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AbstractThis dissertation concerns analytical methods for assessing the performance of concurrentsystems. More speci�cally, it focuses on the e�cient generation and solution of large Markovchains which are derived from models of unrestricted timed transition systems. Timed tran-sition systems may be described using several high-level formalisms, including GeneralisedStochastic Petri nets, queueing networks and Queueing Petri nets. A system modelled withone of these formalisms may be mapped onto a Markov chain through a process knownas state space generation. The Markov chain thus generated can then be solved for itssteady-state distribution by numerically determining the solution to a large set of sparselinear equations known as the steady-state equations.Existing techniques of state space generation are surveyed and a new space-saving prob-abilistic dynamic state management technique is proposed and analysed in terms of itsreliability and space complexity. State space reduction techniques involving on-the-
y elim-ination of vanishing states are also considered. Linear equation solvers suitable for solvinglarge sparse sets of linear equations are surveyed, including direct methods, classical itera-tive methods, Krylov Subspace techniques and decomposition-based techniques. Emphasisis placed on Krylov subspace techniques and the Aggregation-Isolation technique, which isa recent decomposition-based algorithm applicable to solving general Markov chains.Since Markov chains derived from real life models may have very large state spaces, itis desirable to automate the performance analysis sequence. Consequently, the new statemanagement technique and several linear equation solvers have been implemented in theMarkov chain analyser DNAmaca. DNAmaca accepts a high-level model description of atimed transition system, generates the state space, derives and solves the steady-state equa-tions and produces performance statistics. DNAmaca is described in detail and examplesof timed transition systems which have been analysed with DNAmaca are presented.ii
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Chapter 1Introduction1.1 Motivation and ObjectivesWhen developing a complex concurrent system, such as a telecommunications protocol ora railway signalling control system, it is important to prevent costly redesigns and seriouserrors by assessing the correctness and performance of the system before implementation.This can be achieved by constructing and analysing an abstraction or model which capturesthe essential aspects of the system's behaviour. In this dissertation we will concern ourselveswith e�cient ways of establishing the performance of concurrent systems starting from sucha system model.There are two general approaches to obtaining performance statistics for a system: analyticalmethods and simulation. Analytical methods make use of formal, abstract models fromwhich exact results can be obtained by solving a set of equations derived from the model.Simulation, on the other hand, can be used to model systems at arbitrary levels of detail,producing inexact results bounded by con�dence intervals. The accuracy of the results maybe improved by extending simulation execution time and/or by making the model moredetailed. However, relative to analytical models, there is a high cost and e�ort involvedin constructing accurate simulation models and the length of execution time required toproduce reliable results can be extremely long. For example, in simulations of modern high-speed slotted networks, where a very large number of events occur in short periods of time,the simulation of 8000 framing periods, corresponding to an elapsed system time of just 11



CHAPTER 1. INTRODUCTION 2second, requires almost four hours of processing time on a SPARC5 workstation [Ulr95, pg.105]. An analytical model of the same system requires just 20 seconds to solve.This dissertation focuses on a widely-used analytical technique known as Markov chainmodelling. Markov chains model the low-level stochastic behaviour of a system by describ-ing what possible states the system may enter and how the system moves from one state toanother in time. Markov chains are limited to describing such systems which have discretestates and which satisfy the property that the future behaviour of the system only dependson the current state. Despite these limitations, Markov chains are a 
exible representa-tion capable of modelling the phenomena found in complex concurrent systems, includingblocking, synchronisation, preemption, state-dependent routing and complex tra�c arrivalmodels.Markovian models of real-life systems may involve many hundreds of thousands, or millions,of states. It is thus infeasible to manually specify each of the states and the transitionsbetween states. Several high-level formalisms from which Markov chains can be derivedhave thus come about. Examples of such formalisms are Generalised Stochastic Petri nets[AMCB84], queueing networks and Queueing Petri nets [BB89]. Systems speci�ed with oneof these high-level formalisms are known as timed transition systems. Performance statisticsfor these systems can be obtained by mapping the states of the system onto a Markov chainand then solving a set of linear equations to determine the chain's steady-state distribution.Since it is possible to derive a Markov chain model from any formalism describing a timedtransition system, it thus makes sense to have a tool which implements the complete per-formance analysis sequence on general timed transition systems. That is, the tool shouldaccept a high-level model description, derive a Markov chain through a state space explo-ration, and then solve the chain to produce performance statistics.A major problem which immediately presents itself in the design of such a tool is the statespace explosion problem. One approach to this problem is to restrict the structure of systemmodels, for example, by imposing a hierarchy. This allows for the application of e�cientanalysis techniques which exploit the restricted structure. We will not adopt this approach,however, since we seek techniques which can be used to derive performance statistics forgeneral unrestricted timed transition systems. In particular, we will investigate e�cienttechniques for two problems: generating large state spaces and solving large sets of linearequations.



CHAPTER 1. INTRODUCTION 3The generality of our approach also poses the problem of developing an interface languagewhich is general enough to handle the description of any timed transition system. Wepropose such a language.There are two general Markov chain solvers that the author is aware of: USENUM [Scz87],developed around 1987 at the University of Dortmund, and MARCA [Ste91] developed atthe University of North Carolina. We have developed our own analyser called DNAmaca,which makes two main contributions:� DNAmaca uses a new probabilistic dynamic state management technique. This resultsin considerable memory savings over conventional exhaustive or static techniques.� DNAmaca includes implementions of four classes of applicable sparse linear equa-tion solvers, namely direct methods, classical iterative techniques, Krylov Subspacetechniques and decomposition-based techniques.With DNAmaca we are able to solve general, unrestricted Markov chains of as many as500 000 tangible states with only 64 Mb RAM.1.2 Other WorkIn this section, we review the Markov chain analysers USENUM and MARCA. We describetheir state and transition representations, interface languages, state state exploration al-gorithms and steady-state solution techniques. We also brie
y review some applicationpackages which make use of the analysers as their underlying solution engines. The readeris referred to chapters 3 and 4 for explanations of the technical terms and abbreviationsused in this section.1.2.1 USENUMUSENUM [Scz87] is a Markov chain analyser developed at the University of Dortmund byMichael Sczittnick in 1987. The analyser was originally implemented on a BS2000 systemusing SIMULA, then rewritten in C for use on UNIX systems. With USENUM, it ispossible to analyse models with up to about 100000 states (both vanishing and tangible)on a machine with 64 Mb RAM.



CHAPTER 1. INTRODUCTION 4State and Transition representation: In USENUM, a state is represented as aninteger-valued row state descriptor vector. Transitions from the current state to the nextstate are speci�ed by:� an enabling condition expressed as a conditional C expression on elements of thecurrent state vector.� a transition e�ect expressed as C assignments to elements of the next state vectorbased on operations on the elements of the current state vector.� a transition rate or weight. In the case of a timed transition, this is the meantransition �ring rate while, in the case of an instanteous transition, this is a relativetransition �ring probability. The transition rate or weight may be state-dependent.Interface Language: A model is speci�ed across six �les using a simple interface lan-guage containing C code fragments. Each of these �les controls an aspect of the Markovchain generation and solution process. In particular, the user speci�es:� A control or master �le.� Amodel description �le which speci�es the high-level structure of the model, includ-ing a description of the state vector, an initial starting state and rules for transitionsbetween states.� A state generation control �le which controls aspects of the state space explorationprocess, such as the maximum number of states.� A functional analysis control �le which allows for the speci�cation of invariantswhich should hold on each generated state and which contains options for the detectionof recurrent and transient state classes.� A steady-state solution control �le which speci�es options such as the steady-statemethod to be used, the desired accuracy of the solution and the maximum number ofiterations.� A quantitative analysis �le which speci�es performance statistics in the form ofstate and count measures.



CHAPTER 1. INTRODUCTION 5Three C programs are automatically generated from these �les: a state space generator, afunctional analyser and a combined steady-state and performance analyser. These programsare compiled and executed in sequence.State Space exploration algorithm: USENUM uses an exhaustive depth-�rst searchstate space exploration algorithm which stores states in a hash table of linked lists. USENUMdoes not perform on-the-
y vanishing state elimination during state space generation. In-stead, it eliminates vanishing states using matrix multiplication and inversion operationsbefore beginning the steady-state solution. Timeless traps can be detected.Numerical solution techniques: USENUM supports three classes of steady-state solu-tion techniques:� Direct methods: LU decomposition and Grassmann's algorithm.� Classical Iterative methods: Jacobi Over-relaxation (JOR) and Successive Over-relaxation (SOR).� Decomposition-based techniques: Block SOR.Krylov subspace techniques are not implemented. However, transient analysis is supportedthrough randomization and matrix powering.Applications: Two front-end graphical applications have been developed which make useUSENUM as their underlying solution engine: MACOM [KMCS90], a queueing networkanalyser tailored to telecommunications models and QPN-Tool [BK94], a Queueing Petrinet analyser. Both applications run on SUN UNIX workstations under the SunView windowsystem. Both automatically generate USENUM �les from models without user intervention.1.2.2 MARCAMARCA (MARkov Chain Analyser) [Ste91] [Ste94, x10.2] is a Markov Chain analyserdeveloped at North Carolina State University by Professor William J. Stewart. The packageis written in FORTRAN and runs on UNIX systems.



CHAPTER 1. INTRODUCTION 6State and Transition representation: In MARCA, a state is represented as an integer-valued row vector with elements known as buckets. Each bucket is viewed as containing anumber of balls which represent the value of the corresponding vector elements. Transitionsare represented by movements of balls from one bucket to another, and the rate of transitionis de�ned as the rate at which the source bucket loses balls to the destination bucket. Suchtransitions can be timed or instantaneous.Interface language: MARCA models are speci�ed using a data �le and two FORTRANsubroutines called RATE and INSTANT. The data �le contains a description of the statedescriptor vector, a maximum value for each bucket in the state descriptor, an initial state,and a list of transitions which can occur between buckets. The data �le may also con-tain information such as the solution method for computing the steady-state distribution;alternatively, this information may be entered interactively during the solution process.The subroutine RATEmust be written to return the rate at which transitions occur betweenevery possible pair of source and destination buckets, as well as the destination states thatresult from these transitions. The RATE subroutine is not restricted to changing to thesource and destination buckets only, but may de�ne the destination state completely. Notethat this implies that the total number of balls in a state descriptor need not be conservedbut can be created and destroyed as needed.The subroutine INSTANT must examine destination states and determine whether or notthey are vanishing. If they are, the subroutine must return a possible set of destination statesand associate with each the probability that it is the result of the instanteous transition.State Space exploration algorithm: MARCA implements an exhaustive breadth-�rstsearch state space exploration algorithm which stores states in a list. On-the-
y vanishingstate elimination is performed during state space generation. There is no timeless trapdetection.Numerical solution techniques: MARCA implements four classes of steady-state so-lution methods:� Direct methods: Sparse Gaussian elimination.



CHAPTER 1. INTRODUCTION 7� Classical Iterative methods: SOR, symmetric SOR (SSOR), power method, �xed-point iterations with preconditioning.� Krylov Subspace methods: Arnoldi method (2 variants), GMRES (3 variants).� Decomposition-based techniques: An iterative aggregation/disaggregation solverfor nearly completely decomposable (NCD) chains. MARCA includes a unique facilityfor detecting near-decomposable components of the transition matrix.After the steady-state vector has been computed, MARCA determines the distribution ofthe balls in each of the buckets and the mean and standard deviation of the distributions.For more complex performance measures, MARCA allows the user access to the list of statesand the steady-state probability vector.In addition, MARCA supports transient analysis through randomization, Runge-Kutta,Adams ODE solver and matrix powering techniques.Applications: A graphical front-end application forMARCA, known as XMARCA [KS95],has been developed. XMARCA is a sophisticated queueing network analyser which runsunder the X-window system on UNIX systems. XMARCA allows users to build queueingnetworks from components such as stations, queues, servers and connectors and then anal-yse them using MARCA. XMARCA automatically generates the relevant MARCA �les,including the RATE and INSTANT subroutines, and there is no need for user intervention.1.3 Dissertation OutlineThe layout of the rest of this dissertation is as follows:Chapter 2 presents background material. In particular, we discuss three formalisms fordescribing timed transition systems, as well as the Markov theory necessary for their anal-ysis.Chapter 3 tackles the problem of e�cient state space generation. We consider traditionalstate space exploration techniques and introduce a new probabilistic dynamic techniquewhich is analysed in terms of its reliability and space complexity. The chapter concludes



CHAPTER 1. INTRODUCTION 8with a consideration of strategies for the e�cient elimination of vanishing states which canoccur in several time-augmented Petri net representations.Chapter 4 presents a taxonomy of linear equation solvers, including direct methods, clas-sical iterative methods, Krylov Subspace techniques and decomposition-based techniques.Particular attention has been paid to Krylov Subspace techniques and the Aggregation-Isolation algorithm [Tou95] which is a recently developed decomposition-based techniqueapplicable to solving general Markov Chains.Chapter 5 considers the requirements involved in designing a general interface languagefor specifying timed transition systems. A language which meets these requirements ispresented.Chapter 6 presents the DNAmaca performance analyser, which implements many of theconcepts outlined in the previous chapters. DNAmaca provides a complete performanceanalysis sequence including model speci�cation, state space generation, functional analysis,steady-state solution and the computation of performance statistics.Chapter 7 illustrates the e�ectiveness of DNAmaca as a modelling tool by consideringthree examples of timed transition systems.Chapter 8 presents conclusions and suggestions for future work.



Chapter 2Background theory2.1 IntroductionIn the �rst section of this chapter, we discuss three formalisms for performance modellingwhich fall into the class of timed transition systems: Generalised Stochastic Petri nets(GSPNs), queueing networks and Queueing Petri nets (QPNs).A timed transition system has one or more attributes which jointly characterise its be-haviour. These attributes may have di�erent values from time to time. A vector of theseattributes, known as the state descriptor vector, characterises the con�guration or state ofthe system at any point in time. All possible states of the system may be obtained byenumerating all possible values of the state descriptor. After de�ning each formalism, wedescribe what constitutes a state of the system and de�ne a state descriptor vector whosecomponents completely describe a state of the system. We also discuss the advantages anddisadvantages of each methodology. We refer mainly to [BK95], [Rei92] and [LZGS84].In the second section, we present an overview of Markov theory, which is the vehicle wewill use for obtaining performance statistics from system models. Markov theory has beenextensively covered in the literature; here we refer to [Kle75], [KS60], [Ste94] [BK95] and[BDMC+94]. 9



CHAPTER 2. BACKGROUND THEORY 102.2 Modelling Formalisms2.2.1 Generalised Stochastic Petri Nets (GSPNs)Petri nets are a modelling formalism for describing the behaviour of concurrently-executingasynchronous processes. Examples of systems which have been successfully modelled withPetri nets include communication protocols, parallel programs, multiprocessor memorycaches and distributed databases [Pet81, Rei92].The simplest kind of Petri nets are Place-Transition nets, which were originally conceivedby Carl Adam Petri in 1962 as a formal means of establishing the correctness of concurrentsystems. Place-Transition nets consist of four components [BK95]:� places, drawn as circles, which model conditions or objects.� tokens, drawn as black dots, which represent the speci�c value of the condition orobject.� transitions, drawn as rectangles, which model activities that change the values ofconditions and objects.� arcs, drawn between places and transitions and vice versa, which specify which objectsare changed by a certain activity.De�nition 2.1 A Place-Transition net is a 5-tuple PN = (P; T; I�; I+;M0) where� P = fp1; : : : ; png is a �nite and non-empty set of places.� T = ft1; : : : ; tmg is a �nite and non-empty set of transitions.� P \ T = ;.� I�; I+ : P � T ! IN0 are the backward and forward incidence functions, respectively.If I�(p; t) > 0, an arc leads from place p to transition t, and if I+(p; t) > 0 then anarc leads from transition t to place p.� M0 : P ! IN0 is the initial marking de�ning the initial number of tokens on everyplace.



CHAPTER 2. BACKGROUND THEORY 11De�nition 2.2 The dynamic behaviour of a Place-Transition net is determined by the en-abling and �ring of transitions, given as follows [BK95]:1. Amarking of a Place-Transition net is a function M : P ! IN0, where M(p) denotesthe number of tokens in p.2. A transition t 2 T is enabled at M, i� M(p) � I�(p; t); 8p 2 P .3. A transition t 2 T , enabled at marking M , may �re yielding a new marking M 0 whereM 0(p) = M(p)� I�(p; t) + I+(p; t); 8p 2 P4. We say M 0 is directly reachable from M and write M ! M 0. Let !� be there
exive and transitive closure of !. A marking M 0 is reachable from M i� M !�M 0.Using Place-Transition nets, we can test that a system has certain desirable correctnesscharacteristics such as freedom from deadlock, liveness and boundedness. However, sincePlace-Transition nets do not include a notion of time, it is not possible to model the perfor-mance of a system. Consequently, several classes of time-augmented Petri nets have beendeveloped, either by attaching time delays to transition �rings or by specifying sojourntimes of tokens on places.One of the most 
exible and most widely used time-augmented Petri net representationsare Generalised Stochastic Petri nets (GSPNs) [AMCB84]. GSPNs have two di�erent typesof transitions: immediate transitions and timed transitions. Once enabled, immediate tran-sitions �re in zero time, while timed transitions �re after an exponentially distributed �ringdelay. Firing of immediate transitions has priority over the �ring of timed transitions.The formal de�nition of a GSPN is as follows:De�nition 2.3 A GSPN is a 4-tuple GSPN = (PN; T1; T2;W ) where� PN = (P; T; I�; I+;M0) is the underlying Place-Transition net.� T1 � T is the set of timed transitions, T1 6= ;,� T2 � T denotes the set of immediate transitions, T1 \ T2 = ;, T = T1 [ T2



CHAPTER 2. BACKGROUND THEORY 12� W = (w1; : : : ; wjT j) is an array whose entry wi{ is a (possibly marking dependent) rate 2 IR+ of an exponential distribution spec-ifying the �ring delay, when transition ti is a timed transition, i.e. ti 2 T1 or{ is a (possibly marking dependent) weight 2 IR+ specifying the relative �ring fre-quency, when transition ti is an immediate transition, i.e. ti 2 T2.Each distinct marking that is reachable from some initial marking M0 corresponds to astate of the system. Thus the concepts of state and marking are interchangeable in thecontext of GSPNs and a suitable state descriptor is:M = (p1; p2; : : : ; pn)where n = jP j. The set of all markings that are reachable from M0 constitute the statespace or reachability set of the Petri net.The state space of a GSPN contains two types of markings. Since immediate transitions�re in zero time, the sojourn time in markings which enable immediate transitions is zero.Such markings are called vanishing markings because these states will never be observedby an observer who randomly examines the stochastic process of a GSPN, even though thestochastic process sometimes visits them. On the other hand, markings which enable timedtransitions only will have an exponentially distributed sojourn time. Such markings are notleft immediately and are referred to as tangible markings.Since no time is spent in vanishing markings, vanishing markings have no e�ect on theresulting performance statistics derived for a GSPN and they are often eliminated duringor immediately after state space generation.The graphical representation of GSPNs becomes very complex for realistic models. One wayof reducing this complexity is to distinguish between individual tokens. Coloured GSPNs(CGSPNs) [DCB93] make this distinction by attaching colour to tokens and by de�ning�ring modes on transitions.Before formally de�ning a CGSPN, we must �rst de�ne multisets and Coloured Petri nets(CPNs). CPNs are the coloured variants of Place-Transition nets on which CGSPNs arebased.



CHAPTER 2. BACKGROUND THEORY 13De�nition 2.4 A multiset m over a non-empty set S, is a function m 2 [S ! IN0].The non-negative integer m(s) 2 IN0 is the number of appearances of the element s in themulti-set m.De�nition 2.5 A Coloured Petri net (CPN) is a 6-tupleCPN=(P,T,C,I�; I+;M0), where� P is a �nite and non-empty set of places,� T is a �nite and non-empty set of transitions,� P \ T = ;,� C is a colour function de�ned from P [ T into �nite and non-empty sets,� I� and I+ are the backward and forward incidence functions de�ned on P�T suchthatI�(p; t); I+(p; t) 2 [C(t)! C(p)MS]; 8 (p; t) 2 P � T ,� M0 is a function de�ned on P describing the initial marking such thatM0(p) 2 C(p)MS; 8p 2 P .De�nition 2.6 The dynamic behaviour of a CPN is given as follows:1. A transition t 2 T is enabled in a marking M w.r.t. a colour c0 2 C(t), denoted byM [(t; c0) >, i� M(p)(c) � I�(p; t)(c0)(c); 8p 2 P; c 2 C(p).2. An enabled transition t 2 T may furthermore �re in a marking M w.r.t. a colourc0 2 C(t) yielding a new marking M 0, denoted by M !M 0 or M [(t; c0) > M 0, withM 0(p)(c) = M(p)(c) + I+(p; t)(c0)(c)� I�(p; t)(c0)(c); 8p 2 P; c 2 C(p).De�nition 2.7 A Coloured GSPN (CGSPN) is a 4-tupleCGSPN = (CPN; T1; T2;W ) where� CPN = (P; T; C; I�; I+;M0) is the underlying Coloured Petri net.� T1 � T is the set of timed transitions, T1 6= ;,



CHAPTER 2. BACKGROUND THEORY 14� T2 � T is the set of immediate transitions, T1 \ T2 = ;, T = T1 [ T2,� W = (w1; : : : ; wjT j) is an array whose entry wi is a function of[C(ti)! IR+] such that 8c 2 C(ti) : wi(c) 2 IR+{ is a (possibly marking dependent) rate of a negative exponential distribution spec-ifying the �ring delay with respect to colour c, if ti 2 T1 or{ is a (possibly marking dependent) �ring weight with respect to colour c, if ti 2 T2.Note that CGSPNs do not have any additional modelling power over GSPNs since everyCGSPN may be uniquely unfolded into a GSPN representing the same model.GSPNs provide a natural way of modelling synchronisation, but several di�culties arisewhen attempting to model queues [BK95, pg. 152{153]. Even simple scheduling strategieslike FCFS are di�cult to represent with low-level Petri net elements; in addition, advanceknowledge of the maximum number of elements in a queue is required and it is extremelydi�cult to model service times given by complex distributions, e.g. a Coxian distribution.2.2.2 Queueing NetworksQueueing networks [BCMP75, LZGS84, Wal88b] are a widely-used performance analysistechnique for those systems which can be naturally represented as networks of queues.Systems which have been successfully analysed with queueing networks include computersystems, communication networks and 
exible manufacturing systems.A queueing network consists of three types of components:� Service centres (see Fig. 2.2.2), each of which consists of one or more queues andone or more servers. The servers represent the resources of the system available toservice customers. An arriving customer will immediately be served if a free servercan be allocated to the customer or if a customer in service is preempted. Otherwise,the customer must wait in one of the queues, until a server becomes available.� Customers, which demand service from the service centres and which represent theload on the system. Usually customers are grouped into classes, where customers inone class exhibit similar behaviour and normally place similar demands on the centres.
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servers

departuresarrivals

queueFigure 1: A service centre in a queueing network� Routes, which are the paths which workloads follow through a network of servicecentres. The routing of customers may be dependent on the state of the network. Ifthe routing is such that no customers may enter or leave the system, the system issaid to be closed. If customers arrive externally and eventually depart, the system issaid to be open. If some classes of customers are closed and some are open, then thesystem is said to be mixed.To be fully speci�ed, a queueing network requires the following parameters to be de�ned:� The number of service centres.� The number of queues at each service centre. For each of these queues we furtherneed to de�ne:{ The capacity of each queue, which may be in�nite or �nite of capacity k.{ The queue scheduling discipline, which determines the order of customer ser-vice. Di�erent customer classes may have di�erent scheduling priorities. Com-mon scheduling rules include First-Come First-Served (FCFS), Last-Come First-Served Preemptive-Resume (LCFS-PR), Round Robin (RR) and Processor Shar-ing (PS).



CHAPTER 2. BACKGROUND THEORY 16{ For open classes of customers, we need to de�ne an input source distributionspecifying the arrival distribution of each customer class at each queue. Thisdistribution is usually given by an exponential distribution with parameter �.� The number of servers at each service centre. For each of these servers we furtherwe need to de�ne:{ The service time distribution for each customer class at each server. Thisis usually exponential with parameter �. More general distributions can beapproximated using a Coxian distribution [Ste94, pg. 51{52].� The routing probability matrix for each customer class. This matrix speci�esthe probabilistic routing of customers between service centres, with the ijth elementgiving the probability that a customer leaving service centre i will proceed to servicecentre j. These transitions are assumed to be instantaneous.The state of individual service centres in a queueing network may be described by a vector.For example, the state of a single-server centre with a Coxian service distribution andblocking may be described by the number of customers in the queue, the phase of serviceand a parameter to indicate whether or not the server is blocked. The state descriptor of aqueueing network as a whole may then be built up by concatenating the vectors describingthe state of the individual service centres.A certain class of queueing networks which satisfy reversibility [Kel79] can be e�ciently anal-ysed using so-called product-form solution techniques, the two most well-known of whichare Mean Value Analysis (MVA) and the convolution method. Unfortunately, these ele-gant algorithms fail if one of the prerequisites for the product-form property is violated bythe network. In particular, if phenomena such as synchronization, simultaneous resourcepossession, blocking or batching occur, then usually no proper product-form queueing net-work model can be found. In this case, strictly numerical procedures have to be used. Inparticular, one may always derive and solve a Markov chain model of the system.Queueing networks are widely used because they are often easy to de�ne, parameterise andevaluate. However, they lack of facilities to describe synchronisation mechanisms.



CHAPTER 2. BACKGROUND THEORY 172.2.3 Queueing Petri nets (QPNs)Queueing Petri nets (QPNs) [Bau93] attempt to incorporate the concept of queues intoa coloured GSPN formalism. In this way, synchronisation mechanisms and queues withvarious scheduling strategies can be integrated into one model. A QPN extends the conceptof a CGSPN by partitioning the set of places into two subsets: queued places and ordinaryplaces.A queued place (see Fig. 2.2.3) consists of two parts: a queue and a depository for tokenswhich have completed their service at this queue. Tokens, when �red onto a queued place byany of its input transitions, are inserted into the queue according to the scheduling strategyof the queue. Tokens in a queue are not available for transitions. After completion of itsservice, the token is placed onto the depository. Tokens on this depository are available toall output transitions of the queued place. An enabled timed transition will �re after anexponentially distributed time delay and an immediate transition �res with no delay, as inGSPNs.
depositoryqueueFigure 2: A queued place and its shorthand notationThe formal de�nition of a QPN is as follows:De�nition 2.8 A Queueing Petri net (QPN) is a triple QPN = (CGSPN; P1; P2)where:� CGSPN is the underlying Coloured GSPN� P1 � P is the set of queued places and� P2 � P is the set of ordinary places, P1 \ P2 = ;, P = P1 [ P2.



CHAPTER 2. BACKGROUND THEORY 18A state or marking M of a QPN consists of two parts M = (n;m) where n speci�es thestate of all queues and m is the marking of the underlying CGSPN. For a queued placep 2 P1, m(p) denotes the marking of the depository. The initial marking M0 of a QPN isgiven by M0 = (O;m0) where O is the state describing that all queues are empty and m0is the initial marking of the CGSPN.There are three possible types of state transitions that may take place in a QPN:� An enabled immediate transition may �re.� An enabled timed transition may �re if no immediate transitions are enabled.� A service in a queued place may complete if no immediate transitions are enabled.Similar to GSPNs, the �ring of immediate transitions has priority over both the �ring oftimed transitions and the service of tokens in queues. Thus, the state space of a QPNcomprises both vanishing and tangible states. As for GSPNs, these states are usuallyeliminated during or immediately after state space generation.QPNs allow for a convenient description of queues within a Petri net paradigm. However,the complexity of the performance analysis, determined by the size of the state space, isstill the same as that obtained by modelling the queue with CGSPN elements.2.3 Markov Theory2.3.1 Stochastic ProcessesAs we have mentioned, the behaviour of a system can often be characterised by enumeratingall the states that the system may enter and by describing how the system evolves from onestate to another over time. In its most general form, such a system can be represented bya stochastic process.De�nition 2.9 A random variable � is a variable whose value depends on the outcomeof a random experiment. If the value space of � is countable but not necessarily �nite, thenthe random variable is discrete and its behaviour is characterised by a probability massfunction: p�(x) = Pf� = xg



CHAPTER 2. BACKGROUND THEORY 19If the value space of � is uncountable, then the random variable is continuous and itsbehaviour is characterised by a cumulative distribution function:F�(x) = Pf� � xgDe�nition 2.10 A stochastic process is a family of random variables f�(t)g indexed bythe time parameter t. If the time index set ftg is countable, the process is a discrete-timeprocess, otherwise the process is a continuous-time process. The possible values or statesthat members of f�(t)g can take on constitute the state space of the process. If the statespace is discrete the process is called a chain.2.3.2 Markov ProcessesIn many cases, the future evolution of a system depends only on the current state of thesystem and not on past history. Such memoryless systems can be represented by Markovprocesses. Stated formally, Markov processes satisfy the Markov property which states thatfor all integers n and for any sequence t0; t1; : : : ; tn such that t0 � t1 � : : : � tn � n wehave Pf�(t) � x j �(tn) = xn; �(tn�1); : : : ; �(t0)g = Pf�(t) � x j �(tn) = xngThis property requires that the next state can be determined knowing nothing other than thecurrent state, not even how much time has been spent in the current state. A consequenceof the Markov property is that the sojourn time � spent in a state must satisfy:Pf� � s+ t j � � tg = Pf� � sg 8 s; t � 0 (1)As we shall see, this condition places restrictions on the distribution of time spent in a state.De�nition 2.11 A homogeneous Markov chain is a Markov chain whose probabilitiesare stationary with respect to time. That is:Pf�(t) � x j �(tn) = xng = Pf�(t � tn) � x j �(0) = xng



CHAPTER 2. BACKGROUND THEORY 20Discrete-time Markov ChainsA discrete-time Markov chain is a Markov process with a discrete state space which isobserved at a discrete set of times. Without loss of generality, we can take the time indexset ftg to be the set of counting numbers f0; 1; 2; : : :g. The observations at these timesde�ne the random variables �0; �1; �2; : : : at time steps 0; 1; 2; : : : respectively.De�nition 2.12 The variables �0; �1; : : : form a discrete-time Markov chain if for alln (n = 1; 2; : : :) and all states xn we have:Pf�n+1 = xn+1 j �0 = x0; �1 = x1; : : : ; �n = xng= Pf�n+1 = xn+1 j �n = xngFor a discrete-time Markov chain, the only sojourn time distribution which satis�es thesojourn time condition of Eq. (1) is the geometric distribution.A homogenous discrete-time Markov chain may be represented by a one-step transitionprobability matrix P with elements:pij = Pf�n+1 = xj j �n = xigwhere �t represents the state of the system at discrete time-step t 2 IN. That is, pij givesthe probability of xj being the next state given that xi is the current state. Note that theentries of P must satisfy: 0 � pij � 1 8 i; j and Xj pij = 1 8 iDe�nition 2.13 Let S0 denote a subset of the state space S, and S0 its complement. ThenS0 is closed or �nal if no single-step transition is possible from any state in S0 to anystate in S0.De�nition 2.14 A Markov chain is irreducible if every state can be reached from everyother state. Otherwise, the state space contains one or more closed subsets of states andthe chain is reducible.



CHAPTER 2. BACKGROUND THEORY 21Let f (m)j denote the probability of leaving state xj and �rst returning to that same state inm steps. Then the probability of ever returning to the state xj is given by:fj = 1Xm=1 f (m)jDe�nition 2.15 For any state xj:� if fj = 1 then xj is recurrent; else� if fj < 1 in which case xj is transient.De�nition 2.16 State xj is periodic with period � if the Markov chain returns to statexj only at time steps �; 2�; 3�; : : : where � � 2 is the smallest such integer. If � = 1 thenxj is aperiodic.De�nition 2.17 The mean recurrence time of recurrent state xj isMj = 1Xm=1mf (m)jwhich is the average number of steps taken to return to state xj for the �rst time afterleaving it. If Mj =1, state xj is recurrent null; otherwise Mj <1 and xj is recurrentnonnull.Theorem 2.1 The states of an irreducible Markov chain are either all transient or allrecurrent nonnull or all recurrent null. If the states are periodic, then they all have thesame period [Kle75, pg. 29].The most important part of Markov chain analysis is to determine how much time is spentin each of the states xj . We de�ne:�(m)j = Pf�m = xjgas the probability of �nding the Markov chain in state xj at time step m.De�nition 2.18 Let z be a vector describing a probability distribution whose elements zjdenote the probability of being in state xj. Then, z is a stationary probability distri-bution of a DTMC with one-step transition matrix P if and only if zP = z.



CHAPTER 2. BACKGROUND THEORY 22De�nition 2.19 The limiting probability distribution f�jg of a discrete-time Markovchain is given by: �j = limm!1 �(m)jNote that the existence of a stationary distribution of a Markov chain does not necessarilyimply the existence of a limiting probability distribution, and vice versa. The next theoremaddresses the issue of when the limiting and stationary probabilities exist.Theorem 2.2 In an irreducible and aperiodic homogeneous Markov chain, the limitingprobabilities f�jg always exist and are independent of the initial probability distribution.Moreover one of the following conditions hold:� Every state xj is transient or every state xj is recurrent null, in which case �j = 0 forall xj and there exists no stationary distribution (even though the limiting probabilitydistribution exists). In this case, the state space must be in�nite.� Every state xj is recurrent nonnull with �j > 0 for all xj, in which case the set f�jgis a limiting and stationary probability distribution and�j = 1MjIn this case the �j are uniquely determined from the set of equations:Xi �j = �ipij subject to Xi �i = 1 (2)If � = (�1; �2; : : :) is a vector of limiting probabilities, Eq. (2) can be rewritten as� = �Pwhere P is the transition probability matrix. The vector � is called the steady-state solutionof the Markov chain.The states of a recurrent nonnull discrete-time Markov chain are said to be ergodic, as is theMarkov chain itself. If the state space of the Markov chain is �nite (which we will alwaysassume is the case), the chain is called �nite; if, in addition, the chain is irreducible, thenit is ergodic.



CHAPTER 2. BACKGROUND THEORY 23Continuous-Time Markov ChainsA continuous-time Markov chain is a Markov process with a discrete state space and a statethat may change at any time. The formal de�nition is as follows:De�nition 2.20 The stochastic process f�(t)g forms a continuous-time Markov chainif for all integers n and for any sequence t0; t1; : : : ; tn; tn+1 with t0 < t1 < : : : < tn < tn+1we have: Pf�(tn+1) = xn+1 j �(t0) = x0; �(t1) = x1; : : : ; �(tn = xn)g= Pf�(tn+1) = xn+1 j �(tn) = xngFor the case of a continuous-time Markov chain, the only sojourn time distribution whichsatis�es the sojourn time condition of Eq. (1) is the exponential distribution.A homogeneous continuous-time Markov chain may be represented by a set of states and anin�nitesimal generator matrix Q where Qij ; i 6= j represents the exponentially distributedtransition rate between states xi and xj . The parameter of the exponential distribution ofthe sojourn time in state xi is given by �Qii where Qii = �Pj 6=iQij . Note that the entriesof Q must satisfy: Xj Qij = 0 8 iDe�nition 2.21 Let z be a vector describing a probability distribution whose elements zjdenote the probability of being in state xj. Then, z is a stationary probability distri-bution of a CTMC with in�nitesimal generator matrix Q if and only if �Q = 0.Theorem 2.3 In a �nite, homogeneous, irreducible, continuous-time Markov chain, thelimiting probabilities f�jg always exist and are independent of the initial probability distri-bution. Moreover, the set f�jg is also a stationary probability distribution which can beuniquely determined from solving the set of equations:qjj�j +Xi 6=j qij�i and Xi �i = 1 (3)The set of equations given by Eq. (3) is sometimes also referred to as the set of globalbalance equations. In vector form, they may be written as:�Q = 0where � = (�1; �2; : : :) is the steady-state probability vector.



Chapter 3State Space ExplorationTechniques3.1 IntroductionThe �rst step in the analytical performance analysis of general timed transition systems isto determine what the reachable states in a system are and how they relate to one another.We will approach this problem by using explicit state enumeration techniques; note that ifthe underlying model has certain pre-existing structural properties, or if the only objectiveis to decide the correctness of the system being modelled, then other techniques exist tohandle very large state spaces [Kem95, B+94]. The objective here, however, is to generatethe state spaces of unrestricted systems for the purpose of performance analysis.Most state space generation techniques use a depth �rst search (DFS) approach. Thisrequires the use of two data structures. First, a DFS stack is needed to store unexploredstates. Second, a table of explored states must be maintained in order to avoid redundantstate exploration. Given a DFS stack S, a set of explored states E, an initial state si anda function succ(s) which yields the set of successors states of state s, Fig. 3 presents anoutline of a basic state exploration algorithm.The DFS stack is accessed sequentially and is limited by the depth of the state graph; thusit is usually not critical to memory requirements. However, the table of explored statesmust hold enough information to determine whether states encountered are new, or have24



CHAPTER 3. STATE SPACE EXPLORATION TECHNIQUES 25push(S; si)E = fsigwhile (S not empty) do beginpop(S; s)for each s0 2 succ(s) do beginif s0 =2 E do beginpush(S; s0)E = E [ fs0gendendend Figure 3: Basic state space exploration algorithmin fact been explored before. That is, one has to be able to rapidly store and retrieveinformation about every reachable state. Consequently, the layout and management ofthe explored-state table is crucial to both the time and space e�ciency of a state spacegeneration technique.It is worthwhile to note that information about transitions between states can be obtainede�ciently as the DFS search proceeds. As each unexplored state s is popped o� the DFSstack, the function succ(s) �nds the set of enabled transitions at state s and then �reseach one to determine the successor states. Provided information about the �ring rates ofthese enabled transitions is available, we can easily adapt the algorithm to construct thein�nitesimal generator matrix of transition rates between states. Note that the generatormatrix need not be stored in memory; instead, as each state is popped o� the DFS stack,the matrix can be written to secondary storage row-by-row for later use.3.2 Traditional state space exploration techniquesState space exploration algorithms are distinguished by two aspects:� Memory allocation strategy. Static techniques preallocate large blocks of memoryfor the explored-state table. Since the number of states in the system is in generalnot known beforehand, the preallocated memory may not be su�cient (resulting in afailure of the method) or may be a gross overestimation (resulting a waste of resources,



CHAPTER 3. STATE SPACE EXPLORATION TECHNIQUES 26especially in a multi-user environment). Dynamic techniques, on the other hand,allocate memory only as needed; the more states, the more memory is allocated.� Reliability. Exhaustive techniques store the complete state space and guaranteecomplete state space coverage. However, storing the complete state space uses a largeamount of memory; this severely limits the number of states that can be explored.Probabilistic techniques use space-saving techniques (usually based on hashing) todrastically reduce the memory required to store states. However, this reduction comesat the price of possibly incorrectly recording a state as explored when it is in fact anunexplored state. This can result in the omission of a state (and also some or allof its successors) from the hash table. Since omitting states will result in incorrectinformation about the transitions between states - and thus incorrect performancestatistics - it is important to keep the probability of missing even one state small (sayless than 1%).This framework can be used to classify traditional state exploration algorithms into twomain groups: exhaustive dynamic techniques and probabilistic static techniques.3.2.1 Exhaustive dynamic techniquesLinked list/dynamic arrayPerhaps the most obvious way of tackling the problem of explicit state enumeration is touse a dynamic array or a linked list to store the complete state descriptor of every stateencountered so far. This simple scheme is shown in Fig. 4.
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etc...Figure 4: Simple linked list state storage schemeThis approach is used by the MARCA [Ste91, KS95] analyser. It guarantees completestate space coverage and is attractive for it's simplicity of coding. However, given a statedescriptor of d bytes, storage for n states requires dn bytes of memory (assuming optimalstorage in a dynamic array). This can be extremely limiting considering that the statedescriptor size dmay easily be hundreds of bytes long. For example, given 32MB of available



CHAPTER 3. STATE SPACE EXPLORATION TECHNIQUES 27memory and a state descriptor of 100 bytes, this approach limits the state space to about320 000 states.This method also involves a considerable search overhead whenever a state is popped o� theexploration stack. \Unsuccessful" searches of the list/dynamic array (which establish that astate has not yet been explored) involve n state descriptor comparisons, while \successful"searches (which establish that a state has already been explored) involve on average n2 statedescriptor comparisons.Hash table with full state informationThe large search overhead incurred by the list method can be remedied by using a hashtable with separate chaining to break up the state list into several smaller lists/dynamicarrays. Given r rows in the hash table, a hash function h1 based on the contents of a statedescriptor s is used to return a key h1(s). The value of h1(s) ranges from 0 to r � 1 anddenotes which of the rows in the hash table should contain the state. This arrangement isshown in Fig. 5.This is the approach adopted in the USENUM analyser [Scz87] and the correctness analyserof the DNAnet Petri net tool [ABK95]. It guarantees complete state space coverage andreduces search times to an average n=r state descriptor comparisons for unsuccessful searchesand an average n=2r comparisons for successful searches. However, memory requirementsfor the scheme are greater since there is now hash table overhead to consider. Given h bytesof overhead for each hash table row, total memory required is dn+ rh bytes.3.2.2 Probabilistic static techniquesHolzmann's bit-state hashing methodHolzmann's bit-state hashing method [Hol91, Hol95] maximizes state coverage in the faceof limited memory by minimising the memory used to store the explored-state table. Herethe table takes the form of a bit vector T . A hash function h is used to map states ontopositions in this bit vector. Initially all bits in T are set to zero. When a state s is insertedinto the table, its corresponding bit T [h(s)] is set to one. To check whether a state s isalready in the table, the value of T [h(s)] is examined. If it is zero, the state has not yet been
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CHAPTER 3. STATE SPACE EXPLORATION TECHNIQUES 29explored; otherwise it is assumed that the state has already been explored. The problem isthat two distinct states can hash to the same hash value, with the result that one of thestates will be incorrectly classi�ed as explored. Given n states to be inserted into the tableand a bit vector of t bits, the probability of no hash collisions p is given by:p = t(t� 1) : : :(t� n+ 1)tn = t!(t� n)! tnBy using Stirling's approximation for n! and assuming the favourable case of n << t, Wolperand Leroy [WL93] approximate the probability of no hash collisions p as:p � e�n2twhere n is the number of states and t is the size of the bit vector. Unfortunately the tablesizes required to keep p very low (as we require) are impractically large. The situation canbe improved a little by using two independent hash functions h1 and h2. When insertinga state s, both T [h1(s)] and T [h2(s)] are set to 1; we only conclude s has been exploredif T [h1(s)] and T [h2(s)] are set to one. Now Wolper and Leroy show the probability of nohash collisions is approximately p � e� 4n3t2but the table sizes required to keep p low are still impractically large. The strength ofHolzmann's method thus lies in its ability to maximize coverage in the face of limitedmemory and not in it's ability to provide complete state space coverage.Leroy and Wolper's hash compaction methodThe problem with Holzmann's bit-state hashing method is that the ratio of states to hashtable entries must be kept extremely low if our aim is to provide a good probability ofcomplete state space coverage. Consequently, a large amount of the memory allocated forthe bit vector is wasted. Wolper and Leroy [WL93] observed that it would be better tostore which positions in the table are occupied instead. This can be done by hashing statesonto compressed values of k bit keys; these keys can then be stored in a smaller hash tablewhich supports a collision resolution scheme. Given a hash table with m � n slots, thememory required by this scheme is approximately (mk+m)=8 bytes, since we need to storethe keys, as well as information about which hash table slots are occupied.



CHAPTER 3. STATE SPACE EXPLORATION TECHNIQUES 30This approach simulates a bit-state hashing scheme with a table size of 2k, so the probabilityof no collision is approximately given by p � e�n22kLeroy and Wolper recommend using compressed values of k = 64 bits, i.e. 8-byte compres-sion.Stern and Dill's improved hash compaction methodIn their description of standard hash compaction, Leroy and Wolper give no details of howstates are mapped onto slots in the smaller hash table; it is implicitly assumed that hashvalues (used to determine where in the hash table to store the k-bit compressed values) arecalculated using the k-bit compressed values. However, Stern and Dill [SD95] observed thatthe omission probability can be dramatically reduced in two ways. Firstly, by calculatingthe hash values and compressed values independently and, secondly, by using a collisionresolution scheme which keeps the number of probes per insertion low. This improvedtechnique is so e�ective that it requires only 5-bytes per state in situations where Wolperand Leroy's standard hash compaction requires 8-bytes per state.Given a hash table with m slots, states are inserted into the table using two hash func-tions h1(s) and h2(s) which generate the probe sequence h(0)(s); h(1)(s); : : : ; h(m�1)(s) withh(i)(s) = (h1(s) + ih2(s)) mod m for i = 0; 1; : : : ; m � 1. This double hashing schemeprevents the clustering associated with simple rehashing algorithms such as linear probing.A separate independent compression function h3 is used to calculate the k-bit compressedstate values which are stored in the table.The complete procedure for inserting a state s into the table is as follows:� h3(s) is calculated to determine the state's compressed value.� h1(s) and h2(s) are used to determine a probe sequence h(0)(s); h(1)(s); : : : ; h(m�1)(s)for inserting the state s. Slots are probed in this order, until one of two conditionsare met:{ If the slot currently being probed is empty, the compressed value is insertedinto the table at that slot and the state's successors are pushed onto the stateexploration stack.



CHAPTER 3. STATE SPACE EXPLORATION TECHNIQUES 31{ If the slot is occupied by a compressed value equal to the h3(s), we assume(possibly incorrectly) that the state has already been explored. No states arepushed onto the state exploration stack.Given m slots in the hash table, n of which are occupied by states, the probability of nostate omissions p is given approximately byp � n�1Yk=0 24 kXj=0 2k � 12k !j m� km� j j�1Yi=0 k � im� i35This formula takesO(n3) operations to evaluate. Stern and Dill derive aO(1) approximationgiven by p �  2k � 12k !(m+1) ln( m+1m�n+1 )� n2(m�n+1)+ 2n+2mn�n212(m+1)(m�n+1)2 �nStern and Dill also derive a more straightforward formula for the approximate maximumomission probability q for a full table (i.e. with m = n):q � 12km(lnm� 1)which shows the omission probability is approximately proportional to m lnm. Increasingk, the number of bits per state, by one roughly halves the maximum omission probability.3.3 A new probabilistic dynamic techniqueNone of the methods mentioned above has the advantage of being both probabilistic anddynamic. In this section we propose a new technique which uses dynamic storage allocationwhile yielding a good collision avoidance probability. We use a hash table of linked lists (asused in an exhaustive, dynamic technique) but instead of storing full state descriptors inthe lists, we store compressed state descriptors (as in hash compaction).Two independent hash functions are used. The primary hash function h1 is used to deter-mine which hash table row should be used to store a compressed state and the secondaryhash function h2 is used to compute the compressed state descriptor values. Both h1 andh2 are assumed to distribute states randomly and independently of one another; the H3class of hash functions de�ned by Carter and Wegman [CW79] satis�es this property. If a



CHAPTER 3. STATE SPACE EXPLORATION TECHNIQUES 32state's secondary key is already present in the hash table row given by its primary key, thenthe state is deemed to have been explored and no further action is taken. Otherwise, thesecondary key is added to the hash table row and its successors are pushed onto the stateexploration stack. This scheme is illustrated in Fig. 6.
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CHAPTER 3. STATE SPACE EXPLORATION TECHNIQUES 333.3.1 Reliability analysisWe will now calculate the probability of complete state space coverage. We are given that:� there are r rows in the hash table.� there are t = 2b unique secondary key values.� h1(s) is the primary hash function used to determine which hash table row shouldhold state s. It returns key values from 0 to r � 1.� h2(s) is the secondary hash function which returns a compressed state vector. Its keyvalues range from 0 to t� 1.� h1(s) and h2(s) distribute states randomly and independently of one another.� there are n unique states s1; s2; : : : ; sn to be inserted into the hash table.Let X ǹ be a random variable denoting the number of states allocated to row `; 1 � ` � r,given that there are n unique state identi�ers to be inserted into the table. Then, sincewe assumed that h1 distributes states randomly, X ǹ will have a binomial distribution withparameters n and p = 1=r, i.e.,PfX ǹ = jg = 0@ nj 1A (1r )j(1� 1r )n�j = 0@ nj 1A (r � 1)n�jrnDenoting the number of clashes in row ` by C` and considering the case when there are jstates in row `, we have:PfC` = 0jX ǹ = jg = t(t � 1)(t� 2) : : :(t� j + 1)tj = t!(t� j)! tjwhere t = 2b is the number of unique secondary key values and b is a positive integerdenoting the number of bits used to store the secondary key. Then,PfC` = 0g = nXj=0PfC` = 0jX ǹ = jgPfX ǹ = jg= 1rn nXj=00@ nj 1A (r � 1)n�jt!(t� j)! tj



CHAPTER 3. STATE SPACE EXPLORATION TECHNIQUES 34If Cr denotes the total number of clashes across all rows r of the hash table, the probabilityp of no clash in any row of the hash table is simply given by:p = PfCr = 0g= (PfC`g)r= 0@ 1rn nXj=00@ nj 1A (r� 1)n�jt!(t� j)! tj 1Ar (4)since it is assumed that the primary hash function distributes states randomly. The prob-ability q of omitting at least one state is of course simply q = 1� p.An experiment was conducted to compare the values of p computed from Eq. (4) againstvalues obtained from a simulation. Using a small hash table of r = 128 rows and b = 10 bitkeys, experiments were performed with n = 50; 100; 150; : : : ; 500 states. Each experimentwas repeated 10000 times and the proportion of runs where clashes occurred was noted. Theanalytical and simulated results (with 95% con�dence intervals) are presented in Fig. 7.
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Figure 7: Analytical vs. simulated results for the probability of state omission q



CHAPTER 3. STATE SPACE EXPLORATION TECHNIQUES 353.3.2 ApproximationEvaluating the right hand side of Eq. (4) involves O(n2) operations. However, an O(1)approximation can be found through an approach similar to that used by Stern and Dill[SD95] in their analysis of improved hash compaction.We consider inserting n states into the hash table, one at a time. Let Nk be the event thatno omission takes place when the (k + 1)st state is inserted into the hash table, given thatthe previous k states have been inserted without any omissions.The probability of event Nk will depend on the number of secondary key comparisons thathave to be made when inserting state sk+1 into the target row given by it's primary hashkey h1(sk+1). If there are j items in the target row,PfNkjXkh1(sk+1) = jg = 1� jt � (1� 1t )jsince (1+nx) � (1+x)n for jxj << 1 (here 1=t is very small). We have already establishedthat PfXkh1(sk+1) = jg = 0@ nj 1A (1r )j(1� 1r )n�jThus by the law of total probability,PfNkg = kXj=0PfNkjXh1(sk+1) = jgPfXh1(sk+1) = jg� kXj=0(1� 1t )j 0@ kj 1A (1r )j(1� 1r )k�j= kXj=00@ kj 1A�1r (1� 1t )�j (1� 1r )k�jApplying the binomial theorem yields:PfNkg = �1r (1� 1t ) + 1� 1r�k= �1� 1rt�k� e� krt (5)



CHAPTER 3. STATE SPACE EXPLORATION TECHNIQUES 36Now let N 0k be the unconditional event that no omission takes place when inserting the(k + 1)st state into the hash table. Stern and Dill show that the probability p of noomission when inserting all n states is given by:p = PfN 0n�1 ^N 0n�2 ^ : : :^N 00g= PfN 0n�1jN 0n�2 ^ : : :^N 00gPfN 0n�2 ^ : : :^N 00g= PfNn�1gPfN 0n�2 ^ : : :^N 00gwhich, when applied recursively, yields:p = n�1Yk=0 PfNkgNow we can substitute the expression for PfNkg from Eq. (5) to yield:p � n�1Yk=0 e� krt= e�Pn�1k=0 krt= e�n(n�1)2rt (6)If n(n� 1) << 2rt (as will be the case in practical schemes where q << 1), we can use thefact that ex � (1 + x) for jxj << 1 to approximate p by:p = 1� n(n� 1)2rtso that probability q of an omission is:q � n(n� 1)2rt = n(n� 1)r2b+1 (7)Thus the probability q of omitting a state is O(n2) and is inversely proportional to the hashtable size r. Increasing the size of the compressed bit vectors b by one bit approximatelyhalves the omission probability.3.3.3 Space complexityIf we assume that the hash table rows are implemented as dynamic arrays, the number ofbytes of memory required by the new scheme is:M = hr + nb=8: (8)



CHAPTER 3. STATE SPACE EXPLORATION TECHNIQUES 37Here h is the number of bytes of overhead per hash table row. For a given number of statesand a desired omission probability, there are a number of choices for r and b which all leadto schemes having di�erent memory requirements. How can we choose r and b to minimizethe amount of memory required? Rewriting Eq. (7):r � n(n� 1)2b+1q (9)and substituting this into Eq. (8) yieldsM � hn(n � 1)2b+1q + nb8Minimizing M with respect to b gives:@M@b � �n(n� 1)(ln 2)h2b+1q + n=8 = 0Solving for b yields: b � log2�h(n � 1) ln 2q �+ 2 (10)As an example, consider designing a system for up to n = 2 000 000 states and a desiredmaximum omission probability q = 0:01. We will assume a dynamic array overhead of 8bytes for each row of the hash table, i.e. h = 8. This corresponds to a straightforwardimplementation using one 32 bit word for the number of elements in the array and a 32bit pointer to the start of the array. Solving equation (10) gives b = 32 and substituting binto equation (9) yields r = 46 566 for a total memory consumption of about M = 8:4 MB.Fig. 8 shows the omission probabilities for such a hash scheme as calculated using the O(1)approximation of equation (6).Fig. 9 shows the amount of memory required for other choices of b and r and con�rms thatb = 32 bit with r = 46 566 rows is the optimal con�guration for n = 2 000 000 and q = 0:01.Table 1 shows the the optimal memory requirements in megabytes (MB) and the corre-sponding values of b and r for state space sizes ranging from 105 to 108.In practice, it is di�cult to implement schemes when b does not correspond to whole numberof bytes. Practical considerations also dictate that we should take into account the limitedmemory resources available on typical workstations. Tables 2 and 3 thus compare thenumber of states that can be stored using 4-byte and 5-byte compression for various memorysizes and omission probabilities q. The results show that 5-byte compression is better for
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CHAPTER 3. STATE SPACE EXPLORATION TECHNIQUES 40Available memory (megabytes)q 8 16 32n r n r n r0.0001 1:58� 106 11378 3:13� 106 44516 6:13� 106 1707060.001 1:60� 106 1161 3:20� 106 4635 6:40� 106 184550.01 1:60� 106 116 3:20� 106 465 6:40� 106 18600.1 1:60� 106 12 3:20� 106 47 6:40� 106 186q 64 128 256n r n r n r0.0001 1:18� 107 631990 2:21� 107 2212877 3:97� 107 71746520.001 1:27� 107 73149 2:51� 107 287412 4:94� 107 11107700.01 1:28� 107 7437 2:56� 107 29691 5:10� 107 1183290.1 1:28� 107 745 2:56� 107 2979 5:11� 107 11912Table 3: Number of states that can be stored and optimal number of hash rows for 5-bytecompression given various memory sizes and omission probabilities q3.4 Vanishing state eliminationIn this section we consider an \on-the-
y" technique for reducing the number of states thatare stored in the explored-state table. Reducing the number of states during the state spaceexploration phase reduces both the memory required to store the state space as well as thee�ort required to solve for the steady state of the underlying Markov chain.There are two types of transitions in timed transition systems: timed transitions which �rewith an exponential delay and instantaneous transitions which, as their name implies, takeno time to �re. If one or more instantaneous transitions are enabled in a given state, notime will be spent in that state and the state is vanishing. We will let V denote the setof vanishing states in a system. If, on the other hand, one or more timed transitions butno instantaneous transitions are enabled in a state, time will be spent in the state and thestate is tangible. We will let T denote the set of tangible states in a system.A crucial step in performance analysis is determining what proportion of time is spent ineach of the system's reachable states. Given n states, this involves solving the set of steadystate equations �Q = 0 subject to nXk=0 �k = 1where � = (�1; �2; : : : ; �n) is the n-vector of steady-state probabilities and Q is the n � n



CHAPTER 3. STATE SPACE EXPLORATION TECHNIQUES 41in�nitesimal generator matrix of transition rates between states. For every s 2 V , thesteady state probability is by de�nition zero; the only function vanishing states serve isto help de�ne the way the tangible states relate to one another. In fact, vanishing statesare usually eliminated before solving the steady state equations using a two-step process[BDMC+94, x8.5.1]. Given nv = jV j vanishing states and nt = jT j tangible states, thegenerator matrix Q is �rst partitioned into the form:Q = 0@ Qt Qt;vPv;t Pv 1Awhere Qt is the nt�nt matrix of transition rates between tangible states, Qt;v is the nt�nvmatrix of transition rates from tangible to vanishing states, Pv is the nv � nv matrix oftransition probabilities between vanishing states and Pv;t is the nv�nt matrix of transitionprobabilities between vanishing and tangible states. Then the nt�nt matrix Q0 representingthe transitions between tangible states once vanishing states have been eliminated is givenby: Q0 = Qt +Qt;vNPv;t (11)where N = 1Xn=0(Pv)n = (I � Pv)�1The matrix Qt;vNPv;t represents the e�ective rates of transition �ring sequences which startand end at tangible states but which pass through one or more vanishing states. CalculatingN is usually computed using LU -decomposition, which is an operation of O(n3v) complexity.This method reduces the size of the generator matrix from n�n to nt�nt, thus decreasingthe e�ort needed to solve the steady state equations. However, the method can only beapplied once Q has been generated, i.e. at a point where it is too late to save memoryduring the state generation process. It also involves a time-consuming inversion operation.Instead, it is possible to calculate the matrix of transition rates between tangible states Q0directly during state space generation using a process known as \on-the-
y" elimination ofvanishing states.Fig. 10 illustrates the principle of the algorithm. On the left is part of a reachability graphconstructed using a simple DFS algorithm. States 1, 5, 6, 7 and 8 are tangible and states2, 3 and 4 are vanishing. We wish to modify the DFS algorithm so that it now constructs
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Figure 10: A simple example of vanishing state eliminationthe tangible reachability graph shown on the right, where all vanishing states have beeneliminated and the e�ective transition rates between tangible states have been calculated.Fig. 11 presents the modi�ed algorithm. The idea is to use two stacks during state spacegeneration: one stack ST is used to store unexplored tangible states in a usual DFS fashion,while another stack SV is used as temporary storage for information about those vanishingstates which are currently being eliminated. This information takes the form of a record< s; r > where s is the state in question and r is the rate of entry into the state.The algorithm begins by initialising ST with the initial tangible states of the system, givensome (possibly vanishing) initial state si.Then, as each tangible state s is popped o� ST , unexplored tangible successors of s arepushed back onto ST , while any vanishing successors of s are pushed onto SV . Any statepushed onto SV is immediately explored in a DFS fashion; vanishing sucessors are pushedback onto SV while unexplored tangible successors are pushed onto ST . This continues untilSV is empty and all the tangible successors of s have been established.Rates between tangible transitions are determined by using the information stored on SVtogether with the functions prob(s; s0) and rate(s; s0) to propagate transition probabilitiesthrough clusters of vanishing states. prob(s; s0) gives the probability of a transition fromstate s 2 V to state s0, while the function rate(s; s0) gives the rate of a transition from s 2 Tto state s0.



CHAPTER 3. STATE SPACE EXPLORATION TECHNIQUES 43/* initialise ST with initial tangible states */if si 2 T do beginpush(ST ; si)E = fsigend else do beginpush(SV ; < si; 1:0 >)while (SV not empty) do beginpop(SV ; < v; p >)for each v0 2 succ(v) do beginif v0 2 T do beginif v0 =2 E do beginpush(ST ; v0)E = E [ fv0gendend else do beginp0 = p � prob(v; v0)if p0 > � push(SV ; < v0; p0 >)endendendend/* perform state space exploration, eliminating vanishing states */while (ST not empty) do beginpop(ST ; s)for each s0 2 succ(s) do beginif s0 2 T do begintransition(s; s0; rate(s; s0))if s0 =2 E do beginpush(ST ; s0)E = E [ fs0gendend else do beginpush(SV ; < s0; rate(s; s0) >)while (SV not empty) do beginpop(SV ; < v; p >)for each v0 2 succ(v) do beginp0 = p � prob(v; v0)if v0 2 T do beginif v0 =2 E do beginpush(ST ; v0)E = E [ fv0gendtransition(s; v0; p0)end else if p0 > � push(SV ; < v0; p0 >)endendendendstore s and tangible successors of s on secondary storage for later useendFigure 11: State space exploration algorithm with on-the-
y vanishing state elimination



CHAPTER 3. STATE SPACE EXPLORATION TECHNIQUES 44Since our aim is to explore the state space for the purposes of performance analysis, reach-ability graph information has been explicity incorporated into the algorithm, through theuse of the transition function. A call to transition(s; s0; r) denotes that there is a transition�ring sequence from s 2 T to s0 2 T with an e�ective transition �ring rate of r. Thisreachability graph information need not be stored in memory but can be written out stateby state to secondary storage for later use.Cycles of vanishing states pose an interesting problem. Since we do not have an explored-state table for vanishing states, some method is necessary to preventing an in�nite loopwhile exploring the states on SV . Considering the reachability graph in Fig. 12 for example,vanishing states 2, 4 and 5 form a cycle; this cycle has the potential to cause an in�niteloop when the states on SV are explored in DFS fashion.
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Figure 12: A more complicated example of vanishing state elimination involving a cycleThere are two solutions to this problem. One is to have a local explored-state table forclusters of vanishing states so that cycles can be recognised. Once cycles have been iden-ti�ed, Eq. (11) can then be applied locally to each cluster. Applying this strategy to theexample, we consider eliminating the vanishing states 2, 3, 4 and 5 to determine the e�ectivetransition �ring rates between tangible state 1 and it's tangible successor states 6, 7 and 8.



CHAPTER 3. STATE SPACE EXPLORATION TECHNIQUES 45We have Qt = � 0 0 0 � Qt;v = � 5 3 0 0 �Pv;t = 0BBBBB@ 0 0 00:6 0 00 0:6 00 0 0:5 1CCCCCA N = (I � Pv)�1 = 0BBBBB@ 1:25 0 0:625 1:250:1 1 0:25 0:50:5 0 1:25 0:50:25 0 0:625 1:25 1CCCCCAso that Q0 = Qt +Qt;v(I � Pv)�1Pv;t = � 1:8 2:325 3:875 �The other way of dealing with cycles is simply to drop vanishing states whose propagatede�ective entry rate p0 falls below a certain threshold value �. This has been implemented inthe algorithm shown in Fig. 11. This method is simpler than the �rst since it does requirea local explored-state table for vanishing states, nor does it involve matrix inversion. Itworks by approximating the matrixN = (I � Pv)�1 = 1Xn=0(Pv)nby computing N as N = kXn=0(Pv)nfor some large value of k. This works since it can be shown that(Pv)n ! 0 as n!1for any substochastic Pv with at least one row sum < 1. Goodman [Goo88, pg. 158{160]gives a proof for this result (albeit in the context of the long-term behaviour of transientstates in an absorbing Markov Chain).Fig. 13 shows a cycle of vanishing states that cannot be eliminated using either of the twomethods we have considered. The �rst method of vanishing state elimination, i.e. applyingQ0 locally, will fail since (I�Pv)�1 does not exist, while the second technique, i.e. droppingvanishing states when the propagated entry rate p0 falls below �, will enter an in�nite loopsince the propagated probability in the cycle never falls below 1. Final strongly connectedcomponents of vanishing states such as that formed by states 2, 4 and 5 are known as
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Chapter 4Steady State Solution Techniques4.1 IntroductionOnce the state space of a system has been generated, the next stage in the performanceanalysis sequence is to establish what proportion of time the system spends in each of itsstates. This phase is by far and away the most resource-intensive phase in the performanceanalysis sequence, both with regard to the amount of memory used and the computationalpower required.As described in Chapter 2, �nding the steady state distribution � = (�1; �2; :::�n) of anirreducible �nite discrete time Markov Chain (DTMC) with discrete-valued state spaceS = f1; 2; :::ng involves solving a set of equations of form:� = �P; P�i = 1 (12)where P is the n� n one-step transition probability matrix and � is the chain's stationaryprobability distribution vector of order n. The corresponding formula for a continuous timeMarkov Chain (CTMC) is: �Q = 0; P �i = 1 (13)where Q is the in�nitesimal generator matrix. Note that systems (12) and (13) are relatedsince (under certain regularity conditions) a CTMC may be transformed into its associatedembedded DTMC [SMC90]. 47



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 48In both cases above, we wish to solve for �. Several standard algorithms for solving linearsystems of form Ax = b exist. We may make use of these algorithms by rewriting Eq. (12)as: (I � PT )�T = 0and Eq. (13) as: �QT�T = 0Both formulations result in a singular homogeneous system of linear equations of form:Ax = 0 (14)where A is a (possibly very large) real and unsymmetric sparse n � n matrix with thefollowing properties [Bar89]:� aij � 0 for i; j = 1; 2; :::; n and i 6= j.� Pni=1 aij = 0 for j = 1; 2; :::; n (i.e. A has zero column sums).� A is irreducible.� aii = 1. This can be stated without loss of generality since Ax can be transformedto By where B = AD�1 and y = Dx with D = diag(a11; a22; :::ann). Once we havesolved for y, x is easily obtained as x = D�1y.There are two general classes of methods for solving linear systems of form Ax = b: directmethods compute an exact solution in a �xed number of arithmetic operations determinedby the size of the problem (direct methods are generally O(n3)), while iterative methodsform a sequence of vectors x(0), x(1), x(2); : : : which converges to the solution of Ax = b.Iterative methods converge at a unknown rate, i.e. the number of operations to obtain agiven accuracy is unknown, but they have several advantages over direct methods whendealing with large systems [Ste94, pg. 61{62]:� Unlike direct methods, iterative methods do not modify the matrix A. Thissimpli�es the sparse storage scheme, avoids matrix �ll-in and prevents accumulationof round-o� error in elements of A.



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 49� Iterative methods generally only involve matrix-vector operations of the formAx or ATx. These matrix vector products can be calculated e�ciently using a goodsparse matrix storage scheme.� Iterative methods allow the user to control the accuracy of the solution. Directmethods always compute the solution to full machine precision, which may be unnec-essary.� Iterative methods are ideal for conducting a sequence of experiments where theparameters from one run to the next vary only slightly. In this case, the result vectorfrom the previous run may be used as a good starting vector for the next run.Direct methods, however, are still useful for smaller state spaces or for those ill-conditionedmatrices where iterative methods take a very large number of iterations to converge.We distinguish between three main classes of iterative methods for solving large sparsenonsymmetric linear systems:� Classical iterative methods such as Gauss-Seidel and SOR [Var62, x3.1]. Thesetechniques have been known for decades and are characterised by low memory require-ments and smooth convergence. However, convergence is often slow, and the methodscannot be easily parallelised. Moreover, the SOR technique requires estimation of theover-relaxation parameter.� Krylov subspace techniques such as Biconjugate Gradient (BiCG) [Fle76], Bicon-jugate Gradient Stabilised (BiCGSTAB) [Vor92] and Conjugate Gradient Squared(CGS) [Son89]. These algorithms are based on the original Conjugate Gradientmethod [HS52] which is a popular solution technique for linear systems involving sym-metric positive de�nite coe�cient matrices. These methods are parameter free andprovide rapid, if somewhat erratic, convergence. The methods are easily parallelised.� Decomposition-based techniques such as the Aggregation-Isolation (AI) algo-rithm and the Aggregation-Isolation Relaxed (AIR) [Tou95] algorithm. These al-gorithms are based on divide-and-conquer techniques and are characterised by lowmemory requirements and rapid smooth convergence behaviour.We will now consider the various direct and iterative methods available for solving systemsof form Ax = 0.



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 504.2 Direct methods4.2.1 Gaussian EliminationGaussian elimination [EWK90, x8.3] [GL89, x3.2] [Ste94, x2.2.1] is probably the most well-known technique for solving the system Ax = b in the case where A is nonsingular. Byadding multiples of rows to each other, it systematically reduces the system [A j b] toproduce an equivalent upper triangular system [U j c]. This upper triangular system canthen be solved by back substitution.Reducing [A j b] to [U j c] involves n � 1 steps. At the kth reduction step, the elements inthe kth row which lie below the pivot element akk are eliminated by subtracting multiplesof the kth row (the pivot row) from every row below the kth row. After the kth step, thesystem will have been reduced to:0BBBBBBBBBBBBBBBBBBB@ a11 a12 � � � a1n b1a22 � � � a2n b2. . . ... ...akk ak;k+1 � � � akn bk... ... ... ...0 a0i;k+1 � � � a0in b0i... ... ... ...0 a0n;k+1 � � � a0nn b0n
1CCCCCCCCCCCCCCCCCCCAwhere the modi�ed elements are given by:a0ij = aij �mikakj j = k + 1; k; : : : ; n i = k + 1; k; : : : ; nb0i = bi �mikbk i = k + 1; k; : : : ; nwith mik = aikakk i = k + 1; k; : : : ; n:After n � 1 reduction steps, the original system will have been reduced to the upper tri-angular system [U j c]. A simple back substitution process can then be used to �nd thesolution vector x as follows:



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 51xn = cn=unnxi = (ci � nXj=i+1 uijxj)=uii i = n� 1; n� 2; : : : ; 1This standard Gaussian elimination cannot, however, be applied to our matrix A directlysince A is singular. To handle the singularity, there are two main approaches [Ste94, pg.73{74]:� The \replace an equation" approach. Here, an equation (usually the last) is replacedby Pi xi = 1 which removes the singularity. Even though any equation could bereplaced, the last is chosen because this reduces �ll-in and the operation count (forexample, replacing the �rst row leads to massive �ll-in since multiples of the �rst roware added to every other row).This approach is generally not used in computer implementations, however, since anyaccumulated rounding error in the calculation of xn will be propagated through theback-substitution phase.� The \remove an equation" approach. Since A is singular of rank (n � 1), one of theequations is redundant and may be removed; this yields n�1 equations in n unknowns.If we now set xn = 1 and solve the remaining non-singular system of order n � 1 forits probability vector x̂, the �nal probability vector is given by normalising (x̂; 1).To prevent loss of accuracy, a system of row interchanges called partial pivoting is usuallyapplied when solving general systems of equations [EWK90]. At the kth step, the kthcolumn from the pivot element downwards is searched for the element of the largest modulus;i.e. we determine row r such that:jarkj = maxi=k;k+1;:::;n jaikjRows r and k are then interchanged. However, pivoting is unnecessary in our case sincean error analysis of Gaussian elimination as applied to irreducible Markov Chains [Ste94,x2.7.4] shows that Gaussian elimination without pivoting is already a stable way to calculate



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 52the stationary probability vector of the irreducible Q-Matrix A (once the singularity hasbeen removed as outlined above, of course).The algorithm for solving the singular system Ax = 0 by Gaussian elimination is:Gaussian Elimination1. Reduce A to upper triangular form� for k = 1 to n� 1 dofor i = k + 1 to n do mik = aik=akkfor i = k + 1 to n dofor j = k + 1 to n do aij = aij �mik � akj2. Back substitute� sum = 1, xn = 1� for i = n� 1; n� 2; : : : ; 1 do� xi = � �Pnj=i+1 aijxj� =aii� sum = sum+ xi3. Normalize� for i = 1 to n do xi = xi=sum4.2.2 LU DecompositionLU Decomposition [EWK90, x8.6] [GW89, x2.5], [GL89, x3.2.5] [Ste94, x2.2.2] is the processof factorizing a matrix A into the product of a lower diagonal matrix L an upper triangularmatrix U , i.e. A = LUwhere it is usual to assume that one of L and U are unit diagonal matrices i.e. eitherlii = 1 for i = 1; 2; : : : ; nin which case the process is known as Doolittle decomposition, oruii = 1 for i = 1; 2; : : : ; n



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 53in which case the process is known as Crout decomposition.LU Decomposition is closely related to Gaussian elimination; in fact, Gaussian eliminationcan be used to �nd an LU factorization of A, where L is given by a unit lower diagonalmatrix of multipliers and U is the upper diagonal matrix at the end of the reduction phase.The general formulas for the elements of L and U (Crout Reduction) are:lij = aij �Pj�1k=1 likukj j � i i = 1; 2; : : : ; nuij = aij � (aij �Pi�1k=1 likujk)=lii i � j j = 2; 3; : : : ; n (15)An algorithm to perform a memory-e�cient in-place LU factorisation of an arbitrary matrixA may be found in [BDMC+94, pg. 31].Once we have a LU decomposition of A, we can quickly solve for x by forward and backwardsubsitution (an O(n2) process):1. Solve Ly = b for y.2. Solve Ux = y for x.It can be shown that an LU decomposition exists for any matrix A derived from an irre-ducible Markov Chain; further, for such matrices, no pivoting is necessary to ensure stability[Ste94, pg. 66].In the context of solving Markov Chains, full LU Decomposition has two important advan-tages over standard Gaussian elimination:� The inner products of Eq. (15) may be accumulated in double precision [GW89, pg.109{110]; this yields improved accuracy.� Storing the information about L allows for the application of iterative re�nement[EWK90, x8.12]. This is a technique used to obtain maximum machine accuracy inthe face of representation and rounding errors introduced by a 
oating point system.If we have an inexact decomposition L̂Û with solution x̂, we can improve the solutionusing the residual vector r = b�Ax̂. The procedure is:repeat until convergence fset r = b�Ax̂ (usually calculated in double precision)



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 54solve L̂y = rsolve Ûz = yset x = x̂+ zgIterative re�nement is computationally quite cheap, since each iteration is O(n2) (Land U are triangular) and usually only one iteration is required to obtain an answerto full machine precision.4.2.3 Grassman's AlgorithmGrassmann's algorithm [GTH85] [KGB87] [BDMC+94, pg. 32-34] [Ste94, x2.5] is a variantof Gaussian elimination which appears to be even more stable since the algorithm does notinvolve any subtraction operations (or negative numbers). This means that problems suchas loss of signi�cance and the accumulation of rounding errors are minimized.The algorithm is based on two key ideas which take advantage of the special structure ofthe matrix A:� The properties of A (i.e. aii > 0, aij � 0, and Pni=1 aij = 0) are invariant under therow operations of Gauss elimination.� Subtractions which could lead to loss of signi�cance occur only during the calculationof diagonal pivot elements.Now, since A always has zero column sums, diagonal pivot elements do not have to becalculated by subtraction. Instead, the o�-diagonal elements in the column can be summedand the result negated; this produces a more accurate result at the cost of slightly morenumerical operations. The full version of Grassmann's algorithm is given below:Grassmann's algorithm [GTH85]1. for k = n; n� 1; : : : ; 2 do� s =Pkj=1 akj� ain = aik=s; 8i < k



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 55� aij = aij + aikakj ; 8i; j < k2. sum = 1, x1 = 13. for j = 2; 3; : : : ; N do� xj =Pjk=1 xkakj� sum = sum + xj4. xj = xj=sum, j = 1; 2; : : : ; NNote that both column and row access to the matrix A is required. For smaller problems,a dense two-dimensional matrix representation su�ces, but for larger problems, a sparsematrix scheme supporting column links is required.Since Gaussian elimination is already stable, the extra time and space demands of Grass-mann's algorithm mean that its extra precision is only really necessary when the problemis very ill-conditioned.4.3 Classical iterative methodsIn this section we consider some of the oldest and most well-known iterative methods forsolving linear system of form Ax = b. These methods are based around matrix splittings ofform A = M �N where M is non-singular. This splitting is used to de�ne simple iterativeschemes of form: xk+1 = M�1N xk + cwhere neither the iteration matrix M�1N nor c depends on k.In our case of solving Ax = 0, the schemes reduce to the form:xk+1 = M�1N xkFrom this equation, the desired solution can be seen to be the eigenvector of the iterationmatrix M�1N corresponding to the eigenvalue 1. Thus the convergence of these methodsdepends on the eigenvalues of the iteration matrix M�1N . In particular, the rate of conver-gence is inversely proportional to the ratio j�2j=j�1j where �1 and �2 are the dominant andthe subdominant eigenvalues of the iteration matrix respectively [Bar89]. Consequently,



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 56these methods are only guaranteed to converge if the iteration matrix is primitive, i.e. if ithas one and only one eigenvalue �i with j�ij = 1.The methods presented here have very modest memory requirements, using only two vectors(x(k+1); x(k)) and requiring only row (but not column) access to the matrix A.The three most commonly used classical iterative methods of this form are presented below.4.3.1 Jacobi's MethodJacobi's method [Var62, x3.1] [Ste94, x3.2.2] [HY81, x2.3] is a simple iterative methodbased on the observation that solving Ax = b is equivalent to �nding the solution to the nequations: nXj=1aijxj = bi i = 1; 2; : : : ; nNow, solving the ith equation for xi yields:xi = 1aii (bi �Xj 6=i aijxj)which suggests the iterative method:x(k+1)i = 1aii (bi �Xj 6=i aijx(k)j ) (16)where k � 0 and x(0) is an initial guess at the solution vector.If we write A = D�L�U where D = diag(a11; a22; : : : ; ann) and L and U are strictly lowerand upper triangular matrices respectively, Eq. (16) can be written in matrix form as:x(k+1) = D�1(L+ U)x(k) +D�1bwhere D�1(L+ U) is the iteration matrix characterising the convergence behaviour of thealgorithm.Note that the calculation of the x(k)i 's are independent of one another which means equationupdates can be performed in parallel.



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 574.3.2 Gauss-SeidelThe Jacobi method can be improved on by using the computed results for xi as soon asthey are available within an iteration. The resulting method is known as the Gauss-Seidelmethod [Var62, x3.1], [Ste94, x3.2.3] which is given by:x(k+1)i = (bi �Xj<i aijx(k+1)j �Xj>i aijx(k)j )=aii (17)In matrix form, Eq. (17) can be written as:x(k+1) = (D� L)�1(Ux(k) + b)where (D � L)�1 is the iteration matrix characterising the convergence behaviour of thealgorithm.Note that the computations of Eq. (17) appear to be serial in nature since the calculationsof the x(k)i 's now depend on one another. However, if A is sparse and several coe�cients arezero, then elements of the new iterate are not necessarily dependent on previous elements.By reordering the equations in this situation, it is possible to make updates to groups ofcomponents in parallel [BBC+94, x3, x4.4].4.3.3 Successive Overrelaxation (SOR)Successive Overrelaxation (SOR) [Var62, x3.1] [Ste94, x3.2.4] [BDMC+94, x3.1.3] is an ex-trapolation technique for accelerating the convergence of the Gauss-Seidel algorithm. Theextrapolation works by successively taking a weighted average of each element of the pre-vious iterate and each element of the newly-computed Gauss-Seidel iterate, i.e.x(k+1)i = !x(k+1)i + (1� !)x(k)i (18)where x(k+1)i is the ith element of the newly-computed Gauss-Seidel iterate and x(k)i is ithelement of the previous iterate.In matrix form, Eq. (18) can be written as:x(k+1) = (D � !L)�1(!U + (1� !)D)x(k) + !(D � !L)�1bwith iteration matrix L! = (D� !L)�1(!U + (1� !)D)



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 58Note that if ! = 1, the method reduces to the Gauss-Seidel algorithm. In the case ! > 1,we speak of over-relaxation and in the case ! < 1, we speak of under-relaxation. TheGauss-Seidel method converges only for values of ! in the range 0 � ! � 2.In the case of solving Ax = 0, the optimal value of ! is that value which maximizes thedi�erence between the dominant and subdominant values of L!, thus resulting in the fastestcovergence rate. Unfortunately, methods for choosing this optimal value of ! are only knownfor very restricted classes of matrices [HY81]. Consequently, implementations usually useheuristic adaptive parameter estimation schemes to try to home in on the appropriate valueof ! by guessing a value which is adjusted every few iterations according to the rate atwhich the method is converging.4.4 Krylov subspace techniquesKrylov subspace techniques [Wei95] [SW95] [FGN92] [Ste94, x4.3] are a popular class ofiterative methods for solving large systems of linear equations. They derive their namefrom the fact that they generate their iterates using a shifted Krylov subspace associatedwith the coe�cient matrix of the system. Many conjugate-gradient type algorithms andtheir variants fall into this category. Before de�ning a Krylov subspace formally, we will�rst provide an overview of the advantages of Krylov subspace techniques.Krylov subspace techniques have proved useful for solving systems of linear equations aris-ing from a wide range of scienti�c and engineering applications such as 
uid dynamics,atmospheric modelling, structural analysis and �nite element analysis. There are threemain reasons for this widespread use of Krylov subspace techniques:� The methods are parameter free, yet still provide good rates of convergence. The origi-nal conjugate gradient algorithm, for example, provides the same order of convergencerate as optimal SOR but without the need for dynamic parameter estimation.� Krylov subspace techniques have become increasingly competitive with classical it-erative methods in terms of memory utilization. This is because the most recentlydeveloped conjugate gradient-type algorithms for non-symmetric matrices (e.g. CGS,BiCGSTAB, TFQMR) do not require storage of large sequences of vectors (as does



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 59GMRES), nor do they require multiplication with the transpose of the coe�cientmatrix (as do BiCG, QMR and CGNR/CGNE).� The methods are well suited to implementation on parallel and vector computers.Most Krylov subspace methods compute one or two matrix-vector products and sev-eral vector inner products every iteration; the methods are thus easily parallelisedby distributing the matrix among processing nodes and by using the inner productsas synchronisation points. For a general discussion of the issues involved see [Saa89]and [GKS95] and for case studies see [ME90], [Bou95] and [Taf95]. In practice, su-perlinear speedups (corresponding to e�ciencies of over 100%) have been achievedin both symmetric multiprocessing environments and high-speed distributed environ-ments [Bou95]. This can probably be attributed to e�cient cache utilization.The development of Krylov subspace techniques began in the early 1950s with the conjugategradient (CG) algorithm of Hestenes and Stiefel [HS52]. This algorithm is used to solven � n linear systems of form Ax = b where A is a symmetric positive de�nite (SPD)coe�cient matrix. The CG method is regarded as an attractive algorithm for two mainreasons. Firstly, the algorithm has very modest memory requirements because it uses simplethree-term recurrences. Secondly, the algorithm has good convergence properties since theresidual is minimized with respect to some norm at each step. The generated residuals arealso mutually orthogonal, which guarantees �nite termination.Several algorithms have since been devised to generalise the CG algorithm to allow forarbitrary (i.e. not necessarily symmetric or positive de�nite) coe�cient matrices. Unfortu-nately, algorithms for non-symmetric coe�cient matrices cannot maintain both the shortrecurrence formulation and the minimization property (see Faber and Manteu�el's paper[FM84] for proof). Thus, by trading o� certain optimality conditions against the amountof memory required, three main classes of CG variants have been developed:� Algorithms which attempt to preserve both properties by transforming a linear systembased on a non-symmetric coe�cient matrix A to an equivalent system based on thesymmetric positive de�nite matrix ATA (CGNR) or AAT (CGNE). This approach isknown as conjugate gradient applied to the normal equations.� \Pure" algorithms for non-symmetric A which are based on maintaining either the



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 60short recurrence formulation (e.g. BiCG [Fle76]) or the minimization property (e.g.GMRES [SS86]) but not both.� \Hybrid" methods for non-symmetric A which seek to combine elements of the shortrecurrence formulation with minimization properties that are either heuristic (e.g.CGS), localized (e.g. BiCGSTAB) or quasi-optimal (e.g. QMR). This class includesmost of the more recently developed CG-type methods such as CGS [Son89], QMR[FN91], BiCGSTAB [Vor92], BiCGSTAB(l) [SF93], and TFQMR [Fre93]).Many authors have attempted to resolve the confusion resulting from the development ofall these methods by using unifying mathematical frameworks to explore the relationshipsbetween them (see e.g. [Wei95], [Wei94], [Gut93a] and [AMS90]). Fig. 4.4 presents a moreconceptual overview of the most important techniques. The arrows show the relationshipsbetween the methods i.e. how the methods have been generalised from their underlyingbasis-generating algorithms and also how key concepts have been inherited from one algo-rithm to the next. Readers unfamiliar with Krylov subspace techniques might like to use�gure 4.4 as a top-level reference throughout the next three sections.A more rigorous mathematical framework and classi�cation scheme is presented in the nextsection.4.4.1 Principles of Krylov Subspace TechniquesWe consider the linear system Ax = b (19)where A is a real n � n matrix and x; b 2 IRn; in general A is non-symmetric and isnot positive de�nite. Let x0 be an initial guess at the solution vector x with correspondingresidual r0 = b�Ax0. Then, using the notation of Weiss [Wei95], Krylov subspace techniquesgenerate subsequent iterates xk according to the formula:xk = xk��k + dk; dk 2 span(qk��k ;k ; : : : ; qk�1;k) for k = 1; 2; : : : (20)
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CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 62where qk�i;k 2 IRn and �k denotes the number of previous q vectors used in the calculationof new iterates. Usually all previous q vectors are used i.e. �k = k, in which case we speakof an exact method. However, sometimes methods are restarted every �res steps to limittheir memory consumption, i.e. �k = (k � 1) mod �res + 1. In this case, we speak of arestarted method.The q vectors are generated to ful�ll two conditions:� Firstly, each qk�i;k is a member of the Krylov subspace:Kk�i+1(B; z) = span(z; Bz; B2z; : : : ; Bk�iz) (21)where B is an arbitrary n � n matrix and z 2 IRn. For almost all Krylov subspacemethods of practical interest (and for all the methods discussed here), B = A andz = r0, i.e. each qk�i;k lies in the Krylov subspaceKk�i+1(A; r0) = span(A;Ar0; A2r0; :::; Ak�ir0) (22)Equation (22) characterises a class of methods known as Conjugate Krylov Subspace(CKS) techniques. From the de�nition of qk�i;k and equation (20), it follows thatxk 2 xk��k +Kk(A; r0) (23)i.e. the iterates lie in a shifted Krylov subspace associated with the coe�cient matrixof the system.� Secondly, the q vectors satisfy the orthogonality condition:rTk Zkqk�i;k = 0 for i = 1; : : : ; �k (24)where the Zk are auxiliary non-singular matrices. Methods characterised by constantZk, i.e. Zk = Zare known as generalised CG methods and correspond to methods derived from ap-plying the CG algorithm to the normal equations and \pure" methods closely relatedto the original basis construction algorithms of Lanczos and Arnoldi.Note that the choice of �k re
ects the depth to which the subspace (21) is constructed andalso the depth to which the orthogonality condition (24) is maintained.



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 634.4.2 Basis construction algorithmsMany Krylov methods involve the construction an orthogonal or biorthogonal basis for theKrylov subspace of equation (21). Algorithms for doing this have been known since the1950s, and it is these algorithms which formed the foundation of modern Krylov subspacetechniques. The three most important basis-generating techniques include the symmetricLanczos algorithm, the non-symmetric Lanczos algorithm and Arnoldi's method.Symmetric LanczosThe symmetric Lanczos algorithm [Ste94, x4.5.1] was originally devised by Cornelius Lanc-zos as a means of determining the eigenvectors and eigenvalues of a symmetric n�n matrixA. At the kth iteration, the algorithm constructs an orthonormal basis (v1; v2; : : : ; vk) andan k � k symmetric tridiagonal matrixTk = 0BBBBBBBBBBBB@ �1 �2�2 �2 �3�3 �3 �4. . . . . .. . . �k�k �k 1CCCCCCCCCCCCAsuch that Tk = V Tk AVk where Vk is the n � k matrix with columns v1; v2; : : : ; vk. Tk isconstructed such its eigenvalues are approximations to a subset of the eigenvalues of A.Given the initial conditions kv1k2 = 1, �1 = 0 and v0 = 0, the orthonormal sequence vk iscomputed using the short recurrence:~vk+1 = Avk � �kvk � �kvk�1vk+1 = ~vk+1k~vk+1k2where �k = vTk Avk�k = kvk�1k2



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 64The basis (v1; v2; : : : ; vk) so generated spans the Krylov subspace generated by A and v1i.e. span(v1; v2; : : : ; vk) = Kk(v1; A) = span(v1; Av1; : : : ; Ak�1v1)In exact arithmetic, the algorithm terminates after n steps with the eigenvalues of Tnthe same as those of A (assuming no breakdown). When �nite precision arithmetic isused, however, the Lanczos algorithm has poor numerical properties. In particular, theorthogonality of the vectors vk is often lost, which leads to inaccurate eigenvalue estimates.There is a close relationship between symmetric Lanczos and classical Conjugate Gradientalgorithm; in fact, the Conjugate Gradient algorithm may be derived from the Lanczosalgorithm and vice versa [GL89, x9.3.1 and x10.2.6].Non-symmetric LanczosThe non-symmetric Lanczos algorithm [FGN92, x3.1] is a generalization of the symmetricLanczos algorithm to non-symmetric A. At the kth iteration, the matrix A is reduced to atridiagonal system Tk = 0BBBBBBBBBBBB@ �1 �2
2 �2 �3
3 �3 �4. . . . . .. . . �k
k �k 1CCCCCCCCCCCCAwith the eigenvalues of matrix A eventually given by those of the tridiagonal system Tn.However, since A is non-symmetric, it is now impossible to use a single short recurrenceto generate an orthonormal basis for A. Instead, the non-symmetric Lanczos algorithmconstructs a pair of vector sequences v1; v2; : : : ; vk and w1; w2; : : : ; wk such thatspan(v1; v2; : : : ; vk) = Kk(v1; A) (25)span(w1; w2; : : : ; wk) = Kk(w1; AT ) (26)and such that the biorthogonality conditionwTi vj = vTi wj = 0 for i 6= j (27)



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 65is satis�ed. Given vectors v1; w1 2 IRn with kv1k2 = 1 and kw1k2 = 1, the sequences wk andvk can be calculated using simple three-term recurrences:~vk+1 = Avk � �kvk � �kvk�1~wk+1 = ATwk � �kwk � 
kwk�1vk+1 = ~vk+1k~vk+1k2wk+1 = ~wk+1k ~wk+1k2where �k = wTk AvkwTk vk�k = wTk�1AvkwTk�1vk�1
k = vTk�1ATwkvTk�1wk�1Unfortunately, the calculation of the coe�cients used in the construction of vk+1 and wk+1involves division by wTk vk , which may be zero or close to zero even if wk 6= 0 and vk 6= 0.Breakdowns of this type are known as serious breakdowns and can be avoided by usingblock look-ahead algorithms which relax the biorthogality condition [Nac91, x3].Fletcher's Bi-Conjugate Gradient algorithm [Fle76] is a reformulation of the non-symmetricLanczos algorithm. As we shall see, it su�ers from possible breakdowns in its underlyingLanczos process.Arnoldi's methodArnoldi's method [Ste94, x4.4.1] is another generalization of the symmetric Lanczos methodto non-symmetric matrices. However, instead of constructing a biorthonormal basis for Aby using short recurrences, Arnoldi's method uses long recurrences to generate a singleorthonormal basis (v1; v2; : : : ; vk) spanning the Krylov subspace generated by A and v1 i.e.span(v1; v2; : : : ; vk) = Kk(v1; A)Since short recurrences cannot be used, the matrix A is no longer reduced to a tridiagonalsystem, but one based on an upper Hessenberg matrix Hk (upper Hessenberg means that



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 66Hk(i; j) = 0 for i > j + 1). The core of Arnoldi's method which actually constructs theorthonormal basis is known as the Arnoldi process and is given by the following algorithm:1. Initialise� Choose vector v1 with kv1k2 = 12. Iterate� for j = 1; 2; : : :, kfor i = 1; 2; : : : ; jhi;j = viTAvjv̂j+1 = Avj �Pji=1 hi;jvihj+1;j = kv̂j+1k2vj+1 = v̂j+1=hj+1;jNote that after k steps the algorithm has generated:� an n� k orthonormal system Vk with columns v1; v2; : : : ; vk.� a (k + 1)� k upper Hessenberg matrix �Hk. The �rst k rows of this matrix are givenby Hk = VkTAVk and represent the matrix A in the basis (v1; v2; : : : ; vk); the last rowhas only one non-zero element which is hj+1;j = kv̂j+1k2.The algorithm cannot break down, but is expensive because calculation of vk at the kthiteration requires the use of vectors v1; v2; : : : ; vk�1. The Arnoldi process was central to thedevelopment of the Generalised Minimum Residual (GMRES) algorithm.4.4.3 Generalised CG TechniquesClassical Conjugate Gradient AlgorithmThe classical conjugate gradient algorithm provides an e�cient means of solving linearsystems of form (19) when A is symmetric positive de�nite (SPD). The central idea is tominimize the function:



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 67f(xk) = 12xTkAxk � xT b (28)which has a unique minimum (given SPD A) when its gradient@f@xk = Axk � b = �rkis zero, so the value of xk minimizing equation (28) is also the solution to equation (19). Toperform the function minimization, a sequence of search directions pk are generated startingwith p0 = r0; these are used to improve the iterates according to the recurrence:xk+1 = xk + �kpk (29)rk+1 = rk � �kApk (30)pk+1 = rk+1 + �kpk (31)where �k = rTk rkpTkApkis chosen to minimize f(xk+1) over the subspace (p0; p1; : : : ; pk) and�k = rTk+1rk+1rTk rkis chosen to update the p vectors such they are A-conjugate to one another, i.e. such thatthe conjugacy condition pTkApj = 0 for j < k (32)holds. Note that, since the pk are non-zero and non-zero A-conjugate vectors are linearlyindependent, the algorithm should terminate in m � n steps (given exact arithmetic).Multiplying equation (29) on the left by �A and adding b yields the update formula for theresiduals given in equation (30). The residuals satisfy the orthogonality conditions:rTk rj = 0 and rTk pj = 0 for j < k (33)An inductive proof of the �rst orthogonality condition (i.e. rTk rj = 0) is given in [GL89,x10.2.5]; the proof may also be derived by specialising a similar proof for the biconjugate



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 68gradient algorithm given [Fle76, x5]. The second orthogonality condition (i.e. rTk pj = 0)follows by rewriting equation (31) aspk = rk + �k�1rk�1 + �k�1�k�2rk�2 + : : :+ (�k�1�k�2 : : :�0)r0 = kXi=0 
iri (34)Changing the index from k to j and multiplying on the left by rk yields:rTk pj = jXi=0 
irTk ri = 0 (35)by the �rst orthogonality condition.From equation (34), equation (29) can be rewritten as:xk = xk�1 + �k�1pk�1 = x0 + k�1Xi=0 
iri (36)Multiplying on the left by �A and adding b gives:rk = r0 � k�1Xi=0 
iAri (37)Applying this equation to itself to yield an expression for rk in terms of r0 yieldsrk = r0 � 
0Ar0 � 
1Ar1 � : : :� 
k�1Ark�1= r0 � 
0Ar0 � 
1A(r0 � 
0Ar0)� 
2A(r0 � 
1A(r0 � 
0Ar0))� : : :� 
k�1A(r0 � 
k�2A(r0 � : : :� 
1A(r0 � 
0Ar0)) : : :)= r0 � kXi=0 �iAir0 (38)i.e. rk 2 span(r0; Ar0; A2r0; : : : ; Akr0), which is the Krylov subspace spanned by A and r0.It now follows from equation (36) that:xk 2 x0 + span(r0; Ar0; A2r0; : : : ; Ak�1r0) (39)so the iterates lie in a shifted Krylov subspace spanned by A and r0. This property holdsfor all exact conjugate Krylov subspace methods (cf. Eq. (23)).



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 69Note that equation (38) can be used to express rk in polynomial form, i.e.rk = 	k(A)r0 (40)where 	k(A) = (I � k�1Xi=1 �iAi)This representation is just a formal way of expressing rk as a polynomial in A applied toa starting residual; 	k(A) is not explicitly computed but is rather implicitly computedas the algorithm proceeds. The importance of this residual polynomial representation willbecome apparent when considering the development of variants of the Biconjugate Gradientsalgorithm such as CGS and BiCGSTAB.Relating these results to the framework presented in Sec. 4.4.1, we see the CG algorithm isan exact Krylov subspace method (i.e. �k = k) with qk�i;k = rk�i and Zk = I . Substitutingthese parameters into equation (24) yields the �rst orthogonality condition of equation (33)i.e. rTk rj = 0 for k 6= j. Also, from equation (39), the qk�i;k are equivalently given byqk�i;k = Ak�ir0, so B = A and z = r0. Since Zk = I is constant, CG falls into the class ofgeneralised CG methods.CG Algorithm:1. Initialise� r0 = b� Ax0� p0 = r02. Iterate� for k = 1; 2; : : :�k�1 = rTk�1rk�1=pTk�1Apk�1xk = xk�1 + �k�1pk�1rk = rk�1 � �k�1Apk�1�k = rTk rk=rTk�1rk�1pk = rk + �kpk�1



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 70The algorithm performs one-matrix vector multiplication with A, three vector updates andtwo inner products per iteration. It requires storage for four vectors (one each for p; r andx and one for the product Apk�1).The convergence rate of the conjugate gradient algorithm depends on the spectral conditionnumber � = �2(A) = �max=�min where �max and �min are the largest and smallest eigen-values of A respectively [GL89, x10.2.8]. In particular, the error at iteration k is boundedby: kekA = kx� xkkA � 2kx� x0kA p�� 1p�+ 1!k (41)where kekA denotes the A-norm given bypeTAe. Like optimal SOR, the rate of convergenceis proportional to �� 12 . More complex convergence results taking into account the entirespectrum of A are given in [SV86].CGNR/CGNE: Conjugate Gradient using the normal equationsAn obvious approach to generalising the CG method to non-SPD A matrices is to �nd waysof applying the CG method to the matrices ATA and AAT , since these matrices will beSPD for non-singular A. One way is to multiply equation (19) by AT on both sides whichyields: ATAx = AT b = yThis leads to a technique for minimizing the two-norm of the residuals at each step (CGNR).Alternatively, one can solve the system: AATz = bfor z and compute the desired solution as x = AT z. This leads to technique for minimizingthe two-norm of the error at each step (CGNE).CGNR generates a Krylov space spanned by ATA and r0, while CGNE generates a Krylovspace spanned by AAT and r0. The products ATA and AAT do not have to be calculatedbut can be incorporated into the algorithm implicitly.Like the original CG algorithm, CGNR and CGNE are exact generalised CG methods thatcan be formulated using short recurrences. For both methods, qk�i;k = AT rk�i. Zk = A�Tfor CGNR and Zk = A for CGNE [Wei94].



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 71CGNR Algorithm [Mei94, x2.5]1. Initialise� r0 = AT (b� Ax)� p0 = r02. Iterate� for k = 1; 2; : : :�k�1 = rTk�1rk�1=pTk�1ATApk�1xk = xk�1 + �k�1pk�1rk = rk�1 � �k�1ATApk�1�k = rTk rk=rTk�1rk�1pk = rk + �kpk�1CGNE Algorithm [Mei94, x2.5]1. Initialise� r0 = b� Ax� ~p0 = ATr02. Iterate� for k = 1; 2; : : :�k�1 = rTk�1rk�1=~pTk�1~pk�1xk = xk�1 + �k�1~pk�1rk = rk�1 � �k�1A~pk�1�k = rTk rk=rTk�1rk�1~pk = AT rk + �k ~pk�1The algorithms perform two matrix vector multiplications (one with A and one with AT ),three vector updates and 2 inner products per iteration. Both algorithms require storagefor 5 vectors (r, p, x, and two for the matrix-vector products).



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 72CGNR and CGNE have the same theoretical convergence properties as classical CG andgiven exact arithmetic, the algorithm should converge in fewer than n steps. However, thereis a drawback: the condition number of ATA or AAT is given by the square of the conditionnumber of A, so from equation (41) it can be seen that the convergence rate is actuallymuch slower than that of CG. In fact, given the �nite precision arithmetic available on acomputer, this poor conditioning sometimes leads to incorrect results.The poor convergence and accuracy of these methods, together with the increased storagecost incurred in providing both row and column access to A, mean that CGNR and CGNEare only useful in practice when memory is not at a premium and a good preconditioner isavailable to improve the spectrum of A.GMRES: Generalised Minimum RESidualThe GMRES method [SS86] aims to generalise the CG method to the non-symmetric caseby maintaining the orthogonality of the residual vectors at the expense of losing the threeterm recurrence. The kth GMRES iterate is given by:xk = x0 + zkwhere the correction zk is chosen from the Krylov subspaceKk(A; r0) = span(r0; Ar0; A2r0; :::; Ak�1r0) (42)such that zk minimizes the two-norm of the kth residual,krkk2 = kb� A(x0 + zk)k2 = kr0 � Azkk2Determining the correction zk involves constructing a basis for Kk(A; r0) and then solvingan k-dimensional least-squares problem for the coe�cients of that linear combination of thebasis elements which minimizes the sum of squares of the elements of the residual vector.The original paper by Saad and Schultz [SS86] uses a Gram Schmidt-based algorithm knownas the Arnoldi process (see Sec. 4.4.2) to construct an orthonormal basis (v1; v2; : : : ; vk) forthe subspace of equation (42). Note that other ways of forming the orthonormal basis arepossible. Walker, for example, presents a procedure based on Householder transformations



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 73which is slightly more expensive but more numerically stable than the Arnoldi process[Wal88a].Now, from the formula for v̂j+1 given in the algorithm for the Arnoldi process in Sec. 4.4.2,the relationship: AVk = Vk+1 �Hk (43)can be derived (see [Ste94, pg. 191] for proof). If we write zk = Vky, where y denotesthe desired coe�cients of the linear combination of basis elements, then the original leastsquares problem: minz2Kk(A;r0) kr0 � Azkk2can be rewritten in terms of a minimization of the function:J(y) = k�v1 � AVkyk2where � = kr0k2 and v1 = r0=kr0k2. Using equation (43) and using the fact that Vk+1 isorthonormal, it follows thatJ(y) = kVk+1(�e1 � �Hky)k2 = k�e1 � �Hyk2 (44)where e1 = (1; 0; 0; : : : ; 0)T is a (k + 1)-vector. Thus the problem of �nding the correctionzk which minimizes the residual has been reduced to the problem of �nding the vector ywhich minimizes J(y). The simple structure of �H means that y can be found e�ciently if,for example, a QR factorization of �H is maintained; in this case ym can be determined asa solution to an upper triangular system.GMRES is optimal in that it provides the smallest residual for a �xed number of iterationssteps. However, the cost of maintaining this optimality increases with each iteration step.At the kth iteration:� The space required is O(k) since the k vectors making up the orthonormal basis haveto be stored.� The time required is O(k2); this corresponds to the e�ort required to solve the (k +1) � k least squares system used to minimize krkk2.In practical implementations, GMRES is therefore usually restarted every m iterations.This restarted form is called GMRES(m).



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 74In its full (non-restarted) form, the GMRES algorithm is an exact generalised CG methodwith qk�i;k = rk�i and Zk = A [Wei94]. GMRES(m) is a restarted procedure with �k =(k � 1) mod �m + 1.GMRES(m) Algorithm [SS86]1. Initialize� Choose vector x0� Calculate r0 = b� Ax0 and v1 = r0=kr0k22. Arnoldi Process� for j = 1; 2; : : :, mfor i = 1; 2; : : : ; jhi;j = viTAvjv̂j+1 = Avj �Pji=1 hi;jvihj+1;j = kv̂j+1kvj+1 = v̂j+1=hj+1;j3. Form approximate solution and restart� Calculate xk = x0 + Vkyk where yk minimizes equation (44).� Calculate rk = b�Axk� If satis�ed stop, else set x0 = xm and v1 = rm=krmk2 and restart at step (2)The algorithm performs one matrix vector multiplication (withA) per iteration. At iterationk, the algorithm performs i = (k � 1) mod m+ 1 inner products and i+ 1 vector updates.The algorithm uses i+ 4 vectors of storage.Like the classical conjugate gradient algorithm, full GMRES terminates in m � n stepsgiven exact arithmetic. Since the residual norm is minimized at each step, the convergenceof full GMRES is monotonic i.e. krkk2 � krik2 for all k > i. In addition, it can be shownthat the algorithm cannot break down unless the solution has already been found [SS86].GMRES(m), on the other hand, usually converges more slowly than non-restarted GMRES.In fact, GMRES(m) is not guaranteed to converge for general A, and may continue indef-initely. The likelihood of non-convergence decreases with increasing m and vanishes whenm = n. Like full GMRES, GMRES(m) will not break down unless it has already converged.



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 75GMRES(m) with a large value ofm is often used as a basis of comparison for new algorithmsbecause of its robustness and good convergence properties. However, for reasonable valuesof m (say m � 20), GMRES(m) uses large amounts of memory and it is thus generally notcompetitive with other algorithms in terms of space.BiCG: Biconjugate Gradient AlgorithmThe biconjugate gradient algorithm [Fle76] is a reformulation of the classical non-symmetricLanczos algorithm. It attempts to generalise the CG algorithm to the non-symmetric caseby maintaining the three term recurrence while sacri�cing the orthogonality of the residuals.In order to ensure �nite termination, the algorithm makes use of a \shadow" system basedon AT to construct a sequence of \pseudo-residuals" ~rk, which satis�es the biorthogonalitycondition: ~rTi rj = riT ~rj = 0 for j < iand a sequence of \pseudo-directions" ~pk, which satis�es the biconjugacy condition:~pTi Apj = piTAT ~pj = 0 for j < iThe vectors rk and ~rk generated by BiCG are scalar multiples of the vectors vk and wkgenerated by the non-symmetric Lanczos algorithm started with v1 = r0 and w1 = ~r0[FGN92, pg. 17].Weiss [Wei95] shows that BiCG is equivalent to CG applied the double system:Âx̂ = b̂where Â = 0@ A 00 AT 1A ; x̂ = 0@ x~x 1A ; b̂ = 0@ b~b 1A (45)and ~b is arbitrary. The residuals are given by:r̂k = 0@ rk~rk 1A = 0@ b~b 1A �0@ A 00 AT 1A0@ x~x 1A = 0@ b� Axk~b�AT ~xk 1A (46)The iterates ~xk of the shadow system AT ~x = ~b converge at about the same speed as thetrue solution [Son89]; however, and this is one of the main criticisms of BiCG, BiCG doesnot exploit this convergence.



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 76BiCG is an exact generalised CG method which is formulated using a short recurrence.Using the notation of equations (45) and (46),qk�i;k = r̂k�i and Zk = Z = 0@ 0 II 0 1A :BiCG Algorithm [Fle76]1. Initialise� r0 = b� Ax� ~r0 = b� ATx� p0 = r0� ~p0 = ~r02. Iterate� for k = 1; 2; : : :�k�1 = (~rTk�1rk�1)=(~pTk�1Apk�1)xk = xk�1 + �k�1pk�1rk = rk�1 � �k�1Apk�1~rk = ~rk�1 � �k�1AT ~pk�1�k = (~rTk rk)=(~rTk�1rk�1)pk = rk + �kpk�1~pk = ~rk + �k ~pk�1The algorithm basically performs twice the work of the CG algorithm for each iterationbecause it needs to perform two matrix multiplications (one with A, one with AT ). Note,however, that the matrix multiplications are independent and can be done in parallel. Thealgorithm requires storage for 7 vectors (p, ~p, r, x, ~r, and two for the matrix-vector productsAp and AT ~p).Like the CG algorithm, BiCG should terminate in fewer than n steps if convergence occurs.However, since the residual minimizing property of CG has been lost, BiCG can producehighly oscillating residuals. In addition, the algorithm can even break down should a zero



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 77or near-zero denominator occur in the computation of �k or �k. Some breakdowns can be�xed by simply restarting the algorithm if a zero denominator is detected. Breakdownsin the computation of �k which occur because ~rTk�1rk�1 � 0 with rk�1 6= 0 and ~rk�1 6= 0correspond to a serious breakdown in the underlying Lanczos process and may be avoidedthrough the use of lookahead Lanczos algorithms.Quantitative analytical results characterizing the convergence of BiCG are either non-existent or extremely scarce in the literature; however, some bounds on the error for methodsclosely related to BiCG are available; see e.g. [FN91] for error bounds on QMR.Despite its erratic convergence behaviour and the need to perform matrix-vector multiplica-tions with both A and AT , BiCG is still particularly signi�cant because it lead directly to thedevelopment of several more e�cient techniques with faster and/or smoother convergence,such as CGS, BiCGSTAB and QMR.4.4.4 Conjugate Krylov Subspace TechniquesCGS: Conjugate Gradient SquaredThe Conjugate Gradient Squared algorithm [Son89] aims to remedy two weaknesses ofBiCG. Firstly, BiCG ignores the convergence of the pseudo-residuals ~rk of the shadowsystem AT ~x = ~b, even though the pseudo-residuals can be expected to converge at aboutthe same rate as the true residuals. Secondly, BiCG involves matrix-vector products withAT ; this means that both row and column access must be provided to A.At iteration k of the BiCG algorithm we have:rk = 	k(A)r0 and ~rk = 	k(AT )~r0where 	k is a matrix polynomial of degree k (cf. Eq. (40)). Now the only time the BiCGalgorithm makes use of AT is when computing ~rk, which is itself only used in calculating theinner product ~rTk rk. Sonneveld observed that this inner product may be instead computedin terms of A only as follows [Ste94, pg. 221]:~rTk rk = (	(AT )~r0)T	(A)r0 = ~rT0 (	(AT ))T	(A)r0 = ~rT0 (	2(A))r0This suggests an algorithm which generates its residuals as rk = 	2(A)r0 instead of thestandard form rk = 	(A)r0; the inner product ~rTk rk can then be calculated as ~rT0 rk where



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 78rk = 	2(A)r0. Doing this leads to the CGS algorithm, which not only removes the needfor multiplications with AT , but also converges faster than BiCG. This is because 	(A)behaves like a contraction operator; by applying 	(A) twice, the contraction e�ect on rk isincreased, resulting in faster convergence.CGS is an exact conjugate Krylov subspace method that can be formulated using terms ofa short recurrence. In terms of the classi�cation of Sec. 4.4.1, qk�i;k = rk�i. Zk depends onk and its exact determination is very complex [Wei94].CGS Algorithm [Vor92]1. Initialise� r0 = b� Ax0� r̂0 is an arbitrary vector such that r0T r̂0 6= 0 e.g. r̂0 = r0� �0 = 1� p0 = q0 = 02. Iterate� for k = 1; 2; : : :�k = r̂T0 rk�1� = �k=�k�1u = rk�1 + �qk�1pk = u + �(qk�1 + �pk�1)v = Apk� = �k=(̂r)0Tvqk = u� �vw = u+ qkxk = xk�1 + �wrk = rk�1 � �AwSometimes the update to the residual vector in the last line is replaced by the computationof the true residual rk = b�Axk ; this prevents accumulated cancellation e�ects which canoccur in �nite precision arithmetic when using the updated residual method.



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 79CGS performs two matrix vector multiplications (both with A), 6 vector updates and 2 innerproducts per iteration. Thus each iteration of CGS involves a similar amount of e�ort to aniteration of BiCG. Note, however, that the CGS algorithm is not as easily parallelisable asthe BiCG algorithm because the two matrix products are dependent. Storage for 8 vectorsis required.While CGS generally converges at rate faster than BiCG, it is still susceptible to the sameerratic convergence behaviour and breakdown possibilities as BiCG. The convergence ofCGS is in fact sometimes more erratic than that of BiCG because the contraction e�ectof 	(A) depends on it being applied to r0 (see [Vor92]); applying 	(A) to 	(A)r0 (asin 	2(A)r0) can sometimes result in the norm of 	2(A)r0 being larger than the norm of	(A)r0. As a result, large local peaks are often observed in convergence graphs of CGS.These peaks do not appear to delay convergence but can cause troublesome cancellatione�ects in the calculation of the updated residuals. The true residual version of the algorithmdoes not su�er from this problem but can take longer to converge.BiCGSTAB: CGS StabilisedVan der Vorst's BiCGSTAB algorithm [Vor92] attempts to improve the CGS algorithm byretaining the attractive convergence speed while stabilising the convergence behaviour. Thecentral idea is to replace the residual matrix polynomial 	2k(A) with one of form�k(A)	k(A)where �k(A) will have a more stable contraction e�ect on �k(A)r0 than 	k(A). Ideally, onewould like �k(A) to be related to a class of polynomials with good optimality properties,such as the Chebyshev polynomials. However, doing this would require complex parameterestimation (see e.g. [HY81, x6]). Instead, Van der Vorst uses a polynomial which has asimple recurrence relation; this polynomial is built up in factored form given by�k(A) = (I � !kA)�k�1(A)or, equivalently, �k(A) = (I � !1A)(I � !2A) : : :(I � !kA)where !k is calculated at the kth iteration step to minimize the two-norm of the residualrk = �k(A)	k(A). Note that at step k only !k needs to be determined; the other omega'shave been de�ned already in steps 1 through k � 1 of the algorithm.



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 80From the form of rk = �k(A)	k(A), we can see that BiCGSTAB is a hybrid combinationof of BiCG and GMRES(1), since it combines the residual polynomial 	k(A) of the BiCGmethod with the one-dimensional residual minimising e�ect of GMRES(1) through �k(A).A weakness of BiCGSTAB is that �k has only real roots. However, it is known that, formatrices with complex spectra, optimal reduction polynomials may also have complex roots[Vor93, x5.4.5]. Gutknecht's BiCGSTAB2 method [Gut93b] extends BiCGSTAB by makinguse of a quadratic polynomial to expand �k by a quadratic factor on even-numbered steps.In this scheme, a two-dimensional minimization is performed. BiCGSTAB2 can thus beseen as a combination of BiCG and GMRES(2).The BiCGSTAB(l) algorithm of Sleijpen and Fokkema [SF93] takes the generalisation ofBiCGSTAB to its logical conclusion. This is a robust method which combines GMRES(l)with BiCG. BiCGSTAB(1) computes the same iterates as BiCGSTAB and BiCGSTAB(2)is mathematically equivalent to BiCGSTAB2 in exact arithmetic. However BICGSTAB(2)is more e�cient and more robust than BiCGSTAB2.BiCGSTAB is an exact conjugate Krylov subspace method that can be formulated usingterms of a short recurrence. In terms of the classi�cation of Sec. 4.4.1, qk�i;k = rk�i. Asfor CGS, Zk varies with k but its exact determination is very complex.BiCGSTAB Algorithm [Vor92]1. Initialise� r0 = b� Ax0� r̂0 is an arbitrary vector such that r0T r̂0 6= 0 e.g. r̂0 = r0� �0 = � = !0 = 1� v0 = p0 = 02. Iterate� for k = 1; 2; : : :�k = r̂T0 rk�1� = (�k=�k�1)=(�=!k� 1)pk = rk�1 + �(pk�1 � !k�1vk�1)vk = Apk



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 81� = �k=r̂T0 vks = rk�1 � �vkt = As!i = tT s=tT txk = xk�1 + �pk + !ksrk = s� !ktBiCGSTAB performs two matrix vector multiplications (both with A), 6 vector updatesand 4 inner products (2 more than CGS) per iteration. Thus each iteration of BiCGSTABis slightly more expensive than an iteration of CGS. Storage for 7 vectors is required (1vector less than CGS).BiCGSTAB(2) Algorithm [Vor93]1. Initialise� r0 = b� Ax0� r̂0 is an arbitrary vector such that r0T r̂0 6= 0 e.g. r̂0 = r0� �0 = !2 = 1� u = � = 02. Iterate� for k = 0; 2; 4; 6; : : :�0 = !2�0�1 = ~rT0 rk; � = ��1=�0; �0 = �1u = rk � �uv = Au
 = vT ~r0� = �0=
r = rk � �vs = Arx = xk + �u



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 82�1 = ~rT0 s; � = ��1=�0; �0 = �1v = s� �vw = Av
 = wT ~r0� = �0=
u = r � �ur = r � �vs = s� �wt = As!1 = rT s;� = sT s; � = sT t; � = tT t!2 = rT t; � = � � �2;!2 = (!2 � �!1=�)=�!1 = (!1 � �!2)=�xk+2 = x+ !1r + !2s+ �urk+2 = r � !1s� !2tu = u� !1v � !2ws = rk�1 � �vkt = As!i = tT s=tT txk = xk�1 + �pk + !ksrk = s� !ktBICGSTAB(l) requires 2l + 10 vector updates, l + 7 inner products and 4 matrix vectormultiplications per two iteration cycle. Storage for 2l + 5 vectors is required [SV95].BiCGSTAB generally converges slightly faster and more smoothly than CGS; in addition,the updated residual is generally more accurate than CGS. This behaviour can be attributedto the residual minimising e�ect of �k. However, there are cases where CGS converges well,but where BiCGSTAB converges slowly, stagnates or even breaks down. Such situations canoccur when !k is close to zero; this is not uncommon in matrices with complex eigenvalueswith large imaginary parts. In �nite precision arithmetic !k � 0 leads to inaccurate BiCGcoe�cients (i.e. inaccurate � and �) which can upset the convergence [SF93].



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 83BiCGSTAB(l) generally converges better than BiCGSTAB because it performs a better localminimization through �k and maintains a more stable underlying BiCG process [SV95]. Avalue of l = 2 is usually adequate to achieve good convergence; sometimes, however, a largervalue of l = 4 or l = 8 is necessary.QMR: Quasi-minimal ResidualThe QMR algorithm of Freund and Nachtigal [FN91] attempts to stabilise the irregularconvergence behaviour of BiCG by introducing a relaxed residual minimization propertywhich is less optimal than that of GMRES, but which can still be implemented using shortrecurrences. In addition, look-ahead versions of the QMR algorithm are available [FN94]which aim to address the problem of BiCG breakdown.Like BiCG, the QMR algorithm is based on the non-symmetric Lanczos algorithm. Therecurrence formula of equations (25) and (26) can be written in matrix form as:AVk = Vk+1 �Hk (47)ATWk = Wk+1 ~Hk (48)where Vk is the n � k matrix with columns v1; v2; : : : ; vk and Wk is the n � k matrixwith columns w1; w2 : : : ; wk. �Hk and ~Hk are tridiagonal (k + 1)� k matrices involving therecurrence coe�cients �, � and 
 and the scaling factors �k = 1=k ~vkk2 and �k = 1=k ~wkk2(see [Wei95, x3.1] for their full form).Now if we let v1 = r0=kr0k2, then the Lanczos algorithm will generate v1; v2; : : : ; vk spanningKk(A; r0) and w1; w2; : : : ; wk spanning Kk(AT ; r0). As is the case for GMRES, the kthiterate of the QMR algorithm is given by:xk = x0 + zkwhere the correction zk is chosen from the Krylov subspace Kk(A; r0). Since v1; v2; : : : ; vkforms a basis for the subspace, zk may be written as zk = Vky where y denotes the coe�cientsof the linear combination of basis elements. Using this fact and equation (47), the kthresidual is given by:rk = r0 �Az = r0 � AVky = r0 � Vk+1 �Hky = Vk+1(�e1 � �Hky) (49)



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 84where � = kr0k2 and e1 = (1; 0; 0; : : : ; 0)T is (k + 1)-vector. Note that the development sofar has been very similar to that of GMRES, except now we cannot proceed by using the factthat the columns Vk+1 are orthonormal, since the short recurrences of the non-symmetricLanczos algorithm generate biorthonormal vectors, and not mutually orthonormal vectorslike Arnoldi's algorithm. In fact, attempting to minimize the two-norm of the residual asgiven above would lead to an algorithm equivalent to GMRES, but would involve solvingan n � (k + 1) least-squares problem requiring O(nk2) work and O(nk) storage [Nac91].Instead, Freund and Nachtigal introduce a (k + 1)� (k + 1) diagonal scaling matrix givenby 
n = diag(!1; !2; : : : ; !k+1); !j > 0; j = 1; 2; : : : ; k + 1into equation (49) which gives:rk = Vk+1
�1k 
k(�e1 � �Hky) = Vk+1
�1k (!1�e1 � 
k �Hky)Note that there is no known optimality condition for choosing the weights; usually !j = 1for j = 1; 2; : : : ; k + 1. Now if we are willing to sacri�ce the optimality of a true residualminimization, we can ignore the Vk+1
�1k term and solve a much smaller (k + 1)� k leastsquares problem which involves only the bracketed term of rk, i.e.miny2IRk k(!1�e1 � 
k �Hky)k2Thus the expensive true residual minimizing property has been replaced with a cheaperquasi-optimal property.QMR is an exact Krylov subspace method that can be formulated with a short recurrence.In this case, qk�i;k = rk�i and Zk = WkD�Tk 
Tk
kD�1k WTk Awhere Wk is the matrix of shadow Lanczos vectors from equation (48) and Dk is a k � kdiagonal matrix derived by rewriting equation (27) in matrix form as:WTk Vk = Dk:QMR Algorithm [BBC+94]



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 851. Initialise� r0 = b� Ax0� ~w1 is an arbitrary vector such that ~wT1 ~r0 6= 0 e.g. ~w1 = r0� ~v1 = r0� �1 = k~v1k2� � = k ~w1k� 
0 = 1� �0 = �1� �0 = kr0k� �0 = �0 = 02. Iterate� for k = 1; 2; : : :if �k = 0 or �k = 0 method failsvk = ~vk=�kwk = ~wk=�k�k = wTk Vk; if �k = 0 method failsif k = 1p1 = v1; q1 = w1elsepi = vk � (�k�k=�k�1)pk�1qi = wk � (�k�k=�k�1)qk�1endif~p = Apk�k = qTk ~p; if �k = 0 method fails�k = �k=�k; if �k = 0 method fails~vk+1 = ~p� �kvk�k+1 = k~vk+1k2~wk+1 = AT qk � �kwi



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 86�k+1 = k ~wk+1k2�k = �k+1=(
k�1j�kj); 
k = 1=q1 + �2k; if 
k = 0 method fails�k = ��k�1�k
2k=(�k
2k�1)if k = 1d1 = �1p1; s1 = �1~pelsedk = �kpk + (�k�1
k)2dk�1sk = �k ~p+ (�k�1
k)2sk�1endifxk = xk�1 + dkrk = rk�1 � skQMR performs 2 matrix-vector multiplications (one with A and one with AT ) per iteration.Storage for 8 vectors is required.Freund and Nachtigal [FN91] give general error bounds showing that the upper bound forthe kth residual norm of QMR is greater than that of GMRES by a factor of �pk + 1,where � is a constant related to, among other things, the conditioning of A and Hk. ThusGMRES and QMR have similar upper bounds on their errors.Practical experience suggests that QMR converges more smoothly than BiCG, but it is notnecessarily faster. If implemented, the look-ahead steps of QMR make it more robust thenBiCG since they prevent all but so-called \incurable" breakdowns in the underlying Lanczosprocess.TFQMR: Transpose free Quasi-minimal ResidualSince QMR is the result of applying quasi-minimal smoothing to the BiCG algorithm, itmay be also be bene�cial to apply quasi-minimal smoothing to the CGS algorithm. Doingthis leads to Freund's TFQMR algorithm [Fre93] which, like CGS, has the advantage thatit does not involve multiplications with AT .CGS and TFQMR are closely related since TFQMR may be derived from CGS by changingonly a few lines in the algorithm and the CGS iterates may be easily recovered from theTFQMR process.



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 87TFQMR Algorithm [Fre93]1. Initialise� r0 = b� Ax0� ~r0 is an arbitrary vector such that r0T ~r0 6= 0 e.g. r̂0 = r0� w1 = y1 = r0� v0 = Ay1� d0 = 0� �0 = kr0k� �0 = �0 = 02. Iterate� for k = 1; 2; : : :�k�1 = ~rT0 vk�1�k�1 = �k�1=�k�1y2k = y2k�1 � �k�1vk�1for m = 2k � 1; 2kwk+1 = wk � �k�1Aym�m = kwm+1k=�m�1cm = 1=p1 + �2m�m = �m�1�mcm�m = c2m�k�1dm = ym + (�2m�1�m�1=�k�1)dm�1xm = xm�1 + �mdmif xm has converged stop�k = ~rT0 w2k+1�k = �k=�k�1y2k+1 = w2k+1 + �ky2kvn = Ay2k+1 + �k(Ay2k + �kvn�1)



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 88TFQMR performs 2 matrix-vector multiplications (with A). 8 vectors of storage are re-quired.TFQMR does not calculate or update a residual explicitly; however, Freund gives an upperbound for the kth residual given by:krkk2 � �kpk + 1This is very similar to that for QMR and shows that the two methods can be expected toshow similar convergence behaviour.Like CGS, TFQMR can break down unless look-ahead steps are incorporated into thealgorithm.4.5 Decomposition-based techniques4.5.1 Principles of Decomposition-based TechniquesDecomposition [Cou85] is a divide-and-conquer technique for simplifying the analysis ofcomplex systems. It involves breaking a complex system up into simpler subsystems,analysing the subsystems individually and then constructing a global solution by analysinghow the subsystems interact.Decompositional techniques are best applied to structures where interactions within sub-systems are strong and more frequent than interactions between subsystems. Such systemsconsisting of loosely-coupled nearly-independent subunits are referred to as being nearlycompletely decomposable (NCD). The analysis of NCD systems is based on the ideal assump-tion that interactions within subsystems can be analysed without reference to interactionsbetween subsystems and vice versa. In practice, this assumption is hardly ever met exactly,so decomposition will only yield approximate results. Iterative decompositional techniquesare therefore often used to reduce the error in the results to an acceptable level by successiveapproximations.In the context of solving large-scale Markov chains, a chain is referred to as NCD if itsstates can be partitioned into disjoint subchains, with strong interactions among the statesof a subchain but with weak interactions among the subchains themselves [Ste94]. Given



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 89this structure, the probability transition matrix P of an NCD chain can be partitioned intoblock form as follows: P = 0BBBBBB@ P11 P12 � � � P1NP21 P22 � � � P2N... ... . . . ...PN1 PN2 � � � PNN 1CCCCCCA (50)where the magnitudes of the elements in o�-diagonal blocks (which represent the interactionsbetween subchains) are assumed to be small in comparison to the magnitude of elements inthe diagonal blocks (which represent interactions within subchains).We wish to solve for the steady state probability vector � given by� = �P subject to k�k1 = 1:Partitioning the steady state vector according to the block structure of Eq. (50), i.e. � =(�1; �2; : : : ; �N), we can obtain an approximate solution for the steady state probabilityvector � by ignoring the o�-diagonal blocks and solving for the steady state distribution ofeach diagonal block Pii. However, we cannot solve directly for�i = �iPiisince each Pii is a substochastic matrix. Instead, we take the normalised eigenvector uicorresponding to the Perron root �i (the eigenvalue closest to one) as the probability vectorof block i. That is, for each block i we solve for ui inuiPii = �iui subject to kuik1 = 1Each ui is a conditional probability vector in the sense that ui is the probability vector ofthe states within a block, given that the system is in one of the states in the block.To construct the full steady state solution, we also need to �nd the probabilities of transi-tions between blocks; these probabilities are given by the N �N aggregation matrix A withentries aij = �iPijewhere eT = (1; 1; : : : ; 1)T and �i = �ik�ik1



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 90Unfortunately, the exact steady state distribution � is not known; however, we can estimate�i by: �i � uikuik1Given an irreducible stochastic matrix P partitioned as in Eq. (50), the resulting aggre-gation matrix A will also be stochastic and irreducible [Ste94, pg. 290{291]; thus A has aunique steady-state solution � given by:� = �A subject to k�k = 1Finally, the approximate stationary probability distribution can be calculated as:�̂ = (�1u1; �2u2; : : : ; �NuN )This approximation procedure can be transformed into an iterative algorithm having thegeneral form given below [Ste94]:1. Initialise �(0) = (�(0)1 ; �(0)2 ; : : : ; �(0)N ) as the initial approximation to � and set theiteration number m = 1.2. For i = 1; 2; : : : ; N set �(m�1)i = �(m�1)ik�(m�1)i k3. Construct the N �N aggregation matrix A(m�1) with elements:(Am�1)ij = �(m�1)i Pije4. Determine the steady state distribution �(m�1) of matrix A(m�1) by solving:�(m�1)A(m�1) = �(m�1) subject to k�(m�1)k1 = 15. Use a block Gauss-Seidel operation to compute a new approximation to the steadystate distribution �(m)i using �(m�1), �(m�1) and the blocks of matrix P .6. Test �(m) for convergence. If �(m) has not converged, set m = m + 1 and go to step2. Otherwise �(m) is the solution vector.



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 91There are many such iterative aggregation-disaggregation (IAD) algorithms in the literature[CS85, CS84, KMS84, Sch86], all of which are closely related to one another. Two of themost popular IAD algorithms are the KMS (Koury, McAllister and Stewart) algorithm[KMS84] and the Takahashi IAD algorithm [Ste94, pg. 314-315]. These two methodsessentially di�er from one another in their 5th step, i.e. how the new approximation tothe steady state distribution is computed. The KMS algorithm uses a block Gauss-Seideloperation which involves solving for �(m) from the set of equations given by�(m)k = �(m)k Pkk +Xj<k �(m)j Pjk +Xj>k z(m)j Pjkwhere k = 1; 2; : : :N andz(m) = (�(m�1)1 �(m�1)1 ; �(m�1)2 �(m�1)2 ; : : : ; �m�1N �(m�1)N ):The Takahashi algorithm is based on the idea of isolating each block k and lumping allstates outside the block into a single state. Here the 5th step involves solving for zk inz(m)k = z(m)k Pkk +Xj<k �(m�1)j �(m)j Pjk +Xj>k �(m�1)j �(m�1)j Pjk ;where k = 1; 2; : : :N and �k = z(m)kkz(m)k k1Then �(m) can be computed as�(m) = (�(m�1)1 �(m)1 ; �(m�1)2 �(m)2 ; : : : ; �(m�1)N �(m)N ):4.5.2 Aggregation-Isolation algorithmAbderezak Touzene's Aggregation-Isolation (AI) algorithm [Tou95] and its relaxed variantAggregation-Isolation Relaxed (AIR) are recent algorithms for solving large-scale MarkovChains. AI and AIR are based on decompositional techniques, which makes them suited tosolving NCD chains. However, they are also applicable to solving general chains.The AI and AIR algorithms have two characteristics which distinguish them from the hostof other steady state solution methods:



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 92� Low memory requirements. Given n states, the algorithm requires storage forthe one-step transition matrix P and only 3 n-vectors, compared to storage for Pand between 6 and 12 n-vectors for conjugate gradient-like methods. Furthermore,the algorithm can be implemented using only column access to P (row access is notrequired); this allows for the use of a space-e�cient sparse matrix representation.� Good convergence behaviour. AI exploits the advantages o�ered by decompo-sitional techniques and the so-called \Gauss-Seidel" e�ect (making use of values assoon as they are available) to achieve rapid smooth convergence. AIR also takes ad-vantage of overrelaxation techniques to further accelerate the convergence. Numericalexperiments show that AI and AIR are competitive with and often outperform eventhe best classical and Krylov subspace methods.Given n states, each iteration of the AI algorithm consists of n � 2 steps. We consider thegeneral step i:1. The states of a Markov chain are partitioned into three classes: a left macrostate (L)consisting of states (1; 2; : : : ; i) , a single \isolated" state (i+1) and a right macrostateR consisting of states ((i + 2); : : : ; n). These three state classes are used to form a3� 3 aggregration matrix A giving the transition probabilities between these classes.This transition probability matrix takes the form:A = (L) (i+ 1) (R)(L)(i+ 1)(R) 0BBB@ 1� a� c c ad pi+1;i+1 bf e 1� e� f 1CCCAThis system is completely speci�ed by the six parameters a; b; c; d; e and f where:� a is the transition probability from (L) to (R),� b is the transition probability from (i+ 1) to (R),� c is the transition probability from (R) to (i+ 1),� d is the transition probability from (i+ 1) to (L),� e is the transition probability from (R) to (i+ 1),� f is the transition probability from (R) to (L).



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 93Calculating these system parameters from scratch at every step i would be a tedioustask involving much computation. This turns out to be unnecessary since we can takeadvantage of the coherence both between iterations and within steps. In the following,we will use subscripted variables such as ai; bi; ci; di; ei; fi to indicate the value of thesystem parameters at step i.The values of bi and di are given bybi = nXk=i+2 pi+1;k and di = iXk=1 pi+1;k = 1� pi+1;i+1 � biNote that bi and di remain constant through iterations since they do not depend on�; they can thus be calculated once and then stored in a vector b.The values of ci and ei are easily computed as:ci = cci=(li�1 + �i) and ei = eei=(li�1 � �i+1)where cci = ( iXj=1 �jpj;i+1) and eei = ( nXj=i+2 �jpj;i+1)The values of ai and fi are more complex and are given byai = aai=(li�1 + �i) and fi = ffi=(ui�1 � �i+ 1)where aai = 0@i�1Xj=1 nXk=i+2 �jpjk1A + nXk=i+2 �ipikffi = 0@ nXj=i+1 iXk=1 �jpjk1A � iXk=1 �i+1pi+1;kTouzene has derived simple update formulas which allow aai and ffi to be expressedin terms of the previous step's parameters as follows:aai = aai�1 � cci � �i�1bi�1 and ffi = ffi�1 � �i+1di + eei�1For the full derivation of these update formulas, see [Tou95].



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 942. Once the system parameters have been calculated, the aggregation matrix A is thensolved for its steady state distribution to determine:� li, the approximate steady-state probability of being in the left macrostate (L),� �i+1, the approximate probability of being in state (i+ 1),� ui, the approximate probability of being in the right macrostate (R).The values of li; �i+1 and ui are determined from solving:� li �i+1 ui � = � li �i+1 ui �A subject to li + �i+1 + ui = 1In his paper, Touzene does not dictate what method should be used to solve thissystem. Since the system is so small, a direct method such as Gaussian eliminationor Grassmann's method is appropriate. In fact, using Grassmann's method leads tothis accurate subtraction-free algorithm:a0 = a=(e+ f)b0 = b=(e+ f)�0i+1 = (c+ a0 � e)=(d+ b0 � f)u0 = a0 + �i+1 � b0l = 1=(1 + �0i+1 + u0)�i+1 = �0i+1 � lu = u0 � lTo make this solution as fast as possible in real implementations, a; b; c; d; e and f canbe stored in registers and the reduction can be carried out in place.3. Set i = i+1 and go to step 1. In the next step, the state (i+1) will be absorbed into(L) and state (i+ 2) will be removed from (R) and isolated.This general step can now be incorporated into an iterative algorithm:1. Initialise� Compute vector b� Choose initial probability vector �(0)



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 95� Set m = 12. Iterate(a) First step (i = 1):� Isolate (L); (2); (R) with (L) = 1 and (R) = (3 : : :n)� Compute the parameters of the 3�3 aggregationmatrix. Shortcut parametercalculations for the �rst step are:c1 = p12; a1 = nXk=3 p1k and f1 = Pnk=3 �(m�1)k1� �(m�1)1 � �(m�1)2� Solve for l1 = �(m)1 ; pi(m)2 ; u1(b) General step (i = 2; : : : ; n� 3)� Set ui = ui � �(m)i+1� Isolate (L); (i+ 1); (R)� Compute the parameters of the 3� 3 aggregation matrix� Solve for li; �(m)i+1 ; ui� Set li = li + �(m)i+1(c) Last step (i = n� 2)� Isolate (L); (n� 1); (n)� Compute the parameters of the 3�3 aggregationmatrix. Shortcut parametercalculations for the last step areen�1 = pn;n�1 and fn�1 = 1� pn;n � en�1� Solve for �(m)n�1 and �(m)n(d) Normalise �(m) so that k�(m)k1 = 1 and test �(m) for convergence. If �(m) hasconverged then stop, else set m = m+ 1 and iterateThe AI algorithm can be adapted to incorporate an SOR-like relaxation step of form:�(m)i = !�(m)i + (1� !)�(m�1)i for i = 1; : : :nwhere 1 � ! < 2. The method is then known as Aggregation-Isolation Relaxed or AIR;setting ! = 1 corresponds to the straightforward AI algorithm. Unfortunately, just as is



CHAPTER 4. STEADY STATE SOLUTION TECHNIQUES 96the case for SOR, there is no known way of calculating the optimal value of ! in the generalcase.Touzene recommends a simple adaptive scheme were ! is set to 1 and then increased insmall steps (say 0.01). Every few iterations, the convergence rate is checked to see if thenew value of ! is an improvement. If so, ! is further increased; otherwise ! is set to:! = 1 + (! � 1)2 :A table-driven scheme can be used to provide a more e�ective relaxation technique. Wemaintain a small table T of n entries T [0]; T [1]; : : : ; T [n� 1], where entry T [k] correspondsto the observed improvement in convergence rate obtained using a relaxation parametervalue of !k = 1 + k=n:At regular intervals - say the beginning of every sth iteration - the table is used to selectthe value of !k which has yielded the best improvement in convergence rate so far, i.e. wechoose !k = 1 + k=n with k such that T [k] = max0�k�n T [k]Then s iterations of algorithm are performed using !k as the relaxation parameter, afterwhich the convergence rate at the current iteration m is calculated ascm = kr(m�s) � r(m)k1kr(m�s)k1where r(m) is the residual vector as calculated at iteration m. T [k] is then updated to re
ectthe new value of cm, using an exponentially weighted moving average of form:T [k] = �cm + (1� �)T [k]where 0 < � � 1.The algorithm requires a startup phase to seed the table T with initial convergence ratesfor the entries. Once this has been done, the algorithm is e�ective at �nding values of !which maintain a good convergence rate.



Chapter 5Interface Language Speci�cation5.1 IntroductionAn interface language for a Markov chain analyser must meet design criteria relating topower of expression and ease of use. By examining the facilities provided by existing Markovchain analysers (such as USENUM [Scz87, MCS88, SMC90] and MARCA [Ste91, KS95])and by considering the needs of likely user applications (such as the Petri net tool DNAnet[ABK95]), an interface language has been designed to meet the following general require-ments:� There should be a 
exible high-level model description which can be used by a statespace generator as a basis for constructing a Markov chain; this model descriptionshould be powerful enough to support a variety of formalisms such as GeneralisedStochastic Petri nets, queueing networks etc. The language given here meets thisrequirement by making use of general C/C++ constructs for the description of modelcomponents which govern the generation and solution processes.� It should be possible to verify functional properties which should hold on the model.The interface language allows the user to specify functional properties which shouldbe checked during the state generation process, such as system invariants and theexistence of deadlocks.� There should be provision for a variety of performance results; these include statemeasures which compute the value of a real expression at every state (such as bu�er97



CHAPTER 5. INTERFACE LANGUAGE SPECIFICATION 98occupancy), and count measures which measure the occurrence rate of events (suchas transition throughput). The language enables the user to specify both types ofperformance result using the power of general C/C++ expressions.� The user should have control of aspects of the state space generation process and thesolution process used to �nd results. The language makes provision for user guidanceof both the state generation and steady state solution processes and also allows theuser to select the desired level of feedback.� The language should use concepts and constructs likely to be familiar to target users.Since the language presented here has a simple TEX-like syntax and uses elementaryC/C++ expressions, it should be familiar to users in academic environments.Note that, while some syntax checking can be done during parsing of the input, the syntaxof C/C++ expressions etc. can only be checked by the C++ compiler when an attempt ismade to compile the self-analysing C++ �le generated by the parser.The following symbols are used in the de�nition:{ X }* denotes one or more occurrences of X| separates alternativesAs in TEX, comments begin with %; the remainder of the input line is ignored.5.2 Language elements5.2.1 Model DescriptionThe underlying Markov chain of a system is likely to involve many thousands of states andtransitions. To avoid explicit enumeration of these states and transitions, a high-level modeldescription is necessary. This model description speci�es the components of a general stateof the system, the conditions on and e�ects of transitions between states and an initial stateof the system.A Markov chain generator maps this high-level model description onto a low-level systemrepresentation consisting of the state space and transitions between states.



CHAPTER 5. INTERFACE LANGUAGE SPECIFICATION 99model_description = \model {{ state_vector | initial_state | transition_declaration |constant | help_value | invariant | state_output_function |primary_hash_function | secondary_hash_function | additional_headers}*}State Descriptor VectorThe state descriptor vector consists of discrete components which, when taken together,describe a state of the system; each unique assignment to these components corresponds toone state.An arbitrary vector of elementary C++ variables (int, long, short, char etc.) is ideal forthis purpose; note that elements with float or double types are not allowed since the statespace must be discrete. Variables are declared just as they are in C/C++:state_vector = \statevector{{ <type> <identifier> {, <identifier> }*; }*}type = basic C/C++ variable type;identifier = valid C/C++ identifier;Initial StateAn initial state must be speci�ed for reachability analysis purposes; this can be done usingsimple C/C++ assignments to the elements of the state vector.initial_state = \initialstate {{ <assignment> }*}assignment = C/C++ assignment to elements of the state vector



CHAPTER 5. INTERFACE LANGUAGE SPECIFICATION 100Transition declarationsTransitions describe how the system moves from state to state (via updates to the currentstate vector). Since it would be virtually impossible to enumerate successor transitionsfor every individual reachable state, a more general scheme (similar to USENUM) is used.Possible transitions from the current state are speci�ed by describing:� one or more enabling conditions involving elements of the state vector correspondingto the current state.� an action to be taken if the transition is executed; this will involve an assignment tothe state vector elements of the next state.� an indication of whether the transition from the current to the next state is timed orinstantaneous (i.e. the transition takes no time to execute).� a rate (for timed transitions) or relative weight (for instantaneous transitions) shouldalso be speci�ed; note that these rates and weights may be denoted by (possibly state-dependent) arbitrary expressions. If a non-positive rate is encountered during stateexploration, it will be ignored during analysis.� an optional priority which allows transitions of a higher priority to preempt lowerpriority transitions of the same type (i.e. timed or instantaneous).Transitions from the current to the next state descriptor vector can be achieved throughC/C++ assignment statements, while enabling conditions can be given using C/C++boolean expressions. Since the conditions and actions will form part of transition codeencapsulated in a C++ State object, elements of the current state descriptor (as declaredin Sec. 5.2.1) can be referred to directly while elements of the next state descriptor can beaccessed via a next pointer.transition_declaration = \transition{<identifier>}{\condition{<boolean expression>}\action{ { <assignment> }* }\rate{<real expression>} | \weight{<real expression>}\priority{<non-negative integer>}



CHAPTER 5. INTERFACE LANGUAGE SPECIFICATION 101}boolean expression = C/C++ boolean expressionreal expression = C/C++ real expressionassignment = C/C++ assignmentConstants and Help ValuesIt is convenient to allow for constant declarations and complicated formulae which are usedrepeatedly during the evaluation of transition conditions and rates/weights. Such valuesare called help values; this is a concept adopted from USENUM.constant = \constant{<identifer>}{value}help_value = \helpvalue{<type>}{<identifier>}{<expression>}InvariantsDepending on the application domain, there may be invariant conditions which should notbe violated during the generation of the state space; these invariant conditions can beexpressed as C/C++ expressions. The state generator will issue a warning if it encountersany state which violates an invariant.invariant = \invariant{<expression>}Custom state output function (optional)If a deadlock or a violation of a user-speci�ed invariant occurs, the state generator reportsthe event and outputs the state responsible for the error. A simple default output functionis provided; however, the user can also provide his/her own output function if desired.state_output_function = \output {{ <statements> }*}



CHAPTER 5. INTERFACE LANGUAGE SPECIFICATION 102statements = C++ statements to output elements of the state vectorCustom state hash functions (optional)The state generator uses a method of probabilistic state space storage which requires thecomputation of two hash keys for each state. The primary hash key is a 14-bit positiveinteger (from 0 to 16383), while the secondary hash key is a 32-bit integer. The functionswhich perform the key computations should be designed such that, in the event of a primarykey collision, a secondary key collision is very unlikely. Default functions are provided, butthe user may wish to use application-speci�c knowledge to write better functions.primary_hash function = \primaryhash {<C++ function body returning an integer from 0 to 16383>}primary_hash function = \secondaryhash {<C++ function body returning a 32-bit integer>}Additional headersShould the user require any C/C++ functions which are not usually included by de-fault (such as the advanced mathematical functions to be found in math.h), the necessary#include statements can be placed in a header declaration. Class de�nitions of user-de�nedclasses can also be placed here.additional_headers = \header {<C++ include statements and/or class definitions>}5.2.2 Generation ControlThe user is able to control aspects of the state generation process, such as the maximumnumber of states to be generated or the maximum cpu time that should be spent on the



CHAPTER 5. INTERFACE LANGUAGE SPECIFICATION 103generation. The user can also specify the level of feedback by specifying the report styleand the report interval.generation_control = \generation {{ \maxstates{<long int>} | \maxcputime{<seconds>} |\reportstyle{full | short | none} | \reportinterval{<long int>}}*}5.2.3 Solution ControlOnce the state space has been generated (using the model description), the resulting statetransition matrix must be solved for its steady state distribution. The user is able to guidethis steady state solution process through parameters such as:� Solution Method. Possible solution methods include:{ Direct Methods (Gaussian Elimination, Grassmann){ Classical Iterative Methods (Gauss-Seidel, �xed SOR, dynamic SOR){ Krylov Subspace Techniques (BiCG, CGNR, CGS, BiCGSTAB, BiCGSTAB2,TFQMR){ Decomposition-based Methods (AI (Aggregation-Isolation), AIR )Choice of which algorithm to use will depend on the characteristics of the generatormatrix Q e.g. for very small state spaces direct methods are generally more e�cientthan iterative methods, while decompositional methods are useful when the Markovchain is nearly completely decomposable (NCD). An automatic algorithm selection(based on the number of states in the model) is also available.� Accuracy. This speci�es the convergence criterion for the iterative methods. Thesemethods will terminate after i iterations with an \accuracy" of � if:kx(i) � x(i�k)k1kx(i)k1 < �



CHAPTER 5. INTERFACE LANGUAGE SPECIFICATION 104where k depends on the particular method and � can vary between 10�2 and 2:22045�10�16 (IEEE-754 machine epsilon for double precision). Reported performance resultsare rounded to re
ect this accuracy.� Maximum Iterations (within which iterative methods should converge)� Relaxation Parameter (SOR). Parameter estimation can be either �xed or dynamic.� Start Vector (useful when performing a sequence of experiments)As with the generation of the state space, the user is able to set the required level ofreporting feedback.solution_control = \solution {{ \method{gauss | grassman | gauss_seidel | sor | bicg | cgnr |bicgstab | bicgstab2 | cgs | tfqmr | ai | air | automatic} |\accuracy{<real>} |\maxiterations{<long int>} |\relaxparameter{<real> | dynamic} |\startvector{ <filename> } |\reportstyle{full | short | none} |\reportinterval{<long int>}}*}5.2.4 Performance Measures/ResultsPerformance results provide a backward mapping from low-level results like probabilitiesof states and rates of transitions to higher-level quantities like throughput or mean bu�eroccupancy. Performance measures can generally be classi�ed as state or count measures;the concept of state and count measures originated in the HIT-tool [BS87] and has beenadopted by other tools such as USENUM.\performance_measures = \performance {{ state_measure | count_measure }*}



CHAPTER 5. INTERFACE LANGUAGE SPECIFICATION 105State measuresA state measure is used to determine the mean and variance of a real expression which isde�ned at every state in the system. e.g. the average number of tokens on a particularplace of a Petri net or some transition's enabling probability. The mean, variance, standarddeviation and distribution of state measures can be computed.state_measure = \statemeasure{identifier}{\estimator{ {mean | variance | stddev | distribution}* }\expression{<real_expression>}}Count measuresA count measure is used to determine the mean rate at which a particular event occurs e.g.the rate at which a transition �res yields transition throughput.The occurrence of an event is speci�ed according to three conditions:� a precondition on the current state that must be true.� a postcondition on the next state that must be true.� transitions which must be �red during the transition from the current to the nextstate.The conditions can be speci�ed as C++ expressions while the transitions can be given in alist. Note that only the mean of count measures is available, since computation of highermoments requires transient analysis.count_measure = \count_measure{identifer}{\estimator{mean}\precondition{<boolean expression>}\postcondition{<boolean expression>}\transition{ all | {<identifier>}* }}



CHAPTER 5. INTERFACE LANGUAGE SPECIFICATION 1065.2.5 Output optionsBesides the desired performance results, the user is able to control the level of intermediateoutput detail, including a list of the �nal states with their steady state probabilities andthe generator matrix Q.output_options = \outputoptions {{ \statelist{<filename>} |\steadystatevector{<filename>} |\transitionmatrix{<filename>} |\performanceresults{<filename>}}*}



Chapter 6The DNAmaca PerformanceAnalyser6.1 IntroductionThe concepts discussed in the previous chapters have been implemented in the DNAmaca(pronounced \dee-nam-ack-a") performance analyser. DNAmaca provides a complete per-formance analysis sequence including model speci�cation, state space generation, functionalanalysis, steady state solution and the computation of performance statistics.6.2 DNAmaca ComponentsFig. 15 illustrates the major modules of DNAmaca. Control is passed from module tomodule as follows:� The parser translates the user's high-level model description into a C++ class whichdescribes the same model.� The C++ class is then compiled and linked with common library routines to form astandalone state space generator for the model. The state space generator uses aprobabilistic exploration algorithm incorporating on-the-
y vanishing state elimina-tion to generate all reachable tangible states. The in�nitesimal generator matrix Q107
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Figure 15: Main Modules of the DNAmaca Markov chain analyser



CHAPTER 6. THE DNAMACA PERFORMANCE ANALYSER 109which describes the transition rates between tangible states is also generated duringthis process.� The functional analyser examines the state transition matrix Q to check if theMarkov Chain is irreducible, i.e. if the states form a single strongly connected com-ponent. If the chain is irreducible, it is possible to solve for its stationary distributionand control is passed to the steady state solver.� Given a chain of n states, the steady state solver determines the stationary dis-tribution � = (�1; �2; : : : ; �n) by solving the set of n steady state equations givenby �Q = 0 subject to nXi=1 �i = 1:� Finally, the user code is linked with common library routines to form a performanceanalyser. The performance analyser uses the steady state solution in combinationwith state space information to produce performance results.The following sections describe each component of DNAmaca in detail.6.2.1 The ParserA simple recursive descent parser [ASU86] implements the interface language described inChapter 5. The parser accepts a user data �le containing:� A model description including the format of the state descriptor, an initial stateand rules governing transitions between states.� A description of performance statistics to be computed in the form of state orcount measures.� User options relating to state space generation and steady state solution, such asdesired accuracy or choice of solution method.If there are no syntactic errors, the backend of the parser generates the user code necessaryfor state space exploration and performance analysis. The user code is encapsulated in a



CHAPTER 6. THE DNAMACA PERFORMANCE ANALYSER 110C++ State class. This mechanism ensures that every model presents a uniform high-levelinterface to external program modules such as the state space generator and performanceanalyser. In particular, the generated State class includes methods to:� setup the current state as the initial state of the system.� determine the set of enabled transitions at the current state.� �re any enabled transition to determine the successor states of the current state.� determine the (possibly state-dependent) rate or weight of any transition.� compute the current state's primary and secondary hash keys needed by the proba-bilistic dynamic hash compaction technique (cf. Chapter 3).� check that any user-speci�ed invariants apply to the current state.� compute performance statistics for the current state in the form of state and countmeasures.Since this high-level interface does not change from model to model, the relatively smallamount of code found in the model-speci�c State class can now be compiled and linkedwith pre-compiled external modules to produce a state space generator and a performanceanalyser for the model. This reduces compilation time considerably.6.2.2 The State Space GeneratorThe probabilistic dynamic hash compaction technique described in Chapter 3 has beenimplemented in DNAmaca as a Generator class. The Generator class interfaces with theuser code through the State class and contains three main data structures:� A hash table which is used to store and to search for states according to their primaryand secondary hash keys. The hash table has 214 rows and uses 32-bit secondary keys.� A tangible state stack for storing unexplored tangible states.� A vanishing state stack for temporary storage of vanishing states during vanishingstate elimination.



CHAPTER 6. THE DNAMACA PERFORMANCE ANALYSER 111The Generator class also contains an explore() method which implements the state spaceexploration algorithm given in Fig. 11.We will demonstrate the e�ectiveness of this state space generation technique using thebenchprod Stochastic Petri Net model shown in Fig. 16 [CCM95]. Benchprod is a scalablemodel of the Oki Electric Company (Japan) production line and is a popular test case forstate exploration algorithms.
Figure 16: The benchprod scaleable stochastic Petri net modelThe graph on the left of Fig. 17 compares the dynamic probabilistic hash compactiontechnique used by DNAmaca with that of the exhaustive dynamic storage technique usedby the USENUM analyser [Scz87] in terms of memory needed to generate the state spaceof the benchprod model. The results were obtained on a Sun SPARCclassic with 64MBmemory and memory utilization was measured with the UNIX top utility. The space savingadvantages of using a probabilistic technique are clear.The table on the right of Fig. 17 presents the corresponding state space generation times(CPU and system time, as given by the clock() system call) for systems of up to 2 millionstates. It is interesting to note that, even on a SPARCclassic (a machine only approximately1.5 times as powerful as a 33MHz 486), our state exploration method outperforms a parallelexploration technique [CCM95] running on a CM-5 with 32 nodes, each of which correspondsto a SPARC2 workstation with 32 Mbytes RAM. For a 511588 state benchprod model, theCM-5 generates the state space at a rate of 1.507 milliseconds per state, while we measured
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y elimination of vanishing states, which is of particularuse for those variants of stochastic Petri nets which include timeless transitions. We willillustrate the e�ect of vanishing state elimination using an SDL-net model of the InRes(Initiator-Responder) communication protocol [Hog89]. SDL-nets [BKKK95] are a subclassof queueing Petri nets [Bau93], which are themselves coloured Generalised Stochastic Petrinets with special timed and immediate queueing places. Note that it is not necessary for thereader to be familiar with SDL-nets or QPNs to understand what follows; the example isused only to illustrate the e�ectiveness of on-the-
y vanishing state elimination on a timedtransition system representation which supports timeless transitions. Fig. 18 presents anoverview of the SDL-net model [Kab95] of the InRes protocol which was constructed usingthe QPN-Tool [BK94]. The model has 208702 states, 73 735 of which are tangible and134 967 of which are vanishing.Table 4 shows the e�ect of on-the-
y vanishing state elimination applied to the InResmodel. As expected, vanishing state elimination leads to a decrease in the number ofstates generated, memory usage and transition matrix size. There is also an increase inthe number of transition �rings owing to the repeated exploration of clusters of vanishing
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y vanishing With on-the-
y vanishingstate elimination state eliminationStates generated 208702 73735Generation time (CPU seconds) 143.51 132.53Memory used (KBytes) 4992 2804Non-zero entries in transition matrix 427651 295571Transitions �red 427651 520699Table 4: The e�ect of on-the-
y vanishing state elimination on the InRes queueing Petrinet model



CHAPTER 6. THE DNAMACA PERFORMANCE ANALYSER 114states. Remarkably, even though more transitions are �red, the generation time with on-the-
y elimination is less since vanishing states need not be stored in the hash table, nordo they need to be written to secondary storage.6.2.3 The Functional AnalyserIt possible to solve for the stationary distribution of a continuous-time Markov chain ifand only if the chain is irreducible, i.e. if every state communicates with every other state(cf. Chapter 2). DNAmaca thus includes a functional analyser which checks that theMarkov chain given by the in�nitesimal generator matrix Q is irreducible. If the chainis not irreducible, but can be made to be so by eliminating transient states, the analyserperforms a remapping of the states.The analyser uses a strongly connected components algorithm [Baa88, pg. 193{197] to di-vide the states into recurrent and transient state classes. There are three possible outcomesof the analysis:� The state graph consists of one recurrent state class only. In this case, the states in Qform a single strongly connected component of states and the Markov chain formedfrom Q is irreducible. The functional analyser takes no further action.� The state graph consists of one recurrent state class and one or more transient stateclasses. In this case, the states in Q consist of several transient states and a single�nal strongly connected component of states. Since the stationary probability ofbeing in each of the transient states is 0 and the transient states have no e�ect on thetransitions between recurrent states, the transient states may be eliminated from Q.The functional analyser performs this remapping to leave a state graph consisting of1 recurrent state class only.� The state graph consists of more than one recurrent state class. In the case, theMarkov chain is reducible and it is not possible to solve for the chain's stationarydistribution. In this case, the solution process is abandoned.The strongly connected components algorithm is based on a depth-�rst search. It hastime complexity O(e) where e is the number of edges in the state graph, or, equivalently,



CHAPTER 6. THE DNAMACA PERFORMANCE ANALYSER 115the number of non-zero entries in Q. Since the algorithm has linear complexity and thealgorithm can be carried out on a copy of Q stored in main memory, the functional analysisphase is substantially faster than the state space generation phase or the steady statesolution phase. The space complexity of the algorithm is O(n+ e) since space is needed forstoring the e non-zero entries in Q, as well as a DFS stack of maximum size n.6.2.4 The Steady State SolverDNAmaca implements the steady state solvers described below (cf. Chapter 4):� Direct Methods: Sparse Gaussian Elimination and Grassmann's method. Thesemethods are very accurate but are only suitable for the solution of small models sincethey have time complexities of O(n3=3) and O(2n3=3) respectively. Grassmann'smethod is thus the default solution method for models of up to 250 states whilesparse Gaussian elimination is the default solver for models of up to 500 states.� Classical Iterative Methods: Gauss-Seidel, �xed SOR and dynamic SOR. DynamicSOR is the most e�ective of these methods and is used as the default solver for modelsof up to 20000 states.� Krylov subspace techniques: BiCG, CGNR, CGS, BiCGSTAB, BiCGSTAB2 andTFQMR. CGS is used as the default solver for models of up to 50000 states since itexhibits rapid convergence and has the lowest memory requirements of the methodsin this class.� Decompositional techniques: AI and AIR. AIR with table driven relaxation hasvery low memory requirements and achieves rapid and smooth convergence once itsinitialisation phase has completed. It is thus the default solver for models with morethan 50000 states.For all of these techniques, it is critical to use an e�cient scheme to store the transition ma-trix Q in memory, since the storage of this matrix usually dominates the space requirementsof the entire performance analysis sequence. Two observations are helpful in designing ane�cient storage structure:



CHAPTER 6. THE DNAMACA PERFORMANCE ANALYSER 116� Most iterative methods (including SOR, CGS, BiCGSTAB, BiCGSTAB2, TFQMR,AI and AIR) require column access, but not row access, to the transition matrix Q.This is because these methods access the elements of Q in the same fashion as a matrixmultiplication operation of the form QTx where x is the current solution vector.� Since transition rates are very often �xed and are seldom state-dependent, many ofthe entries in Q will have the same value. Furthermore, all iterative methods donot modify the entries of Q. Thus, instead of using a double precision 
oating pointnumber to denote each entry in Q, a smaller pointer into a table of common transitionrates can be used.Fig. 19 shows DNAmaca's transition matrix data structure for storing the n� n transitionmatrix Q, as used by most of DNAmaca's iterative methods. The structure consists of threecomponents:� A sparse matrix consisting of n dynamic vectors. The ith dynamic vector stores theelements found in the ith column of Q.� A store of transition rates. The elements stored in each dynamic vector of the sparsematrix point to entries in this store.� An AVL tree (a height-balanced binary tree) of all the items in the store. As eachtransition rate entry is added to the sparse matrix, a search mechanism is needed toestablish whether the entry is already in the store. An AVL tree is thus maintainedto rapidly search for store items; this reduces the search complexity from O(n) fora linear search of the store to O(log2 n) for a search of the tree. The AVL tree isdestroyed once all items have been inserted into the matrix since it is then no longerneeded.This transition matrix structure has been encapsulated in a TransitionMatrix class. Forsolution methods requiring both row and column access to Q (i.e. BiCG and CGNR),a TransitionMatrixWithRowColumn class inherits from the base TransitionMatrix classand includes row access information.An instance of the transition matrix data structure is in turn encapsulated within classknown as the SteadyStateAnalyser class. This class contains methods to implement the
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CHAPTER 6. THE DNAMACA PERFORMANCE ANALYSER 118various steady state solvers. The class also includes a method for verifying that the steadystate solutions produced by each of the steady state solvers are plausible. In particular,given a steady state solution vector x, DNAmaca calculates:� The norm of the �nal residual vector, as given by k�QTxk1. The closer the norm isto 0, the more accurate the result.� The sum of the elements of the steady state vector Pni=1 xi, which should be 1.� The range of elements in the steady state vector. All elements should lie in the range0 � xi � 1.Fig. 20 shows the observed convergence behaviour of several steady state methods for the73 735 state InRes queueing Petri net model of Fig. 18. Notice the fairly smooth but slowconvergence of Gauss-Seidel and SOR, the erratic but superlinear convergence of the Krylovsubspace methods, the smooth convergence of the AI method and the rapid convergence ofthe AIR method.6.2.5 The Performance AnalyserThe last stage in the performance analysis sequence is to combine the low-level results givenby the steady state distribution and the state space information to form more meaningfulhigher-level performance measures such as throughput or mean bu�er occupancy. DNAmacaincludes a performance analyser which calculates two types of performance measures: stateand count measures. The concept of state and count measures originated in the HIT-tool[BS87] and has been adopted by other tools such as USENUM [Scz87].A state measure is used to determine the mean and variance of a real expression whichis de�ned at every state in the system, e.g. the average number of tokens on a particularplace of a Petri net or some transition's enabling probability. The mean, variance, standarddeviation and distribution of state measures can be computed. Given n states, the steadystate distribution � = (�1; �2; : : : ; �n) and a vector of expression values v = (v1; v2; : : : ; vn)where vi is a function of the elements of the state descriptor of state i, the mean of a statemeasure m can be calculated as: E[m] = nXi=1 �ivi
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CHAPTER 6. THE DNAMACA PERFORMANCE ANALYSER 120We can regard vi as the ith state's contribution towards the value of the state measure. If,for example, we are interested in the mean number of tokens on a place p in a Petri net, viwould represent the number of tokens on place p in state i.The second moment of a state measure m is given by:E[m2] = nXi=1 �iv2iand the variance of m by: Var[m] = E[m2]� (E[m])2= nXi=1 �iv2i �  nXi=1 �ivi!2A count measure is used to determine the mean rate at which a particular event occurse.g. the mean rate of transition �ring gives transition throughput. Given a system with nstates, the steady state distribution � = (�1; �2; : : : ; �n) and a function ri which returns therate at which the event occurs when the system is in state i, the mean of a count measurem is given by: E[m] = nXi=1 �iriThe calculation of the variance of a count measure requires transient analysis, which is notsupported by DNAmaca.The computation of performance measures is facilitated in the user code which includesmethods for calculating the values of vi and ri for each state. The performance analyserreads the steady state distribution into memory and then reads the state space state-by-state, using these methods to calculate the contribution of the state towards each perfor-mance measure.



Chapter 7Example Timed TransitionSystems and Solutions7.1 IntroductionIn this chapter we will demonstrate the e�ectiveness of DNAmaca as a performance analysistool by applying it to three models of timed transition systems: a queueing model of amultimedia tra�c switch, a queueing network model of an interactive computer system anda Generalised Stochastic Petri net model of a telecommunications protocol.7.2 Multimedia teletra�c switchThe schematic diagram in Fig. 21 is of a multimedia teletra�c switch designed to handledelay-sensitive voice tra�c and delay-insensitive data tra�c [AK93, pg. 133{137].The switch has a capacity for s calls and is designed to give priority to voice calls. If theswitch is full and the number of data calls in the system exceeds a certain threshold n, anarriving voice call may preempt a data call. If there are less than n data calls and no freecircuits in the switch, arriving voice calls will be blocked. Waiting or preempted data callsare stored in a bu�er with capacity b.There are v potential sources of voice calls. Each of these sources is governed by a two-stateMarkov process which alternates between a silence phase and a talkspurt phase. The mean121
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CHAPTER 7. EXAMPLE TIMED TRANSITION SYSTEMS AND SOLUTIONS 123duration of the silence phase is 1=�1 and the mean duration of a talkspurt phase is 1=�1.The data arrival process is simpler, being Poisson with parameter �2. Data calls are servedat a rate of �2 per server.The performance analysis of this switch, with blocking, preemptive service and a two-phasedvoice arrival process, is not easily accomplished using conventional queueing theory. Equally,the problem cannot be tackled with a Petri net model or any other such formalism. Thus,apart from simulation, the only other alternative is to model the system as a Markov chainand solve that.We used DNAmaca to model a switch with capacity s = 72 and bu�er size b = 200. Therewere v = 1000 voice sources, with �1 = 0:04 and �1 = 1:0. The data arrival rate was�2 = 43:0, and the data service rate was �2 = 1:2 per server. The DNAmaca input �lewhich speci�es this model is given in Appendix A.Three runs were then conducted to test the e�ect of varying the preemption threshold valuen. The �rst run used a low value of n = 20, the second a medium value of n = 32 and thelast a high value of n = 50. Each run generated a Markov chain of 17301 tangible states.Fig. 22 presents the resulting distributions for the number of voice and data calls in thesystem and the corresponding distribution for the number of data calls in the bu�er foreach of the preemption threshold values. The lowest preemption value n = 20 allows voicecalls to aggressively preempt data calls; thus it makes sense that the mean number of voicecalls in the system should be higher than the mean number of data calls. The high level ofdata call preemption, however, leads to a data call bu�er over
ow, suggesting that a higherthreshold is needed. A preemption value of n = 32 leads to a more balanced distribution ofvoice and data calls, with the number of voice calls dropping o� sharply once the preemptionlimit is reached. The bu�er no longer over
ows and the distribution of calls in the bu�ershows that a bu�er size of b = 150 should be more than adequate to deal with almost allcalls. The highest preemption value of n = 50 allows only restricted preemption of datacalls and leads to the blocking of a large number of voice calls; consequently the meannumber of data calls is higher than the mean number of voice calls. Since data calls areseldom preempted, a bu�er size of only about b = 15 would be adequate to deal with almostall calls.
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Figure 22: Distributions for the number of voice and data calls in the switch (left) and thenumber of data calls in the bu�er (right) for various threshold values.



CHAPTER 7. EXAMPLE TIMED TRANSITION SYSTEMS AND SOLUTIONS 1257.3 Interactive computer systemFig. 23 presents a queueing network model of a time-shared interactive computer with apaged virtual memory system. The model is the same as that discussed in Stewart [Ste94,pg. 326{327].
Terminals

CPU

SM

FDFigure 23: Model of an interactive computer systemThe system consists of a set of N terminals, a central processing unit (CPU), a secondarymemory device (SM) and a �ling device (FD). The CPU, SM and FD each have an associatedFCFS queue of pending requests.Users at the terminals generate jobs which are submitted into the CPU queue for processing.It is assumed that users are inactive between job submissions. Jobs being processed at theCPU may either complete and return to the terminals, or they can be interrupted by anI/O request or a page fault. In the case of an I/O request, the job enters the FD queue andin the case of a page fault, the job enters the SM queue. After completion of service at theSM or FD device, interrupted jobs return to the CPU queue for further processing.The state descriptor of the system is given by (n0; n1; n2; n3) where n0 is the number of idleterminals and n1; n2 and n3 denote the number of jobs in the CPU, SM and FD queuesrespectively. The total number of jobs executing in the system at any one moment is givenby � = n1 + n2 + n3. Jobs issue I/O requests at a rate given by r(�) where (r(�))�1 isthe mean compute time between I/O requests. Similarly, jobs page fault at a rate givenby q(�) where (q(�))�1 is the mean time between page faults. The page fault rate of a



CHAPTER 7. EXAMPLE TIMED TRANSITION SYSTEMS AND SOLUTIONS 126process executing in memory m is modelled as q(�) = �=mk, where � and k are constantswhich depend on CPU speed, program characteristics and memory management strategy.Here we assume that the main memory of size M is equally shared between the number ofprocesses currently executing in the system, so q(�) = �(�=M)k. Processes depart from theCPU queue and return to the terminals at a rate given by c(�) where (c(�))�1 is the meancompute time of a process.While a conventional MVA queueing network analysis of this system fails on account of thestate-dependent page fault rate, a Markov chain representation allows this phenomenon tobe modelled accurately.DNAmaca was used to study the e�ect of varying N and M on the utilisation of the CPU,FD and SM for a systems with particular numerical parameters. The page fault rate q(�)was obtained by setting � = 100 and k = 1:5 so that q(�) = 100(�=M)1:5. The meantime between I/O requests was taken to be 20 milliseconds, so r(�) = 0:05, and the meancompute time of a process was taken to be 500 milliseconds, so c(�) = 0:002. The meanthink time of a user at a terminal was estimated to be about ��1 = 10 seconds. The meanservice time of the FD was taken as ��11 = 12 milliseconds and the mean service time ofthe SM was taken as ��12 = 5 milliseconds. The DNAmaca input �le which speci�es thismodel is given in Appendix A.Two sets of runs were conducted. In the �rst, the e�ects of increasing the number of usersin a system with a �xed memory capacity of M = 1200 was studied. In the second, thee�ect of varying the amount of available memory in a system with a workload of N = 30users was studied.Fig. 24 presents the results of the experiments. The graph on the left of the �gure showsthat a system with a memory capacity ofM = 1200 can support up to about 32 users beforethe system begins to thrash, while the graph on the right shows that a memory capacity ofabout M = 1100 should su�ce for system which has to support a maximum of 30 users.7.4 TFTP telecommunications protocolFig. 25 presents a Generalised Stochastic Petri net (GSPN) model of the internet TrivialFile Transfer Protocol (TFTP). TFTP is a simple protocol for the transfer of �les whichwas designed to be implemented on top of the User Datagram Protocol (UDP).
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Figure 24: CPU, �ling device and secondary memory utilization for various number of userson a system withM = 1200 (left) and utilization for various main memory capacities systemwith N = 30 users (right)TFTP reads and writes �les from or to a remote server. Each data packet is acknowledgedseparately { thereby ensuring that all the previous data packets have arrived at their des-tination before the next one is sent. If, for instance, the server is waiting for a data packetand the packet is lost on the channel, the server may timeout and retransmit the previousacknowledgement. The client, on receiving the acknowledgement, will retransmit the lostdata packet. This process continues until the server receives the data packet.The GSPN of Fig. 25 models a write-request from a sender to a receiver over an unreliablechannel with a limited capacity. At the top level, the GSPN can be considered to have threecolumns of net elements representing the sender, the channel and the receiver from left toright, respectively. Tokens in the channel column represent packets in transit, while tokensin the column of places on the left and right represent the state of the sender and receiver.The performance of the model was studied by examining the throughput of the protocol asa function of channel quality and various timeout values. Throughput is de�ned here as thenumber of useful data packets delivered per unit time. Average throughput was measuredby determining the length of time required to send a 100 packet �le over a network whichtransmits from the send to the receiver at an mean rate of 5 packets per second. Note that
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Figure 25: GSPN model of the TFTP �le transfer protocol



CHAPTER 7. EXAMPLE TIMED TRANSITION SYSTEMS AND SOLUTIONS 129the maximum mean throughput of the TFTP protocol is 2.5 packets per second since halfthe number of packets are acknowledgements. In order to simulate the transmission of a�le of length 100 packets (on average) in the GSPN model the weight of the immediatetransitions t5 and t10 (send another packet, see Fig. 25) are set to 99, while the weight oft15 and t16 (send last packet) are set to 1.Channel quality is controlled by setting the mean rates on the lose ACK and lose DATAtimed transitions in the channel. The length of timeouts are controlled, in turn, by settingthe mean rates on the timeout ACK and timeout DATA timed transitions inside the senderand receiver respectively.A DNAmaca model of the TFTP protocol was automatically generated by the DNAnetPetri net tool [ABK95]; this model is given in Appendix A. The model generates a MarkovChain with 200 tangible states.Throughputs were calculated both analytically using DNAmaca and also by simulationusing DNAnet. The results for various channel qualities and timeouts are presented inFig. 26. The simulation results are plotted as points with 95% con�dence intervals.
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Figure 26: Throughput as a function of channel quality for various timeout valuesThe slow (long duration) timeout produces the best throughput for high channel qualitiesbut has the worst throughput for poor channel qualities. This is expected since, for a highlyreliable channel, there are few unnecessary timeouts, while for a poor quality channel, slow



CHAPTER 7. EXAMPLE TIMED TRANSITION SYSTEMS AND SOLUTIONS 130timeouts result in a long recovery time. The fast (short duration) timeout produces poorthroughput for good channel qualities but better throughput for poor channel qualities. Thisis also expected, since the many retranmissions caused by a fast timeout are unnecessary ona good channel but reduce recovery time on a poor channel. The medium duration timeoutgives intermediate results.



Chapter 8Conclusion8.1 SummaryThis dissertation has investigated e�cient techniques for assessing the performance of gen-eral timed transition systems, using Markov chains as the underlying vehicle for obtainingperformance results. The process of establishing the performance of a system forms a se-quence which begins with a high-level model speci�ed using a formalism such as GeneralisedStochastic Petri nets, queueing networks or Queueing Petri nets. The behaviour of the sys-tem is then characterised by enumerating all possible states that the model may enter.The states, together with temporal information about transitions between states, are thenmapped onto a low-level Markov chain representation. From the Markov Chain, a set ofsparse linear equations, known as the steady-state equations, are derived. These are solvedto yield the steady-state distribution of the chain. This distribution indicates the long-runprobability of being in each of the system's states. The basic information provided by thesteady-state distribution can be synthesized into more meaningful performance statistics,such as transition throughput or mean bu�er occupancy, by combining the steady-statedistribution with the enumerated states.We have investigated e�cient techniques for the two major challenges encountered by theMarkovian performance analyst when attempting to solve models of complex real life sys-tems:� Enumerating the large number of states. Existing techniques for solving this131



CHAPTER 8. CONCLUSION 132problem have been reviewed and a new probabilistic dynamic hash-compaction tech-nique has been proposed. This method results in considerable memory savings overconventional static or exhaustive state space generation techniques. The reliabilityand space complexity of the technique has been analysed. The analysis shows that,given 64 Mb of available memory, it is possible to generate state spaces with up to1:27� 107 states while keeping the probability of omitting even one state to less than0:1%.� Solving the large sparse set of steady-state equations. A wide range of lin-ear equation solvers has been reviewed, including two classes of historical methods,namely direct methods and classical iterative methods, and two classes of more re-cent iterative methods, namely Krylov subspace techniques and decomposition-basedtechniques. Particular attention has been paid to the Krylov subspace methods anda decomposition-based technique known as the Aggregation-Isolation algorithm.The complete performance analysis sequence has been automated and implemented in theDNAmaca performance analyser. DNAmaca incorporates the new probabilistic dynamicstate generation technique and uses on-the-
y elimination of vanishing states. In addition,DNAmaca implements twelve linear equation solvers, including six Krylov subspace-basedsolvers and two variants of Touzene's decomposition-based Aggregation-Isolation algorithm.Experiments with DNAmaca have shown that it is possible to solve models with up to500 000 tangible states on a 64 Mb machine.Finally, an interface language which is general enough to support the speci�cation of generaltimed transition systems has been proposed and implemented in DNAmaca. Examples ofthe speci�cation and solution of various timed transition systems have been presented.8.2 Future workWith the development of memory-e�cient probabilistic state space exploration algorithms,the process of solving the steady-state equations has become the major time and memorybottleneck in the performance analysis of timed transition systems. Parallel implementa-tions of Krylov subspace techniques may provide the answer, since these techniques involveeasily parallelisable operations such as matrix-vector multiplication. Indeed, experiments



CHAPTER 8. CONCLUSION 133with Krylov subspace techniques for solving sets of linear equations with symmetric coef-�cient matrices have yielded superlinear speedups in both symmetric multiprocessing andhigh-speed distributed environments [Bou95]. There is no reason to suspect that similarresults cannot be obtained for the methods applicable to solving the large unsymmetricin�nitesimal generator matrices encountered in Markov chain analysis.The time complexity of probabilistic state space exploration algorithms is another areathat could bene�t from parallelisation e�orts. Work has already been done on the parallelgeneration of state spaces for Generalised Stochastic Petri nets [CCM95] which shows thatless dramatic speedups can be expected here because of the high communication overheadinherent in state space generation algorithms.Work on techniques for the parallelisation of DNAmaca has in fact begun and a version foruse in distributed computing environments is expected by the middle of 1997.



Appendix ADNAmaca model �lesA.1 Multimedia teletra�c switch model\model{\constant{ss}{72} % servers in switch\constant{voice_source}{1000} % voice sources\constant{buffer_size}{200} % data call buffer size\constant{threshold}{50} % preemption threshold\constant{lambda_0}{0.04} % voice silence -> talk spurt rate\constant{lambda_1}{1.0} % voice talk spurt -> silence rate\constant{lambda_2}{43.0} % data call arrival rate\constant{mu_2}{1.2} % data service rate\statevector{\type{int}{data,voice,buffer}}\helpvalue{int}{idle_voice_source}{voice_source - voice}\invariant{ (voice + data) <= ss }\initial{data = 0;voice = 0;buffer = 0;}\transition{data_arrival}{\condition{buffer < buffer_size}\action{ next->buffer = buffer + 1; }\rate{lambda_2} 134



APPENDIX A. DNAMACA MODEL FILES 135}\transition{serve}{\condition{buffer > 0 && voice + data < ss}\action{next->buffer = buffer - 1;next->data = data + 1;}\weight{1.0}}\transition{data_service}{\condition{data > 0}\action{ next->data = data - 1; }\rate{(double)mu_2*data}}\transition{voice_arrival}{\condition{voice < ss && idle_voice_source}\action{if ( ((voice + data) >= ss) && (data > threshold)) {if (buffer < buffer_size)next->buffer = buffer + 1;next->data = data - 1;next->voice = voice + 1;} else if ( ((voice + data) >= ss) && (data <= threshold) ) {/* cannot preempt --> discard call */} else if ((voice + data) < ss) {next->voice = voice + 1;}}\rate{ (double) lambda_0*idle_voice_source}}\transition{voice_service}{\condition{voice > 0}\action{ next->voice = voice - 1; }\rate{ (double) lambda_1*voice}}}\performance{\statemeasure{mean voice} {\estimator{mean variance distribution}\expression{voice}}



APPENDIX A. DNAMACA MODEL FILES 136\statemeasure{mean data} {\estimator{mean variance distribution}\expression{data}}\statemeasure{mean buffer} {\estimator{mean variance distribution}\expression{buffer}}\countmeasure{blocking rate} {\estimator{mean}\precondition{1}\postcondition{voice == next->voice}\transition{voice_arrival}}\countmeasure{voice throughput}{\estimator{mean}\transition{voice_service}}\countmeasure{data throughput}{\estimator{mean}\transition{data_service}}}\solution{\method{bicgstab2}\accuracy{1e-10}}A.2 Interactive computer system model\model{\header{#include<math.h>}% N = total number of users% lambda = mean job arrival rate from each idle terminal% compute = mean compute time for a process% M = memory size% io = mean compute time between i/o requests% page = page fault rate dependent on number of processes in system% alpha = page fault-related constant dependent on processing speed% k = page fault-related constant dependent on program locality



APPENDIX A. DNAMACA MODEL FILES 137% smspeed = mean service time for sm device% fdspeed = mean service time for fd device\constant{N}{50}\constant{lambda}{0.0001}\constant{compute}{500.0}\constant{M}{1024.0}\constant{io}{20.0}\constant{alpha}{0.01}\constant{k}{1.5}\constant{page}{(alpha*pow( M/(cpu+sm+fd), k ))}\constant{smspeed}{5.0}\constant{fdspeed}{12.0}% idle = number of idle terminals% cpu = number of processes on cpu% sm = number of processes waiting on secondary memory% fd = number of processes waiting on filing device\statevector{\type{int}{idle, cpu, sm, fd}}\initial{idle = N;cpu = 0;sm = 0;fd = 0;}\invariant{idle + cpu + sm + fd == N}\transition{job_start}{\condition{idle > 0}\action{next->idle = idle - 1;next->cpu = cpu + 1;}\rate{ (double) idle*lambda}}\transition{job_finish}{\condition{cpu > 0}\action{next->cpu = cpu - 1;next->idle = idle + 1;}\rate{ (double) 1.0/compute}}



APPENDIX A. DNAMACA MODEL FILES 138\transition{job_enters_fd}{\condition{cpu > 0}\action{next->cpu = cpu - 1;next->fd = fd + 1;}\rate{ (double) 1.0/io}}\transition{job_enters_sm}{\condition{cpu > 0}\action{next->cpu = cpu - 1;next->sm = sm + 1;}\rate{ (double) 1.0/page}}\transition{job_leaves_sm}{\condition{sm > 0}\action{next->sm = sm - 1;next->cpu = cpu + 1;}\rate{ (double) 1.0/smspeed}}\transition{job_leaves_fd}{\condition{fd > 0}\action{next->fd = fd - 1;next->cpu = cpu + 1;}\rate{ (double) 1.0/fdspeed}}}\solution{\method{air}\maxiterations{2000}}\performance{\statemeasure{idle terminals}{\estimator{mean variance stddev distribution}\expression{idle}}



APPENDIX A. DNAMACA MODEL FILES 139\statemeasure{processes on cpu}{\estimator{mean variance stddev distribution}\expression{cpu}}\statemeasure{cpu utilization}{\estimator{mean variance stddev}\expression{ (cpu > 0) ? 1 : 0}}\statemeasure{processes waiting for filing device}{\estimator{mean variance stddev distribution}\expression{fd}}\statemeasure{filing device utilization}{\estimator{mean variance stddev}\expression{ (fd > 0) ? 1 : 0}}\statemeasure{processes waiting for secondary memory}{\estimator{mean variance stddev distribution}\expression{sm}}\statemeasure{secondary memory utilization}{\estimator{mean variance stddev}\expression{ (sm > 0) ? 1 : 0}}\countmeasure{jobs entering}{\estimator{mean}\transition{job_start}}\countmeasure{jobs leaving}{\estimator{mean}\transition{job_finish}}}A.3 TFTP communications protocolThis DNAmaca model �le was automatically generated by the GSPN tool DNAnet from theTFTP model presented in Fig. 25. The mapping from the places and transitions re
ectedin the diagram to the places and transitions used in this model �le is given at the top ofthe �le.% p0 = 'main.sender idle' p1 = 'main.receiver idle'% p2 = 'main.get ACK0' p3 = 'main.send ACK0'



APPENDIX A. DNAMACA MODEL FILES 140% p4 = 'main.WRQ' p5 = 'main.ACK0'% p6 = 'main.package DATA n' p7 = 'main.wait DATA n'% p8 = 'main.get ACK n' p9 = 'main.send ACK n'% p10 = 'main.last DATA' p11 = 'main.send last ACK'% p12 = 'main.get last ACK' p13 = 'main.last ACK'% p14 = 'main.send DATA n' p15 = 'main.package DATA n+1'% p16 = 'main.send DATA n+1' p17 = 'main.get ACK n+1'% p18 = 'main.get DATA n+1' p19 = 'main.send ACK n+1'% p20 = 'main.DATA n' p21 = 'main.ACK n'% p22 = 'main.DATA n+1' p23 = 'main.ACK n+1'% p24 = 'main.p25' p25 = 'main.p26'% p26 = 'main.p27' p27 = 'main.p28'% t0 = 'main.t15' t1 = 'main.t16'% t2 = 'main.t10' t3 = 'main.t5'% t4 = 'main.t24' t5 = 'main.t22'% t6 = 'main.t23' t7 = 'main.t21'% t8 = 'main.t25' t9 = 'main.t26'% t10 = 'main.t27' t11 = 'main.t28'% t12 = 'main.lose ACK n+1' t13 = 'main.lose DATA n+1'% t14 = 'main.lose ACK n' t15 = 'main.t18'% t16 = 'main.t17' t17 = 'main.t3'% t18 = 'main.t8' t19 = 'main.t14'% t20 = 'main.t13' t21 = 'main.t12'% t22 = 'main.t1' t23 = 'main.t2'% t24 = 'main.t7' t25 = 'main.t4'% t26 = 'main.t9' t27 = 'main.t19'% t28 = 'main.t20' t29 = 'main.timeout ACK n'% t30 = 'main.lose DATA n' t31 = 'main.timeout ACK n+1'% t32 = 'main.t11' t33 = 'main.t6'% t34 = 'main.timeout DATA n+1' t35 = 'main.timeout DATA n'\model {\statevector{\type{short}{p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11,p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24,p25, p26, p27}}\initial{p0 = 1; p1 = 1; p2 = 0; p3 = 0; p4 = 0; p5 = 0;p6 = 0; p7 = 0; p8 = 0; p9 = 0; p10 = 0; p11 = 0;p12 = 0; p13 = 0; p14 = 0; p15 = 0; p16 = 0; p17 = 0;p18 = 0; p19 = 0; p20 = 0; p21 = 0; p22 = 0; p23 = 0;p24 = 2; p25 = 2; p26 = 2; p27 = 2;}\transition{t0}{



APPENDIX A. DNAMACA MODEL FILES 141\condition{p6 > 0}\action{next->p6 = p6 - 1;next->p10 = p10 + 1;next->p12 = p12 + 1;}\weight{1}}\transition{t1}{\condition{p15 > 0}\action{next->p10 = p10 + 1;next->p12 = p12 + 1;next->p15 = p15 - 1;}\weight{1}}\transition{t2}{\condition{p15 > 0}\action{next->p15 = p15 - 1;next->p16 = p16 + 1;}\weight{99}}\transition{t3}{\condition{p6 > 0}\action{next->p6 = p6 - 1;next->p14 = p14 + 1;}\weight{99}}\transition{t4}{\condition{p18 > 0 && p20 > 0}\action{next->p20 = p20 - 1;next->p26 = p26 + 1;}\weight{1}}\transition{t5}{\condition{p7 > 0 && p22 > 0}\action{next->p22 = p22 - 1;next->p25 = p25 + 1;}\weight{1}



APPENDIX A. DNAMACA MODEL FILES 142}\transition{t6}{\condition{p16 > 0 && p23 > 0}\action{next->p23 = p23 - 1;next->p24 = p24 + 1;}\weight{1}}\transition{t7}{\condition{p14 > 0 && p21 > 0}\action{next->p21 = p21 - 1;next->p27 = p27 + 1;}\weight{1}}\transition{t8}{\condition{p14 > 0 && p20 > 1}\action{next->p8 = p8 + 1;next->p14 = p14 - 1;}\weight{1}}\transition{t9}{\condition{p9 > 0 && p21 > 1}\action{next->p9 = p9 - 1;next->p18 = p18 + 1;}\weight{1}}\transition{t10}{\condition{p16 > 0 && p22 > 1}\action{next->p16 = p16 - 1;next->p17 = p17 + 1;}\weight{1}}\transition{t11}{\condition{p19 > 0 && p23 > 1}\action{next->p7 = p7 + 1;next->p19 = p19 - 1;}\weight{1}



APPENDIX A. DNAMACA MODEL FILES 143}\transition{t12}{\condition{p23 > 0}\action{next->p23 = p23 - 1;next->p24 = p24 + 1;}\rate{2.5}}\transition{t13}{\condition{p22 > 0}\action{next->p22 = p22 - 1;next->p25 = p25 + 1;}\rate{2.5}}\transition{t14}{\condition{p21 > 0}\action{next->p21 = p21 - 1;next->p27 = p27 + 1;}\rate{2.5}}\transition{t15}{\condition{p7 > 0 && p10 > 0}\action{next->p7 = p7 - 1;next->p10 = p10 - 1;next->p11 = p11 + 1;}\rate{10}}\transition{t16}{\condition{p10 > 0 && p18 > 0}\action{next->p10 = p10 - 1;next->p11 = p11 + 1;next->p18 = p18 - 1;}\rate{10}}\transition{t17}{\condition{p2 > 0 && p5 > 0}\action{next->p2 = p2 - 1;next->p5 = p5 - 1;



APPENDIX A. DNAMACA MODEL FILES 144next->p6 = p6 + 1;}\rate{10}}\transition{t18}{\condition{p8 > 0 && p21 > 0}\action{next->p8 = p8 - 1;next->p15 = p15 + 1;next->p21 = p21 - 1;next->p27 = p27 + 1;}\rate{10}}\transition{t19}{\condition{p19 > 0 && p24 > 0}\action{next->p7 = p7 + 1;next->p19 = p19 - 1;next->p23 = p23 + 1;next->p24 = p24 - 1;}\rate{10}}\transition{t20}{\condition{p17 > 0 && p23 > 0}\action{next->p6 = p6 + 1;next->p17 = p17 - 1;next->p23 = p23 - 1;next->p24 = p24 + 1;}\rate{10}}\transition{t21}{\condition{p18 > 0 && p22 > 0}\action{next->p18 = p18 - 1;next->p19 = p19 + 1;next->p22 = p22 - 1;next->p25 = p25 + 1;}\rate{10}}\transition{t22}{\condition{p0 > 0}\action{next->p0 = p0 - 1;



APPENDIX A. DNAMACA MODEL FILES 145next->p2 = p2 + 1;next->p4 = p4 + 1;}\rate{10}}\transition{t23}{\condition{p1 > 0 && p4 > 0}\action{next->p1 = p1 - 1;next->p3 = p3 + 1;next->p4 = p4 - 1;}\rate{10}}\transition{t24}{\condition{p7 > 0 && p20 > 0}\action{next->p7 = p7 - 1;next->p9 = p9 + 1;next->p20 = p20 - 1;next->p26 = p26 + 1;}\rate{10}}\transition{t25}{\condition{p3 > 0}\action{next->p3 = p3 - 1;next->p5 = p5 + 1;next->p7 = p7 + 1;}\rate{10}}\transition{t26}{\condition{p9 > 0 && p27 > 0}\action{next->p9 = p9 - 1;next->p18 = p18 + 1;next->p21 = p21 + 1;next->p27 = p27 - 1;}\rate{10}}\transition{t27}{\condition{p12 > 0 && p13 > 0}\action{next->p0 = p0 + 1;next->p12 = p12 - 1;



APPENDIX A. DNAMACA MODEL FILES 146next->p13 = p13 - 1;}\rate{10}}\transition{t28}{\condition{p11 > 0}\action{next->p1 = p1 + 1;next->p11 = p11 - 1;next->p13 = p13 + 1;}\rate{10}}\transition{t29}{\condition{p8 > 0}\action{next->p8 = p8 - 1;next->p14 = p14 + 1;}\rate{4}}\transition{t30}{\condition{p20 > 0}\action{next->p20 = p20 - 1;next->p26 = p26 + 1;}\rate{2.5}}\transition{t31}{\condition{p17 > 0}\action{next->p16 = p16 + 1;next->p17 = p17 - 1;}\rate{4}}\transition{t32}{\condition{p16 > 0 && p25 > 0}\action{next->p16 = p16 - 1;next->p17 = p17 + 1;next->p22 = p22 + 1;next->p25 = p25 - 1;}\rate{10}}\transition{t33}{



APPENDIX A. DNAMACA MODEL FILES 147\condition{p14 > 0 && p26 > 0}\action{next->p8 = p8 + 1;next->p14 = p14 - 1;next->p20 = p20 + 1;next->p26 = p26 - 1;}\rate{10}}\transition{t34}{\condition{p18 > 0}\action{next->p9 = p9 + 1;next->p18 = p18 - 1;}\rate{4}}\transition{t35}{\condition{p7 > 0}\action{next->p7 = p7 - 1;next->p19 = p19 + 1;}\rate{4}}}\performance{\statemeasure{Mean tokens on place main.sender idle}{\estimator{mean variance distribution}\expression {p0}}\statemeasure{Mean tokens on place main.receiver idle}{\estimator{mean variance distribution}\expression {p1}}\statemeasure{Mean tokens on place main.get ACK0}{\estimator{mean variance distribution}\expression {p2}}(etc...)\statemeasure{Mean tokens on place main.p28}{\estimator{mean variance distribution}\expression {p27}}



APPENDIX A. DNAMACA MODEL FILES 148\statemeasure{Enabled probability for transition main.lose ACK n+1}{\estimator{mean}\expression {(p23 > 0) ? 1 : 0}}\countmeasure{Throughput for transition main.lose ACK n+1}{\estimator{mean}\precondition{1}\postcondition{1}\transition{t12}}\statemeasure{Enabled probability for transition main.lose DATA n+1}{\estimator{mean}\expression {(p22 > 0) ? 1 : 0}}\countmeasure{Throughput for transition main.lose DATA n+1}{\estimator{mean}\precondition{1}\postcondition{1}\transition{t13}}(etc...)\statemeasure{Enabled probability for transition main.timeout DATA n}{\estimator{mean}\expression {(p7 > 0) ? 1 : 0}}\countmeasure{Throughput for transition main.timeout DATA n}{\estimator{mean}\precondition{1}\postcondition{1}\transition{t35}}}
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