
Probability, Parallelism and the State Space

Exploration Problem

William Knottenbelt1, Mark Mestern2, Peter Harrison1, and Pieter Kritzinger2

1 Department of Computing, Imperial College, 180 Queens Gate, London SW7 2BZ,

United Kingdom, email: fwjk,pghg@doc.ic.ac.uk
2 Computer Science Department, University of Cape Town, Rondebosch 7701,

South Africa, email: fmmestern,pskg@cs.uct.ac.za

Abstract. We present a new dynamic probabilistic state exploration

algorithm based on hash compaction. Our method has a low state omis-

sion probability and low memory usage that is independent of the length

of the state vector. In addition, the algorithm can be easily parallelised.

This combination of probability and parallelism enables us to rapidly

explore state spaces that are an order of magnitude larger than those

obtainable using conventional exhaustive techniques. We implement our

technique on a distributed-memory parallel computer and we present re-

sults showing good speedups and scalability. Finally, we discuss suitable

choices for the three hash functions upon which our algorithm is based.

1 Introduction

Complex systems can be modelled using high-level formalisms such as stochastic
Petri nets and process algebras. Often the �rst phase in the logical and numerical
analysis of these systems is the explicit generation and storage of the model's un-
derlying state space and state transition graph. In special cases, where the state
space has su�cient structure, an e�cient analytical solution can be obtained
without the explicit enumeration of the entire state space. Several ingenious
techniques, predominantly based on the theory of queueing networks, can be
applied in such cases [3]. Further, certain restricted hierarchical structures allow
states to be aggregated and the state space to be decomposed [5, 16]. In this
paper, however, we consider the general problem where no symmetry or other
structure is assumed.

Conventional state space exploration techniques have high memory require-
ments and are very computationally intensive; they are thus unsuitable for gen-
erating the very large state spaces of real-world systems. Various authors have
proposed ways of solving this problem by either using shared-memory multipro-
cessors [2] or by distributing the memory requirements over several computers
in a network [7, 6].

Allmaier et al. [2] present a parallel shared memory algorithm for the analysis
of Generalised Stochastic Petri Nets (GSPNs) [1]. The shared memory approach
means that there is no need to partition the state space as must be done in the
case of distributed memory. This also brings the advantage of simplifying the

R. Puigjaner et al. (Eds.): Tools’98, LNCS 1469, pp. 165-179, 1998
 Springer-Verlag Berlin Heidelberg 1998

load balancing problem. However, it does introduce synchronisation problems
between the processors. Their technique is tested on a Convex SPP 1600 shared
memory multiprocessor with 4GB of main memory. The authors observe good
speedups for a range of numbers of processors employed and the system can
handle 4 000000 states with 2 GB of memory.

Caselli et al. [6] o�er two ways to parallelise the state space generation for
massively parallel machines. In the data-parallel method, a marking of a GSPN
with t transitions is assigned to t processors. Each processor handles the �ring
one transition only and is responsible for determining the resulting state. This
method was tested on a Connection Machine CM-5 and showed computation
times linear in relation to the number of states. In the message-passing method
the state space is partitioned between processors by a hash function and newly
discovered states are passed to their respective processors. This method achieved
good speedups on the CM-5, but was found to be subject to load imbalance.

Ciardo et al. [7] present an algorithm for state space exploration on a network
of workstations. Their approach is not limited to GSPNs but has a general
interface for describing state transition systems. Their method partitions the
state space in a way similar to [6] but no details on the storage techniques used
are given. The importance of a hashing function which evenly distributes the
states across the processors is emphasised, but the method also attempts to
reduce the number of states sent between processors. It was tested on a network
of SPARC workstations interconnected by an Ethernet network and an IBM SP-
2 multiprocessor. In both cases a good reduction in processing time was reported
although with larger numbers of processors, diminishing returns occurred. The
largest state space successfully explored had 4 500000 states; this required four
hours of processing on a 32-node IBM SP-2.

All the techniques proposed so far do not take advantage of the considerable
gains achieved by using dynamic storage techniques based on hash compaction.
The dynamic storage method we present here has several important advantages:
memory consumption is low, space is not wasted by a static allocation and access
to states is simple and rapid. We also present a parallel version of our technique
which results in further performance gains.

After introducing the problem of state space exploration in Section 2, we give
the details of the storage allocation algorithm in Section 3 and of the parallel
state space generation algorithm in Section 4. Numerical results on the perfor-
mance of the algorithm are in Section 5 and Section 6 discusses suitable hashing
and partition functions. Section 7 concludes and considers future work.

2 State Space Exploration

Fig. 1 shows an outline of a simple sequential state space exploration algorithm.
The core of the algorithm performs a breadth-�rst search (BFS) traversal of a
model's underlying state graph, starting from some initial state s0. This requires
two data structures: a FIFO queue F which is used to store unexplored states
and a table of explored states E used to prevent redundant state exploration.

166 W. Knottenbelt et al.

begin

E = fs0g
F .push(s0)
A = ;
while (F not empty) do begin

F .pop(s)
for each s0 2 succ(s) do begin

if s0 =2 E do begin

F .push(s0)
E = E [fs0g

end

A = A [fid(s)! id(s0)g
end

end

end

Fig. 1. Sequential state space generation algorithm

The function succ(s) returns the set of successor states of s. Some formalisms
(such as GSPNs) include support for \instantaneous events" which occur in zero
time. A state which enables an \instananeous event" is known as a vanishing

state. We will assume that our successor function implements one of several
known on-the-
y techniques available for eliminating vanishing states [8] [17]. In
addition, we will not consider the case where s0 is vanishing.

As the algorithm proceeds, it constructs A, the state graph. To save space,
the states are identi�ed by a unique state sequence number given by the function
id(s). If we require the equilibrium state space probability distribution, we must
construct a Markov chain by storing in A the transition rate between state s
and s0 for every arc s! s0. The graph A is written out to disk as the algorithm
proceeds, so there is no need to store it in main memory.

3 Dynamic Probabilistic Hash Table Compaction

The memory consumed by the state exploration process depends on the layout
and management of the two main data structures of Fig. 1. The FIFO queue
can grow to a considerable size in complex models. However, since it is accessed
sequentially at either end, it is possible to manage the queue e�ciently by storing
the head and tail sections in main memory, with the central body of the queue
stored on disk. The table of explored states, on the other hand, enjoys no such
locality of access, and it has to be able to rapidly store and retrieve information
about every reachable state. A good design for this structure is therefore crucial
to the space and time e�ciency of a state generator.

One way to manage the explored state table is to store the full state descriptor
of every state in the state table. Such exhaustive techniques guarantee complete

167Probability, Parallelism and the State Space Exploration Problem

state coverage by uniquely identifying each state. However, the high memory
requirements of this approach severely limit the number of states that can be
stored. Probabilistic techniques, on the other hand, use hashing techniques to
drastically reduce the memory required to store states. This reduction comes at
a cost, however, and it is possible that the hash table will represent two distinct
states in the same way. If this should happen, the state hash table will incorrectly
report a state as previously explored. This will result in incorrect transitions in
the state graph and the omission of some states from the hash table. This risk
may be acceptable if the probability of inadvertently omitting even one state
can be quanti�ed and kept very small.

Probabilistic methods �rst gained widespread popularity with the develop-
ment of Holzmann's bit-state hashing technique [13, 14]. This technique aims at
maximizing state coverage in the face of limited memory by using a hash function
to map each state onto a single bit position in a large bit vector. Holzmann's
method was subsequently improved upon by Wolper and Leroy's hash com-
paction technique [19], and Stern and Dill's enhanced hash compaction method
[18]. These techniques hash states onto compressed values which are inserted
into a large pre-allocated hash table with a �xed number of slots.

All of these probabilistic methods rely on static memory allocation, since
they pre-allocate large blocks of memory for the explored-state table. Since the
number of states in the system is in general not known beforehand, the preallo-
cated memory may not be su�cient, or may be a gross overestimation. We now
introduce a new probabilistic technique which uses dynamic storage allocation
and which yields a good collision avoidance probability.

The system is illustrated in Fig. 2. The explored state table takes the form
of a hash table with several rows. Attached to each row is a linked list which
stores compressed state descriptors. Two independent hash functions are used.
The primary hash function h1(s) is used to determine which hash table row
should be used to store a compressed state and the secondary hash function
h2(s) is used to compute the compressed state descriptor values (also known as
secondary keys). If a state's secondary key h2(s) is present in the hash table row
given by its primary key h1(s), then the state is deemed to have been explored.
Otherwise the secondary key is added to the hash table row and it's successors
are pushed onto the FIFO queue. Note that two states s1 and s2 are classi�ed as
being equal if and only if h1(s1) = h1(s2) and h2(s1) = h2(s2); this may happen
even when the two state descriptors are di�erent, so collisions may occur (as in
all other probabilistic methods).

3.1 Reliability of the probabilistic dynamic state hash table

We consider a hash table with r rows and t = 2b possible secondary key values,
where b is the number of bits used to store the secondary key. In such a hash
table, there are rt possible ways of representing a state. Assuming that h1(s) and
h2(s) distribute states randomly and independently, each of these representations
are equally likely. Thus, if there are n distinct states to be inserted into the hash

168 W. Knottenbelt et al.

primary
hash key

secondary
hash keys

1

2

3

4

r

84920 00983 64940

12503 83025 23432 89532

12344

54221 40000

08621 47632 37042

87654

53376

49754 20000 54621

Fig. 2. Hash table with compressed state information

table, the probability p that all states are uniquely represented is given by:

p =
(rt)!

(rt � n)!(rt)n
(1)

Using Stirling's approximation for n! in Eq. (1) yields:

p � e�
n
2

rt

If n2 << rt (as will be the case in practical schemes with p close to 1), we
can use the fact that ex � (1 + x) for jxj << 1 to approximate p by:

p � 1�
n2

rt

The probability q that all states are not uniquely represented, resulting in
the omission of one or more states from the state space, is of course simply:

q = 1� p �
n2

rt
=

n2

r2b
(2)

Thus the probability of state omission q is proportional to n2 and is inversely
proportional to the hash table size r. Increasing the size of the compressed state
descriptors b by one bit halves the omission probability.

3.2 Space complexity

If we assume that the hash table rows are implemented as dynamic arrays, the
number of bytes of memory required by the scheme is:

M = hr + nb=8: (3)

169Probability, Parallelism and the State Space Exploration Problem

Here h is the number of bytes of overhead per hash table row. For a given
number of states and a desired omission probability, there are a number of choices
for r and b which all lead to schemes having di�erent memory requirements. How
can we choose r and b to minimize the amount of memory required? Rewriting
Eq. (2):

r �
n2

q2b
(4)

and substituting this into Eq. (3) yields

M �

hn2

q2b
+
nb

8

Minimizing M with respect to b gives:

@M

@b
� �

n2(ln 2)h

q2b
+ n=8 = 0

Solving for the optimal value of b yields:

b � log
2

�
hn ln 2

q

�
+ 3

The corresponding optimal value of r can then be obtained by substituting
b into Eq. (4).

number of states

q 105 106 107 108

Mb b r Mb b r Mb b r Mb b r

0.001 0.4186 32 2328 4.608 35 29104 50.21 39 181899 543.2 42 2273737

0.01 0.3774 29 1863 4.186 32 23283 46.08 35 291038 502.1 39 1818989

0.1 0.3363 25 2980 3.774 29 18626 41.86 32 232831 460.8 35 2910383

Table 1. Optimal values for memory usage and the values for b and r used to obtain

them for various system state sizes and omission probabilities q

Table 1 shows the the optimal memory requirements in megabytes (Mb) and
corresponding values of b and r for state space sizes ranging from 105 to 108. We
have assumed a hash table row overhead of h = 8 bytes per row. In practice, it is
di�cult to implement schemes where b does not correspond to a whole number
of bytes. Consequently, 4-byte or 5-byte compression is recommended.

4 Parallel State Space Exploration

We now investigate how our technique can be further enhanced to take advantage
of the memory and processing power provided by a network of workstations

170 W. Knottenbelt et al.

or a distributed-memory parallel computer. We will assume that there are N

nodes available. Each node has its own processor and local memory and can
communicate with other nodes via a network.

In the parallel algorithm, the state space is partitioned between the nodes so
that each node is responsible for exploring a portion of the state space and for
constructing a section of the state graph. A partitioning hash function h0(s)!
(0; : : : ; N � 1) is used to assign states to nodes, such that node i is responsible
for exploring the set of states Ei and for constructing the portion of the state
graph Ai where:

Ei = fs : h0(s) = ig

Ai = f(s1 ! s2) : h0(s1) = ig

It is important that h0(s) achieves a good spread of states across nodes in
order to achieve good load balance. Naturally, the values produced by h0(s)
should also be independent of those produced by h1(s) and h2(s) to enhance the
reliability of the algorithm.

The operation of node i in the parallel algorithm is shown in Fig. 3. Each
node i has a local FIFO queue Fi used to hold unexplored local states and a hash
table used to store the set Ei representing the states that have been explored
locally. State s is assigned to processor h0(s), which stores the state's compressed
state descriptor h2(s) in the local hash table row given by h1(s).

As in the sequential case, node i proceeds by popping a state o� the local
FIFO queue and determining the set of successor states. Successor states for
which h0(s) = i are dealt with locally, while other successor states are sent
to the relevant remote processors via calls to send-state(k, g, s). Here k is the
remote node, g is the identity of the parent state and s is the state descriptor of
the child state. The remote processors must receive incoming states via matching
calls to receive-state(k, g, s) where k is the sender node. If they are not already
present, the remote processor adds the incoming states to both the remote state
hash table and FIFO queue.

For the purpose of constructing the state graph, states are identi�ed by a
pair of integers (i; j) where i = h0(s) is the node number of the host processor
and j is the local state sequence number. As in the sequential case, the index
j can be stored in the state hash table of node i. However, a node will not be
aware of the state identity numbers of non-local successor states. When a node
receives a state it returns its identity to the sender by calling send-id(k, g, h)
where k is the sender, g is the identity of the parent state and h is the identity
of the received state. The identity is received by the original sender via a call to
receive-id(g, h).

In practice, it is ine�cient to implement the communication as detailed in
Fig. 3, since the network rapidly becomes overloaded with too many short mes-
sages. Consequently state and identity messages are bu�ered and sent in large
blocks. In order to avoid starvation and deadlock, nodes that have very few
states left in their FIFO queue or are idle broadcast a message to other nodes
requesting them to
ush their outgoing message bu�ers.

171Probability, Parallelism and the State Space Exploration Problem

begin

if h0(s0) = i do begin

Ei = fs0g
Fi.push(s0)

end else

Ei = fg
Ai = ;
while (shutdown signal not received) do begin

if (Fi not empty) do begin

Fi.pop(s)
for each s0 2 succ(s) do begin

if h0(s
0) = i do begin

if s0 =2 Ei do begin

Fi.push(s
0)

Ei = Ei [fs
0g

end

Ai = Ai [fid(s)! id(s0)g
end else

send-state(h0(s
0), id(s), s0)

end

end

while (receive-id(g, h)) do
Ai = Ai [fg!hg

while (receive-state(k, g, s0)) do begin

if s0 =2 Ei do begin

Fi.push(s
0)

Ei = Ei [fs
0g

end

send-id(k, g, id(s0))
end

end

end

Fig. 3. Parallel state space generation algorithm for node i

172 W. Knottenbelt et al.

The algorithm terminates when all the Fi's are empty and there are no
outstanding state or identity messages. We use Dijkstra's circulating probe al-
gorithm [10] to determine when this occurs.

In terms of reliability of the parallel technique, two distinct states s1 and
s2 will mistakenly be classi�ed as identical states if and only if h0(s1) = h0(s2)
and h1(s1) = h1(s2) and h2(s1) = h2(s2). Since h0, h1 and h2 are independent
functions, the reliability of the parallel algorithm is essentially the same as that
of the sequential algorithm with a large hash table of Nr rows, giving a state
omission probability of

q =
n2

Nr2b
(5)

5 Results

To illustrate the potential of our technique, we consider a 22-place GSPN model
of a
exible manufacturing system. This model, which we will refer to as the
FMS model, was originally presented in detail in [9], and was subsequently used
in [7] to demonstrate distributed exhaustive state space generation. A detailed
understanding of the model is not required. It su�ces to note that the model has
a parameter k (corresponding to the number of initial tokens in places P1; P2
and P3), and that as k increases, so does the number of states n and the number
of arcs a in the state graph (see Fig. 4).

k n a

1 54 155
2 810 3 699
3 6 520 37 394
4 35 910 237 120
5 152 712 1 111 482
6 537 768 4 205 670
7 1 639 440 13 552 968
8 4 459 455 38 533 968
9 11 058 190 99 075 405

10 25 397 658 234 523 289
11 54 682 992 518 030 370
12 111 414 940 1 078 917 632

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

1 2 3 4 5 6 7 8 9 10 11 12
k

tangible states (n)
arcs in state graph (a)

Fig. 4. The number of tangible states (n) and the number of arcs in the state graph
(a) for various values of k

We implemented the state generator algorithm of Fig. 3 using hash tables
with r = 350 003 rows per processor and b = 40 bit secondary keys. The gener-

173Probability, Parallelism and the State Space Exploration Problem

ator was written in C++, with support for two popular parallel programming
interfaces, viz. the Message Passing Interface (MPI) [12] and the Parallel Vir-
tual Machine (PVM) interface [11]. Models are speci�ed using the DNAmaca
interface language [17] which allows the high-level speci�cation of generalised
timed transition systems including GSPNs, queueing networks and Queueing
Petri nets [4]. The high-level speci�cation is then translated into a C++ class
which is compiled and linked to a library implementing the core state generator.
The state space and state graph are written to disk in compressed format as the
algorithm proceeds.

We obtained our results on a Fujitsu AP3000 distributed-memory parallel
computer with 12 processing nodes [15]. Each node has a 200 MHz UltraSparc
processor, 256Mb RAM and 4GB local disk space. The nodes run the Solaris op-
erating system and support MPI. They are connected by a high-speed wormhole-
routed network with a peak throughput of 200Mb/s (the AP-net).

0

500

1000

1500

2000

2500

3000

0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07

tim
e

(s
ec

on
ds

)

tangible states generated

 1 processor
 2 processors
 4 processors
 8 processors
12 processors

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12

sp
ee

du
p

number of processors

k=4
k=5
k=6
k=7
k=8
k=9

Fig. 5. Real time taken to generate state spaces up to k = 9 using 1, 2, 4, 8 and 12
processors (left), and the resulting speedups for k = 4; 5; 6; 7; 8 and 9 (right)

The graph on the left in Fig. 5 shows the time (de�ned as the maximum
processor run time) taken to explore state spaces of di�erent sizes (up to k =
9) using 1, 2, 4, 8 and 12 processors on the AP3000. The k = 8 state space
(4 459455 states) can be generated on a single processor in under 17 minutes;
12 processors require just 115 seconds. The k = 9 state space (11 058190 states)
can be generated on a single processor in 45 minutes; 12 processors require just
296 seconds.

The graph on the right in Fig. 5 shows the speedups for the cases k =
4; 5; 6; 7; 8; 9. The speedup for N processors is given by the run time of the
sequential generation (N = 1) divided by the run time of the distributed gen-
eration with N processors. For k = 9 using 12 processors we observe a speedup
of 9.12, giving an e�ciency of 76%. Most of the lost e�ciency can be accounted
for by communication overhead and bu�er management, which is not present in

174 W. Knottenbelt et al.

the sequential case. Since speedup increases linearly in the number of processors
for k > 6, there is evidence to suggest that our algorithm scales well.

The memory utilization of our technique is low: a single processor generating
the k = 8 state space uses a total of 74Mb RAM (16.6 bytes per state), while
the k = 9 state space requires 160Mb RAM (14.5 bytes per state). 9 bytes of the
memory used per state can be accounted for by the 40-bit secondary key and the
32-bit unique state identi�er; the remainder can be attributed to factors such as
hash table overhead and storage for the front and back of the unexplored state
queue. By comparison, a minimum of 48 bytes would be required to store a state
descriptor in a straightforward exhaustive implementation (22 16-bit integers
plus a 32-bit unique state identi�er). The di�erence will be even more marked
with more complex models that have longer state descriptors, since the memory
consumption of our technique is independent of the number of elements in the
state descriptor.

Moving beyond the maximum state space size that can be generated on a
single processor, the graph on the left in Fig. 6 shows the real time required to
generate larger state spaces using 12 processors. For the largest case (k = 12) 55
minutes are required to generate a state space with 111 414 940 tangible states
and a state graph with 1 078 917 632 arcs. The graph on the right in Fig. 6 shows
the distribution of the states generated by each processor for the case k = 12.

0

500

1000

1500

2000

2500

3000

3500

0 2e+07 4e+07 6e+07 8e+07 1e+08 1.2e+08

tim
e

(s
ec

on
ds

)

tangible states generated

12 processors

0

2e+06

4e+06

6e+06

8e+06

1e+07

1 2 3 4 5 6 7 8 9 10 11 12

ta
ng

ib
le

 s
ta

te
s

ge
ne

ra
te

d

processor

Fig. 6. Real time taken to generate state spaces up to k = 12 using 12 processors (left)
and distribution of states across processors for k = 12 (right)

In comparison to the results reported above (see Table 4), Ciardo et al used
conventional exhaustive distributed generation techniques to generate the same
sample model for the case k = 8 in 4 hours using 32 processors on an IBM SP-2
parallel computer [7]. They were unable to explore state spaces for larger values
of k.

To enhance our con�dence in our results for the case k = 12, we use Eq. (5)
to compute the probability of having omitted at least one state. For a state space

175Probability, Parallelism and the State Space Exploration Problem

of size n = 108 states, the omission probability q is given by:

q �
n2

Nr2b
=

1016

12 � 350 003 � 240
= 0:00217

i.e. the omission probability is approximately 0.2%. This is a small price to pay
for the ability to explore such large state spaces, and is probably less than the
chance of a serious (man-made) error in specifying the model.

To further increase our con�dence in the results, we changed all three hash
functions and regenerated the state space. This resulted in exactly the same
number of tangible states and arcs. This process could be repeated several times
to establish an even higher level of con�dence in the results.

6 Choosing good hash functions

The reliability of our technique depends on the behaviour of the hash functions
h0, h1 and h2 in three important ways. Firstly, h0 and h1 should randomly
partition states across the processors and hash table rows. Secondly, h2 should
result in a random distribution of compressed values. Finally, h0, h1 and h2
should distribute states independently of one other.

Before we consider each of these functions individually, consider the two
general hash functions f1 and f2 shown in Fig. 7. Both map an m-element state
vector s = (s1; s2; : : : ; sm) onto a 32-bit unsigned integer by manipulating the
bit representations of individual state vector elements. The xor operator is the
bitwise exclusive or operator, rol is the bitwise rotate-left operator and mod is
the modulo (remainder) operator.

f1(vector s, int shift) ! uint32 f2(vector s, int shift1 , int shift2) ! uint32
begin begin

uint32 key = 0; uint32 key = 0;
int slide = 0; int slide1 = 0, slide2 = 16, sum = 0;
for i=1 to m do begin for i=1 to m do begin

key = key xor (si rol slide); sum = sum + si
slide = (slide + shift) mod 32; key = key xor (si rol slide1);

end key = key xor (sum rol slide2);
return key; slide1 = (slide1 + shift1) mod 32;

end slide2 = (slide2 + shift2) mod 32;
end

return key;
end

Fig. 7. Two general hash functions for mapping states onto 32 bit unsigned integers.

Hash function f1(s; shift) uses exclusive or to combine rotated bit represen-
tations of the state vector elements. State vector element si is rotated left by

176 W. Knottenbelt et al.

an o�set of (i� shift) mod 32 bits. Hash function f2(s; shift1; shift2) is based on
encoding not only element si rotated left by an o�set of i � shift1 mod 32, but
also the sum

P
j<i si rotated left by an o�set of i�shift2 mod 32. This technique

makes the hash function resistant to any symmetries and invariants that may
be present in the model.

We make use of functions f1 and f2 to derive suitable choices for h0(s), h1(s)
and h2(s) as follows:

{ For the partitioning hash function, we use either

h0(s) = f1(s; shift) mod prime mod N

or
h0(s) = f2(s; shift1; shift2) mod prime mod N

where shift, shift1 and shift2 are arbitrary shifting factors relatively prime to
32 and prime is some prime number >> N .

{ For the primary hash function, we use either

h1(s) = f1(s; shift) mod r

or
h1(s) = f2(s; shift1; shift2) mod r

where shift, shift1 and shift2 are arbitrary shifting factors relatively prime to
32 and r, the number of rows in the hash table, is a prime number.

{ For the secondary hash function, we consider 32-bit (4-byte compression)
based on either f1 or f2:

h2(s) = f1(s; shift)

or
h2(s) = f2(s; shift1; shift2)

where shift, shift1 and shift2 are relatively prime to 32. Function f2 has
the desirable property that it is resistant to symmetries and invariants in
the model; this prevents similar (but distinct) states from having the same
secondary hash values. Consequently, f2 gives a better spread of secondary
values then f1. For 40-bit secondary hash keys (i.e. �ve-byte state compres-
sion), f2 can easily be modi�ed to produce a 40-bit hash key instead of a
32-bit hash key.

It is important to ensure the independence of the values produced by h0(s),
h1(s) and h2(s). The following guidelines assist this:

{ Some hash functions should be based on f1 while others are based on f2;
hash functions which use the same base function should use di�erent shifting
factors.

{ The hash functions should consider state vector elements in a di�erent order.
{ the value of r used by h1(s) should not be the same as the value of prime

used by h0(s).

The results presented in Section 5 made use of partitioning and primary
functions based on f1 and a 40-bit secondary hash function based on f2.

177Probability, Parallelism and the State Space Exploration Problem

7 Conclusion and future work

We have presented a new dynamic probabilistic state exploration technique and
developed an e�cient, scalable parallel implementation. In contrast to conven-
tional state exploration algorithms, the memory usage of our technique is very
low and is independent of the length of the state vector. Since the method is
probabilistic, there is a chance of state omission, but the reliability of our tech-
nique is excellent and the probability of omitting even one state is extremely
small. Moreover, by performing multiple runs with independent sets of hash
functions, we can reduce the omission probability almost arbitrarily at linear
computational cost.

Our results to date show good speedups and scalability. It is the combination
of probability and parallelism that dramatically reduces both the space and time
requirements of large-scale state space exploration. We note here that the same
algorithm could also be e�ectively implemented on a shared-memory multipro-
cessor architecture, using a single shared hash table and a shared breadth �rst
search queue. There would be no need for a partitioning function and contention
for rows in the shared hash table would be very small. Consequently, it should
again be possible to achieve good speedups and scalability.

Our technique is based on the use of hashing functions to assign states to
processors, hash table rows, and compressed state values. The reliability analysis
requires that the hash functions distribute states randomly and independently
and we have shown how to generate hashing functions which meet these require-
ments. To illustrate its potential, we have explored a state space with more than
108 tangible states and 109 arcs in under an hour using 12 processors on an
AP3000 parallel computer. The probability of state omission is just 0.2%.

Previously, the memory and time bottleneck in the performance analysis
pipeline has been state space exploration. We believe that our technique shifts
this bottleneck away from state space generation and onto stages later in the
analysis pipeline. Future work will focus on completing the performance analysis
pipeline with a parallel functional analyser and a parallel steady-state solver.
The functional analyser will ensure that the generated state graph maps onto an
irreducible Markov chain by eliminating transient states and by verifying that
the remaining states are strongly connected. The steady-state solver will then
solve the state graph's underlying Markov chain for its steady-state probability
distribution using standard techniques for linear simultaneous equations.

8 Acknowledgements

The authors would like to thank the Imperial College Parallel Computing Centre
for the use of the AP3000 distributed-memory parallel computer. The authors
would also like to thank the anonymous referees for their helpful comments.
William Knottenbelt gratefully acknowledges the support and funding provided
by the Beit Fellowship for Scienti�c Research.

178 W. Knottenbelt et al.

References

1. M. Ajmone-Marsan, G. Conte, and G. Balbo. A class of Generalised Stochastic
Petri Nets for the performance evaluation of multiprocessor systems. ACM Trans-
actions on Computer Systems, 2:93{122, 1984.

2. S.C. Allmaier and G. Horton. Parallel shared-memory state-space exploration in
stochastic modeling. Lecture Notes in Computer Science, 1253, 1997.

3. F. Basket, K.M. Chandy, R.R. Muntz, and F.G. Palacios. Open, closed and mixed
networks of queues with di�erent classes of customers. Journal of the ACM, 22:248
{ 260, 1975.

4. F. Bause. Queueing Petri nets: A formalism for the combined qualitative and
quantitative analysis of systems. In Proceedings of the 5th International Workshop
on Petri nets and Performance Models. IEEE, October 1993.

5. P. Buchholz. Hierarchical Markovian models: Symmetries and aggregation. Per-
formance Evaluation, 22:93{110, 1995.

6. S. Caselli, G. Conte, and P. Marenzoni. Parallel state exploration for GSPN models.
In Lecture Notes in Computer Science 935: Proceedings of the 16th International
Conference on the Application and Theory and Petri Nets. Springer Verlag, Turin,
Italy, June 1995.

7. G. Ciardo, J. Gluckman, and D. Nicol. Distributed state-space generation of
discrete-state stochastic models. INFORMS J. Comp. To appear.

8. G. Ciardo, J.K. Muppula, and K.S. Trivedi. On the solution of GSPN reward
models. Performance Evaluation, 12(4):237{253, 1991.

9. G. Ciardo and K.S. Trivedi. A decomposition approach for stochastic reward net
models. Performance Evaluation, 18(1):37{59, 1993.

10. E.W. Dijkstra, W.H.J. Feijen, and A.J.M. van Gasteren. Derivation of a termi-
nation detection algorithm for distributed computations. Information Processing
letters, 16:217{219, June 1983.

11. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM
Parallel Virtual Machine: A Users' Guide and Tutorial for Networked Parallel
Computing. MIT Press, Cambridge, Massachussetts, 1994.

12. W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming
with the Message Passing Interface. MIT Press, Cambridge, Massachussetts, 1994.

13. G.J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall, 1991.
14. G.J. Holzmann. An analysis of bitstate hashing. In Proceedings of IFIP/PSTV95:

Conference on Protocol Speci�cation, Testing and Veri�cation. Chapman & Hall,
Warsaw, Poland, June 1995.

15. H. Ishihata, M. Takahashi, and H. Sato. Hardware of AP3000 scalar parallel server.
Fujitsu Scienti�c and Technical Journal, 33(1):24{30, June 1997.

16. P. Kemper. Numerical analysis of superposed GSPNs. In Proc. of the Sixth In-
ternational Workshop on Petri Nets and Perfromance Models, pages 52{62. IEEE
Computer Society Press, 1995.

17. W.J. Knottenbelt. Generalised Markovian analysis of timed transition systems.
Master's thesis, University of Cape Town, 1996.

18. U. Stern and D.L. Dill. Improved probabilistic veri�cation by hash compaction.
In IFIP WG 10.5 Advanced Research Working Conference on Correct Hardware
Design and Veri�cation Methods, 1995.

19. P. Wolper and D. Leroy. Reliable hashing without collision detection. In Lecture
Notes in Computer Science 697, pages 59{70. Springer-Verlag, 1993.

179Probability, Parallelism and the State Space Exploration Problem

