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Abstract. Stochastic performance models provide a powerful way of
capturing and analysing the behaviour of complex concurrent systems.
Traditionally, performance measures for these models are derived by gen-
erating and then analysing a (semi-)Markov chain corresponding to the
model’s behaviour at the state-transition level. However, and especially
when analysing industrial-scale systems, workstation memory and com-
pute power is often overwhelmed by the sheer number of states.
This chapter explores an array of techniques for analysing stochastic
performance models with large state spaces. We concentrate on explicit
techniques suitable for unstructured state spaces and show how memory
and run time requirements can be reduced using a combination of prob-
abilistic algorithms, disk-based solution techniques and communication-
efficient parallelism based on hypergraph-partitioning. We apply these
methods to different kinds of performance analysis, including steady-
state and passage-time analysis, and demonstrate them on case study
examples.

1 Introduction and Context

Modern computer and communication systems are increasingly complex. Whereas
in the past systems were usually controlled by a single program running on a
single machine with a single flow of control, recent years have seen the rise of
technologies such as multi-threading, parallel and distributed computing and ad-
vanced communication networks. The result is that modern systems are complex
webs of cooperating subsystems with many possible interactions.

In the face of this complexity, it is an extremely challenging task for system de-
signers to guarantee satisfactory system operation in terms of both correctness
and performance. Unfortunately, attempts to predict dynamic behaviour using
intuition or “rules of thumb” are doomed to failure because designers cannot fore-
see the many millions of possible interactions between components. Likewise, ad
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hoc testing cannot expose a sufficient number of execution paths. Consequently
the likelihood of problems caused by subtle bugs such as race conditions is high.

One way to meet the above challenge using a rigorous engineering approach
is to use formal modelling techniques to mechanically verify correctness and
performance properties. The advantage of this style of approach over ad hoc
methods has been clearly demonstrated in recent work on the formal model
checking of file system code – in [1] the authors use a breadth-first state space
exploration of all possible execution paths and failure points to automatically
uncover several (serious and hitherto undiscovered) errors in ten widely-used file
systems.

Formal techniques which consider all possible system behaviours can likewise
be brought to bear on the problem which is the primary concern of the present
chapter, namely that of predicting system performance. Our specific focus is
on analytical performance modelling techniques which make use of Markov and
semi-Markov chains to model the low-level stochastic behaviour of a system.
(Semi-)Markov chains are limited to describing systems that have discrete states
and which satisfy the property that the future behaviour of the system depends
only on the current state. Despite these limitations, they are flexible enough to
model many phenomena found in complex concurrent systems such as blocking,
synchronisation, preemption, state-dependent routing and complex traffic arrival
processes. In addition, tedious manual enumeration of all possible system states is
not necessary. Instead, chains can be automatically derived from several widely-
used high level modelling formalisms such as Stochastic Petri Nets and Stochastic
Process Algebras.

A major difficulty often encountered with this approach is the state space explo-
sion problem whereby workstation memory and compute power are overwhelmed
by the sheer number of states that emerge from complex models. Consequently,
a major challenge and focus of research is the development of methods and data
structures which minimise the memory and runtime required to generate and
solve very large (semi-)Markov chains. One approach to this “largeness” prob-
lem is to restrict the structure of models that can be analysed. This allows for the
application of efficient techniques which exploit the restricted structure. Since
these techniques are covered in other chapters, we do not discuss them further
here, preferring unrestricted scalable parallel and distributed algorithms which
are able to efficiently leverage the compute power, memory and disk space of
several processors.

2 Stochastic Processes

At the lowest level, the performance modelling of a system can be accomplished
by identifying all possible configurations, or states, that the system can enter and
describing the ways in which the system can move between those states. This



is termed the state-transition level behaviour of the model, and the changes in
state as time progresses describe a stochastic process. We focus on those stochas-
tic processes which belong to the class known as Markov processes, specifically
continuous-time Markov chains (CTMCs) and the more general semi-Markov
processes (SMPs).

Consider a random variable χ which takes on different values at different times
t. The sequence of random variables χ(t) is said to be a stochastic process. The
different values which χ(t) can take, describe the state space of the stochastic
process.

A stochastic process can be classified by the nature of its state space and of its
time parameter. If the values in the state space of χ(t) are finite or countably
infinite, then the stochastic process is said to have a discrete state space (and
may also be referred to as a chain). Otherwise, the state space is said to be
continuous. Similarly, if the times at which χ(t) is observed are also countable,
the process is said to be a discrete-time process. Otherwise, the process is said to
be a continuous-time process. In this chapter, all stochastic processes considered
have discrete and finite state spaces, and we focus mainly on those which evolve
in continuous time.

Definition 1. A Markov process is a stochastic process in which the Markov
property holds. Given that χ(t) = xt indicates that the state of the process χ(t)
at time t is xt, this property stipulates that:

IP
(
χ(t) = x | χ(tn) = xn, χ(tn−1) = xn−1, . . . , χ(t0) = x0

)

= IP
(
χ(t) = x | χ(tn) = xn

)

for t > tn > tn−1 > . . . > t0

That is, the future evolution of the system depends only on the current state and
not on any prior states.

Definition 2. A Markov process is said to be homogeneous if it is invariant to
shifts in time:

IP
(
χ(t + s) = x | χ(tn + s) = xn

)
= IP

(
χ(t) = x | χ(tn) = xn

)

2.1 Continuous-time Markov Chains

There exists a family of Markov processes with discrete state spaces but whose
transitions can occur at arbitrary points in time; we call these continuous-time
Markov chains (CTMCs). An homogeneous N -state CTMC has state at time
t denoted χ(t). Its evolution is described by an N × N generator matrix Q,
where qij is the infinitesimal rate of moving from state i to state j (i 6= j), and
qii = −∑

j 6=i qij .



The Markov property imposes a memoryless restriction on the distribution of the
sojourn times of states in a CTMC. The future evolution of the system therefore
does not depend on the evolution of the system up until the current state, nor
does it depend on how long the system has already been in the current state.
This means that the sojourn time ν in any state must satisfy:

IP(ν ≥ s + t | ν ≥ t) = IP(ν ≥ s) (1)

A consequence of Eq. (1) is that all sojourn times in a CTMC must be exponen-
tially distributed (see [2] for a proof that this is the only continuous distribution
function which satisfies this condition). The rate out of state i, and therefore
the parameter of the sojourn time distribution, is µi and is equal to the sum of
all rates out of state i, that is µi = −qii. This means that the density function
of the sojourn time in state i is fi(t) = µi e−µit and the average sojourn time in
state i is µ−1

i .

A concept that is fundamental to reasoning about the performance of a CTMC
is that of its steady state distribution – that is the long-run average proportion
of time that a system spends in each of its states.

Definition 3. A Markov chain is said to be irreducible if every state commu-
nicates with every other state, i.e. if for every pair of states i and j there is a
path from state i to j and vice versa.

Definition 4. The steady-state probability distribution {πj} of an irreducible,
homogeneous CTMC is given by:

πj = lim
t→∞

IP(χ(t) = j | χ(0) = i)

For a finite, irreducible and homogeneous CTMC, the steady-state probabilities
{πj} always exist and are independent of the initial state distribution. They are
uniquely given by the solution of the equations:

−qjjπj +
∑

k 6=j

qkjπk = 0 subject to
∑

i

πi = 1

Again, this can be expressed in matrix vector form (in terms of the vector π
with elements {π1, π2, . . . , πN} and the matrix Q defined above) as:

πQ = 0 (2)

A CTMC also has an embedded discrete-time Markov chain (EMC) which de-
scribes the behaviour of the chain at state-transition instants, that is to say the
probability that the next state is j given that the current state is i. The EMC
of a CTMC has a one-step N ×N transition matrix P where pij = −qij/qii for
i 6= j and pij = 0 for i = j.



The steady-state distribution enables us to compute various basic resource-based
measures (such as utilisation, mean throughput, and so on); however, more ad-
vanced response-time measures (such as quantiles of response time) require a
first passage time analysis.

Definition 5. Consider a finite, irreducible CTMC with N states {1, 2, . . . , N}
and generator matrix Q. If χ(t) denotes the states of the CTMC at time t (t ≥ 0)
and N(t) denotes the number of state transitions which have occurred by time
t, the first passage time from a single source marking i into a non-empty set of
target markings j is:

Pij(t) = inf{u > 0 : χ(t + u) ∈ j, N(t + u) > N(t), χ(t) = i}

When the CTMC is stationary and time-homogeneous this quantity is indepen-
dent of t:

Pij = inf{u > 0 : χ(u) ∈ j, N(u) > 0, χ(0) = i} (3)

That is, the first time the system enters a state in the set of target states j, given
that the system began in the source state i and at least one state transition has
occurred. Pij is a random variable with probability density function fij(t) such
that:

IP(t1 < Pij < t2) =
∫ t2

t1

fij(t) dt for 0 ≤ t1 < t2

In order to determine fij(t) it is necessary to convolve the state holding-time
density functions over all possible paths (including cycles) from state i to all of
the states in j.

The calculation of the convolution of two functions in t-space can be more easily
accomplished by multiplying their Laplace transforms together in s-space and
inverting the result. The calculation of fij(t) is therefore achieved by calculating
the Laplace transform of the convolution of the state holding times over all
paths between i and j and then numerically inverting this Laplace transform
(see Sect. 4.3 for a description of two inversion algorithms).

In a CTMC all state sojourn times are exponentially distributed, so the density
function of the sojourn time in state i is µie

−µit, where µi = −qii (as before).
The Laplace transform of an exponential density function with rate parameter
λ is:

L{λe−λt} =
λ

λ + s

Denoting the Laplace transform of the density function fij(t) of the passage
time random variable Pij as Lij(s), we proceed by means of a first-step analysis.
That is, to calculate the first passage time from state i into the set of target
states j, we consider moving from state i to its set of direct successor states k
and thence from states in k to states in j. This can be expressed as the following



system of linear equations:

Lij(s) =
∑

k/∈j

pik

( −qii

s− qii

)
Lkj(s) +

∑

k∈j

pik

( −qii

s− qii

)
(4)

The first term (i.e. the summation over non-target states k /∈ j) convolves the
sojourn time density in state i with the density of the time taken for the system
to evolve from state k into a target state in j, weighted by the probability that
the system transits from state i to state k. The second term (i.e. the summation
over target states k ∈ j) simply reflects the sojourn time density in state i
weighted by the probability that a transition from state i into a target state k
occurs.

Given that pij = −qij/qii in the context of a CTMC, Eq. (4) can be rewritten
more simply as:

Lij(s) =
∑

k/∈j

qik

s− qii
Lkj(s) +

∑

k∈j

qik

s− qii
(5)

This set of linear equations can be expressed in matrix–vector form. For example,
when j = {1} we have:




s− q11 −q12 · · · −q1n

0 s− q22 · · · −q2n

0 −q32 · · · −q3n

0
...

. . .
...

0 −qn2 · · · s− qnn







L1j(s)
L2j(s)
L3j(s)

...
Lnj(s)




=




0
q21

q31

...
qn1




(6)

Our formulation of the passage time quantity in Eq. (3) states that we must
observe at least one state-transition during the passage. In the case where i ∈ j
(as for L1j(s) in the above example), we therefore calculate the density of the
cycle time to return to state i rather than requiring Lij(s) = 1.

Given a particular (complex-valued) s, Eq. (5) can be solved for Lij(s) by stan-
dard iterative numerical techniques for the solution of systems of linear equations
in Ax = b form. Many numerical Laplace transform inversion algorithms (such
as the Euler and Laguerre methods) can identify in advance the s-values at which
Lij(s) must be calculated in order to perform the numerical inversion. There-
fore, if the algorithm requires m different values of Lij(s), Eq. (5) will need to
be solved m times.

The corresponding cumulative distribution function Fij(t) of the passage time
is obtained by integrating under the density function. This integration can be
achieved in terms of the Laplace transform of the density function by dividing
it by s, i.e. F ∗ij(s) = Lij(s)/s. In practice, if Eq. (5) is solved as part of the
inversion process for calculating fij(t), the m values of Lij(s) can be retained.
Once the numerical inversion algorithm has used them to compute fij(t), these



values can be recovered, divided by s and then taken as input by the numerical
inversion algorithm again to compute Fij(t). Thus, in calculating fij(t), we get
Fij(t) for little further computational effort.

When there are multiple source markings, denoted by the vector i, the Laplace
transform of the response time density at equilibrium is:

Li j(s) =
∑

k∈i

αkLkj(s)

where the weight αk is the equilibrium probability that the state is k ∈ i at the
starting instant of the passage. This instant is the moment of entry into state
k; thus αk is proportional to the equilibrium probability of the state k in the
underlying embedded (discrete-time) Markov chain (EMC) of the CTMC with
one-step transition matrix P as defined in Sect. 2.1. That is:

αk =
{

πk/
∑

j∈i πj if k ∈ i

0 otherwise
(7)

where the vector π is any non-zero solution to π = πP. The row vector with
components αk is denoted by α.

Uniformisation Passage time densities and quantiles in CTMCs may also be
computed through the use of uniformisation (also known as randomisation) [3–
8]. This transforms a CTMC into one in which all states have the same mean
holding time 1/q, by allowing “invisible” transitions from a state to itself. This
is equivalent to a discrete-time Markov chain, after normalisation of the rows,
together with an associated Poisson process of rate q.

Definition 6. The one-step transition probability matrix P which characterises
the one-step behaviour of a uniformised DTMC is derived from the generator
matrix Q of the CTMC as:

P = Q/q + I (8)

where the rate q > maxi |qii| ensures that the DTMC is aperiodic by guaranteeing
that there is at least one single-step transition from a state to itself.

We ensure that only the first passage time density is calculated and that we do
not consider the case of successive visits to a target state by making the target
states in P absorbing. We denote by P′ the one-step transition probability matrix
of the modified, uniformised chain.

The calculation of the first passage time density between two states then has
two main components. The first considers the time to complete n hops (n =
1, 2, 3, . . .). Recall that in the uniformised chain all transitions occur with rate q.
The density of the time taken to move between two states is found by convolving



the state holding-time densities along all possible paths between the states. In
a standard CTMC, convolving holding times in this manner is non-trivial as,
although they are all exponentially distributed, their rate parameters are differ-
ent. In a CTMC which has undergone uniformisation, however, all states have
exponentially-distributed state holding-times with the same parameter q. This
means that the convolution of n of these holding-time densities is an n-stage
Erlang density with rate parameter q.

Secondly, it is necessary to calculate the probability that the transition between
a source and target state occurs in exactly n hops of the uniformised chain,
for every value of n between 1 and a maximum value m. The value of m is
determined when the value of the nth Erlang density function (the left-hand
term in Eq. (9)) drops below some threshold value. After this point, further
terms are deemed to add nothing significant to the passage time density and so
are disregarded.

The density of the time to pass between a source state i and a target state j in
a uniformised Markov chain can therefore be expressed as the sum of m n-stage
Erlang densities, weighted with the probability that the chain moves from state
i to state j in exactly n hops (1 ≤ n ≤ m). This can be generalised to allow
for multiple target states in a straightforward manner; when there are multiple
source states it is necessary to provide a probability distribution across this set
of states (such as the renormalised steady-state distribution calculated below in
Eq. (11)).

The response time between the non-empty set of source states i and the non-
empty set of target states j in the uniformised chain therefore has probability
density function:

fij(t) =
∞∑

n=1


qntn−1e−qt

(n− 1)!

∑

k∈j

π
(n)
k




'
m∑

n=1


qntn−1e−qt

(n− 1)!

∑

k∈j

π
(n)
k


 (9)

where:
π(n+1) = π(n)P′ for n ≥ 0 (10)

with:

π
(0)
k =

{
0 for k /∈ i
πk/

∑
j∈i πj for k ∈ i

(11)

The πk values are the steady state probabilities of the corresponding state k in
the CTMC’s embedded Markov chain. When the convergence criterion:

‖π(n) − π(n−1)‖∞
‖π(n)‖∞

< ε (12)



is met, for given tolerance ε, the vector π(n) is considered to have converged and
no further multiplications with P′ are performed. Here, ‖x‖∞ is the infinity-norm
given by ‖x‖∞ = maxi |xi|.
The corresponding cumulative distribution function for the passage time, Fij(t),
can be calculated by substituting the cumulative distribution function for the
Erlang distribution into Eq. (9) in place of the Erlang density function term,
viz.:

Fij(t) =
∞∑

n=1




(
1− e−qt

n−1∑

k=0

(qt)k

k!

) ∑

k∈j

π
(n)
k




'
m∑

n=1




(
1− e−qt

n−1∑

k=0

(qt)k

k!

) ∑

k∈j

π
(n)
k




where π(n) is defined as in Eqs. (10) and (11).

2.2 Semi-Markov Processes

Semi-Markov Processes (SMPs) are an extension of Markov processes which
allow for generally distributed sojourn times. Although the memoryless property
no longer holds for state sojourn times, at transition instants SMPs still behave
in the same way as Markov processes (that is to say, the choice of the next
state is based only on the current state) and so share some of their analytical
tractability.

Definition 7. Consider a Markov renewal process {(χn, Tn) : n ≥ 0} where Tn

is the time of the nth transition (T0 = 0) and χn ∈ S is the state at the nth
transition. Let the kernel of this process be:

R(n, i, j, t) = IP(χn+1 = j, Tn+1 − Tn ≤ t | χn = i)

for i, j ∈ S. The continuous time semi-Markov process, {Z(t), t ≥ 0}, defined by
the kernel R, is related to the Markov renewal process by:

Z(t) = χ
N(t)

where N(t) = max{n : Tn ≤ t}, i.e. the number of state transitions that have
taken place by time t. Thus Z(t) represents the state of the system at time t.

We consider only time-homogeneous SMPs in which R(n, i, j, t) is independent
of n, that is for:

R(i, j, t) = IP(χn+1 = j, Tn+1 − Tn ≤ t | χn = i) for any n ≥ 0
= pijHij(t)



where pij = IP(χn+1 = j | χn = i) is the state transition probability between
states i and j and Hij(t) = IP(Tn+1 − Tn ≤ t | χn+1 = j, χn = i), is the sojourn
time distribution in state i when the next state is j. An SMP can therefore be
characterised by two matrices P and H with elements pij and Hij respectively.

Semi-Markov processes can be analysed for steady-state performance metrics
in a similar manner as DTMCs and CTMCs. To do this, we need to know the
steady-state probabilities of the SMP’s embedded Markov chain and the average
time spent in each state. The first of these can be calculated by solving π = πP,
as in the case of DTMCs. The average time in state i, IE[τi], is the weighted sum
of the averages of the sojourn time in the state i when going to state j, IE[τij ],
for all successor states j of i, that is:

IE[τi] =
∑

j

pijIE[τij ]

The steady-state probability of being in state i of the SMP is then:

φi =
πiIE[τi]∑N

m=1 πmIE[τm]
(13)

That is, the long-run probability of finding the SMP in state i is the probability
of its EMC being in state i multiplied by the average amount of time the SMP
spends in state i, normalised over the mean total time spent in all of the states
of the SMP.

Passage-time analysis for SMPs is also possible by extending the Laplace trans-
form method for CTMCs to cater for generally-distributed state sojourn times.

Definition 8. Consider a finite, irreducible, continuous-time semi-Markov pro-
cess with N states {1, 2, . . . , N}. Recalling that Z(t) denotes the state of the SMP
at time t (t ≥ 0), the first passage time from a source state i at time t into a
non-empty set of target states j is:

Pij(t) = inf{u > 0 : Z(t + u) ∈ j, N(t + u) > N(t) | Z(t) = i} (14)

For a stationary time-homogeneous SMP, Pij(t) is independent of t and we have:

Pij = inf{u > 0 : Z(u) ∈ j, N(u) > 0 | Z(0) = i} (15)

Pij has an associated probability density function fij(t) such that the passage
time quantile is given as:

IP(t1 < Pij < t2) =
∫ t2

t1

fij(t) dt for 0 ≤ t1 < t2 (16)

In general, the Laplace transform of fij , Lij(s), can be computed by solving a
set of N linear equations:

Lij(s) =
∑

k/∈j

r∗ik(s)Lkj(s) +
∑

k∈j

r∗ik(s) for 1 ≤ i ≤ N (17)



where r∗ik(s) is the Laplace-Stieltjes transform (LST) of R(i, k, t) and is defined
by:

r∗ik(s) =
∫ ∞

0

e−st dR(i, k, t) (18)

Eq. (17) has a matrix–vector form where the elements of the matrix are arbitrary
complex functions; care needs to be taken when storing such functions for even-
tual numerical inversion (see Sect. 4.3). For example, when j = {1}, Eq. (17)
yields:




1 −r∗12(s) · · · −r∗1N (s)
0 1− r∗22(s) · · · −r∗2N (s)
0 −r∗32(s) · · · −r∗3N (s)
...

...
. . .

...
0 −r∗N2(s) · · · 1− r∗NN (s)







L1j(s)
L2j(s)
L3j(s)

...
LNj(s)




=




r∗11(s)
r∗21(s)
r∗31(s)

...
r∗N1(s)




(19)

When there are multiple source states, denoted by the vector i, the Laplace
transform of the passage time density at steady-state is:

Li j(s) =
∑

k∈i

αkLkj(s) (20)

where the weight αk is the probability at equilibrium that the system is in state
k ∈ i at the starting instant of the passage. As with CTMCs α is defined in
terms of π, the steady-state vector of the embedded discrete-time Markov chain
with one-step transition probability matrix P:

αk =
{

πk/
∑

j∈i πj if k ∈ i

0 otherwise
(21)

3 Modelling Formalisms

Stochastic models are specified using graphical or symbolic languages known
as modelling formalisms. Below we describe two popular formalisms: Stochastic
Petri nets and Stochastic Process Algebras.

3.1 Stochastic Petri Nets

We briefly outline two types of stochastic Petri net: Generalised Stochastic Petri
Nets (GSPNs) which allow timed exponential and immediate transitions, and
Semi-Markov Stochastic Petri Nets (SM-SPNs) which specify models with gen-
erally distributed transitions.



Generalised Stochastic Petri Nets Generalised Stochastic Petri nets are an
extension of Place-Transition nets, which are ordinary, untimed Petri nets. A
Place-Transition net does not have firing delays associated with its transitions
and is formally defined in [2]:

Definition 9. A Place-Transition net is a 5-tuple PN = (P, T, I−, I+,M0) where

– P = {p1, . . . , pn} is a finite and non-empty set of places.
– T = {t1, . . . , tm} is a finite and non-empty set of transitions.
– P ∩ T = ∅.
– I−, I+ : P × T → IN0 are the backward and forward incidence functions,

respectively. If I−(p, t) > 0, an arc leads from place p to transition t, and if
I+(p, t) > 0 then an arc leads from transition t to place p.

– M0 : P → IN0 is the initial marking defining the initial number of tokens on
every place.

A marking is a vector of integers representing the number of tokens on each
place in a Petri net. The set of all markings that are reachable from the initial
marking M0 is known as the state space or reachability set of the Petri net, and
is denoted by R(M0). The connections between markings in the reachability set
form the reachability graph. Formally, if the firing of a transition that is enabled
in marking Mi results in marking Mj , then the reachability graph contains a
directed arc from marking Mi to marking Mj .

GSPNs [9] are timed extensions of Place-Transition nets with two types of tran-
sitions: immediate transitions and timed transitions. Once enabled, immediate
transitions fire in zero time, while timed transitions fire after an exponentially
distributed firing delay. Firing of immediate transitions has priority over the
firing of timed transitions.

The formal definition of a GSPN is as follows [2]:

Definition 10. A GSPN is a 4-tuple GSPN = (PN, T1, T2,W ) where

– PN = (P, T, I−, I+, M0) is the underlying Place-Transition net.
– T1 ⊆ T is the set of timed transitions, T1 6= ∅,
– T2 ⊂ T denotes the set of immediate transitions, T1 ∩ T2 = ∅, T = T1 ∪ T2

– W = (w1, . . . , w|T |) is an array whose entry wi is either
• a (possibly marking dependent) rate ∈ IR+ of an exponential distribution

specifying the firing delay, when transition ti is a timed transition, i.e.
ti ∈ T1

or
• a (possibly marking dependent) weight ∈ IR+ specifying the relative fir-

ing frequency, when transition ti is an immediate transition, i.e. ti ∈ T2.



The reachability graph of a GSPN contains two types of markings. A vanishing
marking is one in which an immediate transition is enabled. The sojourn time
in such markings is zero. A tangible marking is one which enables only timed
transitions. The sojourn time in such markings is exponentially distributed. Once
vanishing markings have been eliminated (see [10] for a discussion of methods
for vanishing state elimination), the resulting tangible reachability graph of a
GSPN maps directly onto a CTMC.

Semi-Markov Stochastic Petri Nets Semi-Markov stochastic Petri nets [11]
(SM-SPNs) are extensions of GSPNs which support arbitrary holding-time dis-
tributions and which generate an underlying semi-Markov process rather than a
Markov process. Note that it is not intended that they be a novel technique for
dealing with concurrently-enabled generally-distributed transitions. They are in-
stead a useful high-level vehicle for the construction of large semi-Markov models
for analysis.

Definition 11. An SM-SPN consists of a 4-tuple, (PN,P,W,D), where:

– PN = (P, T, I−, I+,M0) is the underlying Place-Transition net. P is the
set of places, T , the set of transitions, I+/− are the forward and backward
incidence functions describing the connections between places and transitions
and M0 is the initial marking.

– P : T ×M→ ZZ+, denoted pt(m), is a marking-dependent priority function
for a transition.

– W : T ×M→ IR+, denoted wt(m), is a marking-dependent weight function
for a transition, to allow implementation of probabilistic choice.

– D : T ×M→ (IR+ → [0, 1]), denoted dt(m), is a marking-dependent cumu-
lative distribution function for the firing time of a transition.

In the above, M is the set of all markings for a given net. Further, we define
the following general net-enabling functions:

– EN : M → P (T ), a function that specifies net-enabled transitions from a
given marking.

– EP : M → P (T ), a function that specifies priority-enabled transitions from
a given marking.

The net-enabling function, EN , is defined in the usual way for standard Petri nets:
if all preceding places have occupying tokens then a transition is net-enabled.
Similarly, we define the more stringent priority-enabling function, EP . For a
given marking, m, EP (m) selects only those net-enabled transitions that have
the highest priority, that is:

EP (m) = {t ∈ EN (m) : pt(m) = max{pt′(m) : t′ ∈ EN (m)}} (22)



Now for a given priority-enabled transition, t ∈ EP (m), the probability that it
will be the one that actually fires after a delay sampled from its firing distribu-
tion, dt(m), is:

IP(t ∈ EP (m) fires) =
wt(m)∑

t′∈EP (m) wt′(m)
(23)

Note that the choice of which priority-enabled transition is fired in any given
marking is made by a probabilistic selection based on transition weights, and is
not a race condition based on finding the minimum of samples extracted from
firing-time distributions. This mechanism enables the underlying reachability
graph of an SM-SPN to be mapped directly onto a semi-Markov chain.

3.2 Stochastic Process Algebras

A process algebra is an abstract language which differs from the formalisms
we have considered so far because it is not based on a notion of flow. Instead,
systems are modelled as a collection of cooperating agents or processes which
execute atomic actions. These actions can be carried out independently or can
be synchronised with the actions of other agents.

Since models are typically built up from smaller components using a small set of
combinators, process algebras are particularly suited to the modelling of large
systems with hierarchical structure. This support for compositionality is comple-
mented by mechanisms to provide abstraction and compositional reasoning.

Two of the best known process algebras are Hoare’s Communicating Sequen-
tial Processes (CSP) [12] and Milner’s Calculus of Communicating Systems
(CCS) [13]. These algebras do not include a notion of time so they can only be
used to determine qualitative correctness properties of systems such as the free-
dom from deadlock and livelock. Stochastic Process Algebras (SPAs) associate a
random variable, representing a time duration, with each action. This addition
allows quantitative performance analysis to be carried out on SPA models in the
same fashion as for SPNs.

Here we will briefly describe the Markovian SPA, PEPA [14]. Other SPAs include
TIPP [15, 16], MPA [17] and EMPA [18] which are similar to PEPA. A detailed
comparison of Markovian stochastic process algebras can be found in [19]. More
recently developed non-Markovian SPAs allow for generally-distributed delays
as part of the model; examples of these include SPADES [20, 21], semi-Markov
PEPA [22] and iGSMPA [23, 24].

PEPA models are built from components which perform activities of form (α, r)
where α is the action type and r ∈ IR+ ∪ {>} is the exponentially distributed
rate of the action. The special symbol > denotes an passive activity that may
only take place in synchrony with another action whose rate is specified.



Interaction between components is expressed using a small set of combinators,
which are briefly described below:

Action prefix: Given a process P , (α, r).P represents a process that performs
an activity of type α, which has a duration exponentially distributed with
mean 1/r, and then evolves into P .

Constant definition: Given a process Q, P
def= Q means that P is a process

which behaves in exactly the same way as Q.
Competitive choice: Given processes P and Q, P + Q represents a process

that behaves either as P or as Q. The current activities of both P and Q are
enabled and a race condition determines into which component the process
will evolve.

Cooperation: Given processes P and Q and a set of action types L, P ¤¢
L

Q
defines the concurrent synchronised execution of P and Q over the cooper-
ation set L. No synchronisation takes place for any activity α /∈ L, so such
activities can take place independently. However, an activity α ∈ L only
occurs when both P and Q are capable of performing the action. The rate
at which the action occurs is given by the minimum of the rates at which
the two components would have executed the action in isolation.
Cooperation over the empty set P ¤¢

∅
Q represents the independent concur-

rent execution of processes P and Q and is denoted by P || Q.
Encapsulation: Given a process P and a set of actions L, P/L represents

a process that behaves like P except that activities α ∈ L are hidden and
performed as a silent activity. Such activities cannot be part of a cooperation
set.

PEPA specifications can be mapped onto continuous time Markov chains in a
straightforward manner. Based on the labelled transition system semantics that
are normally specified for a process algebra system, a transition diagram or
derivation graph can be associated with any language expression. This graph de-
scribes all possible evolutions of a system and, like a tangible reachability graph
in the context of GSPNs, is isomorphic to a CTMC which can be solved for its
steady-state distribution. Fig. 1 shows a PEPA specification of a multiprocessor
system together with its corresponding derivation graph.

4 Methods for Tackling Large Unstructured State Spaces

We proceed to review several approaches to the problem of analysing stochastic
models with large underlying state spaces, covering the major phases in an ad-
vanced performance analysis pipeline, i.e. state generation, steady-state solution
and passage-time analysis.

The methods reviewed here are based on explicit state representation, and so
are particularly suited to the analysis of systems with large unstructured state
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Fig. 1. A PEPA specification and its corresponding derivation graph [25]

spaces. We note that there are effective approaches based on implicit/symbolic
state representation which can be applied to systems whose underlying state
spaces are structured in some way – for example methods based on Binary Deci-
sion Diagrams and related data structures [26, 27, 7, 28], and Kronecker methods
[29]. Since these methods are the subjects of other chapters in this volume, they
are not discussed further here.

4.1 Probabilistic State Space Generation

The first challenge in the quantitative analysis of stochastic models is to gener-
ate all reachable states or configurations that the system can enter. The main
obstacle to this task is the huge number of states that can emerge, a prob-
lem compounded by the large size of individual state descriptors. Consequently
there are severe memory and time constraints on the number of states that can
be generated using a simplistic explicit exhaustive enumeration.

The Case for Probabilistic Algorithms A useful, but at first seemingly
bizarre, method of dealing with a problem that seems to be infeasible (either in



terms of computational or storage demands) is to relax the requirement that a
solution should always produce the correct answer. Adopting such a probabilistic
or randomised approach can lead to dramatic memory and time savings. Of
course, in order to be useful in practice, the risk of producing an incorrect result
must be quantified and kept very small.

One of the most exciting early applications of probabilistic algorithms was in
finding an efficient solution to the primality problem (i.e. to determine if some
positive integer n is prime). This problem has direct application to public key
cryptographic systems, many of which are based on finding a modulus of form
pq where p and q are large prime numbers.

The Miller-Rabin primality test [30] provides an efficient probabilistic solution
to the primality problem by relying on three facts:

– If n is composite (i.e. not prime) then at least three quarters of the natural
numbers less than n are witnesses to the compositeness of n (i.e. can be used
to establish that n is not prime).

– If n is prime then there is no natural number less than n that is witness to
the compositeness of n.

– Given number natural numbers m and n with m < n, there is an efficient al-
gorithm which ascertains whether or not m is a witness to the compositeness
of n.

The algorithm works by performing k witness tests using randomly chosen nat-
ural numbers less than n; should all of these witness tests fail, we assume n is
prime. Indeed, if n is prime, this is the correct conclusion. If n is composite, the
chances of failing to find a witness (and hence detect that the number is not
prime) is 2−2k. Hence, by increasing k, we can arbitrarily increase the reliability
of the algorithm at logarithmic run time cost; when k is around 20, the algorithm
is probably more reliable than most computer hardware.

Application to State Space Generation While research into probabilistic
algorithms for solving the primality problem has been focused on reducing run
time, the application of probabilistic algorithms to state space generation has
been focused on the need to reduce memory requirements. In particular, the
memory consumption of explicit state space generation algorithms is heavily
dependent on the layout and management of a data structure known as the
explored state table. This table prevents redundant work by identifying which
states have already been encountered. Its implementation is particularly chal-
lenging because the table is accessed randomly and must be able to rapidly store
and retrieve information about every reachable state. One approach is to store
the full state descriptor of each state in the table. This exhaustive approach
guarantees full coverage, but at very high memory cost. Probabilistic methods
use one-way hashing techniques to drastically reduce the amount of memory re-
quired to store states. However, this introduces the risk that two distinct states



will have the same hashed representation, resulting in the misidentification and
omission of states in the state graph. Naturally, it is important to quantify this
risk and to find ways of reducing it to an acceptable level.

The next sections review three of the best-known probabilistic methods (inter-
ested readers might also like to consult [31] which presents another recent sur-
vey). In each case, we include an analysis and discussion of memory consumption
and the omission probability.

Holzmann’s Bit-state Hashing Holzmann’s bit-state hashing (or supertrace)
technique [32, 33] was developed in an attempt to maximize state coverage in
the face of limited memory. The technique has proved popular because of its
elegance and simplicity and has consequently been included in many research
and commercial verification tools.

Holzmann’s method is based on the use of Bloom Filters. These were conceived
by Burton H. Bloom in 1970 as space-efficient probabilistic data structures for
testing set membership [34]. Here the explored state table takes the form of a bit
vector T . Initially all bits in T are set to zero. States are mapped into positions
in this bit vector using a hash function h, so that when state s is inserted into
the table its corresponding bit T [h(s)] is set to one. To check whether a state
s is already in the table, the value of T [h(s)] is examined. If it is zero, we
know that the state has definitely not been previously encountered; otherwise
it is assumed that the state has already been explored. This may be a mistake,
however, since two distinct states can be hashed onto the same position in the
bit vector. The result of a hash collision will be that one of the states will be
incorrectly classified as explored, resulting in the omission of one or more states
from the state space. Assuming a good hash function which distributes states
randomly, the probability of no hash collisions p when inserting n states into a
bit vector of t bits is:

p =
t!

(t− n)!tn
=

n−1∏

i=0

(t− i)
t

=
n−1∏

i=0

(
1− i

t

)

Assuming the favourable case n ¿ t and using the approximation ex ≈ (1 + x)
for |x| ¿ 1, we obtain:

p ≈
n−1∏

i=0

e−i/t = e
Pn−1

i=0 −i/t = e−
n(n−1)

2t = e
n−n2

2t

Since n2 À n for large n, a good approximation for p is given by:

p ≈ e−
n2
2t

The corresponding probability of state omission is q = 1 − p. Unfortunately
the table sizes required to keep the probability of state omission very low are



impractically large. For example, to obtain a state omission probability of 0.1%
when inserting n = 106 states requires the allocation of a bit vector of 125TB.
The situation can be improved a little by using two independent hash functions
h1 and h2. When inserting a state s, both T [h1(s)] and T [h2(s)] are set to one.
Likewise, we conclude s has been explored only if both T [h1(s)] and T [h2(s)]
are set to one. Wolper and Leroy [35] show that now the probability of no hash
collisions is:

p ≈ e−
4n3

t2 .

However the table sizes required to keep the probability of state omission low are
still impractically large. Using more than two hash functions helps improve the
probability slightly; in fact it turns out that the optimal number of functions is
about 20 [35]. However, computing 20 independent hash functions on every state
is expensive and the resulting algorithm is very slow. The strength of Holzmann’s
algorithm therefore lies in the goal for which it was originally designed, i.e. the
ability to maximize coverage in the face of limited memory, and not in its ability
to provide complete state coverage.

Wolper and Leroy’s Hash Compaction Holzmann’s method requires a very
low ratio of states to hash table entries to provide a good probability of complete
state space coverage. Consequently, a large amount of the space allocated to the
bit vector will be wasted. Wolper and Leroy observed that it would be better
to store which bit positions in the table are occupied instead [35]. This can be
done by hashing states onto compressed keys of b bits. These keys can then be
stored in a smaller hash table which supports a collision resolution scheme.

Given a hash table with m ≥ n slots, the memory required is:

M = (mb + m)/8 = m(b + 1)/8

since we need to store the keys, as well as a bit vector indicating which hash table
slots are occupied. If we wish to construct the state graph efficiently, states also
need to be assigned unique state sequence numbers. Given s-bit state sequence
numbers, total memory consumption in this case is:

M = m(b + s + 1)/8.

In terms of the reliability of the technique, this approach is equivalent to a bit-
state hashing scheme with a table size of 2b, so the probability of no collision p
is given by:

p ≈ e−
n2

2b+1

Wolper and Leroy recommend compressed values of b = 64 bits, i.e. 8-byte
compression.



Stern and Dill’s Improved Hash Compaction Wolper and Leroy do not
discuss exactly how states are mapped onto slots in their hash table. It seems
to be implicitly assumed that the hash values used to determine where to store
the b-bit compressed values in the hash table are calculated using the b-bit
compressed values themselves. Stern and Dill [36] noticed that the omission
probability can be dramatically reduced in two ways – firstly by calculating
the hash values and compressed values independently and secondly by using a
collision resolution scheme which keeps the number of probes per insertion low.
This improved technique is so effective that it requires only 5 bytes per state in
situations where Wolper and Leroy’s standard hash compaction requires 8 bytes
per state.

Given a hash table with m slots, states are inserted into the table using two hash
functions h1(s) and h2(s). These hash functions generate the probe sequence
h(0)(s), h(1)(s), . . . , h(m−1)(s) with h(i)(s) = (h1(s) + ih2(s)) mod m for i =
0, 1, . . . ,m − 1. This double hashing scheme prevents the clustering associated
with simple rehashing algorithms such as linear probing. A separate independent
compression function h3 is used to calculate the b-bit compressed state values
which are stored in the table.

Slots are examined in the order of the probe sequence, until one of two conditions
are met:

1. If the slot currently being examined is empty, the compressed value is in-
serted into the table at that slot.

2. If the slot is occupied by a compressed value equal to the h3(s), we assume
(possibly incorrectly) that the state has already been explored.

Total memory consumption is the same as for Wolper and Leroy’s hash com-
paction method, i.e.

M = m(b + s + 1)/8

where we assume a bit vector indicates which hash slots are used, and s-bit
unique state sequence numbers are used to identify states for efficient construc-
tion of the state graph.

Given m slots in the hash table, n of which are occupied by states, Stern and
Dill prove that the probability of no state omissions p is given by

p ≈
n−1∏

k=0




k∑

j=0

(
2b − 1

2b

)j
m− k

m− j

j−1∏

i=0

k − i

m− i




This formula takes O(n3) operations to evaluate. Stern and Dill derive an O(1)
approximation given by

p ≈
(

2b − 1
2b

)(m+1) ln( m+1
m−n+1 )− n

2(m−n+1)+
2n+2mn−n2

12(m+1)(m−n+1)2
−n



An upper bound for the probability of state omission q is

q ≤ 1
2b

[(m + 1)(Hm+1 −Hm−n+1)− n]

where Hn =
∑n

k=1 1/k is the nth harmonic number [36]. This probability rises
sharply as the hash table becomes full, since compressed states being inserted are
compared against many compressed values before an empty slot is found. Stern
and Dill derive a more straightforward formula for the approximate maximum
omission probability for a full table (i.e. with m = n):

q ≈ 1
2b

m(lnm− 1)

which shows the omission probability is approximately proportional to m ln m.
Increasing b, the number of bits per state, by one roughly halves the maximum
omission probability.

Dynamic Probabilistic State Space Generation We now discuss a proba-
bilistic technique which uses dynamic storage allocation and which yields a very
low collision probability [37]. The system is illustrated in Fig. 2. Here, the ex-
plored state table takes the form of a hash table with several rows. Attached
to each row is a linked list which stores compressed state descriptors and state
sequence numbers.

Two independent hash functions are used. Given a state descriptor s, the primary
hash function h1(s) is used to determine which hash table row should be used
to store a compressed state, while the secondary hash function h2(s) is used to
compute a compressed state descriptor value (also known as a secondary key).
If a state’s secondary key h2(s) is present in the hash table row given by its
primary key h1(s), then the state is deemed to be the already-explored state
identified by the sequence number id(s). Otherwise, the secondary key and a
new sequence number are added to the hash table row and the state’s successors
are added onto the FIFO queue.

Fig. 3 shows the complete sequential dynamic probabilistic state space generation
algorithm based on our hash compaction technique. Here H represents the state
hash table in which each state s ∈ E has an entry of form [h1(s), h2(s)]. Since
it is now not necessary to store the full state space E in memory, the insertion
of states into E can be handled by writing the states to a disk file as they are
encountered.

Note that two states s1 and s2 are classified as being equal if and only if h1(s1) =
h1(s2) and h2(s1) = h2(s2). This may happen even when the two states are
different, so collisions may occur (as in all other probabilistic methods). However,
as we will see below, the probability of such a collision can be kept very small
– certainly much smaller than the chance of a serious man-made error in the
specification of the model. In addition, by regenerating the state space with
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Fig. 2. Layout of the explored state table under the dynamic probabilistic hash com-
paction scheme

begin
H = {[h1(s0), h2(s0)]}
F .add(s0)
E = { s0 }
A = ∅
while (F not empty) do begin

F .remove(s)
for each s′ ∈ succ(s) do begin

if [h1(s′), h2(s′)] /∈ H do begin
F .add(s′)
E = E ∪ {s′}
H = H ∪ {[h1(s′), h2(s′)]}

end
A = A ∪ {id(s) → id(s′)}

end
end

end

Fig. 3. Sequential dynamic probabilistic state space generation algorithm



different sets of independent hash functions and comparing the resulting number
of states and transitions, it is possible to further arbitrarily decrease the risk of
an undetected collision.

We now calculate the probability of complete state coverage p. We consider a
hash table with r rows and t = 2b possible secondary key values, where b is the
number of bits used to store the secondary key. In such a hash table, there are rt
possible ways of representing a state. Assuming that h1(s) and h2(s) distribute
states randomly and independently, each of these representations are equally
likely. Thus, if there are n distinct states to be inserted into the hash table, the
probability p that all states are uniquely represented is given by:

p =
(rt)!

(rt− n)!(rt)n
(24)

An equivalent formulation of Eq. (24) is:

p =
n−1∏

i=0

rt− i

rt
=

n−1∏

i=0

(
1− i

rt

)
(25)

Assuming n ¿ rt and using the fact that ex ≈ (1 + x) for |x| ¿ 1, we obtain:

p ≈
n−1∏

i=0

e−i/rt = e
Pn−1

i=0 −i/rt = e−
n(n−1)

2rt = e
n−n2
2rt

Since n2 À n for large n, a simple approximation for p is given by:

p ≈ e−
n2
2rt (26)

It can be shown that if n2 ¿ rt then this approximation is also a lower bound
for p (and thus provides a conservative estimate for the probability of complete
state coverage) [10].

The corresponding upper bound for the probability q that all states are not
uniquely represented, resulting in the omission of one or more states from the
state space, is of course simply:

q = 1− p ≤ n2

2rt
=

n2

r2b+1
. (27)

Thus the probability of state omission q is proportional to n2 and is inversely
proportional to the hash table size r. Increasing the size of the compressed state
descriptors b by one bit halves the omission probability.
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Fig. 4. Contemporary static probabilistic methods compared with the dynamic hash
compaction method in terms of omission probability

Method Parameters Method Parameters

Holzmann l = 7.488× 109 bits Wolper b = 42 bits
M = 91.4 MB and s = 32 bits

Leroy m = 108 slots
M = 91.6 MB

Method Parameters Method Parameters

Stern b = 40 bits b = 40 bits
and s = 32 bits Dynamic s = 32 bits
Dill m = 10.26× 108 slots hash r = 6 000 000 rows

M = 91.4 MB h = 6 bytes
M = 91.4 MB
(for n = 108)

Table 1. Parameters used in the comparison of omission probabilities



Comparison of State Omission Probabilities Fig. 4 compares the omis-
sion probability of contemporary static probabilistic methods with that of the
dynamic hash compaction method for state space sizes of various magnitudes
up to 108. The parameters used for each method are presented in Tab. 1, and
are selected such that the memory use of all four algorithms is the same. The
graph shows that the dynamic method yields a far lower omission probability
than both Holzmann’s method and Wolper and Leroy’s method. In addition,
the dynamic method is competitive with Stern and Dill’s algorithm and yields
a better omission probability when the hash table becomes full or nearly full.

Parallel Dynamic Probabilistic State Space Generation We now inves-
tigate how our technique can be enhanced to take advantage of the memory and
processing power provided by a network of workstations or a distributed-memory
parallel computer. We assume there are N nodes available and that each pro-
cessor has its own local memory and can communicate with other nodes via a
network.

In the parallel algorithm, the state space is partitioned between the nodes so
that each node is responsible for exploring a portion of the state space and
for constructing part of the state graph. A partitioning hash function h0(s) →
(0, . . . , N − 1) is used to assign states to nodes, such that node i is responsible
for exploring the set of states Ei and for constructing the portion of the state
graph Ai where:

Ei = {s : h0(s) = i}
Ai = {(s1 → s2) : h0(s1) = i}

It is important that h0(s) achieves a good spread of states across nodes in order
to achieve good load balance. Naturally, the values produced by h0(s) should also
be independent of those produced by h1(s) and h2(s) to enhance the reliability
of the algorithm. Guidelines for choosing hash functions which meet these goals
are discussed in [10].

The operation of node i in the parallel algorithm is shown in Fig. 5. Each node
i has a local FIFO queue Fi used to hold unexplored local states and a hash
table Hi representing a compressed version of the set Ei, i.e. those states which
have been explored locally. State s is assigned to processor h0(s), which stores
the state’s compressed state descriptor h2(s) in the local hash table row given
by h1(s). As before, it is not necessary to store the complete state space Ei in
memory, since states can be written out to a disk file as they are encountered.

Node i proceeds by removing a state from the local FIFO queue and determining
the set of successor states. Successor states for which h0(s) = i are dealt with
locally, while other successor states are sent to the relevant remote processors
via calls to send-state(k, g, s). Here k is the remote node, g is the identity of the
parent state and s is the state descriptor of the child state. The remote processors



begin
if h0(s0) = i do begin

Hi = {[h1(s0), h2(s0)]}
Fi.add(s0)
Ei = {s0}

end else
Hi = Ei = ∅

Ai = ∅
while (shutdown signal not received) do begin

if (Fi not empty) do begin
s = Fi.remove()
for each s′ ∈ succ(s) do begin

if h0(s′) = i do begin
if [h1(s′), h2(s′)] /∈ Hi do begin

Hi = Hi ∪ {[h1(s′), h2(s′)]}
Fi.add(s′)
Ei = Ei ∪ {s′}

end
Ai = Ai ∪ {id(s) → id(s′)}

end else
send-state(h0(s′), id(s), s′)

end
end
while (receive-id(g, h)) do

Ai = Ai ∪ {g → h}
while (receive-state(k, g, s′)) do begin

if [h1(s′), h2(s′)] /∈ Hi do begin
Hi = Hi ∪ {h1(s′), h2(s′)}
Fi.add(s′)
Ei = Ei ∪ {s′}

end
send-id(k, g, id(s′))

end
end

end

Fig. 5. Parallel state space generation algorithm for node i
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must receive incoming states via matching calls to receive-state(k, g, s) where
k is the sender node. If they are not already present, the remote processor adds
the incoming states to both the remote state hash table and FIFO queue.

For the purpose of constructing the state graph, states are identified by a pair
of integers (i, j) where i = h0(s) is the node number of the host processor and
j is the local state sequence number. As in the sequential case, the index j can
be stored in the state hash table of node i. However, a node will not be aware of
the state identity numbers of non-local successor states. Therefore, when a node
receives a state it returns its identity to the sender by calling send-id(k, g, h)
where k is the sender, g is the identity of the parent state and h is the identity
of the received state. The identity is received by the original sender via a call
to receive-id(g, h). Fig. 6 summarises the main steps that take place to identify
and process each child s′ of state s in the case that h0(s) 6= h0(s′).

In practice, it is inefficient to implement the communication as detailed in Fig. 5
and Fig. 6, since the network rapidly becomes overloaded with too many short
messages. Consequently state and identity messages are buffered and sent in
large blocks. In order to avoid starvation and deadlock, nodes that have very
few states left in their FIFO queue or are idle broadcast a message to other
nodes requesting them to flush their outgoing message buffers.

The algorithm terminates when all the Fi are empty and there are no outstanding
state or identity messages. The problem of determining when these conditions
are satisfied across a distributed set of processes is a non-trivial problem. From



the several distributed termination algorithms surveyed in [38], we have chosen
to use Dijkstra’s circulating probe algorithm [39].

Reliability Using the parallel algorithm, two distinct states s1 and s2 will be
mistakenly classified as identical states if and only if h0(s1) = h0(s2) and
h1(s1) = h1(s2) and h2(s1) = h2(s2). Since h0, h1 and h2 are independent
functions, the reliability of the parallel algorithm is essentially the same as that
of the sequential algorithm with a large hash table of Nr rows, giving a state
omission probability of

q =
n2

Nr2b+1
. (28)

Space Complexity In the parallel algorithm, each node supports a hash table
with r rows. This requires a total of Nhr bytes of storage. The total amount
of space required for the dynamic storage of n states remains the same as for
the sequential version, i.e. (b+ s)n/8 bytes. Thus the total memory requirement
across all nodes is given by:

M = Nhr + n(b + s)/8.

4.2 Parallel Disk-based Steady State Solution

Having generated the state space and state graph, the next challenge in per-
formance analysis is usually to find the long run proportion of time the system
spends in each of its states. The state graph maps directly onto a continuous
time Markov chain which can then be solved for its steady-state distribution,
according to Eq. (2).

Since the resources of a single workstation are usually inadequate to tackle the
solution of large models (e.g. simply storing the solution vector of a system with
100 million states requires 800MB memory), we explore distributed out-of-core
techniques which leverage the compute power, memory and disk space of several
processors.

Scalable Numerical Methods A broad spectrum of sequential solution tech-
niques are available for solving steady-state equations [40]. These include clas-
sical iterative methods, Krylov subspace techniques and decomposition-based
techniques. Many of these algorithms are unsuited to distributed or parallel im-
plementation, however, since they rely on the so-called “Gauss-Seidel effect”
to accelerate convergence. This effect occurs when newly updated steady-state
vector elements are used in the calculation of other vector elements within the
same iteration. In the case of sparse matrices, this sequential dependency can be
alleviated by using multi-coloured ordering schemes which allow parallel com-
putation of unrelated vector elements in phases; however, finding such orderings
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is a combinatorial problem of exponential complexity. Consequently obtaining
suitable orderings for very large matrices is infeasible.

Most classical iterative methods, such as Gauss-Seidel and Successive Overre-
laxation (SOR), suffer from this problem. An important exception is the Jacobi
method which uses independent updates of vector elements. The Jacobi method
is characterised by slow, smooth convergence.

Krylov subspace methods [41] are a powerful class of iterative methods which
includes many conjugate gradient-type algorithms. They derive their name from
the fact that they generate their iterates using a shifted Krylov subspace asso-
ciated with the coefficient matrix. They are widely used in scientific comput-
ing since they are parameter free (unlike SOR) and exhibit rapid, if somewhat



erratic, convergence. In addition, these methods are well suited to parallel im-
plementation because they are based on matrix–vector products, independent
vector updates and inner products. Fig. 7 presents a conceptual overview of
the most important techniques. The arrows show the relationships between the
methods, i.e. how the methods have been generalised from their underlying basis-
generating algorithms and also how key concepts have been inherited from one
algorithm to the next.

The most recently developed Krylov subspace algorithms (such as CGS [42],
BiCGSTAB [43] and TFQMR [44]) are also particularly suited to a disk-based
implementation since they access A in a predictable fashion and do not re-
quire multiplication with AT . Compared to classical iterative methods, however,
Krylov subspace techniques have high memory requirements. CGS is often used
because it requires the least memory of these methods.

Disk-based Solution Techniques The concept of using magnetic disk as a
buffer to store data that is too large to fit into main memory is an idea which
originated three decades ago with the development of overlays and virtual mem-
ory systems. However, only recently, with the widespread availability of large,
cheap, high-bandwidth hard disks has attention been focused on the potential
of disks as high-throughput data sources appropriate for use in data-intensive
computations.

In [45] and [46], Deavours and Sanders make a compelling case for the potential
of disk-based steady-state solution methods for large Markov models. They note
that our ability to solve large matrices is limited by the memory required to
store a representation of the transition matrix and by the effective rate at which
matrix elements can be produced from the encoding. As a general rule, the more
compact the representation, the more CPU overhead is involved in retrieving
matrix elements. Two common encodings are Kronecker representations and “on-
the-fly” methods. Deavours and Sanders estimate the effective data production
rate of Kronecker and “on-the-fly” methods as being 2 MB/s and 440 KB/s
respectively on their 120 MHz HP C110 workstation. Other published results
show that an implementation of a state-of-the-art Kronecker technique running
on a 450 MHz Pentium-II workstation yields an effective data production rate
of around 2.5 MB/s [27].

At the same time, modern workstation disks are capable of sustaining data
transfer rates in excess of 20 MB/s. This suggests that it would be worthwhile
to store the transition matrix on disk, given that enough disk space is available
and given that we can apply an iterative solution method that accesses the
transition matrix in a predictable way. Such an approach has the potential to
produce data faster than both Kronecker and on-the-fly methods, without any
of the structural restrictions inherent in Kronecker methods.
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Deavours and Sanders demonstrate the effectiveness of this approach by devis-
ing a sequential disk-based solution tool which makes use of two cooperating
processes. One of the processes is dedicated to reading disk data while the other
performs computation using a Block Gauss-Seidel algorithm, thus allowing for
the overlap of disk I/O and computation. The processes communicate using
semaphores and shared memory. The advantage of using Block Gauss-Seidel is
that diagonal matrix blocks can be read from disk once, be cached in memory
and then reused several times.

The memory required by the disk-based approach is small – besides the shared
memory buffers, space is only required for the solution vector itself. This enables
the solution of extremely large models with over 10 million states and 100 million
non-zero entries on a HP C110 workstation with 128MB RAM and 4GB of disk
space in just over 5 hours.

Kwiatkowska and Mehmood reduce the memory requirements of disk-based
methods even further by proposing a block-based Gauss-Seidel method which
uses disk to store blocks of the steady-state vector as well as matrix blocks [47,
48]. In this way, a model of a manufacturing system with 133 million states is
solved on a single PC in 13 days and 9 hours.

Parallel disk-based solver architectures have also been implemented with some
success. Fig. 8 shows the architecture proposed in [49]. Each node has two pro-
cesses: a Disk I/O process dedicated to reading matrix elements from a local
disk, and a Compute process which performs the iterations using a Jacobi or
CGS-based matrix–vector multiply kernel. The processes share two data buffers
located in shared memory and synchronise via semaphores. Together the pro-



cesses operate as a classical producer-consumer system, with the disk I/O process
filling one shared memory buffer while the compute process consumes data from
the other.

Bell and Haverkort apply a similar architecture in solving a 724 million state
Markov chain model on a 26 node PC cluster in 16 days [50].
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Hypergraph Partitioning Any distributed solution scheme involves partition-
ing the sparse matrix and vector elements across the processors. Such schemes
necessitate the exchange of data (vector elements and possibly partial sums)
after every iteration in the solution process. The objective in partitioning the
matrix is to minimise the amount of data which needs to be exchanged while
balancing the computational load (as given by the number of non-zero elements
assigned to each processor).

Hypergraph partitioning is an extension of graph partitioning. Its primary appli-
cation to date has been in VLSI circuit design, where the objective is to cluster
pins of devices such that interconnect is minimised. It can also be applied to the
problem of allocating the non-zero elements of sparse matrices across processors
in parallel computation [51].

Formally, a hypergraph H = (V,N ) is defined by a set of vertices V and a set
of nets (or hyperedges) N , where each net is a subset of the vertex set V [51].
In the context of a row-wise decomposition of a sparse matrix A, matrix row i
(1 ≤ i ≤ n) is represented by a vertex vi ∈ V while column j (1 ≤ j ≤ n) is
represented by net Nj ∈ N . The vertices contained within net Nj correspond
to the row numbers of the non-zero elements within column j, i.e. vi ∈ Nj if
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and only if aij 6= 0. The weight of vertex i is given by the number of non-zero
elements in row i, while the weight of a net is its contribution to the edge cut,
which is defined as one less than the number of different partitions spanned by
that net. The overall objective of a hypergraph sparse matrix partitioning is to
minimise the sum of the weights of the cut nets while maintaining a balance
criterion. A column-wise decomposition is achieved in an analogous fashion.

The matrix on the right of Fig. 9 shows the result of applying hypergraph-
partitioning to the matrix on the left in a four-way row-wise decomposition.
Although the number of off-diagonal non-zeros is 18 the number of vector ele-
ments which must be transmitted between processors during each matrix–vector
multiplication (the communication cost) is 6. This is because the hypergraph par-
titioning algorithms not only aim to concentrate the non-zeros on the diagonals
but also strive to line up the off-diagonal non-zeros in columns. The edge cut of
the decomposition is also 6, and so the hypergraph partitioning edge cut metric
exactly quantifies the communication cost. This is a general property and one
of the key advantages of using hypergraphs – in contrast to graph partitioning,
where the edge cut metric merely approximates communication cost. Optimal
hypergraph partitioning is NP-complete but there are a small number of hyper-
graph partitioning tools which implement fast heuristic algorithms, for example
PaToH [51], hMeTiS [52] and Parkway [53].

Fig. 10 shows the application of hypergraph partitioning to a (transposed) gen-
erator matrix. Statistics about the communication associated with this decom-
position for a single matrix–vector multiplication are presented in Tab. 2. We
see that around 90% of the non-zero elements allocated to each processor are
local, i.e. they are multiplied with vector elements that are stored locally. The



proc- non- local remote reused
essor zeros % % % 1 2 3 4

1 7 022 99.96 0.04 0 1 - 407 - 4
2 7 304 91.41 8.59 34.93 2 3 - 16 181
3 6 802 88.44 11.56 42.11 3 - - - 12
4 6 967 89.01 10.99 74.28 4 - 1 439 -

Table 2. Communication overhead (left) and interprocessor communication matrix
(right).

remote non-zero elements are multiplied with vector elements that are sent from
other processors. However, because the hypergraph decomposition tends to align
remote non-zero elements in columns (well illustrated in the 2nd block belonging
to processor 4), reuse of received vector elements is good (up to 74%) with cor-
respondingly lower communication overhead. The communication matrix on the
right in Tab. 2 shows the number of vector elements sent between each pair of
processors during each iteration (e.g. 181 vector elements are sent from processor
2 to processor 4).

4.3 Parallel Computation of Densities and Quantiles of First
Passage Time

A rapid response time is an important performance criterion for almost all
computer-communication and transaction processing systems. Response time
quantiles are frequently specified as key quality of service metrics in Service
Level Agreements and industry standard benchmarks such as TPC. Examples
of systems with stringent response time requirements include mobile commu-
nication systems, stock market trading systems, web servers, database servers,
flexible manufacturing systems, communication protocols and communication
networks. Typically, response time targets are specified in terms of quantiles –
for example “95% of all text messages must be delivered within 3 seconds”.

In the past, numerical computation of analytical response time densities has
proved prohibitively expensive except in some Markovian systems with restricted
structure such as overtake-free queueing networks [54]. However, with the advent
of high-performance parallel computing and the widespread availability of PC
clusters, direct numerical analysis on Markov and semi-Markov chains has now
become a practical proposition.

There are two main methods for computing first passage time (and hence re-
sponse time) densities in Markov chains: those based on Laplace transforms and
their inversion [55, 56] and those based on uniformisation [8, 6]. The former has
wider application to semi-Markov processes but is less efficient than uniformisa-
tion when restricted to Markov chains.



Numerical Laplace Transform Inversion The key to practical analysis of
semi-Markov processes lies in the efficient representation of their general distri-
butions. Without care the structural complexity of the SMP can be recreated
within the representation of the distribution functions.

Many techniques have been used for representing arbitrary distributions – two of
the most popular being phase-type distributions and vector-of-moments methods.
These methods suffer from, respectively, exploding representation size under
composition, and containing insufficient information to produce accurate answers
after large amounts of composition.

As all our distribution manipulations take place in Laplace-space, we link our
distribution representation to the Laplace inversion technique that we ultimately
use. Our tool supports two Laplace transform inversion algorithms, which are
briefly outlined below: the Euler technique [57] and the Laguerre method [58]
with modifications summarised in [59].

Both algorithms work on the same general principle of sampling the transform
function L(s) at n points, s1, s2, . . . , sn and generating values of f(t) at m user-
specified t-points t1, t2, . . . , tm. In the Euler inversion case n = km, where k can
vary between 15 and 50, depending on the accuracy of the inversion required. In
the modified Laguerre case, n = 400 and, crucially, is independent of m.

The process of selecting a Laplace transform inversion algorithm is discussed
later; however, whichever is chosen, it is important to note that calculating
si, 1 ≤ i ≤ n and storing all our distribution transform functions, sampled at
these points, will be sufficient to provide a complete inversion. Key to this is
that fact that matrix element operations, of the type performed in Eq. (39), (i.e.
convolution and weighted sum) do not require any adjustment to the array of
domain s-points required. In the case of a convolution, for instance, if L1(s) and
L2(s) are stored in the form {(si, Lj(si)) : 1 ≤ i ≤ n}, for j = 1, 2, then the
convolution, L1(s)L2(s), can be stored using the same size array and using the
same list of domain s-values, {(si, L1(si)L2(si)) : 1 ≤ i ≤ n}.
Storing our distribution functions in this way has three main advantages. Firstly,
the function has constant storage space, independent of the distribution-type.
Secondly, each distribution has, therefore, the same constant storage require-
ment even after composition with other distributions. Finally, the function has
sufficient information about a distribution to determine the required passage
time (and no more).

Summary of Euler Inversion The Euler method is based on the Bromwich con-
tour inversion integral, expressing the function f(t) in terms of its Laplace trans-
form L(s). Making the contour a vertical line s = a such that L(s) has no
singularities on or to the right of it gives:

f(t) =
2eat

π

∫ ∞

0

Re(L(a + iu)) cos(ut) du (29)



This integral can be numerically evaluated using the trapezoidal rule with step-
size h = π/2t and a = A/2t (where A is a constant that controls the discretisation
error), which results in the nearly alternating series:

f(t) ≈ fh(t) =
eA/2

2t
Re(L(A/2t)) +

eA/2

2t

∞∑

k=1

(−1)kRe
(

L

(
A + 2kπi

2t

))
(30)

Euler summation is employed to accelerate the convergence of the alternating
series infinite sum, so we calculate the sum of the first n terms explicitly and
use Euler summation to calculate the next m. To give an accuracy of 10−8 we
set A = 19.1, n = 20 and m = 12 (compared with A = 19.1, n = 15 and m = 11
in [57]).

Summary of Laguerre Inversion The Laguerre method [58] makes use of the
Laguerre series representation:

f(t) =
∞∑

n=0

qnln(t) : t ≥ 0 (31)

where the Laguerre polynomials ln are given by:

ln(t) =
(

2n− 1− t

n

)
ln−1(t)−

(
n− 1

n

)
ln−2(t) (32)

starting with l0 = et/2 and l1 = (1− t)et/2, and:

qn =
1

2πrn

∫ π

0

Q(reiu)e−iru du (33)

where r = (0.1)4/n and Q(z) = (1− z)−1L((1 + z)/2(1− z)).

The integral in the calculation of qn can be approximated numerically by the
trapezoidal rule, giving:

qn ≈ q̄n =
1

2nrn


Q(r) + (−1)nQ(−r) + 2

n−1∑

j=1

(−1)jRe
(
Q(reπji/n)

)

 (34)

As described in [59], the Laguerre method can be modified by noting that the
Laguerre coefficients qn are independent of t. This means that if the number of
trapezoids used in the evaluation of qn is fixed to be the same for every qn (rather
than depending on the value of n), values of Q(z) (and hence L(s)) can be reused
after they have been computed. Typically, we set n = 200. In order to achieve
this, however, the scaling method described in [58] must be used to ensure that
the Laguerre coefficients have decayed to (near) 0 by n = 200. If this can be
accomplished, the inversion of a passage time density for any number of t-values



can be achieved at the fixed cost of calculating 400 truncated summations of
the type shown in Eq. (39). This is in contrast to the Euler method, where the
number of truncated summations required is a function of the number of points
at which the value of f(t) is required.

Iterative Passage-Time Analysis for SMPs Passage-time analysis in semi-
Markov processes involves the solution of a set of linear equations in complex
variables. In [60], we set out an efficient iterative approach to passage time
calculation and proved its convergence to the analytic passage time distribution.
The algorithm has since been implemented and is used to calculate semi-Markov
passage times in the SMARTA tool (described below).

Recall the semi-Markov process, Z(t), of Sect. 2.2, where N(t) is the number
of state transitions that have taken place by time t. We formally define the rth
transition first passage time to be:

P
(r)
ij = inf{u > 0 : Z(u) ∈ j, N(u) > 0 | N(u) ≤ r, Z(0) = i} (35)

which is the time taken to enter a state in j for the first time having started
in state i at time 0 and having undergone up to r state transitions1. P

(r)
ij is a

random variable with associated Laplace transform, L
(r)
ij (s). L

(r)
ij (s) is, in turn,

the ith component of the vector:

L(r)
j (s) = (L(r)

1j (s), L(r)
2j (s), . . . , L(r)

Nj(s)) (36)

representing the passage time for terminating in j for each possible start state.
This vector may be computed as:

L(r)
j (s) = U(I + U′ + U′2 + · · ·+ U′(r−1)) ej (37)

where U is a matrix with elements upq = r∗pq(s) and U′ is a modified version of
U with elements u′pq = δp6∈j upq, where states in j have been made absorbing.
We include the initial U-transition in Eq. (37), so as to generate cycle times for
cases such as L

(r)
ii (s) which would otherwise register as 0 if U′ were used instead.

The column vector ej has entries ekj = δk∈j .

From Eq. (15) and Eq. (35):

Pij = P
(∞)
ij and thus Lij(s) = L

(∞)
ij (s) (38)

We can generalise to multiple source states i using the normalised steady-state
vector α of Eq. (21):

L
(r)
ij (s) = αL(r)

j (s)
=

∑r−1
k=0 αUU′k ej

(39)

1 If there are immediate transitions in the semi-Markov process then we have to use a
modified formulation of the passage time and iterative passage time definitions [60].



The sum of Eq. (39) can be computed efficiently using sparse matrix–vector
multiplications with a vector accumulator, µr =

∑r
k=0 αUU′k. At each step,

the accumulator (initialised as µ0 = αU) is updated with µr+1 = αU + µrU
′.

The worst-case time complexity for this sum is O(N2r) versus the O(N3) of
typical matrix inversion techniques. In practice, for a sparse matrix with constant
bandwidth (number of non-zeros per row), this can be as low as O(Nr).
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Fig. 11. Parallel hypergraph-based passage time density calculation pipeline

The SMARTA Tool Our iterative passage-time analysis algorithm has been
implemented in the SMARTA tool [61], the architecture of which is shown in
Fig. 11. The process of calculating a passage time density begins with a high-level
model specified in an enhanced form of the DNAmaca interface language [62,
10]. This language supports the specification of stochastic Petri nets, queueing
networks and stochastic process algebras. Next, a probabilistic, hash-based state
generator [37] uses the high-level model description to produce the transition
probability matrix P of the model’s embedded Markov chain, the matrices U
and U′, and a list of the initial and target states. Normalised weights for the



initial states are determined by the solution of π = πP, which is readily done
using any of a variety of steady-state solution techniques (e.g. [45, 49]). U′ is
then partitioned using a hypergraph partitioning tool (a single partitioning is
sufficient since all linear systems to be solved have the same non-zero structure).

Control is then passed to the distributed passage time density calculator, which
is implemented in C++ using the Message Passing Interface (MPI) [63] standard.
This employs a master-slave architecture with groups of slave processors. The
master processor computes in advance the values of s at which it will need to
know the value of Lij(s) in order to perform the inversion. This can be done
irrespective of the inversion algorithm employed. The s-values are then placed
in a global work-queue to which the groups of slave processors make requests.

The highest ranking processor in a group of slaves makes a request to the master
for an s-value and is assigned the next one available. This is then broadcast to
the other members of the slave group to allow them to construct their columns
of the matrix U′ for that specific s. Each processor reads in the columns of the
matrix U′ that correspond to its allocated partition into two types of sparse
matrix data structure and also reads in the initial source-state weighting vector
α. Local non-zero elements (i.e. those elements in diagonal matrix blocks that
will be multiplied with vector elements stored locally) are stored in a conven-
tional compressed sparse column format. Remote non-zero elements (i.e. those
elements in off-diagonal matrix blocks that must be multiplied with vector ele-
ments received from other processors) are stored in an ultrasparse matrix data
structure – one for each remote processor – using a coordinate format. Each
processor then determines which vector elements need to be received from and
sent to every other processor in the group on each iteration, adjusting the row
indices in the ultrasparse matrices so that they index into a vector of received
elements. This ensures that a minimum amount of communication takes place
and makes multiplication of off-diagonal blocks with received vector elements
efficient.

For each step in our iterative algorithm, each processor begins by using non-
blocking communication primitives to send and receive remote vector elements,
while calculating the product of local matrix elements with locally stored vector
elements. The use of non-blocking operations allows computation and commu-
nication to proceed concurrently on parallel machines where dedicated network
hardware supports this effectively. The processor then waits for the completion
of non-blocking operations (if they have not already completed) before multiply-
ing received remote vector elements with the relevant ultrasparse matrices and
adding their contributions to the local vector-matrix product cumulatively.

Once the calculations of a slave group are deemed to have converged, the result is
returned to the master by the highest-ranking processor in the group and cached.
When all results have been computed and returned for all required values of s,
the final Laplace inversion calculations are made by the master, resulting in the
required t-points.



5 Application examples

We demonstrate our analysis techniques on three application examples: a GSPN
model of a communications protocol, a SM-SPN model of a voting system and
a PEPA model of an active badge system.

5.1 Courier Protocol Model

Description The GSPN shown in Fig. 12 (originally presented in [64]) models
the ISO Application, Session and Transport layers of the Courier sliding-window
communication protocol. Data flows from a sender (p1 to p26) to a receiver
(p27 to p46) via a network. The sender’s transport layer fragments outgoing
data packets; this is modelled as two paths between p13 and p35. The path
via t8 carries all fragments before the last one through the network to p33.
Acknowledgements for these fragments are sent back to the sender (as signalled
by the arrival of a token on p20), but no data is delivered to the higher layers
on the receiver side. The path via t9 carries the last fragment of each message
block. Acknowledgements for these fragments are generated and a data token is
delivered to higher receiver layers via t27.

The average number of data packets sent is determined by the ratio of the weights
on the immediate transitions t8 and t9. This ratio, known as the fragmentation
ratio, is given by q1 : q2 (where q1 and q2 are the weights associated with transi-
tions t8 and t9 respectively). Thus, this number of data packets is geometrically
distributed, with parameter q1/(q1 + q2). Here we use a fragmentation ratio of
one.

The transport layer is further characterised by two important parameters: the
sliding window size n (p14) and the transport space m (p17). Different values of
m and n yield state spaces of various sizes. The transition rates r1, r2, . . . , r10
have the same relative magnitudes as those obtained by benchmarking a working
implementation of the protocol (see [64]).

State Space Generation We have implemented the state generation algo-
rithm of Fig. 5 on a Fujitsu AP3000 distributed memory parallel computer.
Our implementation is written in C++ with support for two popular parallel
programming interfaces, viz. the Message Passing Interface (MPI) [65] and the
Parallel Virtual Machine (PVM) interface [66]. The generator uses hash tables
with r = 750 019 rows per processor and b = 40 bit secondary keys. The results
were collected using up to 16 processors on the AP3000. Each processor has a
300MHz UltraSPARC processor, 256MB RAM and a 4GB local disk. The nodes
run the Solaris operating system and support MPI. They are connected by a
high-speed wormhole-routed network with a peak throughput of 65MB/s.
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Fig. 12. The Courier Protocol Software Generalised Stochastic Petri net [64].



k n a

1 11 700 48 330
2 84 600 410 160
3 419 400 2 281 620
4 1 632 600 9 732 330
5 5 358 600 34 424 280
6 15 410 250 105 345 900
7 39 836 700 286 938 630
8 94 322 250 710 223 930
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Fig. 13. The number of tangible states (n) and the number of arcs (a) in the state
graph of the Courier model for various values of k.

The Courier model features a scaling parameter k (corresponding to the sliding
window size) which we will vary to produce state graphs of different sizes (see
Fig. 13).

The graph on the left of Fig. 14 shows the distributed run-time taken to explore
Courier state spaces of various sizes (up to k = 6) using 1, 2, 4, 8, 12 and 16
processors on the AP3000. Each observed value is calculated as the mean of
four runs. The k = 5 state space (5 358 600 states) can be generated on a single
processor in 16 minutes 20 seconds; 16 processors require only 89 seconds. The
k = 6 state space (15 410 250 states) can be generated on a single processor in
51 minutes 45 seconds; 16 processors require just 267 seconds.

The corresponding speedups for the cases k = 1, 2, 3, 4, 5, 6 are shown in the
graph on the right of Fig. 14. For k = 6 using 16 processors, we observe a
speedup of 11.65, giving an efficiency of 73%.

Memory utilisation is low – a single processor generating the k = 5 state space
uses a total of 91MB (17.4 bytes per state), while the k = 6 state space requires
175MB (11.6 bytes per state). This is far less than the 94 bytes per state (45
16-bit integers plus a 32-bit unique state indentifier) that would be required by
a straightforward exhaustive implementation.

Moving beyond the maximum state space size that can be generated on a single
processor, on 16 processors we find that the k = 7 state space can be generated
in around 10 minutes while just under 26 minutes are required to generate the
k = 8 state space (with 94 322 250 states and 710 223 930 arcs).



k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8

Jacobi time (s) 33.647 278.18 1506.4 5550.3
Jacobi iterations 4925 4380 4060 3655

p = 1 CGS time (s) 2.1994 21.622 163.87 934.27 29134
CGS iterations 60 81 106 129 157
Memory/node (MB) 20.3 22.1 30.5 60.8 154.0

Jacobi time (s) 29.655 176.62 1105.7 4313.6
Jacobi iterations 4925 4380 4060 3655

p = 2 CGS time (s) 1.6816 13.119 93.28 509.90 7936.9
CGS iterations 57 84 107 131 148
Memory/node (MB) 20.2 21.1 25.45 41.2 89.7

Jacobi time (s) 25.294 148.45 627.96 3328.3
Jacobi iterations 4925 4380 4060 3655

p = 4 CGS time (s) 1.2647 8.4109 58.302 322.50 1480.5
CGS iterations 60 80 108 133 159
Memory/node (MB) 20.1 20.6 22.9 31.4 57.5

Jacobi time (s) 38.958 140.06 477.02 1780.9 6585.4
Jacobi iterations 4925 4380 4060 3655 3235

p = 8 CGS time (s) 1.4074 6.0976 39.999 204.46 934.76 4258.7
CGS iterations 61 82 109 132 155 171
Memory/node (MB) 20.0 20.3 21.7 26.5 41.4 81.6

Jacobi time (s) 32.152 133.58 457.23 1559.0 6329.2 11578 72202
Jacobi iterations 4925 4380 4060 3655 3235 2325 2190

p = 12 CGS time (s) 1.4973 5.9345 34.001 157.73 852.53 2579.6 21220
CGS iterations 58 83 104 129 156 189 180
Memory/node (MB) 20.0 20.3 21.3 24.9 36.1 66.2 99.7

Jacobi time (s) 41.831 125.68 506.31 1547.9 5703.4 11683 32329
Jacobi iterations 4925 4380 4060 3650 3235 2325 2190

p = 16 CGS time (s) 3.3505 7.1101 31.322 134.48 577.68 2032.5 13786 141383
CGS iterations 60 91 104 132 146 173 179 213
Memory/node (MB) 20.0 20.2 21.0 24.1 33.4 58.5 79.8 161

Table 3. Real time in seconds required for the distributed solution of the Courier
model.

Steady-state Analysis Tab. 3 presents the execution time (defined as max-
imum processor run-time) in seconds required for the distributed disk-based
solution of models using the CGS and Jacobi methods. The models range in size
from k = 1 (11 700 states) to k = 7 (39.8 million states) and runs are conducted
on 1, 2, 4, 8, 12 and 16 processors. The number of iterations for convergence and
memory use per processor are also shown.

Fig. 15 compares the convergence of the Jacobi method with that of the CGS
algorithm for the k = 4 case in terms of the number of matrix multiplications
performed. As is typical for many models, the Jacobi method begins by converg-
ing quickly, but then plateaus, converging very slowly but smoothly. The CGS



algorithm, on the other hand, exhibits erratic rapid convergence that improves
in a concave fashion.

The largest state space solved is the k = 8 case (94 million states) which takes
1 day 15 hours of processing time on 16 processors. The total amount of I/O
across all nodes is 3.4TB, with the nodes jointly processing an average of 24MB
disk data every second.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

λ 74.3467 120.372 150.794 172.011 187.413 198.919 207.690 214.477
Psend 0.01011 0.01637 0.02051 0.02334 0.02549 0.02705 0.02825 0.02917
Precv 0.98141 0.96991 0.96230 0.95700 0.95315 0.95027 0.94808 0.94638
Psess1 0.00848 0.01372 0.01719 0.01961 0.02137 0.02268 0.02368 0.02445
Psess2 0.92610 0.88029 0.84998 0.82883 0.81345 0.80196 0.79320 0.78642
Ptransp1 0.78558 0.65285 0.56511 0.50392 0.45950 0.42632 0.40102 0.38145
Ptransp2 0.78871 0.65790 0.57138 0.51084 0.46673 0.43365 0.40835 0.38871

Table 4. Courier Protocol performance measures in terms of the transport window
size k.

Using the steady state vector, it is straightforward to derive some simple resource-
based performance measures, as shown in Tab. 4. The most important is λ, the
data throughput rate, which is given by the throughput of transition t21. Other
measures yield task utilizations. In particular, Ptransp1 = Pr{p12 is marked} =
Pr{transport task 1 is idle}. Similarly we define Ptransp2 for p32, Psess1 and
Psess2 using p6 and p41, and Psend and Precv using p1 and p46.

First Passage Time Analysis We now apply our iterative passage-time anal-
ysis technique to determine the end-to-end response time from the initiation
of a transport layer transmission to the arrival of the corresponding acknowl-
edgement packet. Consequently we choose as source markings those markings
for which M(p11) > 0, and as destination markings those markings for which
M(p20) > 0. This approach works easily for a sliding window size of n = 1
since there can be only one outstanding unacknowledged packet. Naturally, if we
wished to calculate the response time for sliding window sizes greater than one,
we would need to augment the state vector used to describe markings to track
the progress of a particular token through the Petri net.

The underlying reachability graph contains 29 010 markings, 11 700 of which are
tangible and 17 310 of which are vanishing. There are 7 320 source markings and
1 680 destination markings. Fig. 16 shows the resulting numerical response time
density. The median (50% quantile) and 95% quantile transmission times are
also given. Once again the numerical results are compared against a simulation,
and agreement is excellent.
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Fig. 16. Numerical and simulated response time densities for time taken from the
initiation of a transport layer transmission (i.e. those markings for which M(p11) > 0)
to the arrival of an acknowledgement packet (i.e. those markings for which M(p20) > 0).
The median response time (50% quantile) is 0.0048 seconds, and the 95% quantile is
0.0114 seconds.

For this example, our Laguerre scaling algorithm selected a damping parame-
ter of σ = 0.008. A single slave (a 1.4GHz Athlon processor with 256MB RAM)
required 24 minutes 15 seconds to calculate the 200 points plotted on the numer-
ical passage time density graph. Using 8 slave PCs with the same configuration
decreased the required time to just 3 minutes 23 seconds (corresponding to an
efficiency of 96%). 16 slave PCs required 2 minutes 17 seconds (72% efficiency).
These results reflect the excellent scalability of our approach.

5.2 Voting Model

Description Fig. 17 represents a voting system with CC voters, MM polling
units and NN central voting servers. In this system, voters cast votes through
polling units which in turn register votes with all available central voting units.
Both polling units and central voting units can suffer breakdowns, from which
there is a soft recovery mechanism. If, however, all the polling or voting units
fail, then, with high priority, a failure recovery mode is instituted to restore the
system to an operational state.

We demonstrate the SMP passage-time analysis techniques of the previous sec-
tions with a large semi-Markov model of a distributed voting system (Fig. 17).



Fig. 17. A semi-Markov stochastic Petri net of a voting system with breakdowns and
repairs

The model is specified in a semi-Markov stochastic Petri net (SM-SPN) for-
malism [67] using an extension of the DNAmaca Markov chain modelling lan-
guage [62].

The distributions are specified directly as Laplace transforms with certain macros
provided for popular distributions (e.g. uniform, gamma, deterministic) and can
be made marking dependent by use of the m(pi) function (which returns the
current number of tokens at place, pi). Support for inhibiting transitions is also
provided.

For the voting system, Tab. 5 shows how the size of the underlying SMP varies
according to the configuration of the variables CC, MM , and NN .

First Passage Time Analysis The results presented in this section were
produced on a Beowulf Linux cluster with 64 dual processor nodes, a maximum
of 34 of which can be used by a single job. Each node has two Intel Xeon 2.0GHz
processors and 2GB of RAM. The nodes are connected by a Myrinet network
with a peak throughput of 250 Mb/s.



Table 5. Different configurations of the voting system and state space generated

System CC MM NN States

1 60 25 4 106 540
2 100 30 4 249 760
3 125 40 4 541 280
4 150 40 5 778 850
5 175 45 5 1 140 050
6 300 80 10 10 999 140
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Fig. 19. Cumulative distribution function and quantile of the time taken to process
300 voters in the voting model system 6 (10.9 million states).

We display passage time densities produced by the iterative passage time algo-
rithm and also by simulation to validate those results.

Fig. 18 shows the density of the time taken to process 300 voters (as given by
the passage of 300 tokens from place p1 to p2) in system 6 of the voting model.
Calculation of the analytical density required 15 hours and 7 minutes using 64
slave processors (in 8 groups of 8) for the 31 t-points plotted. Our algorithm
evaluated Lij(s) at 1 023 s-points, each of which involved manipulating sparse
matrices of rank 10 999 140. The analytical curve is validated against the com-
bined results from 10 simulations, each of which consisted of 1 billion transition
firings. Despite this large simulation effort, we still observe wide confidence in-
tervals (probably because of the rarity of source states).

Fig. 19 is a cumulative distribution for the same passage as Fig. 18 (easily
obtained by inverting Lij(s)/s from cached values of Lij(s)). It allows us to
extract response time quantiles, for instance:

IP(system 6 can process 300 voters in less than 730 seconds) = 0.9876

5.3 PEPA Active Badge Model

Description In the original active badge model, described in [68], there are 4
rooms on a corridor, all installed with active badge sensors, and a single person
who can move from one room to an adjacent room. The sensors are linked to



Person1 = (reg1, r).Person1 + (move2, m).Person2

Personi = (movei−1, m).Personi−1 + (reg i, r).Personi

+ (movei+1, m).Personi+1

: 1 < i < N
PersonN = (moveN−1, m).PersonN−1 + (regN , r).PersonN

Sensor i = (reg i,>).(repi, s).Sensor i : 1 ≤ i ≤ N

Dbasei =
PN

j=1(repj ,>).Dbasej : 1 ≤ i ≤ N

Sys =
QM

j=1 Person1 ¤¢
Reg

QN
j=1 Sensor j ¤¢

Rep
Dbase1

where Reg = {reg i | 1 ≤ i ≤ N} and Rep = {repi | 1 ≤ i ≤ N}

Fig. 20. The PEPA description for the generalised active badge model with N rooms
and M people.

a database which records which sensor has been activated last. In the model of
Fig. 20, we have M people in N rooms with sensors and a database that can
be in one of N states. To maintain a reasonable state space, this is a simple
database which does not attempt to keep track of every individual’s location;
rather it remembers the last movement that was made by any person in the
system.

In the model below, Personi represents a person in room i, Sensor i is the sensor
in room i and Dbasei is the state of the database. A person in room i can either
move to room i − 1 or i + 1 or, if they remain there long enough, set off the
sensor in room i, which registers its activation with the database.

The first thing to note about such a model is how fast the state space can grow.
With M people in N rooms, we already have NM states just from the different
configurations of people in rooms. Then there are 2N sensor configurations and
finally N states that the database can be in, giving us a total of 2NNM+1 states.
For as few as 3 people and 6 rooms, the example we use, we have a global state
space of 82, 944 states.

First Passage Time Analysis We include two passages from the active badge
system with 3 people and 6 possible rooms. As the model of Fig. 20 tells us, all
6 people start in room 1 and move out from there.

Fig. 21 shows the density function for the passage representing how long it takes
for all 3 people to be together in room 6 for the first time.

It is interesting to observe that it is virtually impossible for all 3 people to end
up in room 6, which requires 6 successive move transitions from all 3 people for
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Fig. 22. The passage time density for 3 people starting in room 1 ending up with any
one or more of them in room 6.

it to happen at the earliest opportunity, until at least 10 time units have elapsed.
After that time, very low probabilities are registered and the distribution clearly
has a very heavy tail.
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The second passage of Fig. 22 shows an equivalent passage time density from the
same start point to a terminating condition of at least one person of the three
entering room 6. The resulting passage is much less heavy tailed, as this time
only a single person has to make it to room 6 before the passage ends.

From these densities, it is a simple matter to construct cumulative distribution
functions (the integral of the density function) and obtain quantiles, e.g. the
probability that 3 people all reach room 6 by time t = 150. Fig. 23 shows the
cumulative distribution function (cdf) corresponding to the passage time density
of Fig. 22. From this cdf, we can ascertain, for example, that there is a 90%
probability that at least one person will have reached room 6 by time t = 62.

6 Conclusion and Future Perspectives

Performance analysis of complex systems is a computationally expensive activ-
ity. If a model does not have exploitable symmetries or other structure that
allows for analytical or numerical shortcuts to be used, then an explicit repre-
sentation of the state space has to be constructed. This chapter has discussed
some state space generation methods and numerical algorithms for steady-state
and passage-time analysis of (semi-)Markov models which are scalable across
large computing clusters. We have shown that by making use of probabilistic
algorithms and efficient distribution strategies (e.g. using hypergraph partition-



ing), we can subdivide large performance analysis problems in such a way that
makes them tractable on individual computer nodes.

An important emerging development with the potential to tackle exceptionally
large state spaces is the use of continuous approximations to represent large
discrete state spaces. Preliminary efforts to relate this to modelling formalisms
have led to continuous state-space translations from SPNs [69] and PEPA [70].
In both cases, repeated structures in the top-level formalism are represented by
systems of ordinary differential equations (ODEs) which describe a deterministic
trace of behaviour. In certain structural situations [71] the steady-state solution
of the ODEs corresponds to the steady-state solution of the underlying Markov
chain.
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