span(rg, Arg, A%rq, ..., AFrg), which is the Krylov subspace spanned by A and 7.

It now follows from equation (36) that:

x) € xo + span(rg, Arg, A?rg, .. .,Ak_lro) (39)

so the iterates lie in a shifted Krylov subspace spanned by A and rg. This property holds
for all exact conjugate Krylov subspace methods (cf. Eq. (23)).

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 69

Note that equation (38) can be used to express 74 in polynomial form, i.e.
e = Yi(A)ro (40)

where
k-1)
U(A)= (1= &A%
=1

This representation is just a formal way of expressing r; as a polynomial in A applied to
a starting residual; ¥i(A) is not explicitly computed but is rather implicitly computed
as the algorithm proceeds. The importance of this residual polynomial representation will
become apparent when considering the development of variants of the Biconjugate Gradients

algorithm such as CGS and BiCGSTAB.

Relating these results to the framework presented in Sec. 4.4.1, we see the CG algorithm is
an exact Krylov subspace method (i.e. o) = k) with gx—; x = rr—; and Z; = I. Substituting

these parameters into equation (24) yields the first orthogonality condition of equation (33)

i.e. rkTrj = 0 for k # j. Also, from equation (39), the gy_;) are equivalently given by

Gh—ik = Ak_iro, so B = A and z = rq. Since Zp = I is constant, CG falls into the class of

generalised CG methods.

CG ALGORITHM:

1. Initialise
e ro=0b— Axg
® Po=To

2. Iterate

o for k=1,2,...

Op_1 = rf_lrkq/pf_l%lpk_l
Tk = Tp—1 + Qk-1Pk—1

Tk = Th—1 — Qg1 App_1

By =rfre/rl_irra

Pk = Tk + BpPr—1

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 70

The algorithm performs one-matrix vector multiplication with A, three vector updates and
two inner products per iteration. It requires storage for four vectors (one each for p,r and

2 and one for the product Apg_1).

The convergence rate of the conjugate gradient algorithm depends on the spectral condition
number & = K2(A) = Apnaz/Amin Where Aqp and Ay, are the largest and smallest eigen-
values of A respectively [GLR9, §10.2.8]. In particular, the error at iteration k is bounded
by:

k
-1
lella = llz = aila < 2ux—xou,4($+1) (41)
where ||e|| 4 denotes the A-norm given by Vel Ae. Like optimal SOR, the rate of convergence
is proportional to k3. More complex convergence results taking into account the entire

spectrum of A are given in [SV86].

CGNR/CGNE: Conjugate Gradient using the normal equations

An obvious approach to generalising the CG method to non-SPD A matrices is to find ways
of applying the CG method to the matrices AT A and AAT, since these matrices will be
SPD for non-singular A. One way is to multiply equation (19) by AT on both sides which
yields:

ATAz = ATb =y

This leads to a technique for minimizing the two-norm of the residuals at each step (CGNR).

Alternatively, one can solve the system:
AATz =0

for z and compute the desired solution as z = AT 2. This leads to technique for minimizing

the two-norm of the error at each step (CGNE).

CGNR generates a Krylov space spanned by AT A and rq, while CGNE generates a Krylov
space spanned by AAT and ro. The products AT A and AAT do not have to be calculated

but can be incorporated into the algorithm implicitly.

Like the original CG algorithm, CGNR and CGNE are exact generalised CG methods that
can be formulated using short recurrences. For both methods, gr_; = Alyp_i. Zp = AT
for CGNR and Z; = A for CGNE [Wei94].

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 71

CGNR ALGORITHM [Mei94, §2.5]

1. Initialise
o 7o = AT(b— Az)
® Po=To

2. Iterate

o for k=1,2,...

g1 = rkT_lrk_l/p{_lATApk_l
Tk = Tp—1 + Op—1Pk—1

g = rpo1 — a1 AT App_q

Be = rlrg/rE riq

Pk = Tk + BpPr—1

CGNE ALGORITHM [Mei94, §2.5]

1. Initialise

e rog=0b—- Ax

[]]N)O = ATTO
2. Iterate

o for k=1,2,...
ap_1 = rf_lrk_l/ﬁ{_lﬁk_l
Tp = Tp—1 + Qg1 Pr—1
Tk = Th—1 — Qk_1APp_1
By = rirg/ri_irica

e = ATrp + Bepr—1

The algorithms perform two matrix vector multiplications (one with A and one with A7),
three vector updates and 2 inner products per iteration. Both algorithms require storage

for 5 vectors (r, p, z, and two for the matrix-vector products).

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 72

CGNR and CGNE have the same theoretical convergence properties as classical CG and
given exact arithmetic, the algorithm should converge in fewer than n steps. However, there
is a drawback: the condition number of AT A or AAT is given by the square of the condition
number of A, so from equation (41) it can be seen that the convergence rate is actually
much slower than that of CG. In fact, given the finite precision arithmetic available on a

computer, this poor conditioning sometimes leads to incorrect results.

The poor convergence and accuracy of these methods, together with the increased storage
cost incurred in providing both row and column access to A, mean that CGNR and CGNE
are only useful in practice when memory is not at a premium and a good preconditioner is

available to improve the spectrum of A.

GMRES: Generalised Minimum RESidual

The GMRES method [SS86] aims to generalise the CG method to the non-symmetric case
by maintaining the orthogonality of the residual vectors at the expense of losing the three

term recurrence. The kth GMRIS iterate is given by:
Tk = To + 2k

where the correction zj is chosen from the Krylov subspace

Ki(A, 1) = span(rg, Aro, A%rg, ..., Ak_lro) (42)
such that z; minimizes the two-norm of the kth residual,
I7kllz = (b = A(zo + 21)ll2 = [lro — Azkll2

Determining the correction zj involves constructing a basis for Ki(A4,ro) and then solving
an k-dimensional least-squares problem for the coefficients of that linear combination of the

basis elements which minimizes the sum of squares of the elements of the residual vector.

The original paper by Saad and Schultz [SS86] uses a Gram Schmidt-based algorithm known
as the Arnoldi process (see Sec. 4.4.2) to construct an orthonormal basis (v1,ve, ..., v;) for
the subspace of equation (42). Note that other ways of forming the orthonormal basis are

possible. Walker, for example, presents a procedure based on Householder transformations

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 73

which is slightly more expensive but more numerically stable than the Arnoldi process

[Wal88a].

Now, from the formula for 9;,; given in the algorithm for the Arnoldi process in Sec. 4.4.2,
the relationship:
AV, = Vk_|_1f{k (43)

can be derived (see [Ste94, pg. 191] for proof). If we write z; = Viy, where y denotes
the desired coeflicients of the linear combination of basis elements, then the original least
squares problem:

min ||ro — Azgl)2
2eK L (Aro)

can be rewritten in terms of a minimization of the function:

J(y) = [|Bvr — AVyyll2

where 3 = ||roll2 and v1 = ro/||rol|2. Using equation (43) and using the fact that Viyq is

orthonormal, it follows that

J(y) = Vir1(Ber — Hyy)ll2 = [|Bex — Hyll2 (44)

where e; = (1,0,0,...,0)T is a (k 4 1)-vector. Thus the problem of finding the correction
zx which minimizes the residual has been reduced to the problem of finding the vector y
which minimizes J(y). The simple structure of H means that y can be found efficiently if,
for example, a QR factorization of H is maintained; in this case y,, can be determined as

a solution to an upper triangular system.

GMRES is optimal in that it provides the smallest residual for a fixed number of iterations

steps. However, the cost of maintaining this optimality increases with each iteration step.

At the kth iteration:

o The space required is O(k) since the k vectors making up the orthonormal basis have

to be stored.

e The time required is O(k?); this corresponds to the effort required to solve the (k +

1) X Fk least squares system used to minimize ||rg||,.

In practical implementations, GMRES is therefore usually restarted every m iterations.

This restarted form is called GMRES(m).

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 74

In its full (non-restarted) form, the GMRES algorithm is an exact generalised CG method
with gr_;r = r4—; and Z = A [Wei94]. GMRES(m) is a restarted procedure with o}, =
(k—=1) mod o, + 1.

GMRES(m) ALGORITHM [SS86]

1. Initialize

e Choose vector zg

e Calculate 1o = b — Azg and v1 = ro/||7o|2
2. Arnoldi Process

e for j=1,2,... m
for:i=1,2,...,5
hi; = viTAvj
Bjs1 = Avj = L by
hiva,i = 1854l
virr = Vi1 /R

3. Form approximate solution and restart

o Calculate 2, = 2¢ + Viyr where y; minimizes equation (44).
o Calculate ri, = b — Axy,

o If satisfied stop, else set xg = x,, and vy = r,,,/||rm||2 and restart at step (2)

The algorithm performs one matrix vector multiplication (with A) per iteration. At iteration
k, the algorithm performs ¢ = (k — 1) mod m + 1 inner products and ¢ + 1 vector updates.

The algorithm uses ¢ + 4 vectors of storage.

Like the classical conjugate gradient algorithm, full GMRES terminates in m < n steps
given exact arithmetic. Since the residual norm is minimized at each step, the convergence
of full GMRES is monotonic i.e. ||7]|z < [|7i|]2 for all £ > ¢. In addition, it can be shown
that the algorithm cannot break down unless the solution has already been found [SS86].

GMRES(m), on the other hand, usually converges more slowly than non-restarted GMRES.
In fact, GMRES(m) is not guaranteed to converge for general A, and may continue indef-
initely. The likelihood of non-convergence decreases with increasing m and vanishes when

m = n. Like full GMRES, GMRES(m) will not break down unless it has already converged.

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 75

GMRES(m) with a large value of m is often used as a basis of comparison for new algorithms
because of its robustness and good convergence properties. However, for reasonable values
of m (say m > 20), GMRES(m) uses large amounts of memory and it is thus generally not

competitive with other algorithms in terms of space.

BiCG: Biconjugate Gradient Algorithm

The biconjugate gradient algorithm [Fle76] is a reformulation of the classical non-symmetric
Lanczos algorithm. It attempts to generalise the CG algorithm to the non-symmetric case
by maintaining the three term recurrence while sacrificing the orthogonality of the residuals.
In order to ensure finite termination, the algorithm makes use of a “shadow” system based
on AT to construct a sequence of “pseudo-residuals” 71, which satisfies the biorthogonality

condition:
T

~ _ 'T~4_ . .
riry=r7; =0 forj <

and a sequence of “pseudo-directions” py, which satisfies the biconjugacy condition:
ﬁZTAp]‘ = piTATf)j =0 forj<:

The vectors r, and 7 generated by BiCG are scalar multiples of the vectors vy and wy
generated by the non-symmetric Lanczos algorithm started with vy = rg and wy; = 7g

[FGN92, pg. 17].

Weiss [Wei95] shows that BiCG is equivalent to CG applied the double system:

>

Ap =

- A 0 N - [
)]

and b is arbitrary. The residuals are given by:

)G G) ()

The iterates &; of the shadow system ATZ = b converge at about the same speed as the

where

true solution [Son89]; however, and this is one of the main criticisms of BiCG, BiCG does

not exploit this convergence.

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 76

BiCG is an exact generalised CG method which is formulated using a short recurrence.

Using the notation of equations (45) and (46),

R 0 I
Qh—ik = Tp—; and Zp =7 = .
I 0

B1CG ALGORITHM [Fle76]

1. Initialise

ro=b— Ax

fozb—AT$

® PDo=To
® po=To
2. Iterate
o for k=1,2,...

ak—1 = (Fi_yrk-1)/ (Pt APr—1)
Tp = Th-1+ Qp—1Pk—1

Tk = Th—1 — Qg1 Apg_1

= Tho1 — ap_1 AT Pr_y

Bre = (Fri) [(Fi_y7e=1)

Pk = Tk + BrPr-1

Pk = Tk + BrPr-1

The algorithm basically performs twice the work of the CG algorithm for each iteration
because it needs to perform two matrix multiplications (one with A, one with AT). Note,
however, that the matrix multiplications are independent and can be done in parallel. The
algorithm requires storage for 7 vectors (p, p, v, @, 7, and two for the matrix-vector products

Ap and ATp).

Like the CG algorithm, BiCG should terminate in fewer than n steps if convergence occurs.
However, since the residual minimizing property of CG has been lost, BiCG can produce

highly oscillating residuals. In addition, the algorithm can even break down should a zero

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 77

or near-zero denominator occur in the computation of ap or ;. Some breakdowns can be
fixed by simply restarting the algorithm if a zero denominator is detected. Breakdowns
in the computation of 8 which occur because fkT_lrk_l ~ 0 with r,_1 # 0 and 741 # 0
correspond to a serious breakdown in the underlying Lanczos process and may be avoided

through the use of lookahead Lanczos algorithms.

Quantitative analytical results characterizing the convergence of BiCG are either non-
existent or extremely scarce in the literature; however, some bounds on the error for methods

closely related to BiCG are available; see e.g. [FN91] for error bounds on QMR.

Despite its erratic convergence behaviour and the need to perform matrix-vector multiplica-
tions with both A and AT, BiCG is still particularly significant because it lead directly to the
development of several more efficient techniques with faster and/or smoother convergence,

such as CGS, BICGSTAB and QMR.

4.4.4 Conjugate Krylov Subspace Techniques
CGS: Conjugate Gradient Squared

The Conjugate Gradient Squared algorithm [Son89] aims to remedy two weaknesses of
BiCG. Firstly, BiCG ignores the convergence of the pseudo-residuals 7 of the shadow
system ATZ = b, even though the pseudo-residuals can be expected to converge at about
the same rate as the true residuals. Secondly, BiCG involves matrix-vector products with

AT this means that both row and column access must be provided to A.
At iteration k of the BiCG algorithm we have:
= Vi(A)rg and 7 = \Ilk(AT)fo

where Uy, is a matrix polynomial of degree k (cf. Eq. (40)). Now the only time the BiCG
algorithm makes use of AT is when computing 7, which is itself only used in calculating the
inner product fkTrk. Sonneveld observed that this inner product may be instead computed

in terms of A only as follows [Ste94, pg. 221]:
Pk = (W(AT)7o) W (A)rg = 7g (W(AT) W (A)rg = 75 (T3(A))ro

This suggests an algorithm which generates its residuals as r;, = ¥?(A)ry instead of the

standard form r; = VU(A)rg; the inner product fkTrk can then be calculated as fgrk where

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 78

e = ¥ A)rg. Doing this leads to the CGS algorithm, which not only removes the need
for multiplications with AT, but also converges faster than BiCG. This is because ¥(A)
behaves like a contraction operator; by applying W(A) twice, the contraction effect on 7y, is

increased, resulting in faster convergence.

CGS is an exact conjugate Krylov subspace method that can be formulated using terms of
a short recurrence. In terms of the classification of Sec. 4.4.1, gy—; . = 74—;. Z) depends on

k and its exact determination is very complex [Wei94].
CGS ALGORITHM [Vor92]
1. Initialise

[] TOIb—A$0

e 7y is an arbitrary vector such that ro” 7g # 0 e.g. 7o = 70

e po=1
* po=¢q =0
2. Iterate
o for k=1,2,...

Pk = T Tho1

B = pr/pr-1

u=rp_1+ Bqr_1

pr =+ B(qr_1 + Bpr—1)
v = Apy

= Pk/ET)OTU

gy = U — Qv

w=1u-+ g

T = 2p— + aw

TR = Tp_1 — aAw

Sometimes the update to the residual vector in the last line is replaced by the computation
of the true residual r;, = b — Axy; this prevents accumulated cancellation effects which can

occur in finite precision arithmetic when using the updated residual method.

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 79

CGS performs two matrix vector multiplications (both with A), 6 vector updates and 2 inner
products per iteration. Thus each iteration of CGS involves a similar amount of effort to an
iteration of BiCG. Note, however, that the CGS algorithm is not as easily parallelisable as
the BiCG algorithm because the two matrix products are dependent. Storage for 8 vectors

is required.

While CGS generally converges at rate faster than BiCG, it is still susceptible to the same
erratic convergence behaviour and breakdown possibilities as BiCG. The convergence of
CGS is in fact sometimes more erratic than that of BiCG because the contraction effect
of U(A) depends on it being applied to 7o (see [Vor92]); applying W(A) to ¥(A)rg (as
in U%(A)rg) can sometimes result in the norm of ¥?(A)rg being larger than the norm of
U(A)rg. As a result, large local peaks are often observed in convergence graphs of CGS.
These peaks do not appear to delay convergence but can cause troublesome cancellation
effects in the calculation of the updated residuals. The true residual version of the algorithm

does not suffer from this problem but can take longer to converge.

BiCGSTAB: CGS Stabilised

Van der Vorst’s BICGSTAB algorithm [Vor92] attempts to improve the CGS algorithm by
retaining the attractive convergence speed while stabilising the convergence behaviour. The
central idea is to replace the residual matrix polynomial W3(A) with one of form @5 (A)¥;(A)
where ®;(A) will have a more stable contraction effect on ®4(A)rg than ¥;(A). Ideally, one
would like ®4(A) to be related to a class of polynomials with good optimality properties,
such as the Chebyshev polynomials. However, doing this would require complex parameter
estimation (see e.g. [HY81, §6]). Instead, Van der Vorst uses a polynomial which has a

simple recurrence relation; this polynomial is built up in factored form given by
Op(A) = (I — wpA)®r_1(A)
or, equivalently,
Sp(A)=(1 —w A)] —wA)...(I —wiA)

where wy is calculated at the kth iteration step to minimize the two-norm of the residual
T = Pp(A)Vi(A). Note that at step k only wy needs to be determined; the other omega’s
have been defined already in steps 1 through k& — 1 of the algorithm.

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 80

From the form of 7, = ®4(A)¥,(A), we can see that BICGSTAB is a hybrid combination
of of BiCG and GMRES(1), since it combines the residual polynomial Wy (A) of the BiCG
method with the one-dimensional residual minimising effect of GMRES(1) through ®4(A).

A weakness of BICGSTAB is that ®; has only real roots. However, it is known that, for
matrices with complex spectra, optimal reduction polynomials may also have complex roots
[Vor93, §5.4.5]. Gutknecht’s BICGSTAB2 method [Gut93b] extends BICGSTAB by making
use of a quadratic polynomial to expand ®; by a quadratic factor on even-numbered steps.

In this scheme, a two-dimensional minimization is performed. BiCGSTAB2 can thus be

seen as a combination of BiCG and GMRES(2).

The BiCGSTAB(!) algorithm of Sleijpen and Fokkema [SF93] takes the generalisation of
BiCGSTAB to its logical conclusion. This is a robust method which combines GMRES(!)
with BiCG. BiCGSTAB(1) computes the same iterates as BICGSTAB and BiCGSTAB(2)
is mathematically equivalent to BICGSTAB2 in exact arithmetic. However BICGSTAB(2)
is more efficient and more robust than BiCGSTAB2.

BiCGSTAB is an exact conjugate Krylov subspace method that can be formulated using
terms of a short recurrence. In terms of the classification of Sec. 4.4.1, gx—_; p = r4—;. As

for CGS, Z; varies with k but its exact determination is very complex.

BICGSTAB ALGORITHM [Vor92]

1. Initialise

TOIb—A$0

e 7o is an arbitrary vector such that 7o’ 7p # 0 e.g. 7o = 7
s pp=a=wy=1
o vog=po=0

2. Iterate

o for k=1,2,...
Pk = T Th—1
B = (pr/pr-1)/(afwk 1)
Pr = Th—1 + B(Pr—1 — Wr—1V-1)

v = Apy

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 81

o = p/ttop

S = Trp_1— QUL

t= As

w; = tls/tTt

Tk = Tp—1 + apr + wis

TEe = 8§ — Wil

BiCGSTAB performs two matrix vector multiplications (both with A), 6 vector updates
and 4 inner products (2 more than CGS) per iteration. Thus each iteration of BiCGSTAB
is slightly more expensive than an iteration of CGS. Storage for 7 vectors is required (1

vector less than CGS).

BiICGSTAB(2) ALGoriTHM [Vor93]

1. Initialise
o rg=0b— Axg
e 7y is an arbitrary vector such that ro” 7g # 0 e.g. 7o = 70
e pp=wy =1
e u=a=>0
2. Iterate
o for £ =10,2,4,6,...

Po = W2pP0
p1 = Fe Tk B = api/poipo = p1

u=rr— Pu

v = Au
v =0Ty
a = po/y

T=TEp— Qv

r =2+ au

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 82

p1 = T8 8 = api/poi po = p1

v=s5— [v
w = Av

v =wlig
a=po/y

u=r— pPu

T=7—aQv

§=s5—aw

t = As
wlers;,usts;l/stt;T:tTt

2wy = (wo —vwr /p)/T

wgert;T:T—l/
wy = (w1 —vwa)/p
Th42 = T +wT + wWes + au
Thya =T — w18 — wat

U= U — WV — W

8§ =Tp_1— QUL

t= As

w; = tls/tTt

Tk = Tp—1 + apr + wis

TEe = 8§ — Wil

BICGSTAB(!) requires 2{ + 10 vector updates, [+ 7 inner products and 4 matrix vector

multiplications per two iteration cycle. Storage for 2/ + 5 vectors is required [SV95].

BiCGSTAB generally converges slightly faster and more smoothly than CGS; in addition,
the updated residual is generally more accurate than CGS. This behaviour can be attributed
to the residual minimising effect of ®;. However, there are cases where CGS converges well,
but where BiICGSTAB converges slowly, stagnates or even breaks down. Such situations can
occur when wy, is close to zero; this is not uncommon in matrices with complex eigenvalues
with large imaginary parts. In finite precision arithmetic wy & 0 leads to inaccurate BiCG

coefficients (i.e. inaccurate a and) which can upset the convergence [SF93].

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 83

BiCGSTAB(!) generally converges better than BICGSTAB because it performs a better local
minimization through ®; and maintains a more stable underlying BiCG process [SV95]. A
value of | = 2 is usually adequate to achieve good convergence; sometimes, however, a larger

value of [= 4 or | = 8 is necessary.

QMR: Quasi-minimal Residual

The QMR algorithm of Freund and Nachtigal [FN91] attempts to stabilise the irregular
convergence behaviour of BiCG by introducing a relaxed residual minimization property
which is less optimal than that of GMRES, but which can still be implemented using short
recurrences. In addition, look-ahead versions of the QMR algorithm are available [FFN94]

which aim to address the problem of BiCG breakdown.

Like BiCG, the QMR algorithm is based on the non-symmetric Lanczos algorithm. The

recurrence formula of equations (25) and (26) can be written in matrix form as:

AV, = Vk+1gk (47)

ATWk = Wk_|_1f{k (48)

where V is the n X k matrix with columns vy, vo,...,v; and Wy is the n X k matrix
with columns wy, ws. .., ws. Hy and f{k are tridiagonal (k 4+ 1) x k matrices involving the

recurrence coefficients «, # and v and the scaling factors vy = 1/||0k||2 and pr = 1/]|wkl)2

(see [Wei95, §3.1] for their full form).

Now if we let v; = r¢/||rol|2, then the Lanczos algorithm will generate vy, vq, .. ., v spanning
Kr(A,ro) and wy,wo, ..., wy spanning Ki(AT,rg). As is the case for GMRES, the kth
iterate of the QMR algorithm is given by:

Tp = Xo + 2k

where the correction z; is chosen from the Krylov subspace Ky(A,rg). Since vy, vq,..., v
forms a basis for the subspace, z; may be written as z; = Vi y where y denotes the coeflicients
of the linear combination of basis elements. Using this fact and equation (47), the kth

residual is given by:

re=rog— Az =19 — AViy =10 — Vg1 Hry = Vit1(Per — f{ky) (49)

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 84

where 3 = ||ro||2 and e; = (1,0,0,...,0)" is (k + 1)-vector. Note that the development so
far has been very similar to that of GMRES, except now we cannot proceed by using the fact
that the columns V341 are orthonormal, since the short recurrences of the non-symmetric
Lanczos algorithm generate biorthonormal vectors, and not mutually orthonormal vectors
like Arnoldi’s algorithm. In fact, attempting to minimize the two-norm of the residual as
given above would lead to an algorithm equivalent to GMRES, but would involve solving

an n x (k + 1) least-squares problem requiring O(nk*) work and O(nk) storage [Nac91].
Instead, Freund and Nachtigal introduce a (k+ 1) x (k + 1) diagonal scaling matrix given
by

Q, = diag(wr,we, .. cywit1), w; >0, j=1,2,..k+1
into equation (49) which gives:

Th = Vi1 Q5 Qu(Ber — Hyy) = Vi1 Q5 (w1 Bey — Qi y)

Note that there is no known optimality condition for choosing the weights; usually w; =1
for y = 1,2,...,k + 1. Now if we are willing to sacrifice the optimality of a true residual
minimization, we can ignore the V;4; Q7" term and solve a much smaller (k + 1) x k least

squares problem which involves only the bracketed term of rg, i.e.

min [|(w1Ber — Qe Hpy)l|2
yelR*

Thus the expensive true residual minimizing property has been replaced with a cheaper

quasi-optimal property.

QMR is an exact Krylov subspace method that can be formulated with a short recurrence.

In this case, qx—;r = rp—; and
Zr = Wi DT QL QD WE A

where Wy is the matrix of shadow Lanczos vectors from equation (48) and Dy is a k x k

diagonal matrix derived by rewriting equation (27) in matrix form as:

Wlv, = Dy.

QMR ALGORITHM [BBC194]

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES

1. Initialise

[] TOIb—A$0

e 1w is an arbitrary vector such that @ 7o £ 0 e.g. 1wy = 7o

e U =To
o p1 =512
o &= |lwn|
[] ’}/021
[] 7’]0:—1
o 70 = [|roll
[} 002770:0
2. Iterate
o for k=1,2,...

if pr. = 0 or & = 0 method fails

vp = U/ pr

wy, = Wy /&

o = wkTVk; if 6, = 0 method fails
ifk=1

P ="t = Wy

else

Pi = vk — (Elk/€x—1)pr—1

¢ = wr — (Prok/€x—1)qr—1
endif
p= Apk
er = qi p; if ¢, = 0 method fails
Bk = €1/ 6x; if B, = 0 method fails
Vpg1 = P — Brvk
Pr+1 = ||Trg1l2

. T
W1 = A qr, — Brw;

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 86

i1 = [[0rgall2
Ok = prgr/(Ve—1lBe]): 7 = 1/\/@; if 74 = 0 method fails
e = —77k—1,0k713/(5k713_1)
ifk=1
di = mp1;$1 = mp
else
di = mpr + (Or—17)*di-1
Sk = kP + (Op—17k) k-1
endif
T = xp_1 + dg

Tk = Tk—1 — Sk

QMR performs 2 matrix-vector multiplications (one with A and one with AT) per iteration.

Storage for 8 vectors is required.

Freund and Nachtigal [FN91] give general error bounds showing that the upper bound for
the kth residual norm of QMR is greater than that of GMRES by a factor of 7k + 1,
where 7 is a constant related to, among other things, the conditioning of A and Hj. Thus

GMRES and QMR have similar upper bounds on their errors.

Practical experience suggests that QMR converges more smoothly than BiCG, but it is not
necessarily faster. If implemented, the look-ahead steps of QMR make it more robust then
BiCG since they prevent all but so-called “incurable” breakdowns in the underlying Lanczos

process.

TFQMR: Transpose free Quasi-minimal Residual

Since QMR is the result of applying quasi-minimal smoothing to the BiCG algorithm, it
may be also be beneficial to apply quasi-minimal smoothing to the CGS algorithm. Doing
this leads to Freund’s TFQMR algorithm [Fre93] which, like CGS, has the advantage that

it does not involve multiplications with A7,

CGS and TFQMR are closely related since TRFQMR may be derived from CGS by changing
only a few lines in the algorithm and the CGS iterates may be easily recovered from the

TFQMR process.

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES

TFQMR ALGORITHM [Fre93]

1. Initialise

o rg=0b— Axg
e 7o is an arbitrary vector such that ro? 7y # 0 e.g. 7o = 7

¢ W1 =Y1=T70

o vo= Ay
[] dOIO
o 70 = [|roll
L] 002770:0
2. Iterate
o for k=1,2,...

Oho1 = 7§ vp—1
g1 = pr-1/0k-1
Y2k = Y2k—1 — Qk—1Vk-1
for m =2k — 1,2k
W1 = W — W1 AYm
O = [[wm1l]/ T
em = 1/3/14 62,
T = Tm—10mCm
T = € Ok—1
dy, = Y + (0511 / @1)iy
T = Tme1 + T
if 2, has converged stop
pr = Fwapyy
Br = pr/pr—
Yok+1 = Wakt1 + Bryzk

vy, = AYopt1 + Br(Ayk + Brvn—1)

87

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 88

TFQMR performs 2 matrix-vector multiplications (with A). 8 vectors of storage are re-

quired.

TFQMR does not calculate or update a residual explicitly; however, Freund gives an upper

bound for the kth residual given by:
I7kll2 < TeVEk + 1

This is very similar to that for QMR and shows that the two methods can be expected to

show similar convergence behaviour.

Like CGS, TFQMR can break down unless look-ahead steps are incorporated into the

algorithm.

4.5 Decomposition-based techniques

4.5.1 Principles of Decomposition-based Techniques

Decomposition [Cou85] is a divide-and-conquer technique for simplifying the analysis of
complex systems. It involves breaking a complex system up into simpler subsystems,
analysing the subsystems individually and then constructing a global solution by analysing

how the subsystems interact.

Decompositional techniques are best applied to structures where interactions within sub-
systems are strong and more frequent than interactions between subsystems. Such systems
consisting of loosely-coupled nearly-independent subunits are referred to as being nearly
completely decomposable (NCD). The analysis of NCD systems is based on the ideal assump-
tion that interactions within subsystems can be analysed without reference to interactions
between subsystems and vice versa. In practice, this assumption is hardly ever met exactly,
so decomposition will only yield approximate results. Iterative decompositional techniques
are therefore often used to reduce the error in the results to an acceptable level by successive

approximations.

In the context of solving large-scale Markov chains, a chain is referred to as NCD if its
states can be partitioned into disjoint subchains, with strong interactions among the states

of a subchain but with weak interactions among the subchains themselves [Ste94]. Given

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 89

this structure, the probability transition matrix P of an NCD chain can be partitioned into

block form as follows:

Pll P12 to PlN
P21 P22 to PQN

P = . . . (50)
Pyi Pno -+ Pnn

where the magnitudes of the elements in off-diagonal blocks (which represent the interactions
between subchains) are assumed to be small in comparison to the magnitude of elements in

the diagonal blocks (which represent interactions within subchains).

We wish to solve for the steady state probability vector © given by
7 =mP subject to |[|r|1 = 1.

Partitioning the steady state vector according to the block structure of Eq. (50), i.e. @ =
(71, 72,...,TN), we can obtain an approximate solution for the steady state probability
vector 7 by ignoring the off-diagonal blocks and solving for the steady state distribution of

each diagonal block P;;. However, we cannot solve directly for
T = by

since each P is a substochastic matrix. Instead, we take the normalised eigenvector u;
corresponding to the Perron root A; (the eigenvalue closest to one) as the probability vector

of block 7. That is, for each block ¢ we solve for u; in
w; Py = ANy subject to ||u]]r =1
Each u; is a conditional probability vector in the sense that u; is the probability vector of

the states within a block, given that the system is in one of the states in the block.

To construct the full steady state solution, we also need to find the probabilities of transi-
tions between blocks; these probabilities are given by the N x N aggregation matrix A with
entries

aij = ¢iPije

where e = (1,1,...,1)T and

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 90

Unfortunately, the exact steady state distribution 7 is not known; however, we can estimate

b; by:

¢i =~ L
iy

Given an irreducible stochastic matrix P partitioned as in Eq. (50), the resulting aggre-
gation matrix A will also be stochastic and irreducible [Ste94, pg. 290-291]; thus A has a

unique steady-state solution & given by:
E=EA subject to ||€]| =1
Finally, the approximate stationary probability distribution can be calculated as:

T = (51“1752“27 .- '7£NUN)

This approximation procedure can be transformed into an iterative algorithm having the
general form given below [Ste94]:
1. Initialise 7(® = (7r§0),7r£0),...,7r](\9)) as the initial approximation to © and set the
iteration number m = 1.
2. Fort=1,2,..., N set

m—1)

o
(m—l) _

3. Construct the N x N aggregation matrix A1)

with elements:

(A" 1)y = 6"V Pye

K3

4. Determine the steady state distribution £~ of matrix A(™~1 by solving:

gmn=1) gln=1) — ¢(n=1) " gubject to Hf(m_l)Hl =1

5. Use a block Gauss-Seidel operation to compute a new approximation to the steady

state distribution Fz(m) using ¢~V £0m=1) and the blocks of matrix P.

6. Test 7("™) for convergence. If 7("™) has not converged, set m = m + 1 and go to step

2. Otherwise 7(™) is the solution vector.

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 91

There are many such iterative aggregation-disaggregation (IAD) algorithms in the literature
[CS85, CS84, KMS84, Sch86], all of which are closely related to one another. Two of the
most popular TAD algorithms are the KMS (Koury, McAllister and Stewart) algorithm
[KMS84] and the Takahashi IAD algorithm [Ste94, pg. 314-315]. These two methods
essentially differ from one another in their Hth step, i.e. how the new approximation to
the steady state distribution is computed. The KMS algorithm uses a block Gauss-Seidel

operation which involves solving for 7(™) from the set of equations given by
m) = w P+ o w " P+ 3 2 By
i<k P>k
where k= 1,2,...N and

2 = (ol e YL el).

1 1 2

The Takahashi algorithm is based on the idea of isolating each block k£ and lumping all

states outside the block into a single state. Here the 5th step involves solving for zj in

A =M py 4 > fﬁm_1)¢§m)ij +> fﬁm_1)¢§m_1)ija
i<k i>k
where k= 1,2,...N and
(m)

“k

Or =

[Ei

Then 7(™) can be computed as

R (3 2 N S CC

4.5.2 Aggregation-Isolation algorithm

Abderezak Touzene’s Aggregation-Isolation (Al) algorithm [Tou95] and its relaxed variant
Aggregation-Isolation Relaxed (AIR) are recent algorithms for solving large-scale Markov
Chains. Al and AIR are based on decompositional techniques, which makes them suited to

solving NCD chains. However, they are also applicable to solving general chains.

The AI and AIR algorithms have two characteristics which distinguish them from the host

of other steady state solution methods:

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 92

¢ Low memory requirements. Given n states, the algorithm requires storage for
the one-step transition matrix P and only 3 n-vectors, compared to storage for P
and between 6 and 12 n-vectors for conjugate gradient-like methods. Furthermore,
the algorithm can be implemented using only column access to P (row access is not

required); this allows for the use of a space-efficient sparse matrix representation.

¢ Good convergence behaviour. Al exploits the advantages offered by decompo-
sitional techniques and the so-called “Gauss-Seidel” effect (making use of values as
soon as they are available) to achieve rapid smooth convergence. AIR also takes ad-
vantage of overrelaxation techniques to further accelerate the convergence. Numerical
experiments show that Al and AIR are competitive with and often outperform even

the best classical and Krylov subspace methods.

Given n states, each iteration of the Al algorithm consists of n — 2 steps. We consider the

general step ¢:

1. The states of a Markov chain are partitioned into three classes: a left macrostate (1)
consisting of states (1,2,...,7), a single “isolated” state (¢4 1) and a right macrostate
R consisting of states ((i 4+ 2),...,n). These three state classes are used to form a
3 x 3 aggregration matrix A giving the transition probabilities between these classes.

This transition probability matrix takes the form:

(L) (t+1) (R)

(L) l—a—-c ¢ a
A= (i+1) d Pit1,i+1 b
(R) / P P

This system is completely specified by the six parameters a, b, ¢, d, e and f where:

e a is the transition probability from (L) to (R),
e b is the transition probability from (i + 1) to (R),
e cis the transition probability from (R) to (i + 1),
e d is the transition probability from (i + 1) to (L),
e ¢ is the transition probability from (R) to (i 4 1),
o [is the transition probability from (R) to (L).

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 93

Calculating these system parameters from scratch at every step ¢ would be a tedious
task involving much computation. This turns out to be unnecessary since we can take
advantage of the coherence both between iterations and within steps. In the following,
we will use subscripted variables such as a;, b;, ¢;, d;, e;, f; to indicate the value of the

system parameters at step 1.

The values of b; and d; are given by

n 7

bi= > pigik and di =D piyrp=1— pip1,ip — b
k=142 k=1

Note that b; and d; remain constant through iterations since they do not depend on

7; they can thus be calculated once and then stored in a vector b.

The values of ¢; and ¢; are easily computed as:
¢, =cc;/(lir+ 1) and e =ee;/(li-1 — Tit1)

where

7 n
cei = (Y _mpjae1) and ee; = () mipjit1)
The values of a; and f; are more complex and are given by

a; = aa;[(l;y +m;) and fi = ffi/(uisg —mi+1)

where

i—1 n n
(Z Z ijjk) + Z i Pik

aa; =
=1 k=it2 f=it2
n 7 7
I = (> Z?ijjk) — > Tip1Pir1k
=it k=1 k=1

Touzene has derived simple update formulas which allow aa; and ff; to be expressed

in terms of the previous step’s parameters as follows:
aa; = aa;_1 —cc; —mi1bi1 and ffi = ffio1 —mipadi +eeiq

For the full derivation of these update formulas, see [Tou95].

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 94

2. Once the system parameters have been calculated, the aggregation matrix A is then
solved for its steady state distribution to determine:
e [;, the approximate steady-state probability of being in the left macrostate (L),
® T;11, the approximate probability of being in state (i 4+ 1),

e u;, the approximate probability of being in the right macrostate (R).
The values of [;, m;41 and u; are determined from solving:
(L i1 wg) = (L Ty wg)A subject to I+ w41 +u; =1

In his paper, Touzene does not dictate what method should be used to solve this
system. Since the system is so small, a direct method such as Gaussian elimination
or Grassmann’s method is appropriate. In fact, using Grassmann’s method leads to

this accurate subtraction-free algorithm:

a = af(et])
b= b/(e+f)

Ty = (ctad xe)/(d+ 1V f)
v = d i x b

I = /(147 +d)
Tig1 = TWiyq 1

v = o' *l

To make this solution as fast as possible in real implementations, @, b, ¢,d,e and f can

be stored in registers and the reduction can be carried out in place.

3. Set i =i+ 1 and go to step 1. In the next step, the state (i + 1) will be absorbed into
(L) and state (¢ + 2) will be removed from (R) and isolated.

This general step can now be incorporated into an iterative algorithm:

1. Initialise

e Compute vector b

e Choose initial probability vector x(®)

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 95

o Set m=1
2. Iterate

(a) First step (i = 1):
o Isolate (L),(2),(R) with (L) =1and (R)=(3...n)
o Compute the parameters of the 3x 3 aggregation matrix. Shortcut parameter
calculations for the first step are:
n n m—1
€1 = P12, @1 =];))Plk and fi = 1 _ifn:flzrlg (;_1)

(m) -(m)

e Solve for Iy = m; 7, piy 7, uq

(b) General step (i =2,...,n —3)
o Set u; = u; — ﬂl(fl)
o Isolate (L),(i41),(R)
o Compute the parameters of the 3 x 3 aggregation matrix
e Solve for [;, ﬂz(fl), Uu;
o Set li =L+ 7))
(c) Last step (i = n—2)
e Isolate (L),(n—1),(n)
o Compute the parameters of the 3x 3 aggregation matrix. Shortcut parameter

calculations for the last step are

€n—1 = Pnn—1 and fn—l =1- Pnn — €n-1

(m)
1

e Solve for 7, "} and m,

(d) Normalise 7("™) so that ||7(™)||; = 1 and test 7(™) for convergence. If 7(™) has

converged then stop, else set m = m + 1 and iterate

The AT algorithm can be adapted to incorporate an SOR-like relaxation step of form:

m—1)

(m)

T, = wm, —|—(1—w)7r2(for i=1,...n

where 1 < w < 2. The method is then known as Aggregation-Isolation Relaxed or AIR;

setting w = 1 corresponds to the straightforward Al algorithm. Unfortunately, just as is

CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 96

the case for SOR, there is no known way of calculating the optimal value of w in the general

case.

Touzene recommends a simple adaptive scheme were w is set to 1 and then increased in
small steps (say 0.01). Every few iterations, the convergence rate is checked to see if the
new value of w is an improvement. If so, w is further increased; otherwise w is set to:

(w-1)

=1
w + 5

A table-driven scheme can be used to provide a more effective relaxation technique. We
maintain a small table T of n entries T[0],T[1],...,T[n — 1], where entry T'[k] corresponds
to the observed improvement in convergence rate obtained using a relaxation parameter
value of

wp=14k/n.

At regular intervals - say the beginning of every sth iteration - the table is used to select
the value of wp which has yielded the best improvement in convergence rate so far, i.e. we
choose

wp =14 k/n with k such that T[k] = max T[k]
0<k<n

Then s iterations of algorithm are performed using wy; as the relaxation parameter, after

which the convergence rate at the current iteration m is calculated as

Hr(m—s) _ T(m)Hoo
Comp =

77|

where (™) is the residual vector as calculated at iteration m. T[k] is then updated to reflect

the new value of ¢,,, using an exponentially weighted moving average of form:
Tk] = acp + (1 — a)T'[k]

where 0 < o < 1.

The algorithm requires a startup phase to seed the table T" with initial convergence rates
for the entries. Once this has been done, the algorithm is effective at finding values of w

which maintain a good convergence rate.

Chapter 5

Interface Language Specification

5.1 Introduction

An interface language for a Markov chain analyser must meet design criteria relating to

power of expression and ease of use. By examining the facilities provided by existing Markov
chain analysers (such as USENUM [Scz87, MCS88, SMC90] and MARCA [Ste91, KS95])
and by considering the needs of likely user applications (such as the Petri net tool DNAnet

[ABK95]), an interface language has been designed to meet the following general require-

ments:

e There should be a flexible high-level model description which can be used by a state
space generator as a basis for constructing a Markov chain; this model description
should be powerful enough to support a variety of formalisms such as Generalised
Stochastic Petri nets, queueing networks etc. The language given here meets this
requirement by making use of general C/C++ constructs for the description of model

components which govern the generation and solution processes.

It should be possible to verify functional properties which should hold on the model.
The interface language allows the user to specify functional properties which should
be checked during the state generation process, such as system invariants and the

existence of deadlocks.

There should be provision for a variety of performance results; these include state

measures which compute the value of a real expression at every state (such as buffer

97

CHAPTER 5. INTERFACE LANGUAGE SPECIFICATION 98

occupancy), and count measures which measure the occurrence rate of events (such
as transition throughput). The language enables the user to specify both types of

performance result using the power of general C/C++ expressions.

e The user should have control of aspects of the state space generation process and the
solution process used to find results. The language makes provision for user guidance
of both the state generation and steady state solution processes and also allows the

user to select the desired level of feedback.

e The language should use concepts and constructs likely to be familiar to target users.
Since the language presented here has a simple TEX-like syntax and uses elementary

C/C++ expressions, it should be familiar to users in academic environments.

Note that, while some syntax checking can be done during parsing of the input, the syntax
of C/C++ expressions etc. can only be checked by the C++4 compiler when an attempt is
made to compile the self-analysing C++4 file generated by the parser.

The following symbols are used in the definition:

{ X }* denotes one or more occurrences of X

| separates alternatives

As in TEX, comments begin with %; the remainder of the input line is ignored.

5.2 Language elements

5.2.1 Model Description

The underlying Markov chain of a system is likely to involve many thousands of states and
transitions. To avoid explicit enumeration of these states and transitions, a high-level model
description is necessary. This model description specifies the components of a general state
of the system, the conditions on and effects of transitions between states and an initial state

of the system.

A Markov chain generator maps this high-level model description onto a low-level system

representation consisting of the state space and transitions between states.

CHAPTER 5. INTERFACE LANGUAGE SPECIFICATION 99

model _description = \model {

{
state_vector | initial_state | transition_declaration |
constant | help_value | invariant | state_output_function |
primary_hash_function | secondary_hash_function | additional_headers

I

State Descriptor Vector

The state descriptor vector consists of discrete components which, when taken together,
describe a state of the system; each unique assignment to these components corresponds to

one state.

An arbitrary vector of elementary C+4+ variables (int, long, short, char etc.) is ideal for
this purpose; note that elements with float or double types are not allowed since the state

space must be discrete. Variables are declared just as they are in C/C++:

state_vector = \statevector{

{ <type> <identifier> {, <identifier> }x; }x

type = basic C/C++ variable type;

identifier = valid C/C++ identifier;

Initial State

An initial state must be specified for reachability analysis purposes; this can be done using

simple C/C++ assignments to the elements of the state vector.

initial_state = \initialstate {

{ <assignment> }x

assignment = C/C++ assignment to elements of the state vector

CHAPTER 5. INTERFACE LANGUAGE SPECIFICATION 100

Transition declarations

Transitions describe how the system moves from state to state (via updates to the current
state vector). Since it would be virtually impossible to enumerate successor transitions
for every individual reachable state, a more general scheme (similar to USENUM) is used.

Possible transitions from the current state are specified by describing;:

e one or more enabling conditions involving elements of the state vector corresponding

to the current state.

e an action to be taken if the transition is executed; this will involve an assignment to

the state vector elements of the next state.

e an indication of whether the transition from the current to the next state is ¢timed or

instantaneous (i.e. the transition takes no time to execute).

e a rate (for timed transitions) or relative weight (for instantaneous transitions) should
also be specified; note that these rates and weights may be denoted by (possibly state-
dependent) arbitrary expressions. If a non-positive rate is encountered during state

exploration, it will be ignored during analysis.

e an optional priority which allows transitions of a higher priority to preempt lower

priority transitions of the same type (i.e. timed or instantaneous).

Transitions from the current to the nezt state descriptor vector can be achieved through
C/C++ assignment statements, while enabling conditions can be given using C/C++
boolean expressions. Since the conditions and actions will form part of transition code
encapsulated in a C+4 State object, elements of the current state descriptor (as declared
in Sec. 5.2.1) can be referred to directly while elements of the next state descriptor can be

accessed via a next pointer.

transition_declaration = \transition{<identifier>}{
\condition{<boolean expression>}
\action{ { <assignment> }x }
\rate{<real expression>} | \weight{<real expression>}

\priority{<non-negative integer>}

CHAPTER 5. INTERFACE LANGUAGE SPECIFICATION 101

boolean expression = C/C++ boolean expression
real expression = C/C++ real expression

assignment = C/C++ assignment

Constants and Help Values

It is convenient to allow for constant declarations and complicated formulae which are used
repeatedly during the evaluation of transition conditions and rates/weights. Such values

are called help values; this is a concept adopted from USENUM.

constant = \constant{<identifer>}{value}

help_value = \helpvalue{<type>}{<identifier>}{<expression>}

Invariants

Depending on the application domain, there may be invariant conditions which should not
be violated during the generation of the state space; these invariant conditions can be
expressed as C/C++ expressions. The state generator will issue a warning if it encounters

any state which violates an invariant.

invariant = \invariant{<expression>}

Custom state output function (optional)

If a deadlock or a violation of a user-specified invariant occurs, the state generator reports
the event and outputs the state responsible for the error. A simple default output function

is provided; however, the user can also provide his/her own output function if desired.

state_output_function = \output {

{ <statements> }x*

CHAPTER 5. INTERFACE LANGUAGE SPECIFICATION 102

statements = C++ statements to output elements of the state vector

Custom state hash functions (optional)

The state generator uses a method of probabilistic state space storage which requires the
computation of two hash keys for each state. The primary hash key is a 14-bit positive
integer (from 0 to 16383), while the secondary hash key is a 32-bit integer. The functions
which perform the key computations should be designed such that, in the event of a primary
key collision, a secondary key collision is very unlikely. Default functions are provided, but

the user may wish to use application-specific knowledge to write better functions.

primary_hash function = \primaryhash {

<C++ function body returning an integer from 0 to 16383>

primary_hash function = \secondaryhash {

<C++ function body returning a 32-bit integer>

Additional headers

Should the user require any C/C++ functions which are not usually included by de-
fault (such as the advanced mathematical functions to be found in math.h), the necessary
#include statements can be placed in a header declaration. Class definitions of user-defined

classes can also be placed here.

additional_headers = \header {

<C++ include statements and/or class definitions>

5.2.2 Generation Control

The user is able to control aspects of the state generation process, such as the mazimum

number of states to be generated or the maximum cpu time that should be spent on the

CHAPTER 5. INTERFACE LANGUAGE SPECIFICATION 103

generation. The user can also specify the level of feedback by specifying the report style

and the report interval.

generation_control = \generation {
{ \maxstates{<long int>} | \maxcputime{<seconds>} |
\reportstyle{full | short | none} | \reportinterval{<long int>}
F*

5.2.3 Solution Control

Once the state space has been generated (using the model description), the resulting state
transition matrix must be solved for its steady state distribution. The user is able to guide

this steady state solution process through parameters such as:

o Solution Method. Possible solution methods include:

— Direct Methods (Gaussian Elimination, Grassmann)
— Classical Iterative Methods (Gauss-Seidel, fixed SOR, dynamic SOR)

— Krylov Subspace Techniques (BiCG, CGNR, CGS, BiCGSTAB, BiCGSTAB2,
TFQMR)
— Decomposition-based Methods (Al (Aggregation-Isolation), AIR)

Choice of which algorithm to use will depend on the characteristics of the generator
matrix ¢ e.g. for very small state spaces direct methods are generally more efficient
than iterative methods, while decompositional methods are useful when the Markov
chain is nearly completely decomposable (NCD). An automatic algorithm selection

(based on the number of states in the model) is also available.

o Accuracy. This specifies the convergence criterion for the iterative methods. These

methods will terminate after ¢ iterations with an “accuracy” of € if:

Hx(i) _ x(i—k)Hoo

[E3041 e

< €

CHAPTER 5. INTERFACE LANGUAGE SPECIFICATION 104

where k depends on the particular method and ¢ can vary between 1072 and 2.22045 %
10716 (IEEE-754 machine epsilon for double precision). Reported performance results

are rounded to reflect this accuracy.
o Mazimum Iterations (within which iterative methods should converge)
o Relazation Parameter (SOR). Parameter estimation can be either fixed or dynamic.

o Start Vector (useful when performing a sequence of experiments)

As with the generation of the state space, the user is able to set the required level of

reporting feedback.

solution_control = \solution {
{ \method{gauss | grassman | gauss_seidel | sor | bicg | cgnr |
bicgstab | bicgstab2 | cgs | tfqmr | ai | air | automaticl} |

\accuracy{<real>} |
\maxiterations{<long int>} |
\relaxparameter{<real> | dynamic} |
\startvector{ <filename> } |
\reportstyle{full | short | none} |
\reportinterval{<long int>}

T

5.2.4 Performance Measures/Results

Performance results provide a backward mapping from low-level results like probabilities
of states and rates of transitions to higher-level quantities like throughput or mean buffer
occupancy. Performance measures can generally be classified as state or count measures;
the concept of state and count measures originated in the HIT-tool [BS87] and has been

adopted by other tools such as USENUM.

\performance_measures = \performance {

{ state_measure count_measure }*

CHAPTER 5. INTERFACE LANGUAGE SPECIFICATION 105

State measures

A state measure is used to determine the mean and variance of a real expression which is
defined at every state in the system. e.g. the average number of tokens on a particular
place of a Petri net or some transition’s enabling probability. The mean, variance, standard

deviation and distribution of state measures can be computed.

state_measure = \statemeasure{identifier}{
\estimator{ {mean | variance | stddev | distribution}* }

\expression{<real_expression>}

Count measures

A count measure is used to determine the mean rate at which a particular event occurs e.g.

the rate at which a transition fires yields transition throughput.

The occurrence of an event is specified according to three conditions:

e a precondition on the current state that must be true.
e a postcondition on the next state that must be true.

o transitions which must be fired during the transition from the current to the next

state.

The conditions can be specified as C++ expressions while the transitions can be given in a
list. Note that only the mean of count measures is available, since computation of higher

moments requires transient analysis.

count_measure = \count_measure{identifer}{
\estimator{mean}
\precondition{<boolean expression>}
\postcondition{<boolean expression>}

\transition{ all | {<identifier>}x* }

CHAPTER 5. INTERFACE LANGUAGE SPECIFICATION 106

5.2.5 Output options

Besides the desired performance results, the user is able to control the level of intermediate
output detail, including a list of the final states with their steady state probabilities and

the generator matrix).

output_options = \outputoptions {

{ \statelist{<filename>} |
\steadystatevector{<filename>} |
\transitionmatrix{<filename>} |
\performanceresults{<filename>}

I

Chapter 6

The DN Amaca Performance

Analyser

6.1 Introduction

The concepts discussed in the previous chapters have been implemented in the DNAmaca
(pronounced “dee-nam-ack-a”) performance analyser. DNAmaca provides a complete per-
formance analysis sequence including model specification, state space generation, functional

analysis, steady state solution and the computation of performance statistics.

6.2 DNAmaca Components

Fig. 15 illustrates the major modules of DNAmaca. Control is passed from module to

module as follows:

e The parser translates the user’s high-level model description into a C++ class which

describes the same model.

e The C++ class is then compiled and linked with common library routines to form a
standalone state space generator for the model. The state space generator uses a
probabilistic exploration algorithm incorporating on-the-fly vanishing state elimina-

tion to generate all reachable tangible states. The infinitesimal generator matrix)

107

CHAPTER 6. THE DNAMACA PERFORMANCE ANALYSER

Model
Description

Parser

User
Code

|

State Space
Generator

|

Transition
Matrix

|

State Space

108

Performance
Analyser

Common Library
Routines

Functional
Analyser

|

Steady State
Solution

|

Steady State
Solver

Figure 15: Main Modules of the DNAmaca Markov chain analyser

CHAPTER 6. THE DNAMACA PERFORMANCE ANALYSER 109

which describes the transition rates between tangible states is also generated during

this process.

e The functional analyser examines the state transition matrix) to check if the
Markov Chain is irreducible, i.e. if the states form a single strongly connected com-
ponent. If the chain is irreducible, it is possible to solve for its stationary distribution

and control is passed to the steady state solver.

e Given a chain of n states, the steady state solver determines the stationary dis-

tribution 7 = (71, 72,...,m,) by solving the set of n steady state equations given

by

7)) = 0 subject to Zm = 1.

=1

e Finally, the user code is linked with common library routines to form a performance
analyser. The performance analyser uses the steady state solution in combination

with state space information to produce performance results.

The following sections describe each component of DNAmaca in detail.

6.2.1 The Parser

A simple recursive descent parser [ASU86] implements the interface language described in

Chapter 5. The parser accepts a user data file containing:

¢ A model description including the format of the state descriptor, an initial state

and rules governing transitions between states.

o A description of performance statistics to be computed in the form of state or

count measures.

e User options relating to state space generation and steady state solution, such as

desired accuracy or choice of solution method.

If there are no syntactic errors, the backend of the parser generates the user code necessary

for state space exploration and performance analysis. The user code is encapsulated in a

CHAPTER 6. THE DNAMACA PERFORMANCE ANALYSER 110

C++ State class. This mechanism ensures that every model presents a uniform high-level
interface to external program modules such as the state space generator and performance

analyser. In particular, the generated State class includes methods to:

e setup the current state as the initial state of the system.

e determine the set of enabled transitions at the current state.

e fire any enabled transition to determine the successor states of the current state.
¢ determine the (possibly state-dependent) rate or weight of any transition.

e compute the current state’s primary and secondary hash keys needed by the proba-

bilistic dynamic hash compaction technique (cf. Chapter 3).
e check that any user-specified invariants apply to the current state.

e compute performance statistics for the current state in the form of state and count

measures.

Since this high-level interface does not change from model to model, the relatively small
amount of code found in the model-specific State class can now be compiled and linked
with pre-compiled external modules to produce a state space generator and a performance

analyser for the model. This reduces compilation time considerably.

6.2.2 The State Space Generator

The probabilistic dynamic hash compaction technique described in Chapter 3 has been
implemented in DNAmaca as a Generator class. The Generator class interfaces with the

user code through the State class and contains three main data structures:

¢ A hash table which is used to store and to search for states according to their primary

and secondary hash keys. The hash table has 2!* rows and uses 32-bit secondary keys.
¢ A tangible state stack for storing unexplored tangible states.

¢ A vanishing state stack for temporary storage of vanishing states during vanishing

state elimination.

CHAPTER 6. THE DNAMACA PERFORMANCE ANALYSER 111

The Generator class also contains an explore() method which implements the state space

exploration algorithm given in Fig. 11.

We will demonstrate the effectiveness of this state space generation technique using the
benchprod Stochastic Petri Net model shown in Fig. 16 [CCM95]. Benchprod is a scalable
model of the Oki Electric Company (Japan) production line and is a popular test case for

state exploration algorithms.

tuc=1,250000
thui1d=0, 200000
£Fbuild=0,400000
ttest=0,466048
tfailtest=0,000330

Figure 16: The benchprod scaleable stochastic Petri net model

The graph on the left of Fig. 17 compares the dynamic probabilistic hash compaction
technique used by DNAmaca with that of the exhaustive dynamic storage technique used
by the USENUM analyser [Scz87] in terms of memory needed to generate the state space
of the benchprod model. The results were obtained on a Sun SPARCclassic with 64MB
memory and memory utilization was measured with the UNIX top utility. The space saving

advantages of using a probabilistic technique are clear.

The table on the right of Fig. 17 presents the corresponding state space generation times
(CPU and system time, as given by the clock() system call) for systems of up to 2 million
states. It is interesting to note that, even on a SPARCclassic (a machine only approximately
1.5 times as powerful as a 33MHz 486), our state exploration method outperforms a parallel
exploration technique [CCM95] running on a CM-5 with 32 nodes, each of which corresponds
to a SPARC?2 workstation with 32 Mbytes RAM. For a 511588 state benchprod model, the

CM-5 generates the state space at a rate of 1.507 milliseconds per state, while we measured

CHAPTER 6. THE DNAMACA PERFORMANCE ANALYSER 112

k | number of | generation time | time/state
states (seconds) (millisecs)
] 1 172 0.12 0.709
2 2359 1.51 0.641
i 3 11386 8.05 0.707
& 4 32653 24.17 0.740
é 5 71560 55.01 0.769
z] 6 133507 108.26 0.811
g 7 223894 186.01 0.831
i 8 348121 292.60 0.841
9 511588 442.14 0.864
10 719695 645.47 0.897
] 11 977842 887.32 0.907
12 1291429 1215.89 0.942
o ‘ ‘ ‘ ‘ 13 1665856 1625.18 0.976
0 500000 1e+065‘a‘esl.5e+06 2e+06 2.5e+06 14 2106523 2 147 10 1019

Figure 17: Comparative memory use between exhaustive (USENUM) and probabilistic
(DNAmaca) state space exploration techniques (left) and state space generation times for
DNAmaca (right) for the benchprod model

0.864 milliseconds per state.

DNAmaca also implements on-the-fly elimination of vanishing states, which is of particular
use for those variants of stochastic Petri nets which include timeless transitions. We will
illustrate the effect of vanishing state elimination using an SDL-net model of the InRes
(Initiator-Responder) communication protocol [Hog89]. SDL-nets [BKKK95] are a subclass
of queueing Petri nets [Bau93], which are themselves coloured Generalised Stochastic Petri
nets with special timed and immediate queueing places. Note that it is not necessary for the
reader to be familiar with SDL-nets or QPNs to understand what follows; the example is
used only to illustrate the effectiveness of on-the-fly vanishing state elimination on a timed
transition system representation which supports timeless transitions. Fig. 18 presents an
overview of the SDL-net model [Kab95] of the InRes protocol which was constructed using
the QPN-Tool [BK94]. The model has 208702 states, 73735 of which are tangible and
134967 of which are vanishing.

Table 4 shows the effect of on-the-fly vanishing state elimination applied to the InRes
model. As expected, vanishing state elimination leads to a decrease in the number of
states generated, memory usage and transition matrix size. There is also an increase in

the number of transition firings owing to the repeated exploration of clusters of vanishing

CHAPTER 6. THE DNAMACA PERFORMANCE ANALYSER

User Initiator Process

113

User Responder Process

ICONreq, IDATreq ICONind ICONresp, IDISreq
INITIATOR PROCESS RESPONDER PROCESS
InitiatorQCap
O Initiator) Responder(Cap
7 Ea“éi Responder(] (:)
ol EEB 4

IDisconnected

.

] w§§§::j<%1\\15
/+DR,—IDIS d +IEUNreq,/lCR &1

W
IDwsLSﬁ»_

ooy g

f/T T

W ID-Q&DSEZ

T,resen Tiksetl) 1“ IR etliZ
+T,disc, ID!’md O O
i B
7 ,%" T I&%NCW T, In\rSmd

]

ITwmeuutl

IT1meout2 I WEC

to_ newﬁﬂy ma

IResetZt %
P
O

BT, 4T, IDES(md
ICounter

=

Ha

—_—

Figure 18:

\\%Q-Lose
+IDISreq,-DR +ICDN;§ED -CC

RConnectg:d

—=’:
+CR=ICOMTnd ppfes) gsed
S

WEHEC{

cc, DR
+CR,-ICANING RO%glLosel
™
R'w'a'l't/
CR

o "T{SE
;/@a

—) 'd?-.

\a

The InRes SDL-net model

Without on-the-fly vanishing
state elimination

With on-the-fly vanishing
state elimination

States generated 208702 73735
Generation time (CPU seconds) 143.51 132.53
Memory used (KBytes) 4992 2804
Non-zero entries in transition matrix 427651 295571
Transitions fired 427651 520699

Table 4: The effect of on-the-fly vanishing state elimination on the InRes queueing Petri

net model

CHAPTER 6. THE DNAMACA PERFORMANCE ANALYSER 114

states. Remarkably, even though more transitions are fired, the generation time with on-
the-fly elimination is less since vanishing states need not be stored in the hash table, nor

do they need to be written to secondary storage.

6.2.3 The Functional Analyser

It possible to solve for the stationary distribution of a continuous-time Markov chain if
and only if the chain is irreducible, i.e. if every state communicates with every other state
(cf. Chapter 2). DNAmaca thus includes a functional analyser which checks that the
Markov chain given by the infinitesimal generator matrix ¢ is irreducible. If the chain
is not irreducible, but can be made to be so by eliminating transient states, the analyser

performs a remapping of the states.

The analyser uses a strongly connected components algorithm [Baa88, pg. 193-197] to di-
vide the states into recurrent and transient state classes. There are three possible outcomes

of the analysis:

o The state graph consists of one recurrent state class only. In this case, the states in ¢)
form a single strongly connected component of states and the Markov chain formed

from ¢) is irreducible. The functional analyser takes no further action.

o The state graph consists of one recurrent state class and one or more transient state
classes. In this case, the states in) consist of several transient states and a single
final strongly connected component of states. Since the stationary probability of
being in each of the transient states is 0 and the transient states have no effect on the
transitions between recurrent states, the transient states may be eliminated from Q).
The functional analyser performs this remapping to leave a state graph consisting of

1 recurrent state class only.

e The state graph consists of more than one recurrent state class. In the case, the
Markov chain is reducible and it is not possible to solve for the chain’s stationary

distribution. In this case, the solution process is abandoned.

The strongly connected components algorithm is based on a depth-first search. It has

time complexity O(e) where e is the number of edges in the state graph, or, equivalently,

CHAPTER 6. THE DNAMACA PERFORMANCE ANALYSER 115

the number of non-zero entries in ¢). Since the algorithm has linear complexity and the
algorithm can be carried out on a copy of () stored in main memory, the functional analysis
phase is substantially faster than the state space generation phase or the steady state
solution phase. The space complexity of the algorithm is O(n + €) since space is needed for

storing the e non-zero entries in (), as well as a DF'S stack of maximum size n.

6.2.4 The Steady State Solver

DNAmaca implements the steady state solvers described below (cf. Chapter 4):

¢ Direct Methods: Sparse Gaussian Elimination and Grassmann’s method. These
methods are very accurate but are only suitable for the solution of small models since
they have time complexities of O(n®/3) and O(2n°/3) respectively. Grassmann’s
method is thus the default solution method for models of up to 250 states while

sparse Gaussian elimination is the default solver for models of up to 500 states.

¢ Classical Iterative Methods: Gauss-Seidel, fixed SOR and dynamic SOR. Dynamic
SOR is the most effective of these methods and is used as the default solver for models

of up to 20000 states.

¢ Krylov subspace techniques: BiCG, CGNR, CGS, BiICGSTAB, BiCGSTAB2 and
TFQMR. CGS is used as the default solver for models of up to 50000 states since it
exhibits rapid convergence and has the lowest memory requirements of the methods

in this class.

¢ Decompositional techniques: Al and AIR. AIR with table driven relaxation has
very low memory requirements and achieves rapid and smooth convergence once its
initialisation phase has completed. It is thus the default solver for models with more

than 50000 states.

For all of these techniques, it is critical to use an efficient scheme to store the transition ma-
trix ¢ in memory, since the storage of this matrix usually dominates the space requirements
of the entire performance analysis sequence. Two observations are helpful in designing an

efficient storage structure:

CHAPTER 6. THE DNAMACA PERFORMANCE ANALYSER 116

e Most iterative methods (including SOR, CGS, BiCGSTAB, BiCGSTAB2, TFQMR,
AT and AIR) require column access, but not row access, to the transition matrix).
This is because these methods access the elements of () in the same fashion as a matrix

multiplication operation of the form Q7 z where z is the current solution vector.

e Since transition rates are very often fixed and are seldom state-dependent, many of
the entries in () will have the same value. Furthermore, all iterative methods do
not modify the entries of ¢J. Thus, instead of using a double precision floating point
number to denote each entry in (), a smaller pointer into a table of common transition

rates can be used.

Fig. 19 shows DNAmaca’s transition matrix data structure for storing the n x n transition
matrix ¢}, as used by most of DNAmaca’s iterative methods. The structure consists of three

components:

¢ A sparse matrix consisting of n dynamic vectors. The ith dynamic vector stores the

elements found in the ¢th column of Q.

e A store of transition rates. The elements stored in each dynamic vector of the sparse

matrix point to entries in this store.

¢ An AVL tree (a height-balanced binary tree) of all the items in the store. As each
transition rate entry is added to the sparse matrix, a search mechanism is needed to
establish whether the entry is already in the store. An AVL tree is thus maintained
to rapidly search for store items; this reduces the search complexity from O(n) for
a linear search of the store to O(log, n) for a search of the tree. The AVL tree is
destroyed once all items have been inserted into the matrix since it is then no longer

needed.

This transition matrix structure has been encapsulated in a TransitionMatrix class. For
solution methods requiring both row and column access to @ (i.e. BiCG and CGNR),
a TransitionMatrixWithRowColumn class inherits from the base TransitionMatrix class

and includes row access information.

An instance of the transition matrix data structure is in turn encapsulated within class

known as the SteadyStateAnalyser class. This class contains methods to implement the

CHAPTER 6. THE DNAMACA PERFORMANCE ANALYSER 117

5)
o, |
=) |
| = |
S|) ”
A, b |
| =) = |
| § —=3% |
| = | |
| _ ! |
| © = 1 |
! > _\ I5] ’
-] /[_
5 =3 ! |
- [, ! |
| N ! |
[| 1 |
©
| > \ ! ! |
| \ I \ |
! T ! ”
[\ S | |
p2 = ! |
| | P |
| \ = \ |
i \ m \ =) _ !
g |
| \ \ = \ i
I ! I
| ‘o ! = | |
I \ Irlw I
I ,,;nl.v | > ‘._ |
| - |
|
| ! |
| 1 |
| |
|
| |
| |
\ |

Y I
" \ = |
I ! Q|
[! S
““““““ N
I \ r 1 \
s T\\J \\\\\ P L
)) \)
5 2 \ y |
I=k I
0! I
i o o o o o !
! S =] S S =} !
! =] S S S S !
=] S S =} =} !
! =] S S S S !
| < < 0 0 0 |
A O -
I I
I I
I I
N A X 4N
wwwww i e
W LN \
ST NPT T R et \

X \Y} 3 AN \ !

= R \ \ 1

3! P 7 AR |

= [y Y 17 N \ !

[N ﬂ \ 3 DY i

2, = P AN !

1 \ / \

S / “\ |

1 /

A 270 | N |
1 o N !
” J allN J AN |
| H 1 7 \ 1

/ VN !
i I e ey
|
—_ —_ / —_ !
A 1 R N AR NI ,
I > >0 > I
| / { i
[I
= N R =T 2 = ,
I o f ol o i
| 2 2 2
! ! | \ |
| (1) (V) A |
|
|
—_ 1 — —_
s S| ! S| !
! > > > |
|
|
Lozl - 2| - 2|~ |
! o o o |
I - — —
| - — |
|
|
|
|
i I
|
8 5 3 |
|
! o = ™ o |
+— +— - I
! c c c |
!)) o !
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
{ ;

Figure 19: DNAmaca’s transition matrix data structure

CHAPTER 6. THE DNAMACA PERFORMANCE ANALYSER 118

various steady state solvers. The class also includes a method for verifying that the steady
state solutions produced by each of the steady state solvers are plausible. In particular,

given a steady state solution vector 2, DNAmaca calculates:

e The norm of the final residual vector, as given by || — Q7 z||.. The closer the norm is

to 0, the more accurate the result.
e The sum of the elements of the steady state vector """, z;, which should be 1.

e The range of elements in the steady state vector. All elements should lie in the range

0<x;, <1.

Fig. 20 shows the observed convergence behaviour of several steady state methods for the
73735 state InRes queueing Petri net model of Fig. 18. Notice the fairly smooth but slow
convergence of Gauss-Seidel and SOR, the erratic but superlinear convergence of the Krylov
subspace methods, the smooth convergence of the Al method and the rapid convergence of

the AIR method.

6.2.5 The Performance Analyser

The last stage in the performance analysis sequence is to combine the low-level results given
by the steady state distribution and the state space information to form more meaningful
higher-level performance measures such as throughput or mean buffer occupancy. DNAmaca
includes a performance analyser which calculates two types of performance measures: state
and count measures. The concept of state and count measures originated in the HIT-tool

[BS87] and has been adopted by other tools such as USENUM [Scz87].

A state measure is used to determine the mean and variance of a real expression which
is defined at every state in the system, e.g. the average number of tokens on a particular
place of a Petri net or some transition’s enabling probability. The mean, variance, standard
deviation and distribution of state measures can be computed. Given n states, the steady
state distribution 7 = (71, 72,...,7,) and a vector of expression values v = (vy,v2,...,0,)
where v; is a function of the elements of the state descriptor of state ¢, the mean of a state

measure m can be calculated as:

E[m] = vai
=1

CHAPTER 6. THE DNAMACA PERFORMANCE ANALYSER 119

0 T T T T T T T T
ai —
air ----
bicg -----
cgs _
tfgmr -~
bicgstab -----
bicgstab2 -----
gauss-seidel ------
-4 | sor -
E
2 -6 |
<
=}
i)
(%]
g
=1 -8 | =
—
(@]
o
-10 +
12 -
14 1 1 1 S | B 1

0 50 100 150 200 250 300 350 400 450
matrix-vector multiplications

Figure 20: Convergence behaviour of some steady state algorithms for the InRes model

CHAPTER 6. THE DNAMACA PERFORMANCE ANALYSER 120

We can regard v; as the ith state’s contribution towards the value of the state measure. If,
for example, we are interested in the mean number of tokens on a place p in a Petri net, v;

would represent the number of tokens on place p in state 1.

The second moment of a state measure m is given by:
n
E[m?] = Z 07
=1
and the variance of m by:

Varm] = E[m?] - (E[m])?

n n 2
_ 2
= ™Y, — ;0

A count measure is used to determine the mean rate at which a particular event occurs
e.g. the mean rate of transition firing gives transition throughput. Given a system with n
states, the steady state distribution 7 = (71, 72,...,7,) and a function r; which returns the
rate at which the event occurs when the system is in state ¢, the mean of a count measure

m is given by:

E[m] = Zﬂﬂ‘i
=1

The calculation of the variance of a count measure requires transient analysis, which is not

supported by DNAmaca.

The computation of performance measures is facilitated in the user code which includes
methods for calculating the values of »; and r; for each state. The performance analyser
reads the steady state distribution into memory and then reads the state space state-by-
state, using these methods to calculate the contribution of the state towards each perfor-

mance measure.

Chapter 7

Example Timed Transition

Systems and Solutions

7.1 Introduction

In this chapter we will demonstrate the effectiveness of DNAmaca as a performance analysis
tool by applying it to three models of timed transition systems: a queueing model of a
multimedia traflic switch, a queueing network model of an interactive computer system and

a Generalised Stochastic Petri net model of a telecommunications protocol.

7.2 Multimedia teletraffic switch

The schematic diagram in Fig. 21 is of a multimedia teletraffic switch designed to handle

delay-sensitive voice traffic and delay-insensitive data traffic [AK93, pg. 133-137].

The switch has a capacity for s calls and is designed to give priority to voice calls. If the
switch is full and the number of data calls in the system exceeds a certain threshold n, an
arriving voice call may preempt a data call. If there are less than n data calls and no free
circuits in the switch, arriving voice calls will be blocked. Waiting or preempted data calls

are stored in a buffer with capacity b.

There are v potential sources of voice calls. Each of these sources is governed by a two-state

Markov process which alternates between a silence phase and a talkspurt phase. The mean

121

CHAPTER 7. EXAMPLE TIMED TRANSITION SYSTEMS AND SOLUTIONS 122

Blocked
Voice
s
il Bl il e Threshold
O
Preempted
Data
E— BUFFER 2
Or

Figure 21: A multimedia switch for handling voice and data traffic

CHAPTER 7. EXAMPLE TIMED TRANSITION SYSTEMS AND SOLUTIONS 123

duration of the silence phase is 1/A; and the mean duration of a talkspurt phase is 1/u;.
The data arrival process is simpler, being Poisson with parameter A;. Data calls are served

at a rate of pug per server.

The performance analysis of this switch, with blocking, preemptive service and a two-phased
voice arrival process, is not easily accomplished using conventional queueing theory. Equally,
the problem cannot be tackled with a Petri net model or any other such formalism. Thus,
apart from simulation, the only other alternative is to model the system as a Markov chain

and solve that.

We used DNAmaca to model a switch with capacity s = 72 and buffer size b = 200. There
were v = 1000 voice sources, with Ay = 0.04 and gy = 1.0. The data arrival rate was
Ay = 43.0, and the data service rate was py = 1.2 per server. The DNAmaca input file
which specifies this model is given in Appendix A.

Three runs were then conducted to test the effect of varying the preemption threshold value
n. The first run used a low value of n = 20, the second a medium value of n = 32 and the

last a high value of n = 50. FEach run generated a Markov chain of 17301 tangible states.

Fig. 22 presents the resulting distributions for the number of voice and data calls in the
system and the corresponding distribution for the number of data calls in the buffer for
each of the preemption threshold values. The lowest preemption value n = 20 allows voice
calls to aggressively preempt data calls; thus it makes sense that the mean number of voice
calls in the system should be higher than the mean number of data calls. The high level of
data call preemption, however, leads to a data call buffer overflow, suggesting that a higher
threshold is needed. A preemption value of » = 32 leads to a more balanced distribution of
voice and data calls, with the number of voice calls dropping off sharply once the preemption
limit is reached. The buffer no longer overflows and the distribution of calls in the buffer
shows that a buffer size of b = 150 should be more than adequate to deal with almost all
calls. The highest preemption value of n = 50 allows only restricted preemption of data
calls and leads to the blocking of a large number of voice calls; consequently the mean
number of data calls is higher than the mean number of voice calls. Since data calls are
seldom preempted, a buffer size of only about b = 15 would be adequate to deal with almost

all calls.

CHAPTER 7. EXAMPLE TIMED TRANSITION SYSTEMS AND SOLUTIONS

0.07

0.06

0.05

0.04

p(x)

0.03

0.02

0.01

Voice and data distributions for threshold = 20

voice —<—
data -+-

0.05

0.045

0.04

0.035

0.03

0.025

p(x)

0.02

0.015

0.01

0.005

10

0.12

0.1

0.08

0.06

p(x)

0.04

0.02

0.09

0.08

0.07

0.06

0.05

p(x)

0.04

0.03

0.02

0.01

Figure 22: Distributions for the number

15

.
30 35 40
population (x)

Voice and data distributions for threshold = 32

60

voice —<—
data -+-

0.05

0.045

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005

10

. .
30 35 40
population (x)

Voice and data distributions for threshold = 50

60

voice ——
data -+-

p
ot L

0.05

0.045

0.04

0.035

0.03

0.025

p(x)

0.02

0.015

0.01

0.005

10

L L Pos
30 35 40 45
population (x)

60

Buffer distribution for threshold = 20

T T T
buffer —
| |
0 50 100 150 200
population (x)
Buffer distribution for threshold = 32
T T T
buffer —
| N
0 50 100 150 200
population (x)
Buffer distribution for threshold = 50
T T T
buffer —
| |
0 5 10 15 20

population (x)

124

of voice and data calls in the switch (left) and the
number of data calls in the buffer (right) for various threshold values.

CHAPTER 7. EXAMPLE TIMED TRANSITION SYSTEMS AND SOLUTIONS 125

7.3 Interactive computer system

Fig. 23 presents a queueing network model of a time-shared interactive computer with a
paged virtual memory system. The model is the same as that discussed in Stewart [Ste94,

pg. 326-327).

Terminals
SM

CPU

FD

Figure 23: Model of an interactive computer system

The system consists of a set of N terminals, a central processing unit (CPU), a secondary
memory device (SM) and a filing device (FD). The CPU, SM and FD each have an associated
FCFS queue of pending requests.

Users at the terminals generate jobs which are submitted into the CPU queue for processing.
It is assumed that users are inactive between job submissions. Jobs being processed at the
CPU may either complete and return to the terminals, or they can be interrupted by an
I/0 request or a page fault. In the case of an 1/0O request, the job enters the FD queue and
in the case of a page fault, the job enters the SM queue. After completion of service at the

SM or FD device, interrupted jobs return to the CPU queue for further processing.

The state descriptor of the system is given by (ng, n1, ng2, n3) where ng is the number of idle
terminals and nq,ns and ns denote the number of jobs in the CPU, SM and FD queues
respectively. The total number of jobs executing in the system at any one moment is given
by 7 = n1+ n2 + n3. Jobs issue I/O requests at a rate given by r(n) where (r(n))™! is
the mean compute time between 1/0O requests. Similarly, jobs page fault at a rate given

by ¢(n) where (¢(n))~! is the mean time between page faults. The page fault rate of a

CHAPTER 7. EXAMPLE TIMED TRANSITION SYSTEMS AND SOLUTIONS 126

process executing in memory m is modelled as ¢(n) = a/m*, where @ and k are constants
which depend on CPU speed, program characteristics and memory management strategy.
Here we assume that the main memory of size M is equally shared between the number of
processes currently executing in the system, so ¢(17) = a(n/M)*. Processes depart from the
CPU queue and return to the terminals at a rate given by ¢(n) where (¢(n))™! is the mean

compute time of a process.

While a conventional MVA queueing network analysis of this system fails on account of the
state-dependent page fault rate, a Markov chain representation allows this phenomenon to

be modelled accurately.

DNAmaca was used to study the effect of varying N and M on the utilisation of the CPU,
FD and SM for a systems with particular numerical parameters. The page fault rate ¢(n)
was obtained by setting @ = 100 and k& = 1.5 so that ¢(n) = 100(n/M)'5. The mean
time between 1/O requests was taken to be 20 milliseconds, so r(7) = 0.05, and the mean
compute time of a process was taken to be 500 milliseconds, so ¢(n) = 0.002. The mean
think time of a user at a terminal was estimated to be about A=! = 10 seconds. The mean
service time of the FD was taken as u;' = 12 milliseconds and the mean service time of
the SM was taken as ,u2_1 = b5 milliseconds. The DNAmaca input file which specifies this
model is given in Appendix A.

Two sets of runs were conducted. In the first, the effects of increasing the number of users
in a system with a fixed memory capacity of M = 1200 was studied. In the second, the
effect of varying the amount of available memory in a system with a workload of N = 30

users was studied.

Fig. 24 presents the results of the experiments. The graph on the left of the figure shows
that a system with a memory capacity of M = 1200 can support up to about 32 users before
the system begins to thrash, while the graph on the right shows that a memory capacity of

about M = 1100 should suffice for system which has to support a maximum of 30 users.

7.4 TFTP telecommunications protocol

Fig. 25 presents a Generalised Stochastic Petri net (GSPN) model of the internet Trivial
File Transfer Protocol (TFTP). TFTP is a simple protocol for the transfer of files which

was designed to be implemented on top of the User Datagram Protocol (UDP).

utilization

CHAPTER 7. EXAMPLE TIMED TRANSITION SYSTEMS AND SOLUTIONS 127

ml;l‘—-
@ cpu -—
ul fd -+
09 3 sm -8--
o
08 o ,
g
0.7 |- 7
B
0.6 R T
ey SN c
AT BNy k]
r / \ I
05 s i % T N
s s
04 7 i .
e 9 5
+ %
7 o y
¥ L \
0.3 i = *
¢ ‘ *
%# ‘ 4#
o] .
L / ! w4
0.2 ¥* Dg iy
+ o
0.1 | 4 o e
‘ ¥ o
r o) ;
¢ ek .
0 & e . Sl ! ! ! ! ! ! 01 A ! !

Il
1400

Il
1000
memory

0 5 10 15 20 25

users

30 35 40 45 50 1200

Figure 24: CPU, filing device and secondary memory utilization for various number of users
on a system with M = 1200 (left) and utilization for various main memory capacities system
with N = 30 users (right)

TFTP reads and writes files from or to a remote server. Fach data packet is acknowledged
separately — thereby ensuring that all the previous data packets have arrived at their des-
tination before the next one is sent. If, for instance, the server is waiting for a data packet
and the packet is lost on the channel, the server may timeout and retransmit the previous
acknowledgement. The client, on receiving the acknowledgement, will retransmit the lost

data packet. This process continues until the server receives the data packet.

The GSPN of Fig. 25 models a write-request from a sender to a receiver over an unreliable
channel with a limited capacity. At the top level, the GSPN can be considered to have three
columns of net elements representing the sender, the channel and the receiver from left to
right, respectively. Tokens in the channel column represent packets in transit, while tokens

in the column of places on the left and right represent the state of the sender and receiver.

The performance of the model was studied by examining the throughput of the protocol as
a function of channel quality and various timeout values. Throughput is defined here as the
number of useful data packets delivered per unit time. Average throughput was measured
by determining the length of time required to send a 100 packet file over a network which

transmits from the send to the receiver at an mean rate of 5 packets per second. Note that

CHAPTER 7. EXAMPLE TIMED TRANSITION SYSTEMS AND SOLUTIONS

1 1
sender idle receiver idle
NG
1 N_/WRQ 2
get ACKO send ACKO
3 _/ACKO 4
package DATA n 122 ATA n

: A
\

send DATA n ose DAJA N

6 DATAN "—jn

2
timeout ACK n get ACKn 121
se ACK n send AGK n
8
t2
package DATA n+1 24 \/get PATA n+
110
2
send DATA n+1 ose DATA nyl
11 12|
timeout ACK n get ACK n+ 123

infeout

DATA n+1

end AGK n+{L

_/ACK n+1

N
“_last DAT

t18

"

_ast ACK —t20

Figure 25: GSPN model of the TFTP file transfer protocol

128

ﬂ timeout DATA n

CHAPTER 7. EXAMPLE TIMED TRANSITION SYSTEMS AND SOLUTIONS 129

the maximum mean throughput of the TFTP protocol is 2.5 packets per second since half
the number of packets are acknowledgements. In order to simulate the transmission of a
file of length 100 packets (on average) in the GSPN model the weight of the immediate
transitions t5 and t10 (send another packet, see Fig. 25) are set to 99, while the weight of
t15 and t16 (send last packet) are set to 1.

Channel quality is controlled by setting the mean rates on the lose ACK and lose DATA
timed transitions in the channel. The length of timeouts are controlled, in turn, by setting
the mean rates on the timeout ACK and timeout DATA timed transitions inside the sender

and receiver respectively.

A DNAmaca model of the TFTP protocol was automatically generated by the DNAnet
Petri net tool [ABK95]; this model is given in Appendix A. The model generates a Markov
Chain with 200 tangible states.

Throughputs were calculated both analytically using DNAmaca and also by simulation
using DNAnet. The results for various channel qualities and timeouts are presented in

Fig. 26. The simulation results are plotted as points with 95% confidence intervals.

24 | slow timeout — |
’ medium timeout ----

fast timeout -----

data throughput

08 Il Il Il
0 0.05 0.1 0.15 0.2
channel loss probability

Figure 26: Throughput as a function of channel quality for various timeout values

The slow (long duration) timeout produces the best throughput for high channel qualities
but has the worst throughput for poor channel qualities. This is expected since, for a highly

reliable channel, there are few unnecessary timeouts, while for a poor quality channel, slow

CHAPTER 7. EXAMPLE TIMED TRANSITION SYSTEMS AND SOLUTIONS 130

timeouts result in a long recovery time. The fast (short duration) timeout produces poor
throughput for good channel qualities but better throughput for poor channel qualities. This
is also expected, since the many retranmissions caused by a fast timeout are unnecessary on
a good channel but reduce recovery time on a poor channel. The medium duration timeout

gives intermediate results.

Chapter 8

Conclusion

8.1 Summary

This dissertation has investigated efficient techniques for assessing the performance of gen-
eral timed transition systems, using Markov chains as the underlying vehicle for obtaining
performance results. The process of establishing the performance of a system forms a se-
quence which begins with a high-level model specified using a formalism such as Generalised
Stochastic Petri nets, queueing networks or Queueing Petri nets. The behaviour of the sys-
tem is then characterised by enumerating all possible states that the model may enter.
The states, together with temporal information about transitions between states, are then
mapped onto a low-level Markov chain representation. From the Markov Chain, a set of
sparse linear equations, known as the steady-state equations, are derived. These are solved
to yield the steady-state distribution of the chain. This distribution indicates the long-run
probability of being in each of the system’s states. The basic information provided by the
steady-state distribution can be synthesized into more meaningful performance statistics,
such as transition throughput or mean buffer occupancy, by combining the steady-state

distribution with the enumerated states.

We have investigated efficient techniques for the two major challenges encountered by the
Markovian performance analyst when attempting to solve models of complex real life sys-

tems:

¢ Enumerating the large number of states. Existing techniques for solving this

131

CHAPTER 8. CONCLUSION 132

problem have been reviewed and a new probabilistic dynamic hash-compaction tech-
nique has been proposed. This method results in considerable memory savings over
conventional static or exhaustive state space generation techniques. The reliability
and space complexity of the technique has been analysed. The analysis shows that,
given 64 Mb of available memory, it is possible to generate state spaces with up to
1.27 x 107 states while keeping the probability of omitting even one state to less than
0.1%.

¢ Solving the large sparse set of steady-state equations. A wide range of lin-
ear equation solvers has been reviewed, including two classes of historical methods,
namely direct methods and classical iterative methods, and two classes of more re-
cent iterative methods, namely Krylov subspace techniques and decomposition-based
techniques. Particular attention has been paid to the Krylov subspace methods and

a decomposition-based technique known as the Aggregation-Isolation algorithm.

The complete performance analysis sequence has been automated and implemented in the
DNAmaca performance analyser. DNAmaca incorporates the new probabilistic dynamic
state generation technique and uses on-the-fly elimination of vanishing states. In addition,
DNAmaca implements twelve linear equation solvers, including six Krylov subspace-based
solvers and two variants of Touzene’s decomposition-based Aggregation-Isolation algorithm.
Experiments with DNAmaca have shown that it is possible to solve models with up to

500000 tangible states on a 64 Mb machine.

Finally, an interface language which is general enough to support the specification of general
timed transition systems has been proposed and implemented in DNAmaca. Examples of

the specification and solution of various timed transition systems have been presented.

8.2 Future work

With the development of memory-efficient probabilistic state space exploration algorithms,
the process of solving the steady-state equations has become the major time and memory
bottleneck in the performance analysis of timed transition systems. Parallel implementa-
tions of Krylov subspace techniques may provide the answer, since these techniques involve

easily parallelisable operations such as matrix-vector multiplication. Indeed, experiments

CHAPTER 8. CONCLUSION 133

with Krylov subspace techniques for solving sets of linear equations with symmetric coef-
ficient matrices have yielded superlinear speedups in both symmetric multiprocessing and
high-speed distributed environments [Bou95]. There is no reason to suspect that similar
results cannot be obtained for the methods applicable to solving the large unsymmetric

infinitesimal generator matrices encountered in Markov chain analysis.

The time complexity of probabilistic state space exploration algorithms is another area
that could benefit from parallelisation efforts. Work has already been done on the parallel
generation of state spaces for Generalised Stochastic Petri nets [CCM95] which shows that
less dramatic speedups can be expected here because of the high communication overhead

inherent in state space generation algorithms.

Work on techniques for the parallelisation of DNAmaca has in fact begun and a version for

use in distributed computing environments is expected by the middle of 1997.

Appendix A

DN Amaca model files

A.1 Multimedia teletraffic switch model

\model{
\constant{ss}{72} % servers in switch
\constant{voice_source}{1000} % voice sources
\constant{buffer_size}{200} % data call buffer size

\constant{threshold}{50} % preemption threshold
\constant{lambda_0}{0.04} % voice silence -> talk spurt rate
\constant{lambda_1}{1.03} % voice talk spurt -> silence rate
\constant{lambda_2}{43.0} % data call arrival rate
\constant{mu_2}{1.2} % data service rate
\statevector{

\type{int}{data,voice,buffer}
}

\helpvalue{int}{idle_voice_source}{voice_source - voice}
\invariant{ (voice + data) <= ss }

\initial{
data = 0;
voice = 0;
buffer = 0;

¥

\transition{data_arrivall}{
\condition{buffer < buffer_size}
\action{ next->buffer = buffer + 1; }
\rate{lambda_2}

134

APPENDIX A. DNAMACA MODEL FILES 135

}

\transition{serve}{
\condition{buffer > 0 && voice + data < ss}
\action{
next->buffer = buffer - 1;
next->data = data + 1;
¥
\weight{1.0}
¥

\transition{data_service}{
\condition{data > 0}
\action{ next->data = data - 1; }
\rate{(double)mu_2*data}

¥

\transition{voice_arrivall}{
\condition{voice < ss && idle_voice_source}
\action{
if (((voice + data) >= ss) && (data > threshold)) {
if (buffer < buffer_size)
next->buffer = buffer + 1;
next->data = data - 1;
next->voice = voice + 1;
} else if (((voice + data) >= ss) && (data <= threshold)) {
/* cannot preempt --> discard call */
} else if ((voice + data) < ss) {
next->voice = voice + 1;
¥
¥
\rate{ (double) lambda_O*idle_voice_source}

}

\transition{voice_servicel}{
\condition{voice > 0}
\action{ next->voice = voice - 1; }
\rate{ (double) lambda_1*voice}

¥

}

\performance{
\statemeasure{mean voice} {
\estimator{mean variance distribution}
\expression{voice}

}

APPENDIX A. DNAMACA MODEL FILES

\statemeasure{mean data} {
\estimator{mean variance distribution}
\expression{data}

}

\statemeasure{mean buffer} {
\estimator{mean variance distribution}
\expression{buffer}

}

\countmeasure{blocking rate} {
\estimator{mean}
\precondition{1}
\postcondition{voice == next->voice}

}

\transition{voice_arrival}

\countmeasure{voice throughputl}{
\estimator{mean}
\transition{voice_service}

}

\countmeasure{data throughput}{
\estimator{mean}
\transition{data_service}

}
}

\solution{
\method{bicgstab2}
\accuracy{1le-10}

}

A.2 Interactive computer system model

\model{

\header{#include<math.h>}

%
%
%
%
%
%
%
%

N
lambda

compute =
= memory size

M

io
page
alpha

= total number of users

mean job arrival rate from each idle terminal
mean compute time for a process

mean compute time between i/o requests
page fault rate dependent on number of processes in system
page fault-related constant dependent on processing speed

= page fault-related constant dependent on program locality

136

APPENDIX A. DNAMACA MODEL FILES

% smspeed = mean service time for sm device

% fdspeed = mean service time for fd device

\constant{N}{50}
\constant{lambda}{0.0001}
\constant{compute}{500.0}
\constant{M}{1024.0}
\constant{io}{20.0}
\constant{alpha}{0.01}
\constant{k}{1.5}

\constant{page}{(alpha*pow(M/(cputsm+fd), k))}

\constant{smspeed}{5.0}
\constant{fdspeed}{12.03}

% idle = number of idle terminals

% cpu = number of processes on cpu

% sm = number of processes waiting on secondary memory
% fd = number of processes waiting on filing device
\statevector{

\type{int}{idle, cpu, sm, fd}
}

\initial{
idle = N;
cpu = 0;
sm = 0;
fd = 0;

}

\invariant{idle + cpu + sm + fd == N}

\transition{job_start}{
\condition{idle > 0}
\action{

next->idle = idle - 1;
next->cpu = cpu + 1;
¥
\rate{ (double) idle*lambda}
¥

\transition{job_finish}{
\condition{cpu > 03}
\action{
next->cpu = cpu - 1;
next->idle = idle + 1;
}
\rate{ (double) 1.0/compute}

137

APPENDIX A. DNAMACA MODEL FILES

\transition{job_enters_fd}{
\condition{cpu > 03}
\action{
next->cpu = cpu - 1;
next->fd = fd + 1;

}

\rate{ (double) 1.0/io}

}

\transition{job_enters_sm}{
\condition{cpu > 03}
\action{
next->cpu = cpu - 1;
next->sm = sm + 1;

}

\rate{ (double) 1.0/page}

}

\transition{job_leaves_sm}{
\condition{sm > 0}
\action{
next->sm = sm - 1;
next->cpu = cpu + 1;
}
\rate{ (double) 1.0/smspeed}
}

\transition{job_leaves_fd}{
\condition{fd > 0}
\action{
next->fd = fd - 1;
next->cpu = cpu + 1;
}
\rate{ (double) 1.0/fdspeed}
}
}

\solution{
\method{air}
\maxiterations{2000%}

¥

\performance{
\statemeasure{idle terminals}{

\estimator{mean variance stddev distribution}

\expression{idle}

}

138

APPENDIX A. DNAMACA MODEL FILES 139

\statemeasure{processes on cpu}t{
\estimator{mean variance stddev distribution}
\expression{cpu}

}

\statemeasure{cpu utilization}{

\estimator{mean variance stddev}
\expression{ (cpu > 0) ? 1 : 0}

}

\statemeasure{processes waiting for filing device}{
\estimator{mean variance stddev distribution}
\expression{fd}

}

\statemeasure{filing device utilization}{
\estimator{mean variance stddev}

\expression{ (£d > 0) 7 1 : 0}

}

\statemeasure{processes waiting for secondary memory}{
\estimator{mean variance stddev distribution}
\expression{sm}

}

\statemeasure{secondary memory utilization}{
\estimator{mean variance stddev}

\expression{ (sm > 0) 7 1 : 0}

}

\countmeasure{jobs entering}{
\estimator{mean}
\transition{job_start}

}

\countmeasure{jobs leaving}{
\estimator{mean}
\transition{job_finish}

}

}

A.3 TFTP communications protocol

This DNAmaca model file was automatically generated by the GSPN tool DNAnet from the
TFTP model presented in Fig. 25. The mapping from the places and transitions reflected

in the diagram to the places and transitions used in this model file is given at the top of

the file.

‘main.receiver idle’
’main.send ACKO’

% pO0 = ’main.sender idle’ pl
% p2 = ’main.get ACKO’ p3

APPENDIX A. DNAMACA MODEL FILES

% p4 = ’main.WRQ’
% p6 = ’main.package DATA n’
% p8 = ’main.get ACK n’
% pl0 = ’main.last DATA’
% pl2 = ’'main.get last ACK’
% pl4 = ’main.send DATA n’
% pl6 = ’main.send DATA n+1’
% p18 = ’'main.get DATA n+1’
% p20 = ’main.DATA n’
% P22 = ’main.DATA n+1’
% p24 = ’main.p25’
% p26 = ’main.p27’
% t0 = ’main.t15’
% t2 = ’main.t10’
% t4 = ’main.t24’
% t6 = ’main.t23’
% t8 = ’main.t25’
% t10 = ’main.t27’
% t12 = ’main.lose ACK n+1’
% t14 = ’main.lose ACK n’
% t16 = ’main.t17’
% t18 = ’main.t8’
% t20 = ’main.t13’
% t22 = ’main.t1’
% t24 = ’main.t7’
% t26 = ’main.t9’
% t28 = ’main.t20’
% t30 = ’main.lose DATA n’
% t32 = ’main.t11’
% t34 = ’main.timeout DATA n+1’
\model {
\statevector{

p5
p7
PO
pil
pi3
pi5

pl7 =
pl19 =
p21 =
p23 =
p25 =

p27
t1

t3

t5

t7

t9

t11
t13
t15
t17
t19
t21
t23
t25
27
t29
t31
t33
t35

140

‘main.ACKO’
'main.wait DATA n’

'main.send ACK n’

‘main

‘main.
‘main.

‘main.

‘main.

‘main.

‘main.
‘main.

‘main.

)
‘main
‘main
‘main
‘main

‘main.

‘main.

‘main.

‘main.
‘main.

‘main.

‘main.

‘main.

‘main.
‘main.

‘main.

‘main.

‘main.

send last ACK’
last ACK’
package DATA n+1’
get ACK n+1’

send ACK n+1’

ACK n’

ACK n+1°

p26’

p28’

main.t16’
.t5’

.t22°
.t21°
.t26°

t28?

lose DATA n+1’
t18?

t3’

t14?

t12?

t2°

t4’

t19?

timeout ACK n’
timeout ACK n+1°
t6’

timeout DATA n’

\type{short}{p0, pl, p2, p3, p4, p5, p6, p7, P8, p9, plo, pii,
pl2, pi13, pl4, pib, pl16, pl7, pi8, pl9, p20, p21, p22, p23, p24,
p25, p26, p27}

b

\initial{
po = 1; pl = 1; p2 =
pé = 0; p7 = 0; p8 =
pl2 = 0; pi13 = 0; pl4 =
p18 = 0; p19 = 0; p20 =
P24 = 2; P25 = 2; P26 =

b

\transition{t0}{

p4d = 0; p5=0;
pl10 = 0; pi1l = 0
; plé = 0; pl7 = 0;
; p22 = 0; p23 = 0;

APPENDIX A. DNAMACA MODEL FILES

\condition{ps6 > 0}
\action{
next->p6 = p6 - 1;
next->p10 = p10 + 1;
next->pl12 = p12 + 1;
}
\weight{1}

}

\transition{t1}{
\condition{p15 > 0}
\action{

next->p10
next->pi12
next->pi15

pi10 +
pi2 +
p15 -

[y

[y

[y

}
\weight{1}
}
\transition{t2}{
\condition{p15 > 0}
\action{
next->pi15
next->pi16

p15 -
pi6 +

[y

[y

}
\weight{99%}
}
\transition{t3}{
\condition{p8 > 0}
\action{
next->p6 = p6 - 1;
next->pi4 = pi4 + 1;
}
\weight{99%}
}
\transition{t4}{
\condition{p18 > 0 && p20 > 0}
\action{
next->p20
next->p26

p20 - 1;
p26 + 1;

b
\weight{1}
b
\transition{t5}{
\condition{p7 > 0 && p22 > 0}
\action{
next->p22
next->p25

P22 - 1;
p25 + 1;

}
\weight{1}

141

APPENDIX A. DNAMACA MODEL FILES

b
\transition{t6}{
\condition{p16 > 0 && p23 > 0}
\action{
next->p23 = p23 - 1;
next->p24 = p24 + 1;

b
\weight{1}
b
\transition{t7}{
\condition{p14 > 0 && p21 > 0}
\action{
next->p21 = p21 - 1;
next->p27 = p27 + 1;

b
\weight{1}
b
\transition{t8}{
\condition{p14 > 0 && p20 > 1}
\action{
next->p8 = p8 + 1;
next->pi4 = p14 - 1;
b
\weight{1}
b
\transition{t9}{
\condition{p9 > 0 && p21 > 1}
\action{
next->p9 = p9 - 1;
next->pi8 = pi8 + 1;
b
\weight{1}
b
\transition{t10}{
\condition{p16 > 0 && p22 > 1}
\action{
next->pi16
next->pi17

pi6é - 1;
pl7 + 1;

}
\weight{1}

}

\transition{t11}{
\condition{p19 > 0 && p23 > 1}
\action{

next->p7 = p7 + 1;
next->p19 = p19 - 1;
}
\weight{1}

142

APPENDIX A. DNAMACA MODEL FILES

}

\transition{t12}{
\condition{p23 > 0}
\action{

next->p23 = p23 - 1;
next->p24 = p24 + 1;
}
\rate{2.5}

}

\transition{t13}{
\condition{p22 > 0}
\action{

next->p22 = p22 - 1;
next->p25 = p25 + 1;
}
\rate{2.5}

}

\transition{t14}{
\condition{p21 > 03}
\action{

next->p21 = p21 - 1;
next->p27 = p27 + 1;
}
\rate{2.5}

}

\transition{t15}{
\condition{p7 > 0 && p10 > 0}
\action{

next->p7 = p7 - 1;
next->p10 = p10 - 1;
next->pi1 = p11 + 1;
}
\rate{10}

}

\transition{t16}{
\condition{p10 > 0 && pi18 > 0}
\action{

next->p10 = p10 - 1;
next->pi1 = p11 + 1;
next->pi8 = pi18 - 1;
}
\rate{10}

}

\transition{t17}{
\condition{p2 > 0 && p5 > O}
\action{

next->p2 = p2 - 1;
next->p5 = pb - 1;

143

APPENDIX A. DNAMACA MODEL FILES

next->p6 = p6 + 1;

b
\rate{10}
b
\transition{t18}{
\condition{p8 > 0 && p21 > 0}
\action{
next->p8 = p8 - 1;
next->p15 = pi15 + 1;
next->p21 = p21 - 1;
next->p27 = p27 + 1;
b
\rate{10}
b
\transition{t19}{
\condition{p19 > 0 && p24 > 0}
\action{
next->p7 = p7 + 1;
next->p19 = p19 - 1;
next->p23 = p23 + 1;
next->p24 = p24 - 1;
b
\rate{10}
b
\transition{t20}{
\condition{p17 > 0 && p23 > 0}
\action{
next->p6 = p6 + 1;
next->pl7 = pi17 - 1;
next->p23 = p23 - 1;
next->p24 = p24 + 1;
b
\rate{10}
b
\transition{t21}{
\condition{p18 > 0 && p22 > 0}
\action{
next->pi8 = pi18 - 1;
next->p19 = p19 + 1;
next->p22 = p22 - 1;
next->p25 = p25 + 1;
b
\rate{10}
b
\transition{t22}{
\condition{p0 > 0}
\action{

next->p0 = p0 - 1;

144

APPENDIX A. DNAMACA MODEL FILES

next->p2 = p2 + 1;
next->p4 = p4 + 1;
b
\rate{10}
b
\transition{t23}{
\condition{pl > 0 && p4 > O}
\action{
next->pl = pl1 - 1;
next->p3 = p3 + 1;
next->p4 = p4 - 1;
b
\rate{10}
b
\transition{t24}{
\condition{p7 > 0 && p20 > 0}
\action{
next->p7 = p7 - 1;
next->p9 = p9 + 1;
next->p20 = p20 - 1;
next->p26 = p26 + 1;
b
\rate{10}
b
\transition{t25}{
\condition{p3 > 0}
\action{
next->p3 = p3 - 1;
next->p5 = pb + 1;
next->p7 = p7 + 1;
b
\rate{10}
b
\transition{t26}{
\condition{p9 > 0 && p27 > 0}
\action{
next->p9 = p9 - 1;
next->pi8 = pi8 + 1;
next->p21 = p21 + 1;
next->p27 = p27 - 1;
b
\rate{10}
b
\transition{t27}{
\condition{p12 > 0 && p13 > 0}
\action{

next->p0 = p0 + 1;
next->pl12 = p12 - 1;

145

APPENDIX A. DNAMACA MODEL FILES 146

next->pi3 = pi13 - 1;

}
\rate{10}

}

\transition{t28}{
\condition{pil > 0}
\action{

next->pl = pl1 + 1;
next->pi1 = p11 - 1;
next->pi3 = pi13 + 1;
}
\rate{10}

}

\transition{t29}{
\condition{p8 > 0}
\action{

next->p8 = p8 - 1;
next->pi4 = pi4 + 1;
}
\rate{4}

}

\transition{t30}{
\condition{p20 > 03}
\action{

next->p20 = p20 - 1;
next->p26 = p26 + 1;
}
\rate{2.5}

}

\transition{t31}{
\condition{p17 > 03}
\action{

next->pi6 = pi6 + 1;
next->pl7 = pi17 - 1;
}
\rate{4}

}

\transition{t32}{
\condition{p16 > 0 && p25 > 0}
\action{

next->pi6 = pi6 - 1;
next->pl7 = pi17 + 1;
next->p22 = p22 + 1;
next->p25 = p25 - 1;
}
\rate{10}
}

\transition{t33}{

APPENDIX A. DNAMACA MODEL FILES

\condition{p14 > 0 && p26 > 0}
\action{
next->p8 = p8 + 1;
next->pi4 = p14 - 1;
next->p20 = p20 + 1;
next->p26 = p26 - 1;

}
\rate{10}

}

\transition{t34}{
\condition{p18 > 0}
\action{

next->p9 = p9 + 1;
next->pi8 = pi18 - 1;
}
\rate{4}

}

\transition{t35}{
\condition{p7 > 0}
\action{

next->p7 = p7 - 1;
next->p19 = p19 + 1;
}
\rate{4}
}
}
\performance{

\statemeasure{Mean tokens on place main.sender idle}{

\estimator{mean variance distribution}
\expression {p0}
¥

\statemeasure{Mean tokens on place main.receiver idlel}{

\estimator{mean variance distribution}
\expression {pi1}
¥

\statemeasure{Mean tokens on place main.get ACKO}{

\estimator{mean variance distribution}
\expression {p2}
¥

(etc...)

\statemeasure{Mean tokens on place main.p28}{

\estimator{mean variance distribution}
\expression {p27}
¥

147

APPENDIX A. DNAMACA MODEL FILES 148

\statemeasure{Enabled probability for transition main.lose ACK n+1}{
\estimator{mean}
\expression {(p23 > 0) ? 1 : 0}

}

\countmeasure{Throughput for transition main.lose ACK n+1}{
\estimator{mean}
\precondition{1}
\postcondition{1}
\transition{t12}

}

\statemeasure{Enabled probability for transition main.lose DATA n+1}{
\estimator{mean}
\expression {(p22 > 0) ? 1 : 0}

}

\countmeasure{Throughput for transition main.lose DATA n+1}{
\estimator{mean}
\precondition{1}
\postcondition{1}
\transition{t13}

}

(etc...)

\statemeasure{Enabled probability for transition main.timeout DATA n}{
\estimator{mean}
\expression {(p7 > 0) 7 1 : 0}

}

\countmeasure{Throughput for transition main.timeout DATA n}{
\estimator{mean}
\precondition{1}
\postcondition{1}
\transition{t35}

Bibliography

[ABK95]

[AK93]

[AMCBS4]

[AMS90]

[ASUS6]

[B+94]

[B+95]

[Baal8]

Annitta Attieh, Mark Brady, and William Knottenbelt. Functional and tem-
poral analysis of concurrent systems. In Jonathan Billington and Michel Diaz,
editors, Petri nets applied to Protocols: Proceedings of a Workshop of the
16th International Conference on Application and Theory of Petri nets, pages
79-96, Torino, Italy, June 1995.

Haruo Akimaru and Konosuke Kawashima. Teletraffic: theory and applica-

tions. Springer-Verlag, 1993.

M. Ajmone-Marsan, G. Conte, and G. Balbo. A class of Generalised Stochastic
Petri Nets for the performance evaluation of multiprocessor systems. ACM

Transactions on Computer Systems, 2:93-122, 1984.

Steven F. Ashby, Thomas A. Manteuffel, and Paul E. Saylor. A taxon-
omy for conjugate gradient methods. SIAM Journal on Numerical Analysis,

27(6):1542-1568, December 1990.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley, 1986.

J.R. Burch et al. Symbolic model checking for sequential circuit verifica-
tion. IFEFE Transactions on Computer-Aided Design of Integrated Clircuits,
13(4):250 — 263, 1994.

Werner Backes et al. LiDIA: A library for computational number theory. Uni-

versitit des Saarlandes, 1995.

Sara Baase. Computer Algorithms. Addison-Wesley, 1988.

149

BIBLIOGRAPHY 150

[Bar89]

[Bau93]

[BB8Y]

[BBCT94]

[BCMP75]

[BDMC+94]

[BK94]

[BK95]

V.A. Barker. Numerical solution of sparse singular systems of equations aris-

ing from ergodic Markov Chains. Communications in Statistics: Stochastic

Models, 5(3):335-381, 1989.

F. Bause. Queueing Petri nets: A formalism for the combined qualitative
and quantitative analysis of systems. In Proceedings of the 5th International

Workshop on Petri nets and Performance Models. IEEE, October 1993.

F. Bause and H. Beilner. Eine Modellwelt zur Integration von Warteschlangen-
und Petri-Netz-Modellen. In Proceedings of the 5th G1/ITG-Fachtagung, Mes-
sung, Modellierung und Bewertung von Rechensystemen und Nelzen, pages
190-204. Braunschweig, Gesellschaft fiir Informatik (GI), Germany, Septem-
ber 1989.

Richard Barrett, Michael Berry, Tony Chan, James Demmel, June Donato,
Jack Dongarra, Victor Fijkhout, Roldan Pozo, Charles Romine, and Henk van
der Vorst. Templates for the solution of linear systems: Building Blocks for
Iterative Methods. STAM, Philadelphia, 1994.

F. Basket, K.M. Chandy, R.R. Muntz, and F.G. Palacios. Open, closed and
mixed networks of queues with different classes of customers. Journal of the

ACM, 22:248 — 260, 1975.

P. Buchholz, J. Dunkel, B. Miiller-Clostermann, M. Sczittnick, and S. Ziske.
Quantitative Systemanalyse mit Markovschen Ketten. Teubner, 1994.

F. Bause and P. Kemper. QPN-Tool for the qualitative and quantitative anal-
ysis of Queueing Petri Nets. In G. Haring and G. Kotsis, editors, Lecture notes
in Computer Science 794: Proceedings of the Tth International Conference on
Computer Performance Evaluation, Modelling Techniques and Tools, Vienna,

Austria, pages 321-334. Springer-Verlag, 1994.

F. Bause and P.S. Kritzinger. Stochastic Petri net theory. Verlag Vieweg,
Wiesbaden, Germany, 1995.

BIBLIOGRAPHY 151

[BKKK95]

[Bou95]

[BS87]

[CCMO5]

[Cou85]

[CS84]

[CS85]

[CWT9]

[DCBY3]

[DERS6]

F. Bause, H. Kabutz, P. Kemper, and P. Kritzinger. SDI. and Petri net per-
formance of communicating systems. In Proceedings of IFIP/PSTV95: Con-

ference on Protocol Specification, Testing and Verification, Warsaw, Poland,

pages 269-282. Chapman and Hall, June 1995.

Brendan Boulter. Performance evaluation of HPF for scientific computing. In

Lecture Notes in Computer Science 919. Springer-Verlag, 1995.

H. Beilner and F.J. Stewing. Concepts and techniques of the performance
modelling tool HIT. In Proc. Furopean Simulation Multiconference, Vienna,

1987.

S. Caselli, G. Conte, and P. Marenzoni. Parallel state exploration for GSPN
models. In Lecture Notes in Computer Science 935: Proceedings of the 16th In-
ternational Conference on the Application and Theory and Petri Nets, Turin,

Italy. Springer-Verlag, June 1995.

P.J. Courtois. On time and space decomposition of complex structures. Com-

munications of the ACM, 28(6):590-603, June 1985.

P.J. Courtois and P. Semal. Block decomposition and iteration in stochastic

matrices. Philips Journal of Research, 39:178-194, 1984.

Wei-Lu Cao and William J. Stewart. Iterative aggregation/disaggregation
techniques for nearly uncoupled Markov chains. Journal of the ACM,
32(3):702-719, July 1985.

J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions.

Journal of Computer and System Sciences, 18:143-154, 1979.

T. Demaria, G. Chiola, and G. Bruno. Introducing a color formalism into
Generalised Stochastic Petri nets. In Proceedings of the 9th International

Workshop on Application and Theory of Petri Nets. IEEE, October 1993.

L.S. Duff, A.M. Erisman, and J.K. Reid. Direct Methods for Sparse Matrices.
Clarendon Press, 1986.

BIBLIOGRAPHY 152

[DLPRY5]

[EWK90]

[FGN92]

[Fle76]

[FM84]

[FNO1]

[FNO4]

[Fre93]

[GKS95]

[GL8Y]

[Goo88]

Jack Dongarra, Andrew Lumsdaine, Roldan Pozo, and Karin Remington.
IML++ wv. 1.1: Iterative Methods Library Reference Guide. National Insti-
tute of Standards and Technology, Oak Ridge National Laboratory, February
1995.

L. Eldén and L. Wittmeyer-Koch. Numerical Analysis: An Introduction. Aca-
demic Press, 1990.

Roland W. Freund, Gene H. Golub, and Noél M. Nachtigal. Iterative solution
of linear systems. Acta Numerica, pages 1-44, 1992.

R. Fletcher. Conjugate gradient methods for indefinite systems. In Lecture
Notes in Mathematics, volume 506, pages 73—-89. Springer- Verlag, 1976.

Vance Faber and Thomas Manteuffel. Necessary and sufficient conditions for
the existence of a conjugate gradient method. SIAM Journal on Numerical

Analysis, 21(2):352-362, April 1984.

Roland W. Freund and Noél M. Nachtigal. QMR: a quasi-minimal residual
method for non-Hermitian linear systems. Numerische Mathematik, 60:315—

339, 1991.

Roland W. Freund and Noél M. Nachtigal. QMRPACK: a package of QMR
algorithms. Technical Report 4-16, AT&T Bell Laboratories, 1994.

Roland W. Freund. A transpose-free quasi-minimal residual algorithm for non-
Hermitian linear systems. SIAM Journal on Scientific Computing, 14(2):470—
482, March 1993.

Anshul Gupta, Vipin Kumar, and Ahmed Sameh. Performance and scalability
of preconditioned conjugate gradient methods on parallel computers. IFFFE

Transactions on Parllel and Distributed Systems, 6(5):455-469, May 1995.

Gene H. Golub and Charles F. van Loan. Matriz Computations. John Hopkins
Press, Maryland, 2nd edition, 1989.

Roe Goodman. Introduction to Stochastic Models. Benjamin/Cummings, 1988.

BIBLIOGRAPHY 153

[GTHSS5]

[Gut93a]

[Gut93b]

[GWS9]

[Hog89)]

[Hol91]

[Hol95]

[HS52]

[HYS1]

[Kab95]

[Kel79]

[Kem95]

W.K. Grassmann, M.I. Taskar, and D.P. Heyman. Regenerative analysis and
steady state distributions for Markov chains. Operations Research, 33(5):1107—
1116, 1985.

Martin H. Gutknecht. Changing the norm in conjugate gradient type algo-
rithms. STAM Journal on Numerical Analysis, 30(1):40-56, February 1993.

Martin H. Gutknecht. Variants of BICGSTAB for matrices with complex
spectrum. SIAM Journal on Scientific Computing, 14(5):1020-1033, Septem-
ber 1993.

C.F. Gerald and P.O. Wheatley. Applied Numerical Analysis. Addison-Wesley,
4th edition, 1989.

D. Hogrefe. Estelle, LOTOS and SDL. Springer-Verlag, 1989.

Gerard J. Holzmann. Design and Validation of Computer Protocols. Prentice-

Hall, 1991.

Gerard J. Holzmann. An analysis of bitstate hashing. In Proceedings of
IFIP/PSTVY5: Conference on Protocol Specification, Testing and Verifica-
tion. Chapman & Hall, Warsaw, Poland, June 1995.

M.R. Hestenes and I. Stiefel. Methods of conjugate gradients for solving linear
systems. Journal of Research of the National Bureau of Standards, 49:409-435,
1952.

L.A. Hageman and D.M. Young. Applied Iterative Methods. Academic Press,
1981.

Heinz M. Kabutz. QPN-model of reduced InRes protocol. QPN-Tool input

file, 1995. Available by email from heinz@cs.uct.ac.za.
F.P. Kelley. Reversibility and Stochastic Networks. Wiley and Sons, 1979.

P. Kemper. Numerical analysis of superposed GSPNs. In Proc. of the Sizth
International Workshop on Petri Nets and Perfromance Models, pages 52—62.
IEEE Computer Society Press, 1995.

BIBLIOGRAPHY 154

[KGBS7]

[Kle75]

[KMCS90]

[KMS84]

[KS60]

[KS95]

[LZGS84]

[MCS88]

[ME90]

[Mei94]

Sudhir Kumar, Winfried Grassmann, and Roy Billinton. A stable algorithm
to calculate steady-state probability and frequency of a Markov system. IEEFE
Transactions on Reliability, 36(1):58-62, April 1987.

Leonard Kleinrock. Queueing Systems, volume 1. John Wiley and Sons, 1975.

Udo R. Krieger, Bruno Miiller-Clostermann, and Michael Sczittnick. Mod-
elling and analysis of communication systems based on computational meth-

ods for Markov chains. IEFFE Journal on Selected Areas in Communications,

8(9):1630-1648, December 1990.

J.R. Koury, D.F. McAllister, and W.J. Stewart. Iterative methods for comput-
ing stationary distributions of nearly completely decomposable Markov chains.

SIAM Journal on Algebraic and Discrete Methods, 5(2):164-186, June 1984.

John G. Kemeny and J. Laurie Snell. Finite Markov Chains. Van Nostrand,
1960.

R.L. Klevans and W.J. Stewart. From queueing networks to Markov chains:

the XMARCA interface. Performance Evaluation, 24:23-45, 1995.

E.D. Lazowska, J. Zahorjan, G. Scott Graham, and Kenneth C. Sevcik. Quan-
titative System Performance: Computer System Analysis using Queuveing Net-

work Models. Prentice-Hall, Englewood Cliffs, New Jersey, 1984.

Bruno Miiller-Clostermann and Michael Sczittnick. A framework for the im-
plementation of generators for stochastic finite state models. Technical report,

University of Dortmund, 1988.

Ulrike Meier and Rudolf Figenmann. Parallelization and performance of con-
jugate gradient algorithms on the Cedar hierarchical-memory multiprocessor.
Technical Report 1035, Center for Supercomputing Research and Develop-
ment, University of Illinois at Urbana-Champaign, 1990.

Ulrike Meier-Yang. Preconditioned conjugate gradient-like methods for non-
symmetric linear systems. Technical Report 1210, Center for Supercomputing
Research and Development, University of Illinois at Urbana-Champaign, July

1994.

BIBLIOGRAPHY 1585

[Nac91]

[Pet81]

[Pre92]

[PRLI5]

[Rei92]

[Saal9]

[Sch&6]

[Scz87]

[SDY5]

[SF93)]

[SMC90]

Noél M. Nachtigal. A look-ahead variant of the Lanczos algorithm and its appli-
cation to the quasi-minimal residual method for non-Hermitian linear systems.

PhD thesis, Massachusetts Institute of Technology, August 1991.

J.L. Peterson. Petri Nets and the Modeling of Systems. Prentice-Hall, Fngle-
wood Cliffs, New Jersey, 1981.

William H. Press. Numerical recipes in C: the art of scientific computing.

Cambridge University Press, Cambridge, 2nd edition, 1992.

Roldan Pozo, Karin Remington, and Andrew Lumsdaine. SparselLib v. 1.3:
Sparse Matriz Class Library Reference Guide. National Institute of Standards
and Technology, March 1995.

W. Reisig. A Primer in Petri Net Design. Springer-Verlag, 1992.

Youcef Saad. Krylov subspace methods on supercomputers. SIAM Journal on

Scientific and Statistical Computing, 10(6):1200-1232, November 1989.

Paul J. Schweitzer. An iterative aggregation-disaggregation algorithm for
solving linear equations. Applied Mathematics and Computation, 18:313-353,
1986.

Michael Sczittnick. Technicken zur funktionalen und quantitativen Analyse
von Markoffschen Rechensystemmodellen. Diplomarbeit, Universitat Dort-

mund, October 1987.

U. Stern and D.L. Dill. Improved probabilistic verification by hash compaction.
In IFIP WG 10.5 Advanced Research Working Conference on Correct Hard-
ware Design and Verification Methods, 1995.

Gerard L. Sleijpen and Diederik R. Fokkema. BiICGSTAB(L) for linear equa-
tions involving unsymmetric matrices with complex spectrum. Flectronic

Transactions on Numerical Analysis, 1:11-32, September 1993.

Michael Sczittnick and Bruno Miiller-Clostermann. MACOM - a tool for the
Markovian analysis of communication systems. In Proceedings of the Fourth
International Conference on Data Communication Systems and their Perfor-

mance, Barcelona, Spain, June 1990.

BIBLIOGRAPHY 156

[Son&9]

[5586]

[Ste9l]

[Ste9d]

[SVS6]

[SV95]

[SWO5]

[Taf95]

[Tou95]

[U1r95]

Peter Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear
systems. STAM Journal on Scientific and Statistical Computing, 10(1):36-52,
January 1989.

Youcef Saad and Martin H. Schultz. GMRES: A generalized minimal resid-
ual algorithm for solving non-symmetric linear systems. SIAM Journal on

Scientific and Statistical Computing, 7(3):856-869, July 1986.

W.J. Stewart. MARCA: Markov chain analyser. A software package for
Markov modelling. In W.J. Stewart, editor, Numerical Solution of Markov
Chains, pages 37-62. Marcel Dekker Inc., New York, 1991.

W.J. Stewart. [Introduction to the Numerical Solution of Markov Chains.
Princeton University Press, 1994.

A. van der Sluis and H.A. van der Vorst. The rate of convergence of conjugate

gradients. Numerische Mathematik, 48:543-560, 1986.

Gerard L. Sleijpen and Henk van der Vorst. An overview of approaches for
the stable computation of hybrid bicg methods. Preprint 908, University of
Utrecht, Department of Mathematics, March 1995. To appear in Appl. Numer.
Math.

W. Schonauer and R. Weiss. An engineering approach to generalized conjugate
gradient methods and beyond. Appl. Numer. Math., 19:175-206, 1995. Special

Issue on Iterative Methods for Linear Equations.

D.K. Tafti. A study of Krylov methods for the solution of the pressure-Poisson
equation on the CM-5. Numerical Developments in CFD, FED-Vol. 215, Au-
gust 1995.

A. Touzene. A new iterative method for solving large-scale Markov chains. In
Lecture Notes in Computer Science 977: Proceedings of the 8th International
Conference on Modelling Techniques and Tools for Computer Performance

FPuvaluation, Heidelberg. Springer-Verlag, September 1995.

Roya Ulrich. Reservoir-based resource management for slotted high-speed net-

works. PhD thesis, Universitat Erlangen Nirnberg, September 1995.

BIBLIOGRAPHY 157

[Var62]

[Vor92]

[Vor93]

[Wal88a)

[Wal88b]

[Wei94]

[Wei95]

[Wil65]

[WL93]

R.S. Varga. Matriz Iterative Analysis. Prentice-Hall, 1962.

Henk van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant
of BiCG for the solution of nonsymmetric linear systems. SIAM Journal on

Scientific and Statistical Computing, 13(2):631-644, March 1992.

Henk van der Vorst. Lecture notes on iterative methods. Lecture notes,

University of Utrecht, December 1993.

Homer F. Walker. Implementation of the GMRES method using house-
holder transformations. STAM Journal on Scientific and Statistical Computing,
9(1):152-163, January 1988.

Jean Walrand. An Introduction to Queueing Networks. Prentice-Hall, Fngle-
wood Cliffs, New Jersey, 1988.

R. Weiss. Orthogonalization methods. Interner Bericht 52, Universitit Karl-
sruhe, 1994.

R. Weiss. A theoretical overview of Krylov subspace methods. Appl. Nu-
mer. Math., 19:207-233, 1995. Special Issue on Iterative Methods for Linear

Fquations.

J.H. Wilkinson. The Algebraic Figenvalue Problem. Clarendon Press, Oxford,
1965.

Pierre Wolper and Denis Leroy. Reliable hashing without collision detection.

In Lecture Notes in Computer Science 697, pages 59—-70. Springer- Verlag, 1993.

