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Abstract

Many countries are rolling out smart electricity meters. A smart meter measures the aggregate

energy consumption of an entire building. However, appliance-by-appliance energy consumption

information may be more valuable than aggregate data for a variety of uses including reducing

energy demand and improving load forecasting for the electricity grid. Electricity disaggregation

algorithms – the focus of this thesis – estimate appliance-by-appliance electricity demand from

aggregate electricity demand.

This thesis has three main goals: 1) to critically evaluate the benefits of energy disaggregation;

2) to develop tools to enable rigorous disaggregation research; 3) to advance the state of the

art in disaggregation algorithms.

The first part of this thesis explores whether disaggregated energy feedback helps domestic

users to reduce energy consumption; and discusses threats to the NILM. Evidence is collected,

summarised and aggregated by means of a critical, systematic review of the literature. Multi-

ple uses for disaggregated data are discussed. Our review finds no robust evidence to support

the hypothesis that current forms of disaggregated energy feedback are more effective than

aggregate energy feedback at reducing energy consumption in the general population. But the

absence of evidence does not necessarily imply the absence of any beneficial effect of disag-

gregated feedback. The review ends with a discussion of ways in which the effectiveness of

disaggregated feedback may be increased and a discussion of opportunities for new research

into the effectiveness of disaggregated feedback. We conclude that more social science research

into the effects of disaggregated energy feedback is required. This motivates the remainder of

the thesis: to enable cost-effective research into the effects of disaggregated feedback, we work

towards developing robust NILM algorithms and software.

The second part of this thesis describes three tools and one dataset developed to enable disag-

gregation research. The first of these tools is a novel, low-cost data collection system, which

records appliance-by-appliance electricity demand every six seconds and records the whole-

home voltage and current at 16 kHz. This system enabled us to collect the UK’s first and

only high-frequency (kHz) electricity dataset, the UK Disaggregated Appliance-Level Electric-

ity dataset (UK-DALE). Next, to help the disaggregation community to conduct open, rigorous,

repeatable research, we collaborated with other researchers to build the first open-source dis-
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aggregation framework, NILMTK. NILMTK has gained significant traction in the community,

both in terms of contributed code and in terms of users. The third tool described in this thesis

is a metadata schema for disaggregated energy data. This schema was developed to make it

easier for researchers to describe their own datasets and to reduce the effort required to import

datasets.

The third part of this thesis describes our effort to advance the state of the art in disaggregation

algorithms. Three disaggregation approaches based on deep learning are discussed: 1) a form of

recurrent neural network called ‘long short-term memory’ (LSTM); 2) denoising autoencoders;

and 3) a neural network which regresses the start time, end time and average power demand of

each appliance activation. The disaggregation performance was measured using seven metrics

and compared to two ‘benchmark’ algorithms from NILMTK: combinatorial optimisation and

factorial hidden Markov models. To explore how well the algorithms generalise to unseen houses,

the performance of the algorithms was measured in two separate scenarios: one using test data

from a house not seen during training and a second scenario using test data from houses which

were seen during training. All three neural nets achieve better F1 scores (averaged over all five

appliances) than either benchmark algorithm. The neural net algorithms also generalise well

to unseen houses.
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The copyright of this thesis rests with the author and is made available under a Creative

Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy,
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Chapter 1

Introduction

1.1 Brief overview of energy disaggregation

Energy disaggregation (also called non-intrusive load monitoring or NILM) is a computational

technique for estimating the power demand of individual appliances from a single meter which

measures the combined demand of multiple appliances. One use-case is the production of

itemised electricity bills from a single, whole-home smart meter. The ultimate aim might be

to help users reduce their energy consumption; or to help operators to manage the grid; or to

identify faulty appliances; or to survey appliance usage behaviour.

Research on NILM started with the seminal work of George Hart in the mid-1980s (G. W.

Hart 1985; G. W. Hart 1992). Today, in 2016, there is a lot of excitement about energy

disaggregation. Since 2010 there has been a dramatic increase in the number of papers published

on energy disaggregation algorithms (see Figure 1.1) and since 2013 there have been over 100

papers published each year (Parson 2015). Some authors have gone as far as to suggest that

energy disaggregation is the ‘Holy Grail’ of energy efficiency Armel et al. 2013. Disaggregation

is big business: in November 2015 company Bidgely raised $16.6 million USD (Richardson

2015). There are now at least 30 companies who offer disaggregation products and services (see

section 1.1.2).

For recent reviews on energy disaggregation, see Jiang et al. 2011; Zeifman & Roth 2011; Zoha

et al. 2012; Christensen et al. 2012; Armel et al. 2013; Bonfigli et al. 2015.

1

http://www.bidgely.com


2 Chapter 1. Introduction

Figure 1.1: Number of NILM publications per year. Source: Parson 2015 (with permission).

1.1.1 The many names of ‘energy disaggregation’

Authors use many different names to refer to ‘energy disaggregation’. All the names that we

have come across in the literature are listed below. The number of papers where the acronym

is used in the title or abstract are indicated in brackets (the sample is my literature database1

of 1,039 papers).

NILM Non-Intrusive Load Monitoring (118)

NIALM Non-Intrusive Appliance Load Monitoring (20)

NALM Nonintrusive Appliance Load Monitoring (4) (this is the acronym used by George

Hart in his seminal review paper, G. W. Hart 1992.)

NIALMS Non-Intrusive Appliance Load Monitoring System (3)

ALM Appliance Load Monitoring (1)

C-NILMS Commercial Non-Intrusive Load Monitoring System (1)

In this thesis (and in my papers) I use ‘energy disaggregation’ and ‘NILM’ interchangeably.
1https://github.com/JackKelly/reference-library

https://github.com/JackKelly/reference-library
https://github.com/JackKelly/reference-library
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1.1.2 The NILM research community

There have been a total of three International NILM Workshops2:

• 2012, May 7th at Carnegie Mellon University, Pittsburgh, PA, USA3 with about 40 people,

organised by Mario Bergés4 and Zico Kolter5.

• 2014, June 3rd at University of Texas, Austin, TX, USA6; with about 80 people; organised

by Mario Bergés and Zico Kolter.

• 2016, May 14-15th at Simon Fraser University, Vancouver, BC, Canada7; with about 90

people; organised by Stephen Makonin8.

There have been two European NILM Workshops9 (and a third is scheduled):

• 2014, 3rd-4th September at Imperial College London10; about 30 people.

• 2015, 8th July at Imperial College London11; about 80 people.

• 2016, 18th October in London12; organised in association with the Electric Power Research

Institute13 (EPRI) in the US.

I helped to organise the 2014 and 2015 European NILM Workshops.

There is an Energy Disaggregation mailing list14 which I started in January 2015.

The number of NILM papers published per year is shown in Figure 1.1.
2http://nilmworkshop.org
3http://www.ices.cmu.edu/psii/nilm/
4http://www.marioberges.com
5http://www.zicokolter.com
6http://nilmworkshop.org/2014
7http://nilmworkshop.org/2016
8http://makonin.com
9http://www.nilm.eu

10http://www.oliverparson.co.uk/nilm-2014-london
11http://www.nilm.eu/nilm-workshop-2015
12http://www.nilm.eu
13http://www.epri.com
14https://groups.google.com/forum/#!forum/energy-disaggregation

http://nilmworkshop.org
http://www.ices.cmu.edu/psii/nilm/
http://www.marioberges.com
http://www.zicokolter.com
http://nilmworkshop.org/2014
http://nilmworkshop.org/2016
http://makonin.com
http://www.nilm.eu
http://www.oliverparson.co.uk/nilm-2014-london
http://www.nilm.eu/nilm-workshop-2015
http://www.nilm.eu
http://www.epri.com
http://www.epri.com
https://groups.google.com/forum/#!forum/energy-disaggregation
http://nilmworkshop.org
http://www.ices.cmu.edu/psii/nilm/
http://www.marioberges.com
http://www.zicokolter.com
http://nilmworkshop.org/2014
http://nilmworkshop.org/2016
http://makonin.com
http://www.nilm.eu
http://www.oliverparson.co.uk/nilm-2014-london
http://www.nilm.eu/nilm-workshop-2015
http://www.nilm.eu
http://www.epri.com
https://groups.google.com/forum/#!forum/energy-disaggregation
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There has been substantial growth in the community over the last few years. This is shown

both in the increase in the numbers of people attending NILM workshops (which increased

from 40 people to 90 people between the 2012 and 2016 International NILM Workshops), and

in the numbers of papers published per year, which is now above 100 papers per year.

Companies offering NILM products

Tables 1.1 and 1.2 list a total of 32 companies who offer NILM products. Table 1.1 shows 13

companies who can disaggregation ‘standard’ smart meter data. Table 1.2 shows 19 companies

who require users to install specialised metering hardware. I will briefly discuss a few companies

to give a feel for the world of commercial NILM products as of August 2016.

Bidgely15 (a word which means “electricity” in Hindi) is based in California and was founded

in 2011. Bidgely offers a range of energy analytics - including disaggregation - for smart meter

data. A few years ago they sold their services directly to consumers but more recently their

business model has shifted towards partnering with utility companies (Bidgely are “utility-

facing”, to use the industry’s term). They state on their website16 that there are “5.6 billion

people with access to electricity across the world today, and this will only continue to grow.

We want to be the engine for every household everywhere to understand their energy usage and

make informed decisions that are good for their pocketbooks and good for the planet. We won’t

stop until we get there.”

In November 2015, Bidgely raised $16.6 million USD to scale up their ‘HomeBeat’ platform

in USA and Europe (Tweed 2015). Bidgely has about 20 large utility clients (ibid.) including

RWE, who have customers in the UK, (Tweed 2016) and TXU Energy in Texas (Tweed 2014).

Bidgely have been involved in several academic papers on the effectiveness of disaggregated

energy data to help users to save energy so we will revisit Bidgely in chapter 2 when we

consider the literature on whether disaggregated energy data helps users to save energy.

Another American disaggregation company, PlotWatt17, was founded in 2008 and is based in

North Carolina. Similarly to Bidgely, PlotWatt began by selling disaggregation services directly
15http://www.bidgely.com
16https://www.bidgely.com/company
17http://plotwatt.com

http://www.bidgely.com
https://www.bidgely.com/company
http://plotwatt.com
http://www.bidgely.com
https://www.bidgely.com/company
http://plotwatt.com
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to domestic users using aggregated data recorded by standard home energy monitors. Over

the last few years, PlotWatt have focused on offering disaggregation services and other energy

analytics to chain restaurants, using PlotWatt’s own meter hardware. Chain restaurants often

have similar appliances installed across the chain and so it is possible to train a disaggregation

algorithm on one restaurant in the chain and it should be able to disaggregate appliances from

the other restaurants in the same chain. PlotWatt’s system is installed in some KFC and

Dunkin’ Donuts restaurants. PlotWatt also offer disaggregation solutions for utilities.

An alternative, user-facing business strategy is exemplified by companies such as Smappee18,

based in Belgium; and Neurio19, based in Canada. Both require users to install dedicated mea-

surement hardware which costs $239.99 (USD) from Neurio and $249 (USD) from Smappee.

Smappee’s meter samples at kHz which allows them to, apparently, identify many home appli-

ances (see Figure 1.2 for an example of Smappee’s itemised energy bill). A review of Smappee’s

disaggregation product is provided by Tong 2014.

All the companies discussed above attempt to do fine-grained disaggregation by recognising

patterns in relatively rapidly-sampled aggregated data. An alternative is to use hourly or

monthly meter data to do coarse-grained disaggregation. There are several approaches but the

general idea is to use prior knowledge of the average itemised energy consumption from similar

homes; and to find correlations between energy use and weather; and household characteristics.

Opower20 began offering a form of ‘coarse’ disaggregation in 2014 to utility customers (Spradlin

et al. 2014). And Home Energy Analytics21 (HEA) combine hourly smart meter data with a

short user survey to provide a breakdown into five categories including ‘heating load’ (energy

usage which correlates with cold weather) and ‘cooling load’ (energy usage which correlated

with warm weather).

Companies who have experimented with NILM but do not currently offer a NILM product

include Intel, Belkin and Wattics.

18http://smappee.com
19http://neur.io
20http://opower.com
21http://corp.hea.com

http://smappee.com
http://neur.io
http://opower.com
http://corp.hea.com
http://smappee.com
http://neur.io
http://opower.com
http://corp.hea.com
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Figure 1.2: Screenshot of Smappee’s itemised energy bill (from St. John 2015b). Note the
large number of disaggregated appliances. The Smappee app claims that there are two irons,
one of which is the single biggest energy user. I am sceptical that a single clothes iron would
use 62 kWh in one month. The power demand of an iron ranges from 800–2000 kW. But irons
do not keep their heaters on constantly. So even at the top end of this range, the iron would
need to be used for about two hours every day in the month. Which is possible but unlikely.
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Table 1.1: Companies who can disaggregate ‘standard’
smart meter data. ‘Date’ column is when the company’s
NILM product was announced. Table adapted and extended
from Parson 2012–2016, with permission.

Company HQ Date Inputs Description

Bidgely California,
USA 2011

Meter-agnostic
(medium- &
low-freq?)

API for sending data to Bidgely.

Ecotagious Vancouver,
Canada 2010? Hourly smart

meter data Residential and utility-facing

EEme Pittsburgh,
USA 2012 15-minute smart

meter data
Ex-CMU students. Suman Giri (who
did his PhD with Mario Bergés) was a

data scientist here.

Fludia Paris,
France

≤
2013
?

1 minute data &
household
survey

Retrofit ‘dumb’ meters with
‘Fludiameter’ which gives 1 minute

data. Their disaggregation product is
‘Beluso’.

Grid4C Austin,
Texas, USA 2015? Smart meter

data
Provides NILM for Centrica’s ‘Direct
Energy’ brand in US/Canada using

data from 15M smart meters.

Home
Energy

Analytics
California,

USA 2008
Hourly smart
meter data.
Short user
survey.

Have over 3,500 users. Saved an average
of 12.8%.

HOMEpulse
Aix en

Provence,
France

2013? Sample period
1-10 seconds?

Formerly WattGo. Elec & gas disag in
near real time (minutes). They have a
whitepaper: Hochedez et al. 2015.

Onzo London, UK 2012?
Meter-agnostic
(medium- &
low-freq?)

Can also infer household occupancy
schedules and appliance diagnostics.

Utility-facing.

Opower Virginia,
USA 2014

Smart meter
data: monthly

or faster

Enables utilities to deliver disag data to
customers e.g. as a pie chart on their

bill. Not doing “disag” as such. Instead
use building models which do well on
average but possibly not so well for

individuals.

PlotWatt
North

Carolina,
USA

2008
Sample period
1-100 secs. Also
have their own

meters.

Products for chain restaurants and for
utilities. Detects appliance health
issues. API for pushing data to

PlotWatt.

Powerly Michigan,
USA 2014

The “Powerley
Energy Bridge
(PEB)” - a
smart meter

(ZigBee SEP) to
WiFi bridge

Offers utility-branded energy
management platform. Demand

response. Appliance health monitoring.
Real-time. PEB talks ZigBee, Z-Wave,

BT & Thread

Continued on next page

http://www.bidgely.com
http://www.ecotagious.com
https://www.energyefficiency.me
https://www.fludia.com/Non-intrusive-disaggregation-algorithm-to-detect-overconsumption.html
https://www.fludia.com/-Data-analytics-.html?lang=en
http://grid4c.com
http://corp.hea.com
http://corp.hea.com
http://corp.hea.com
http://www.homepulse.fr
http://www.onzo.com
https://blog.opower.com/2014/07/data-algorithm-smart-grid-without-smart-meters
https://plotwatt.com
https://plotwatt.com/docs/api
http://www.powerley.com


8 Chapter 1. Introduction

Table 1.1 – continued from previous page

Company HQ Date Inputs Description

Silver
Spring

California,
USA 2015 Smart meter

data
Silver Spring acquired Detectent in Jan

2015 and inherited their NILM
technology. Utility-facing.

Watt Is Portugal 2012? Smart meter
data

Lots of focus on actionable
recommendations

Table 1.2: NILM companies who require their own me-
tering hardware to be installed. ‘Date’ column is when the
company’s NILM product was announced. Adapted and ex-
tended from Parson 2012–2016, with permission.

Company HQ Date Inputs Description

AlertMe Cambridge,
UK 2012? CT at 1 Hz British Gas acquired AlertMe in 2015.

Ecoisme Krakow,
Poland 2015 CT clamp, V&I,

high freq
Personalised tips. IoT integration.
Detect faulty appliances. Funded on

IndieGoGo. Open API coming.

Enetics
SPEED

New York,
USA 1996

2 CT clamps or
Form 2S socket.
High freq V&I

Enetics’ disag product is called
“SPEED”. Enetics have been doing
research into NILM since 1993.

Green
Running London, UK 2006? kHz V&I Have their own hardware and are

rapidly expanding.

Informetis
Japan &

Cambridge,
UK

2013 High freq?

“Near real time” disag. Sony spinoff.
Uses techniques developed for AIBO
dog. Zoubin Ghahramani is their tech
advisor. Tokyo Elec. Power Co. trialled
the system in 300 homes in March 2015.

Ipsum
Energy Netherlands 2011?

Their “Coded
Power” system
in the meter box

Very few details on their website

LoadIQ Nevada,
USA 2011

Their ‘EI.X’
meter measures
V, I, PF etc.
High freq?

Focussed on disag for commercial &
industrial customers.

Navetas Oxford, UK ? 8 kHz
When I checked in August 2016, their
website no longer mentions NILM,

although they used to provide NILM
products.

Continued on next page

https://www.greentechmedia.com/articles/read/silver-spring-expands-its-data-analytics-for-utility-operators
https://www.greentechmedia.com/articles/read/silver-spring-expands-its-data-analytics-for-utility-operators
http://www.watt-is.com
http://www.alertme.com
https://ecois.me
https://www.indiegogo.com/projects/ecoisme-intelligent-energy-monitoring-system
https://www.indiegogo.com/projects/ecoisme-intelligent-energy-monitoring-system
http://www.enetics.com/prodmainSPEED.html
http://www.enetics.com/prodmainSPEED.html
http://greenrunning.com
http://greenrunning.com
http://www.informetis.com
http://www.ipsumenergy.com
http://www.ipsumenergy.com
http://www.loadiq.com
http://www.navetas.com


1.1. Brief overview of energy disaggregation 9

Table 1.2 – continued from previous page

Company HQ Date Inputs Description

Neurio Vancouver,
Canada 2013

2 CT clamps.
Measures V, I,
active power &
PF at 1 Hz

Formerly ‘Energy Aware’. Kickstarter
funded. RESTful API for appliance

switch events. Real-time notifications.
Detection limited to appliances

>400 W. Disag product is $250 USD.
Normative comparisons.

Powersavvy Castlebar,
Ireland 2009? Their own meter Products for businesses and households.

Sense MA, USA 2015
2 CT clamps.

Measures V & I
at >1 Hz

Appliance health early warning.
Consumer-facing.

Smappee Kortrijk,
Belgium 2014 CT clamp. Khz.

Real-time. Disag system costs $250.
Optional “Comfort Plugs” to switch
appliances. IoT integration using

IFTTT. Disaggregates many appliances
(if users interacts).

SMART
Impulse

Paris,
France 2008?

Their own
meter. V&I.
High freq?

For commercial buildings.

smartB Berlin,
Germany ? 4 kHz V&I and

50 Hz PQ data
SmartB are the energy disaggregation

arm of Yetu. Personalised
recommendations

Verdigris California,
USA 2012

8 kHz
circuit-level

metering using
CT clamps

Monitor large buildings. Real-time fault
detection.

verlitics Oregon,
USA 2012? Their own meter Products for businesses and households.

Formerly ‘Emme’.

Wattseeker Nice, France ?
Their own meter
with CT clamps.

High freq?

Their NILM product is ‘LYNX’. Claims
that each CT clamp can disag up to 12
appliances with an accuracy of ±2%.

For businesses.

Watty Stockholm,
Sweden ? ? Young startup. Few details on website.

You Know
Watt?

Brussels,
Belgium 2013

Requires
electrician. V&I

at 1.6 kHz

“The Virtual Submetering Company”.
Personalised tips. Normative

comparison.

http://neur.io
https://www.kickstarter.com/projects/energyaware/neurio-home-intelligence
https://www.kickstarter.com/projects/energyaware/neurio-home-intelligence
http://api-docs.neur.io
http://www.powersavvy.ie
http://www.sense.com
http://www.smappee.com
http://www.smart-impulse.com/en/
http://www.smart-impulse.com/en/
http://www.smartb.de/home/
http://verdigris.co
http://www.verlitics.com
http://qualisteo.com/ws/en/the-wattseeker-solution/
http://watty.io
http://youknowwatt.eu
http://youknowwatt.eu
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1.2 Objectives

My ultimate aim is to help to reduce energy demand globally by providing a disaggregation

system. The ‘disaggregation scenario’ that I have had in mind throughout my research is:

• Whole-house aggregate power demand data would be collected from a smart meter via

the home area network.

• Users may have to buy a consumer access device (CAD) to transfer the 10-second data

from the smart meter to the internet for disaggregation in the cloud.

• Users should not have to fill out a survey in order to start using the disaggregation service.

• Users should not have to train the disaggregation system. Instead the disaggregation

system should be trained by the developer(s) across enough training examples to allow

the disaggregation system to generalise to unseen instances of learnt appliance types.

• Whole-house aggregate power demand will be displayed on an in-home display (IHD).

• Users can view disaggregated data on a website or smart phone application. Summaries of

disaggregated energy consumption will be provided on printed energy bills and/or regular

but infrequent emails.

• Disaggregated data will update as quickly as possible (ideally as soon as new aggregate

data arrives: i.e. once every 10 seconds). But ‘real-time’ disaggregation is hard because

the algorithm has to recognise incomplete appliance signatures. Hence it may not be

possible to provide users will ‘real-time’ disaggregation. Users can also view energy usage

aggregated over various time intervals (e.g. daily, yearly, the current billing cycle).

There are two sets of users that we need to distinguish:

The general public: In order to achieve large energy savings, the majority of homeowners

in the country need to reduce their energy consumption when given disaggregated data.

They are unlikely to want to spend additional money. As such, the majority of users will

not have dedicated displays for disaggregated data (because these would cost too much).
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‘Energy enthusiasts’: These users may be a tiny proportion of the general population but

may achieve large energy savings. These users may purchase dedicated displays for dis-

aggregated data. Especially enthusiastic users may have one dedicated display per large

appliance so they can conveniently see appliance energy consumption at the point-of-use.
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Figure 1.3: Fossil-fuel emissions estimated to be compatible with a global temperature rise of
2°C above pre-industrial temperatures. Source: Gasser et al. 2015 (with permission).

1.3 Motivation: proposed benefits of NILM

In this section, we will step through the arguments for working on NILM.

1.3.1 A large reduction in CO2 emissions is required to maintain a

stable climate

At COP 21 in Paris22 in December 2015, the countries attending the United Nations Framework

Convention on Climate Change reached an agreement to tackle climate change. A key result of

this agreement was to set a goal of limiting the warming of the earth’s surface to no more than

2°C above pre-industrial levels by the year 2100. The countries also agreed to “pursue efforts

to” limit global warming to 1.5°C.

Limiting global warming to 1.5°C by 2100 is a highly ambitious task: Wagner et al. 2016 show

that we need to reduce global CO2 emissions by 50% by 2020 if we are to avoid locking the

climate in to a 1.5°C temperature rise. A 2°C limit is still extremely challenging. Figure 1.3

shows the emissions trajectories compatible with a 2°C limit.
22http://unfccc.int/paris_agreement/items/9485.php

http://unfccc.int/paris_agreement/items/9485.php
http://unfccc.int/paris_agreement/items/9485.php
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Figure 1.4: Past and future changes in global mean sea level. Source: Clark et al. 2016 (with
permission). Projections for the next 10 000 years are for four emissions scenarios (1 280; 2 560;
8 840 and 5 120 PgC). Vertical grey bars show the range of long-term sea level rise for each
scenario. The images show reconstructions of ice sheets on Greenland (top) and Antarctica
(bottom) for today (left) and for the 5 120 PgC emission scenario (right).

Much of discourse about climate change only considers consequences up until the year 2100.

But climate change, driven by decisions that we make in the next years and decades, is likely

to persist for tens of thousands of years (Clark et al. 2016). Figure 1.4 shows the global mean

sea level from 20 000 years ago to 10 000 years into the future. There are four projections into

the future. These projections are for different emissions scenarios. The worst-case scenario in

the paper projects that sea level will rise to almost 50 meters above current levels within a few

thousand years. The worst-case scenario in this figure is not even as bad as it could get because

the scenario considers the release of 5 120 petagrams of carbon (PgC) but current attainable

carbon reserves are estimated to be between ~9 500 and ~15 700 PgC.

There is also a strong mandate to pursue ambitious climate change mitigation strategies. A

2016 YouGov poll (Dahlgreen 2016) showed that climate change is considered by the world’s

population to be the third most serious issue threatening the world.
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1.3.2 Demand reduction is the most cost-effective way to reduce

CO2 emissions

There are two broad ways to reduce CO2 emissions: 1) use renewable energy sources such as

wind and solar which produce little or zero CO2 and 2) reduce demand for energy. Both of these

approaches are required to mitigate climate change. Building new energy generation capacity

is expensive, time-consuming and can be politically fraught. Reducing energy demand, on the

other hand, is seen by many as more cost-effective, faster and a politically favourable way to

reduce CO2 emissions. Reducing energy demand has the added benefits of reducing energy bills

and increasing energy security as soon as the efficiency measures are implemented.

The International Energy Agency (IEA) is enthusiastic about energy efficiency. Fatih Birol,

the IEA’s Executive Director, says:

“Mobilising energy efficiency is an urgent priority. To transition to the sustainable

energy system of the future, we need to decouple economic growth from greenhouse

gas (GHG) emissions. Energy efficiency is the most important “arrow in the quiver”

to achieve this. For its part, the International Energy Agency (IEA) is pursuing a

number of strategies to improve energy efficiency both among its member govern-

ments and with partner countries.” - International Energy Agency 2015, page 3

In the UK in 2015, electricity generation was responsible for the emission of 136 million tonnes

of CO2-equivalent (MtCO2e), which is 34% of the UK’s total CO2 emissions (DECC 2016,

page 9). This supplied a total of 336 terawatt hours (TWh). Hence the average CO2 intensity

of the UK’s electricity supply system in 2015 was 405 grams of CO2 per kWh.

1.3.3 Smart meters are rolling out in many countries

By the end of 2020, there should be about 830 million electric smart meters installed world-

wide (Telefónica 2014, page 9). Of these, 438 million will be in China, 132 million will be in

the United States and 27 million will be in the UK.
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The UK’s smart meters will confirm to the second version of the government’s Smart Meter

Equipment Technology Specification (SMETS2) (DECC 2014). SMETS2 meters will have two

communications interfaces: a ZigBee home area network (HAN) interface which will deliver

readings of whole-home active power once every ten seconds. This will be displayed on an in

home display (IHD). Users can use a consumer access device (CAD) to collect their smart meter

data and send it to the cloud. SMETS2 meters will also have a wide area network (WAN) for

sending data to utility companies once every half an hour.

Research conducted in the UK for Smart Energy GB 23 by independent research company

Populous 24 surveyed people in the UK with a smart meter in 2014 and found that 84% of

people with a smart meter would recommend one to others and that 79% of people with a

smart meter had taken steps to reduce their energy consumption (Populus 2015).

Recent reviews of smart meter deployments include Bhatt et al. 2014; Xenias et al. 2015;

Sharma & Saini 2015; Colak et al. 2015; Sataøen et al. 2015; Tricoire 2015; Bertoldo et al. 2015

and Naus et al. 2015.

1.3.4 Energy feedback can reduce energy consumption

There is good reason to believe that aggregate energy feedback (such as that provided by an in

home display) can reduce energy consumption by about 3% (Davis et al. 2013). Hence smart

meters have a role to play in mitigating against climate change.

We will present a critical, systematic review on the question of whether disaggregated energy

bills can reduce energy consumption in chapter 2.

23www.smartenergygb.org
24www.populus.co.uk

http://www.smartenergygb.org
http://www.populus.co.uk
http://www.smartenergygb.org
http://www.populus.co.uk
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1.3.5 Use-cases for NILM

In this section, we will consider some of the main use-cases for energy disaggregation.

Generating itemised energy bills to help people to save energy

Perhaps the most commonly cited use-case for NILM is to produce itemised, appliance-by-

appliance energy bills from a single electricity meter.

In this section, we will briefly describe the theoretical support for the idea that disaggregated

energy feedback might help people to use less energy. We will discuss the empirical evidence

for whether disaggregated energy feedback actually helps people to save energy in chapter 2.

At least since 1978, researchers have hypothesised that disaggregated energy data could help

people to save energy. Socolow 1977–1978, page 212 states:

“[Energy] savings were anticipated by our psychologists, who look on energy con-

servation as a problem in learning new skills... The analog of the future meter is

the sportscar’s dashboard, giving consumption (in money units?) separately for the

major appliances, with buttons to reset some meters to zero. The future bill makes

comparisons with one’s own past performance and with the current performance of

one’s peers.”

Furthermore, people, in general, want itemised energy bills. Multiple studies report that users

express a preference for (free) disaggregated energy data (Mansouri et al. 1996; Wilhite et al.

1999; Darby 2006; W. Anderson & White 2009; Fitzpatrick & Smith 2009; Ståhlberg 2010;

Karjalainen 2011; Vassileva et al. 2012; Snow et al. 2013; Krishnamurti et al. 2013; Rettie et al.

2014).

Let us illustrate this trend with a specific example from the literature: Wilhite et al. 1999

estimated disaggregated usage using aggregate data and a short questionnaire. The authors

sent a survey and disaggregated electricity use presented as a pie chart to 2 000 households in

Norway. 95% of respondents reported that they would be interested in receiving disaggregated

information on their electricity bill in the future; only 7% of respondents reported that the pie
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Table 1.3: Responses to the question “Do you think accurate
information of how to reduce the electricity consumption of ap-
pliances will help you reduce your household’s electricity bills?”
from 654 subjects. Adapted from Mansouri et al. 1996, p261,
with permission

‘A great deal’ ‘Moderately’ ‘Not very much’ ‘Not at all’

35.0% 47.9% 14.7% 2.4%

chart was difficult to understand; 84% reported that the pie chart gave them a better under-

standing of their home’s energy use; and 84% reported that the pie chart provides information

not available through other sources. However, only 20% of respondents reported that they

would like to receive disaggregated energy information via the internet (instead of on paper

bills). But remember that this study was done in 1999 when the world-wide-web was less than

ten years old!

When asked “Do you think accurate information of how to reduce the electricity consumption of

appliances will help you reduce your household’s electricity bills?” 82.9% of people responded

either ‘a great deal’ or ‘moderately’ (Mansouri et al. 1996 - also see Table 1.3). Mansouri et al.

1996 also found that 91% of people ‘regularly’ or ‘sometimes’ make a conscious effort to save

electricity.

But expressing a preference does not automatically imply that users will benefit from disaggre-

gated data.

There is also evidence that many people do not know how much energy each appliance uses:

that people have an “information deficit”.

Studies on residential energy users show that the vast majority are poor at estimating ei-

ther the consumption of individual devices or total aggregate consumption. Residents often

underestimate the energy used by heating and overestimate the consumption of perceptually

salient devices like lights and televisions (Kempton & Montgomery 1982). Residents’ failure to

correctly estimate energy consumption leads to higher total consumption.

How significant is occupant behaviour in determining total energy usage? Energy use can differ

by two or three times among identical homes with similar appliances occupied by people from

similar demographics (Socolow 1977–1978; Winett & Neale 1979; Seryak & Kissock 2003).
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These large differences in energy consumption are attributed to differences in behaviour. If

the home provided better feedback about which devices used the most energy then users could

tweak their behaviour to make more efficient use of appliances.

The implication of the “information deficit” model is that if we can “fix” this information deficit

then people will be empowered to save energy. For example, Wilhite & Ling 1995 write:

We can say with certainty that the following relationship holds true: Increased

feedback on consumption → Decrease in consumption.

This “information deficit” theory is now viewed with scepticism by some social scientists. See,

for example Hargreaves et al. 2010; Strengers 2013; Hargreaves et al. 2013.

Energy literacy

Saving energy is often highlighted as the main purpose of providing people with disaggregate

energy bills. But perhaps increasing energy literacy, in and of itself, is a worthy outcome of

providing disaggregated energy feedback.

For example, T. Schwartz et al. 2013 conducted a field trial and demonstrated that the partici-

pant’s energy literacy was increased when they were given a home energy management system

which recorded appliance level energy consumption using smart plugs.

Detailed logs of appliance usage

If users can be provided with logs of exactly when appliances are used then these logs could be

used to check for faulty automatic controls.

“Did I leave something on?”

Imagine a phone application which detects when you are about to leave the house and then

checks to make sure the clothes iron is off before you leave. This requires real-time disaggre-

gation of small appliances which is hard to compute. Nevertheless, Bidgely claim to offer a

service which can tell users which appliances are switched on, in real time (Bidgely 2015).
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Personalised energy saving recommendations

Disaggregated data might enable more accurate, personalised recommendations for saving en-

ergy. These recommendations might come from human advisers or from automated recom-

mender systems. For example, Fischer et al. 2013 provided automated advice for changing

tariffs; and Makriyiannis et al. 2014; Makriyiannis et al. 2016 provided automatic recommen-

dations for changing energy suppliers.

Identify malfunctioning or inefficient appliances

If disaggregated energy data is sufficiently accurate then it may be possible to identify broken

appliances. For example, identifying a fridge which defrosts more frequently than normal might

suggest that the fridge seal is damaged and should be replaced. However, Batra et al. 2016b

found that the NILM algorithms they tested had insufficient accuracy to detect faulty fridges.

Additionally, appliances such as digital video recorders, printers etc. which fail to fall asleep

appropriately could also be identified so their settings can be changed. Martin & Poll 2014

found that a 39% reduction in energy use could be possible on the multi-function devices they

studied just by changing the time-to-sleep setting. And H.-H. Chang et al. 2015 worked on

identifying ageing appliances using NILM.

Commercial and industrial consumers

Applying NILM to commercial and industrial buildings is an attractive proposition: commercial

organisations tend to be more economically rational than domestic users and so might be more

likely to want to reduce expenditure on energy consumption.

However, commercial NILM is hard. There might be many instances of the same type of appli-

ance (for example, Imperial’s Department of Computing must have hundreds if not thousands

of computers!) There are also likely to be many more simultaneous switching events in a com-

mercial building (Holmegaard & Kjærgaard 2015). A further problem is a lack of public data

from commercial buildings (there is only one public dataset from a commercial building that

we are aware of: COMBED25 (Batra et al. 2014b)).
25http://combed.github.io

http://combed.github.io
http://combed.github.io
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Despite these challenges, companies such as Verdigris26 claim to be able to provide NILM for

commercial buildings (M. Chang 2015).

For a recent review of NILM applied to commercial settings, see Liu & Chen 2014.

Help architects to design energy-efficient buildings

Whole building energy simulation (BES) software attempts to predict the energy use for an

occupied building. These predictions are typically categorised by end-use (cooling, lighting,

heating, etc.). An example is the free, open-source EnergyPlus27 software developed by the US

Department of Energy. Whole building energy simulation can be used in at least four contexts:

Building design: Estimate the energy performance of a proposed building to confirm whether

it will comply with energy-related building regulations and to predict energy costs.

Explore alternative energy efficiency measures: Either during the design phase of a pro-

posed building, or during the planning phase for an energy retrofit for an existing building,

designers can compare the cost-effectiveness of alternative energy conservation measures.

Identify inefficiencies in a commissioned building: If a building uses more energy than

it was predicted to use then comparing the actual, disaggregated usage with the predicted

usage may identify specific actions to reduce actual energy consumption. For example,

Yan et al. 2012 demonstrate a simplified building energy performance assessment method

using energy disaggregation and energy performance analysis.

Model Predictive Control (MPC): Build a forward model of the building and use this,

combined with real-time measurements from the building, to inform a controller. This

controller also has some optimisation objective (e.g. to minimise energy consumption).

The controller aims to find the optimal set of commands for systems within the building

in order to satisfy its optimisation objective. For example, Hu & Karava 2014 developed a

linear time-variant state-space model predictive controller which found sequences of binary

(open/close) commands for the motorised windows. Mahendra et al. 2015 developed a

‘reactive’ energy management system which responds to unplanned events in order to
26http://verdigris.co
27https://energyplus.net

http://verdigris.co
https://energyplus.net
http://verdigris.co
https://energyplus.net
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maintain the occupant’s comfort and energy requirements. Mehendra et al. did not use

energy disaggregation but disaggregated data would surely help to inform their controller.

Whole building energy simulation models for commercial buildings are routinely calibrated

with disaggregated energy data available from the building management system present in

many commercial buildings (Reddy et al. 2007; Bertagnolio 2012; Coakley et al. 2012). For a

recent review of building model calibration see Royapoor & Roskilly 2015.

A well-documented issue with BES models is there is often a large gap between the predicted

energy performance and the actual performance. Energy disaggregation could help to pinpoint

the appliances or usage behaviours which contribute to the ‘performance gap’ and hence can

help building owners to improve energy efficiency of existing buildings and can help architects

to build better predictive models for future design projects.

If a building already has a building management system (BMS) then some disaggregated energy

data is probably already available on the BMS (measured by sub-meters connected to the BMS).

Even so, in a review of methods to match building energy simulation models to measured data,

Coakley et al. 2014 cite energy disaggregation as a way to help align model with measurement

even in commercial buildings with a BMS. Furthermore, domestic buildings rarely have a BMS.

Instead, domestic buildings only have a single whole-house meter. Hence disaggregation could

be used to identify the energy consumed by individual appliances in order to help to identify

why a domestic building is not performing as predicted and to help in the future to inform the

modelling of proposed domestic buildings.

Allow grid operators to improve predictions of energy demand

In order to manage the electricity grid, the operator needs to be able to predict demand because

large generators take time to react. Disaggregation may help the electricity grid to better predict

demand. For a recent review of modelling residential electricity demand, see Torriti 2014.

Enable higher accuracy whole-system energy models

Models of the entire energy system of a country or sub-national area are used for a variety of

tasks including planning new electricity infrastructure. Bottom-up physical models of buildings
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currently tend to use aggregated ‘typical home’ consumption patterns. This aggregation may

provide sufficiently accurate models at national level but may be inaccurate at sub-national

level (Cheng & Steemers 2011; Natarajan et al. 2011). As such, disaggregated energy data might

help to inform building physics models. The International Energy Agency recently wrote:

“The Energy Information Administration (EIA) is investigating the potential ben-

efits of incorporating interval electricity data into its residential energy end use

models. This includes interval smart meter and submeter data from utility assets

and systems. It is expected that these data will play a significant role in informing

residential energy efficiency policies in the future. Therefore, a long-term strategy

for improving the RECS end-use models will not be complete without an investiga-

tion of the current state of affairs of submeter data, including their potential for use

in the context of residential building energy modeling.” - U.S. Energy Information

Administration (EIA) 2015

See Kavgic et al. 2010 for a review of bottom-up physics modelling of housing stock.

Allow utility companies to better segment their users

Utility companies segment their users in a variety of ways. Disaggregated energy data may

allow for more fine-grained segmentation.

Track changes in energy demand in response to interventions

When users make a change to their energy system, such as swapping incandescent lights for

LED lights, it may be useful to be able to measure and attribute a specific energy saving to

that intervention. NILM could help to track changes and attribute changes in total energy

demand to specific interventions.

Targeted demand side response

Demand side response (DSR) involves electrical loads (such as fridges or aluminium smelters)

modifying their consumption behaviour in response to a signal from the electricity grid (Strbac
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Figure 1.5: GB electricity demand profiles for two typical days: one in summer and one in
winter. Source: Gavin 2014.

2008). Devices such as fridges and aluminium smelters have significant “thermal mass” and

so they maintain a temperature adequate for their continued operation for a short while after

they turn off. Hence these loads can safely turn off for short times without affecting their

performance. There are two reasons why demand side response might be useful.

Firstly, each country’s electricity demand changes over the course of the day (see Figure 1.5). In

winter, Britain’s electricity demand peaks at around 55 GW at 5pm and drops to under 40 GW

overnight. The country needs to pay for and build sufficient generation and transmission

capacity to satisfy the peak demand; even though the average demand is significantly lower

than the peak. This results in an energy system which is more expensive to run than if demand

was flat during the day. Demand side response can help to shift demand away from the peak,

hence reducing the total cost of the energy system, even though the average daily consumption

remains the same. A recent review of the costs and benefits of DSR in the UK found that “the

economic care for [demand response] in UK markets in positive” (Bradley et al. 2013).

The second benefit of DSR is that it can help to reduce the grid’s carbon intensity (i.e. reduce

amount of CO2 emitted per kWh of electricity generated). Renewable generation sources such

as wind, solar and tidal do not generate electricity continuously; and electricity storage is

expensive and of very limited capacity. If we cannot control the supply then we must control

the demand to match the supply, which is what DSR enables us to do. For example, Harris et al.
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2015 performed a modelling study and found that greenhouse gas emissions could be reduced

by 21-35% through a “best-case” application of their “Locational Marginal Price Emissions

Estimation Method (LEEM)” to shift demand.

How could NILM help with DSR? One answer is that NILM could be used to validate “be-

havioural DSR” where utility companies send messages to the human users of appliances to

ask them to turn down their appliances (e.g. “please turn off your air conditioning unit for half

an hour to help smooth out the current peak in demand”).

Even when utility companies have nominally automatic control over appliances, that control

can fail. So, in this scenario, it can be beneficial to use NILM to validate that appliances have

turned off (Witherden et al. 2013).

Furthermore, Yilmaz et al. 2015 built a simulator of appliance usage. This simulator was based

on information such as switch-on times taken from real power demand data from appliances.

The authors built a model to estimate the demand response potential. This sort of simulation

could be informed by NILM, rather than having to go to the expense of installing individual

meters on each appliance. For a recent review of simulations of household appliances with DSR

enabled, see Ozoh & Apperley 2015.

There is evidence to suggest that users respond favourably to automated energy manage-

ment (Buchanan et al. 2016).

Energy disaggregation can also help to identify which loads are flexible enough for demand side

response Su et al. 2015.

The European Commission ran a project in 2009 called “Smart Domestic Appliances in Sus-

tainable Energy Systems (Smart-A)” (Intelligent Energy Europe 2009) which looked at ways

to match domestic electricity demand to intermittent renewable supply by modifying the run

times of domestic appliances. The report was based on a literature survey to compile data on

the usage patterns of domestic appliances. In the future, this appliance usage data could be

gathered from a much wider population by using NILM.



1.3. Motivation: proposed benefits of NILM 25

Appliance recognition

A task which is related to NILM but distinct from it is appliance recognition. Here the task

is that we have data from a meter which measures a single appliance but we do not know

the identity of that appliance. An appliance recognition system will attempt to identify the

appliance just from its power demand profile. For examples of this type of work, see Antonio

Ridi et al. 2013 and S. Barker et al. 2014.

Enable large-scale surveys into energy usage behaviour

Large-scale surveys into domestic energy behaviour are expensive to conduct if every home must

have multiple sub-meters installed. For example, collecting the HES dataset (Zimmermann et

al. 2012) cost UK taxpayers £850 000. Hence disaggregation could help to substantially reduce

the financial cost of such studies (Cambridge Architectural Research Ltd. & Loughborough

University 2013).

Apportion energy consumption to individuals or activities

“Conventional NILM” attempts to apportion energy consumption to appliances. But people

often use appliances as part of a larger task. For example, cooking dinner might require the

kettle, hob, oven and microwave. The aim of this research is to provide users with a measure

of total energy consumed by activities or by specific people in a shared dwelling.

For example, Bedwell et al. 2014 reviewed the issues involved in apportioning energy consump-

tion to individuals in the workplace. And Stankovic et al. 2015 studied domestic appliance

usage through their association with common activities.

Occupancy monitoring

Given disaggregated energy data, it may be possible to infer the occupancy state of the building;

and possibly to infer whether the occupant is moving around. This could be used to remotely

monitor the health of, for example, elderly people (Belley et al. 2013; Kalogridis & Dave 2014;



26 Chapter 1. Introduction

Alcalá et al. 2015). Or it could be used to inform a heating controller (Spiegel & Albayrak

2014; Spiegel 2015).

This technology also has security and privacy implications. We are aware of one NILM company

who publicly advertised their ability to detect the occupancy schedules of individuals so that

utility companies could schedule marketing cold-calling campaigns.

Drive consumers to engage with utilities online

Call centres are expensive. So utility companies can reduce costs if they can increase the

proportion of their customers who engage with the company via their website rather than via

call centres. Adding disaggregated energy information to the utility company’s website might

help to encourage more users to interact via the web. For example, Chakravarty & Gupta 2013

showed high levels of consumer engagement with disaggregated energy data.
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1.4 Contributions and thesis outline

This thesis makes a number of contributions, which fall under three broad categories: 1) to

critically evaluate the benefits of energy disaggregation; 2) to develop tools to enable rigorous

disaggregation research; and 3) to advance the state of the art in disaggregation algorithms.

1.4.1 Critical evaluation of the benefits of energy disaggregation

In chapter 2 we describe what is – to our best knowledge – the only systematic review of

studies on the effectiveness of disaggregated energy feedback to help people to reduce their

energy consumption.

In chapter 3 we discuss some of the most prominent threats and challenges to NILM.

We conclude that more social science research into the effects of disaggregated energy feedback

is required. This motivates the remainder of the thesis: to enable cost-effective research into

the effects of disaggregated feedback, we work towards developing robust NILM algorithms and

software.

1.4.2 Tools to enable rigorous disaggregation research

We present three tools:

Energy disaggregation researchers require data recorded in the field in order to train and validate

disaggregation algorithms. We designed a novel, cost effective data collection system and used

this to collect the only UK dataset with kilohertz temporal resolution. This dataset is called

the UK Disaggregated Appliance-Level Electricity dataset (UK-DALE) and is described in

chapter 4.

The second tool was designed to help the disaggregation community to conduct open, rigorous,

repeatable research. We collaborated with other researchers to build the first open-source

disaggregation framework, NILMTK (the non-intrusive load monitoring toolkit). NILMTK

has gained significant traction in the community, both in terms of contributed code and in

terms of users. NILMTK is described in chapter 5.
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The third tool described in this thesis is a metadata schema for disaggregated energy data.

This schema was developed to make it easier for researchers to describe their own datasets and

to reduce the effort required to import datasets. The NILM Metadata schema is described in

chapter 6.

1.4.3 Advancing the state of the art in disaggregation algorithms

We describe three disaggregation approaches that we developed using deep learning. One ad-

vantage of deep learning is that it can automatically learn features from the data, rather than

requiring manual feature engineering. Our Neural NILM experiments are presented in chap-

ter 9. The disaggregation performance was measured using seven metrics and compared to two

‘benchmark’ algorithms from NILMTK: combinatorial optimisation or factorial hidden Markov

models. To explore how well the algorithms generalise to unseen houses, the performance of

the algorithms was measured in two separate scenarios: one using test data from a house not

seen during training and a second scenario using test data from houses which were seen during

training. All three neural nets achieve better F1 scores (averaged over all five appliances) than

either benchmark algorithm. The neural net algorithms also generalise well to unseen houses.

Finally, in chapter 10 we conclude the thesis.

1.5 Statement of originality

I declare that this thesis was composed by myself, and that the work that it presents is my own

except where otherwise stated.

1.6 Publications

Where a publication forms the basis of a chapter in this thesis, that chapter is stated in bold

type after the publication reference. My list of publications is also available on Google Scholar28.
28https://scholar.google.co.uk/citations?user=Z9L0TgsAAAAJ&hl=en

https://scholar.google.co.uk/citations?user=Z9L0TgsAAAAJ&hl=en
https://scholar.google.co.uk/citations?user=Z9L0TgsAAAAJ&hl=en
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Critically evaluate the effectiveness of

disaggregation
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Chapter 2

Does disaggregated electricity feedback

reduce domestic electricity

consumption?

In this chapter, which is based on Kelly & Knottenbelt 2016, we present a systematic review of

twelve studies on the efficacy of disaggregated energy feedback. In section 1.3.5 we discussed

the theories which suggest that disaggregated feedback should enable users to save energy. In

the following section, we discuss the empirical evidence as to whether people actually save

energy when given disaggregated data. We discuss four main questions:

1. Can disaggregated energy data help an already-motivated sub-group of the general pop-

ulation (‘energy enthusiasts’) to save energy?

2. How much energy would the general population save if given disaggregated data?

3. Is fine-grained disaggregation required?

4. For the general population, does disaggregated energy feedback enable greater savings

than aggregate data?

32
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2.1 An introduction to systematic reviews

Systematic reviews are common in fields such as medicine and the social sciences. Systematic

reviews aim to find results which are robust across multiple studies as well as opportunities for

future research. The process starts with a search, using predefined criteria, for existing papers.

Results and possible biases are extracted from each paper, collated and combined. See Garg

et al. 2008 for a discussion of systematic reviews.

Our work is, to the best of our knowledge, the first systematic review on the effectiveness of

domestic, disaggregated electricity feedback.

There is a distinction between narrative reviews and systematic reviews. Most review articles

are narrative reviews. These are written by domain experts and contain a discussion of existing

papers. Narrative reviews are often very valuable. But they are rarely explicit about how

papers were selected and rarely attempt a quantitative synthesis of the results.

Systematic reviews aim to cover all papers which match defined criteria relevant to a specific

research question. Systematic reviews are explicit about how papers were selected and present

a quantitative summary of each paper and a quantitative synthesis of the results. Systematic

reviews may contain a ‘meta-analysis’ where results from each study are combined into a sin-

gle statistical analysis which provides greater statistical power than any individual study can

deliver.

Systematic reviews are not perfect, of course. Bias can still creep in via the selection process;

and different statistical analyses may present different results.

Why bother with systematic reviews? Replication is essential to the scientific process. Peer

review is necessary but not sufficient to ensure that individual studies present an accurate

estimate of the ‘true’ state of the world. Reviewers rarely, if ever, attempt to replicate results;

possibly because there is insufficient reward to motivate reviewers to spend time on replication.

Instead it is left to the community to attempt to replicate results. Recent large-scale replication

projects suggest that replicable results may be the exception rather than the rule. An attempt

to replicate results from 98 psychology papers could only replicate 39% of the results (Baker

2015; Open Science Collaboration 2015). A similar study in cancer biology found that only 6

of the results in 53 high-profile papers could be replicated (Baker 2015; Begley & Ellis 2012).
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Hence it is advisable to exercise appropriate scientific scepticism when reading any single study;

and it is beneficial to collect all papers on a specific question to identify results which are robust

across studies.

2.2 Methodology

Broadly, this chapter discusses whether deployment of disaggregation across the entire pop-

ulation is likely to reduce energy consumption. We assume that disaggregated data for a

population-wide deployment would be delivered via websites, smart-phone applications and/or

paper bills.

We found twelve groups of studies on the question of whether disaggregated energy data helps

users to reduce their energy demand. These studies are summarised in Table 2.1.

We aimed to do an exhaustive search of the literature (although we acknowledge the possibility

that we missed studies). We used three search engines: Google Scholar, the ACM Digital

Library and IEEE Xplore. The search terms we used were ‘disaggregated [energy|electricity]

feedback’ and ‘N[I|A|IA]LM feedback’. These searches produced a huge number of results,

many of which were not relevant to our research question. We manually selected papers which

test the effectiveness of disaggregated electricity feedback. We accepted experiments conducted

either in a laboratory environment or in a field test. We also searched the bibliography sections

of papers to find more papers. For example, a review article by Ehrhardt-Martinez et al. 2010

contained references to five relevant studies on disaggregated energy feedback.

2.3 Can disaggregated electricity feedback enable

‘energy enthusiasts’ to save energy?

The mean reduction in electricity consumption across the twelve studies (weighted by the

number of participants in each study) is 4.5%. However, as we will discuss below, this figure

is likely to be positively-biased and has a substantial (although unquantifiable) amount of

uncertainty associated with it.
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Aggregating the results by taking the mean of the energy savings across the twelve studies is

a crude approach. It would have been preferable to do a full meta-analysis where biases are

identified and compensated for (Garg et al. 2008). Davis et al. 2013 did such a meta-analysis

for studies on aggregate energy feedback. But the studies on disaggregated feedback appear to

us to be too varied and, perhaps most fundamentally, six of the twelve studies only provided

a point estimate of the effect size. At the very least, a meta-analysis requires that each study

provides a point estimate and a measure of the spread of the results.

We must also be explicit about the likely biases in each study. Please note that this is not an

attack on the papers in question. We appreciate that it is not possible to conduct a ‘perfect’

study. The real world is messy and researchers cannot control for everything. Being explicit

about the biases allows us to assess how much trust we should put into the assertion that

disaggregated energy feedback reduces consumption by 4.5%.

There are several sources of positive bias present in the papers. All twelve studies are prone to

‘opt-in’ bias, where subjects self-selected to some extent and so are likely to be disproportion-

ately interested in energy.

Eight studies did not control for the Hawthorne effect. This strange effect is where participants

reduce their energy consumption simply because they know they are in an energy study. For

example, D. Schwartz et al. 2013 conducted a controlled study on 6 350 participants, split

equally between control and treatment groups. Subjects in the treatment group received a

weekly postcard saying: ‘You have been selected to be part of a one-month study of how much

electricity you use in your home... No action is needed on your part. We will send you a

weekly reminder postcard about the study...’ Participants who received these postcards reduced

their consumption by 2.7%. Hence studies on disaggregated energy feedback which do not

control for the Hawthorne effect are likely to over-estimate energy savings attributable to the

disaggregated energy feedback.

Six studies used feedback displays which were probably more attention-grabbing than the feed-

back mediums that would be used in a population-wide roll-out of disaggregated energy feed-

back. For example, Dobson & Griffin 1992 installed dedicated desktop PCs in participants’

kitchens (see Figure 2.1). Some studies gave home-visits to some participants to enable addi-

tional reductions (e.g. T. Schwartz et al. 2015; Brown 2014; HEA 2015). All but two studies

were too short to observe whether energy reductions persist long-term. Perhaps some authors
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Figure 2.1: The desktop PC used to display disaggregated energy data in the trial performed
by Dobson & Griffin 1992.

experimented with multiple statistical techniques until one delivered a significant result. And,

finally, Churchwell et al. 2014 found that some users do not trust the output from disaggre-

gation algorithms so it is significant that eight studies used disaggregated data collected by

installing meters on individual appliances instead of using a disaggregation algorithm; hence

avoiding any mistrust of disaggregated estimates.

As well as being explicit about biases in each study, we must acknowledge that the literature

as a whole may be prone to publication bias. How many negative results exist unpublished?

Perhaps academics fear that reviewers would reject a null result? Might companies fear that

customers or shareholders would be driven away? A study on publication bias in the social

sciences found that positive results are 60% more likely to be written up than null results and

40% more likely to be published (Franco et al. 2014). Franco et al. 2014 propose that science

would benefit from mechanisms to reduce the effect of publication bias, such as pre-registering

experiments.

Despite these sources of bias, there is evidence that energy disaggregation can enable energy

savings for ‘energy enthusiasts’. Two large studies illustrate this assertion:

One group of studies analysed the disaggregation service provided by Home Energy Analytics

(HEA) (Schmidt 2012; HEA 2012; HEA 2013; Brown 2014; HEA 2015). All participants

opted into HEA’s system and hence could loosely be considered ‘energy enthusiasts’. In total

the HEA papers examine 1 623 users. 1 239 used the system for up to 44 months; the rest

http://corp.hea.com
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used the system for one year. The average reduction in electricity consumption across all

1 623 ‘energy enthusiasts’ was 6.1%. The top-quartile (310 ‘super-enthusiasts’) reduced their

electricity consumption by 14.5%. But note that none of the HEA studies had a control group;

and some participants received home visits to help them to reduce their energy consumption.

Another large study was performed in 2014 over three months on 1 685 PG&E users (Churchwell

et al. 2014; Bidgely 2015). Half received an in-home display (IHD) and half received access

to Bidgely’s website (which includes disaggregation). No statistically significant reduction in

consumption was found across all 1 685 users, despite positive biases (e.g. users could choose

between the IHD or Bidgely). However, a sub-group of users on a time-of-use (TOU) tariff

(‘energy enthusiasts’) saved 7.7%; this group consisted of 142 IHD users and 136 Bidgely users.

2.4 How much energy would the whole population save

if given disaggregated data?

All twelve studies suffer from opt-in bias to some extent. Seven studies have a high risk of

opt-in bias because participants sought out the intervention. As such, the study participants

are unlikely to be representative of the general population. No ‘perfect’ correction for opt-in

bias exists.

What will the average energy saving be across the population if, say, the majority of the

population completely ignores disaggregated energy feedback but a small sub-population of

‘energy enthusiasts’ save 4.5%?

How can we estimate the proportion of ‘energy enthusiasts’ in the population? Three studies

reported the number of people approached to participate versus the number who agreed to

participate (Wood & Newborough 2003; HEA 2015; Sokoloski 2015). This ‘opt-in rate’ is

a crude estimate on the lower bound of the proportion of the population who are ‘energy

enthusiasts’ (because, in order to agree to participate in an energy study, people probably need

to be energy enthusiasts and also have time to participate in the study and be willing to let

experimenters into their homes etc.). The average opt-in rate is 16%. This is consistent with

Murtagh et al. 2014 who estimate that 20% of the population are ‘[energy] monitor enthusiasts’.

If 16% of the population reduced their energy consumption by 4.5% then the mean reduction
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Table 2.1: Studies on the effectiveness of disaggregated energy feedback.
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“RECS”
Dobson & Griffin 1992

dedicated
computer 25 100 ∼ 8 2 12.9 3 0.6 sec 0 H&C HDM 7 3 3 La 3

McCalley & Midden 2002
Virtual
washing
machine b

25 100 1 - 0.0 7 - 0 H&C - G 3 3 L -

Wood & Newborough 03;
Mansouri & Newborough 99

LCD by
cooker 10 44 1 ≥ 2 12.2 7 15 sec 0 C - 7c 3 3 L 3

“ECOIS-I”
Ueno et al. 2006b;
Ueno et al. 2006c

Dedicated
laptop 8 8d 16 2 9 3 30 min next

day H D,
10D P 7 7 H# 3e

“ECOIS-II”
Ueno et al. 2005;
Ueno et al. 2006a;
Ueno et al. 2006c

Dedicated
laptop 10 19 16 3 18 3 30 min next

day H D,
10D P 3 3 H# 3

“EnergyLife” trial 1
Jacucci et al. 2009;
Spagnolli et al. 2011;
Gamberini et al. 2011

iPhone 13 13 7 3 5 3 ? 1-2
min H&C D P 7# 7# H# 7#

“EnergyLife” trial 2
Gamberini et al. 2012 iPhone 4 4 7 4 38 7 ? 1-2

min H&C D P 7 7# H# 7#

Home Energy Analytics
HEA 2012; HEA 2013;
Brown 2014; HEA 2015

Web &
email &
home
visits

1623 1623 5 ≤ 44 6.1 3 hourly 0 H Y P 7 7 L 3

Bidgely
Chakravarty & Gupta 2013;
Gupta & Chakravarty 2014

Web,
mobile,
email

163 328 ≥ 3? - 6 3
30 sec
& 1 hr 0f H&Cf DBY P 3 7 H 3

PG&E Pilot
Churchwell et al. 2014;

Bidgely 2015

Web,
mobile,
email

844 1685 ≥ 3? 3 2.1 3 30 sec 0f H&Cf DBY P 3 7 H 3

T. Schwartz et al. 2015 Web,
mob, TV 6 6 ∼ 10 18 7.8 3 ? 0? H&C ? ? 7 7 H 7

Sokoloski 2015
Web,
mob,
email

12 70 ≥ 3? 0.75 3 3 30 sec 0f H&Cf DBY P 3 7 L 3

A dash ‘-’ in a cell means ‘not applicable (NA)’ and ‘?’ means ‘not specified in paper’.
U Absolute reductions minus reductions for the no-contact control (or the most similar group to a no-contact control available).
R Recommendations can be ‘P’ for ‘personalised’ or ‘G’ for ‘general’ or ‘7’ for none given.
V Volunteer bias can be ‘H’ for ‘high’ (subjects sought out the intervention) or ‘L’ for ‘low’ (subjects were approached by the

experimenters but only a fraction agreed to participate).
T H=hourly, D=daily, M=monthly, Y=yearly, B=current billing cycle.
# Paper is silent on this question. Assume the worst.
a Dobson & Griffin 1992 do not state exactly how households were recruited. They write “100 all-electric households were
qualified from a random sample drawn from a population of approximately 8800 such houses”. I assume households were not
forced to participate so they must have self-selected to some extent.

b A washing machine control was simulated on a computer. The reported energy reduction is only for the simulated washer.
The no-feedback-no-goal condition and the feedback-no-goal conditions achieved the same reduction (11%), hence the
difference in energy savings between those two conditions is 0%.

c One group received both real-time energy feedback for the cooker and a printed information pack of general
recommendations but this group achieved lower energy savings (8.9%) than the group which only received energy feedback.

d ECOIS-I started with 9 houses but one house was excluded because it had solar PV installed.
e Ueno et al. 2006b report that the “average ambient temperatures before and after installation were 6.4 and 6.8 ℃,
respectively. Generally, the power consumption of the whole household increases with the fall in ambient temperature in
winter; hence, it is thought that the true effect was more than this 9% value.”

f Aggregate data was displayed real-time. Disaggregated data was not real-time.

http://corp.hea.com/results
http://www.bidgely.com
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would be 0.7%.

This may seem rather pessimistic. We assumed that 84% of the population (the ‘disinterested’)

would save no energy. Perhaps this is a little unrealistic: we might hope that some proportion

of the ‘disinterested’ group would save a little energy. Furthermore, we used a crude method

to determine a lower bound on the proportion of ‘energy enthusiasts’ in the population. But

remember that we have multiple reasons for believing that a 4.5% saving across the ‘energy

enthusiast’ population is an over-estimate. We assume that these negative and positive biases

cancel out, although we cannot be sure.

Also note that we simply have no good evidence for how the general population would react to

disaggregated energy data. However, related studies have found that effect sizes reported on

opt-in groups are often substantially diminished when studied on the general population (Davis

et al. 2013).

Can we compare these figures to other research? A study involving 2 000 Swedish house-

holds found that participants who visited a website which provided user-friendly analysis of

their aggregated electricity consumption reduced their electricity consumption by 15% on av-

erage (Vassileva et al. 2012). The savings sustained for the duration of the four-year study.

But only 32% of those with access to the website visited the website. Households who did not

visit the website did not reduce their energy consumption. Hence the average energy reduction

across all households with access to the website was 32%× 15% ≈ 5%.

2.5 Is ‘fine-grained’ disaggregation necessary?

Much research into disaggregation aims to deliver ‘fine-grained’ estimated power demand for

each appliance at relatively high temporal resolution (e.g. 0.1 Hz). Fine-grained disaggregation

algorithms are complex to engineer and often computationally expensive to run. Is it worth the

effort? Home Energy Analytics (HEA) do ‘coarse-grained’ disaggregation: they disaggregate

energy usage into five broad categories at monthly temporal resolution (see Figure 2.2). Despite

the coarse granularity of the feedback, HEA achieved significant average reductions in electricity

usage of 6.1% (Schmidt 2012; HEA 2012; HEA 2013; Brown 2014; HEA 2015). HEA’s results

tell us that fine-grained feedback is certainly not required. Fine-grained feedback enables many

http://corp.hea.com
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Figure 2.2: An example of the ‘coarse-grained’ disaggregation performed by HEA. Source:
http://corp.hea.com/how-it-works (with permission).

use-cases not discussed here but, on the question of the efficacy of feedback to drive energy

reductions, we simply do not know if fine-grained feedback is more effective because no studies

compared fine-grained against coarse-grained feedback. Fine-grained feedback might be less

effective because some users do not trust it (Churchwell et al. 2014).

2.6 Does aggregate or disaggregated feedback enable greater

savings for the whole population?

Four studies directly compared aggregate feedback against disaggregated feedback. Three of

these studies found aggregate feedback to be more effective than disaggregated feedback (Kr-

ishnamurti et al. 2013; Churchwell et al. 2014; Sokoloski 2015). The fourth study found disag-

gregated feedback and aggregate feedback to be equally effective (McCalley & Midden 2002).

Are there any explanations for this counter-intuitive result?

Two of the four studies (McCalley & Midden 2002; Krishnamurti et al. 2013) were synthetic

computer simulations and so may not generalise to ‘real life’.

The other two studies were well controlled field studies (Churchwell et al. 2014; Sokoloski

2015). In both field studies, aggregate feedback was displayed on an always-on IHD whilst

http://corp.hea.com/how-it-works
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disaggregated data was displayed on Bidgely’s website (which has since been redesigned (Bidgely

2015)). Participants in the disaggregation groups did not have an IHD. Sokoloski 2015 found

that, on average, participants in the IHD condition viewed the IHD eight times per day whilst

participants in the disaggregation condition viewed the website only once per day. Churchwell

et al. 2014 found a similar pattern and also reported that some participants did not trust the

fine-grained disaggregated data. Perhaps aggregate data is not intrinsically more effective than

disaggregated data; instead, perhaps IHDs are more effective than websites or mobile apps.

Perhaps dedicated displays for disaggregated data may help enhance efficacy, although this adds

costs. Or, as Sokoloski 2015 suggests, efficacy may be increased by combining disaggregated

feedback presented on a website with aggregate feedback presented on an IHD.

Furthermore, a meta-analysis of the efficacy of aggregate energy feedback suggests it alone

achieves 3% energy savings (Davis et al. 2013). This analysis adjusted for several (but not all)

biases.

2.7 Suggestions for future research

There are several gaps in the existing literature. Below is a list of suggestions for new experi-

ments.

No existing field studies compared aggregate feedback against disaggregated feedback on the

same type of display. The studies which did compare aggregate feedback against disaggregated

feedback used an IHD for aggregate feedback and a website for disaggregated feedback and

found that the aggregate feedback was more effective at reducing energy demand. But we

cannot rule out that this result is simply because users viewed the IHD more frequently than

they viewed the website. Hence it would be valuable to run an experiment where both the

‘aggregate’ and ‘disaggregated’ groups received feedback on the same device (e.g. an IHD with

a dot-matrix display to display disaggregated feedback).

A related study would explore the effectiveness of aggregate feedback presented on an IHD

combined with access to disaggregated data on a website; compared to just the IHD. The IHD

might pique users’ interest and motivate them to explore their disaggregated energy usage on

a website or smart phone. For example, Elburg 2015 state that “In-home displays appear to be
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a crucial ‘stepping stone’ to kick-start consumer interest and engagement in accessing energy

information, especially amongst less committed or experienced consumers. Sophisticated web-

based services on PC, tablet and smart phone are potentially more powerful to help reduce energy

demand, but in practice more so with already committed and technology minded subsets of the

population. Therefore, opt-in websites or apps should not be considered as the contemporary

substitute for in-home displays, but rather as a complementary option.” Furthermore, Snow

et al. 2013 argue that disaggregated data may have a role to play in maintaining and sustaining

the effect of feedback. And Ståhlberg 2010 surveyed energy users and found that the option to

have both an in-home-display and access to a web portal was the second-favourite option. The

UK Government’s Department of Energy and Climate Change recently announced that they

will allow utility companies be temporarily exempted from the requirement to supply IHDs to

all customers if the utility company wishes to run a rigorous trial of an alternative feedback

technology (DECC et al. 2016).

How ‘granular’ does the disaggregated energy feedback need to be to enable people to save

energy? The HEA studies show a 6.1% electricity saving despite the fact that their platform

provides relatively coarse feedback (it is coarse both in the temporal dimension and in terms of

the categories that they disaggregate into). HEA do not publish full details of their algorithm

but it may be similar to Batra et al. 2016c, which is much more straight-forward to implement

and to compute than many NILM algorithms. Are highly-granular NILM algorithms worth the

extra engineering effort?

How does the general population respond to disaggregated energy data? Do different sub-groups

of the general population react differently? Evidence presented in both Churchwell et al. 2014

and Sokoloski 2015 suggest, with low statistical confidence, that sub-groups react differently.

If sub-groups do react differently, what proportion of the population save energy when given

access to disaggregated energy data and what features define this sub-population? For example,

is a pre-existing, deep concern about climate change necessary to enable users to save energy

when given disaggregated data? Do ‘fuel-poor’ users in the developed world or the developing

world pay more attention to disaggregated feedback than rich people because saving money is

more critical to them?

In my analysis, I grouped all studies together using quite a loose definition of ‘disaggregated

feedback’. The studies use a diverse set of disaggregation approaches. Some studies only provide
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feedback on a single appliance. Some were synthetic lab studies whilst other were field trials.

Some provided disaggregation at the level of appliances; others at the level of load type. There

are probably too few studies to allow a meta-analysis to meaningfully attribute variance to

these different factors. But a Bayesian network meta-analysis may be able to provide additional

insight if used with informative priors (Gelman & Hill 2007; J. Zhang et al. 2015).

Can disaggregated energy feedback drive long-term energy reductions? All but one study ran

for five months or less and so cannot speak to this question. HEA’s studies ran for up to 44

months and found an average electricity reduction of 6.1% but that was in a sub-population

who were motivated to save energy. Manifest Mind, a consultancy, has a phrase for the rapid

decay in enthusiasm that users have for home energy management devices: “Mean Time to

Kitchen Drawer” (Walton 2015).

How important is immediate, real-time disaggregated feedback? None of the studies compared

real-time disaggregated feedback to offline feedback. Real-time disaggregation is computation-

ally harder and likely to be less accurate than ‘offline’ disaggregation because just the start of

the appliance signature is available. Three studies provided real-time disaggregated feedback

(Dobson & Griffin 1992; McCalley & Midden 2002; Wood & Newborough 2003). The aver-

age saving across these three studies is 9.4% and the average across the studies using ‘offline’

disaggregation is 11.6% but this comparison is too crude to draw any robust conclusions.

What happens if disaggregated energy data is displayed on one or more dedicated displays?

This could be a single, central display. Or multiple displays, one near each appliance. See

Wood & Newborough 2007 for further discussion. None of the studies that I reviewed compared

different ways of presenting disaggregated energy data. Neither did any of the general studies

on changing habits using digital technology reviewed by Hermsen et al. 2016. Sokoloski 2015

commented that the relatively low energy savings in her disaggregation group (3% compared

with 10.6% in the IHD group) may, at least in part, be due to the fact the people viewed the

disaggregation website only once a day whilst subjects in the IHD group viewed their IHD eight

times a day, on average: a highly significant difference (p < 0.001). Displaying disaggregated

data on an IHD may be possible. But, in the UK at least, IHDs are to be supplied to all

customers, free of charge. Which means that utility companies are eager to absolutely minimise

the cost of IHDs. Even a cost increase of a few pennies would be unattractive.

Does disaggregated energy feedback displayed on a paper energy bill drive energy savings more
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or less effectively than disaggregated feedback displayed on a website?

How many unpublished studies reached negative conclusions about the effectiveness of disag-

gregated energy data but remain unpublished because of the publication bias towards positive

results?

Can disaggregated energy data alone (without recommendations) produce energy savings? Or

is the power of disaggregation that it can enable better personalisation of recommendations?

If recommendations are required then do they have to be personalised recommendations?

Does normative feedback on disaggregated data (e.g. “your fridge is using more energy than

most fridges”) help people to save energy? There is evidence that normative feedback on aggre-

gate energy data is not effective. Negative normative feedback (“you are doing worse than most

people”) could be seen as a kind of high-tech bullying and just makes people feel uncomfort-

able without producing results. Positive normative feedback (“you are doing better than most

people”) might make people feel complacent and actually drive an increase in consumption.

Do users who already use a low amount of energy increase their energy consumption when

given feedback? For example, Sokoloski 2015 found that ‘low’ energy users increased they

energy consumption by 7.98% when given disaggregated energy data whilst ‘high’ energy users

decreased their consumption by 8.84%. Similar trends were found for aggregate energy feedback

by Bittle et al. 1979–1980 and Brandon & Lewis 1999.

What is the effect of different groupings of disaggregated energy data? For example, what is the

effect if energy consumption is itemised by activity rather than by appliance? Wood & Newborough

2007 discuss several ways to group appliances and Rettie et al. 2014 argues that it is important

to provide feedback in terms of activities rather than energy consumption or price; and to talk

in terms of ‘wastage’.

Pullinger et al. 2014 discusses the need to provide users with ‘practice-based’ advice (where a

‘practice’ is an action such as doing the washing or taking a shower) and user-friendly assistance

to understand the data and motivating behaviour change by describing comfort and convenience

benefits rather than just carbon or price benefits.

Bartram 2015 reviews and discusses many opportunities for visualising eco-feedback for domes-

tic users. Could these techniques be used for visualising disaggregated data?
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Below is a list of suggestions for how to make future papers on feedback as useful as possible:

If possible, conduct a randomised controlled trial. Publish as much information as possible.

How were subjects recruited? Were subjects selected from the general population? Did any

subjects withdraw during the study period? Was there a control group? Did the study control

for the Hawthorne effect and weather? What sources of bias may influence the result? How

exactly was feedback presented; and how rapidly did the information update? How often did

participants view the display? Was disaggregated data available from the very beginning of the

experiment or did the disaggregation platform take time to adapt to each home? Publish the

results of all the valid statistical analyses performed; not just the ‘best’ result. Crucially, please

publish some measure of the spread of the result (e.g. the standard deviation). Ideally, publish

online, full, anonymised results so researchers can collate your results into a meta-analysis.

2.8 Conclusions

Disaggregation has many use-cases beyond feedback. This paper specifically considers a sin-

gle use-case of disaggregation: reducing energy consumption via feedback. Averaged across

the population, there is evidence that disaggregated feedback may help to reduce electricity

consumption by ~0.7-4.5%. But disaggregation might not be necessary to achieve this saving

because aggregate feedback may be equally effective. Amongst ‘energy enthusiasts’, disaggre-

gated feedback might save more energy but fine-grained disaggregation may not be necessary.

We must emphasise that all we can do is report the current state of the research. We cannot

rule out the possibility that disaggregated feedback is, in fact, more effective than aggregate

feedback. Neither can we rule out that fine-grained feedback is more effective than coarse-

grained. All we can say is that current evidence contradicts the first hypothesis and that there

is no evidence available to address the second hypothesis.

Perhaps users will become more interested in disaggregated data if energy prices increase or if

concern about climate change deepens. Or perhaps users in fuel poverty will be more likely to

act on disaggregated feedback in order to save money. Or perhaps users will trust disaggrega-

tion estimates more if accuracy improves or if designers find ways to communicate uncertain

disaggregation estimates. Or perhaps real-time feedback or better recommendations will im-

prove performance. Or perhaps disaggregating by behaviour rather than by appliance will make
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disaggregated feedback more effective.

Importantly, we conclude that the existing evidence-base is heterogeneous and has many gaps.

Perhaps a large, well controlled, long-duration, randomised, international study will find that

disaggregated feedback is more effective than aggregated feedback. This desire for more social

science research into the effects of disaggregated energy feedback motivates the second and third

parts of this thesis: in order to perform large-scale research into the effects of disaggregated

energy feedback, it would be useful to have robust disaggregation algorithms and software.



Chapter 3

Threats and challenges to NILM

This chapter will address some common concerns about NILM.

3.1 Will ‘smart appliances’ & ‘smart plugs’ make NILM

obsolete?

It is already possible for ‘smart appliances’ and ‘smart plugs’ to report appliance-level power

demand to the network. It is also already possible for a single ‘energy dashboard’ to allow

the user to compare the energy used by each appliance (Egarter et al. 2015). In fact, this has

been possible for a while: smart home systems have been manufactured at least since 1985

(see Figure 3.1). But they have yet to achieve significant market penetration. If smart homes

do become widespread then this could make NILM obsolete. So, to decide whether energy

disaggregation is a worthwhile technology, we must ask whether widespread adoption of the

‘smart home’ is imminent.

The short answer is that smart home technology today is a little like computer networking tech-

nology in the 1980s. Back then, there were many competing options for networking hardware

(Ethernet, Token ring, ARCNET, AppleTalk) and networking protocols (NetBEUI, IPX/SPX,

AppleTalk, TCP/IP). Crucially, these systems did not work together. It required a lot of skill

and care to build a network which ran efficiently. For users and developers alike, investing a

lot of money in one networking standard was risky because an alternative networking system

47
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Figure 3.1: A touchscreen ‘Home Manager’ made by Unity Systems and installed in 1990.
Unity Systems made Home Managers from 1985 until 1999. It controls sockets, switches, the
sprinkler, security, temperature and more. Source: http://imgur.com/a/Jb6jW.

http://imgur.com/a/Jb6jW
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could soon become dominant. It was not until TCP/IP over Ethernet became dominant in the

1990s that computer networking took off.

As I will describe below, today’s ‘smart home’ market has many of the problems that the PC

networking market had thirty years ago.

At least three technologies are required for the smart home to provide disaggregated energy

data to the user:

1. Appliances or power sockets which measure their own power demand and report this to

the network.

2. A physical network to transfer data from each appliance to the internet.

3. A standard API or metadata schema for energy data. This is required to allow a single,

third party energy dashboard application to acquire and understand energy data from

each appliance, no matter who manufactured the appliance.

Below, I will examine each of these requirements:

3.1.1 Smart appliances

Today ‘smart’ appliances are available from manufacturers including Panasonic, LG, Electrolux,

Bosch, Whirlpool, General Electric, Siemens and Samsung. Some smart appliances do report

their energy consumption to the network. For example, the Whirlpool WEL98HEBU ($1,500

USD) has a ‘smart energy’ feature which tracks how much energy it uses. It is hard to be sure

exactly how many of today’s smart appliances report energy demand to the network because

the published specifications for these appliances rarely mention energy at all and, if they do

mention energy, the specifications give very few details.

Are manufacturers losing interest in energy?

There is evidence that manufacturers are losing interest in energy applications for smart ap-

pliances and are focusing more on features related to ‘convenience’, security and entertain-
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ment (Wilkenfeld & Harrington 2015). To see this trend away from energy, contrast product

offerings from about five years ago with current products:

In 2009 Google launched ‘PowerMeter’ and Microsoft launched ‘Hohm’. Both of these products

were web applications designed to help users track their aggregate energy consumption. In 2010,

General Electric (GE) unveiled their ‘Nucleus Energy Manager - The Future of Home Energy

Management’ (General Electric 2010). GE’s Nucleus Energy Manage was part of GE’s ‘Brillion’

suite of home energy solutions (see Figure 3.2) which included several smart appliances, each of

which could measure their own energy consumption and report this using ZigBee Smart Energy

Profile to a Nucleus hub, which would send energy data to the internet to allow users to view

disaggregated data on a web interface. GE’s marketing for Nucleus placed ‘energy’ front and

centre: their 2010 press release for Nucleus (General Electric 2010) mentioned ‘energy’ 30 times

and many screen shots for the ‘Nucleus’ smart phone app showed appliance energy consumption

(Figure 3.3).

However, manufacturers appear to have quickly moved away from energy applications. In June

2011, (just as I started my PhD on energy disaggregation), Google killed ‘PowerMeter’ (Kanellos

2011) and Microsoft killed ‘Hohm’ (LaMonica 2011). GE killed Nucleus some time around 2013

(the last software update for their Nucleus iPhone app was October 2012 (General Electric

2012)). GE’s 2015 press release about their new range of connected appliances mentions ‘energy’

only once as an afterthought (General Electric 2015b). The app store pages for GE’s most recent

smart home apps do not show a single screen shot relating to energy (General Electric 2015a).

This move away from energy is not restricted to GE, Google and Microsoft. Whirlpool’s global

director of energy and sustainability recently gave an interview (St. John 2013) in which he

stated that:

“The energy piece is an interesting story, but not the most compelling one for the

consumer... because these new appliances are first and foremost consumer goods,

making features like remote control and visibility, as well as ease of networking and

use, far more important than energy savings.”.

On the other hand, there is evidence that appliance manufacturers do still have an interest in

energy, although perhaps not for consumer-facing products. For example, Dr Robby Simpson is
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Figure 3.2: General Electric’s Nucleus energy manager. This represents GE’s vision of the
smart home back in 2010. Source: Dahl 2011.
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Figure 3.3: General Electric’s Nucleus iPhone application showing energy usage for a single
smart appliance. Source: General Electric 2012.

both System Architect at GE Energy and Vice Chair of the Smart Energy Profile 2.0 working

group (Simpson 2013). Also, Dr Kannan Tinnium (Technology Leader, Electrical Technologies

& Systems, GE Global Research) gave predictions for trends in 2016 (Electronics Maker 2016):

“We will see more and more integration of smart grids with renewable power sources

such as wind and solar energy, pursuing the primary agenda of clean environment.

Although the wind and solar energy sources that are derived from the environment

are infinite, these sources are not under human control. When we have such a high

penetration of renewables on the grid, there exist operational challenges such as in-

termittent supply and unpredictable availability of these energy sources. Integration

of renewable energy into the smart grid, powered by innovative technology solutions

for energy storage will be fundamental in addressing these challenges and achieving

greater degrees of reliability and consistency in delivery.”
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3.1.2 Low-cost appliance power monitors (‘smart plugs’)

If appliances do not measure their own power consumption then their power consumption could

be measured be an appliance power monitor. Power meters which measure the power demand

of one or a small number of appliances have been available for several years. See Table 3.1

for a list of power monitors and see U.S. Energy Information Administration (EIA) 2015,

pages 26–28 for a table of additional meters and details.

Kazmi et al. 2014 provides a recent review of appliance level energy monitoring using wireless

sensor networks (WSNs).

Conventional individual appliance monitors (IAMs) are rather expensive and bulky to install in

an average home. These limitations motivated DeBruin et al. 2015 to create the PowerBlade1

meter which is small and cheap (£7.70). For commercial applications, Doyle et al. 2015 devel-

oped a small embedded energy sensor.

Even at only £7.70 per sensor, it would still be expensive to instrument every appliance in a

house. For example, House 1 in UK-DALE has 54 appliances hence would cost £7.70 × 54 =

£416 to measure every appliance using the PowerBlade. It might be more sensible to measure,

say, the top-five energy consuming appliances in the home. But how would the user find the

top-five energy using appliances without measuring every appliance?

An additional challenge with installing many sensors is that those sensors use energy and, with

enough sensors, the energy consumption of the sensors might outweigh the energy reductions

associated with having disaggregated energy data. For example, Louis et al. 2016 found that a

full home energy management system (including individual sensors for many appliances) would

result in an increase in electricity consumption for a one-person house of around 15%, largely

due to the standby power consumption of the sensors and the home energy management system

itself.

Smart plugs have been available for several years but market penetration appears to be low (al-

though I could not find exact numbers). It is perhaps significant that EDF Energy discontinued

their entire EcoManager range around 2015.

A lack of demand for smart plugs is both good and bad news for NILM. It is good news because
1http://lab11.eecs.umich.edu/projects/powerblade

http://lab11.eecs.umich.edu/projects/powerblade
http://lab11.eecs.umich.edu/projects/powerblade
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Table 3.1: Example individual appliance meters (also called ‘smart plugs’). US Dollars and
Euros have been converted to GB Pounds at conversions rates of $1:£0.70 and €1:£0.78. Prices
are per appliance meter, excluding the wireless base station.

Model Manufacturer Price
(£)

Used to
record

Sample
period
(secs)

Network
connection

EcoManager
Transmitter

Pluga
EDF &

Current Cost 15 UK-DALE 6 433 MHz TRX

IAMb Current Cost 13 - 6 433 MHz TX

Kill A Wattc P3
International 16 - N/A none

Circled Plugwise 28 Tracebase 1 ZigBee mesh

HomeMatic
Radio Pluge eQ-3 39 - 5 (bestf ) 868 MHz TRX

PowerPortg Enmetric n REDD 1 IEEE 802.15.4
wireless

nPlugh IBM Research
India 105 iAWE 1 Wi-Fi

PowerScouti DENT
Instuments

n AMPds 60 serial or Ethernet

eGauge metersj eGauge 350 Dataport 1 Ethernet or PLC
or Wi-Fi

‘Watts Up?’
metersk ‘Watts Up?’ 100 Kelly 2011 1 Ethernet

WiFiPlugl WiFi Plug 45 - n Wi-Fi

PowerBladem EECS at Uni.
of Michigan 7·7 - <1 BLE

a The EDF EcoManager products appear to have been discontinued some time around 2015.
b www.currentcost.com/product-iams.html
c www.p3international.com/products/p4400.html
d www.plugwise.com/products/energy-management/energy-meters-and-switches. 1 Hz sample rate only
possible by polling Circles from custom software (as per Tracebase). PlugWise report [private
communication] that the highest sample rate for logging using their Source software is 1 minute.

e www.eq-3.de/produkt-detail-aktoren/items/homematic-funk-schaltaktor-1-fach-zwischenstecker.317.html
f The HomeMatic gateway can only sustain a sample period of 5 seconds to a small number of sensors.
g www.enmetric.com/platform#Hardware
h Ganu et al. 2012. The nPlug is a research prototype. iAWE used a variant of nPlug called jPlug.
i www.dentinstruments.com/power-meter. The PowerScout is mainly for monitoring circuits.
j www.egauge.net/products
k www.wattsupmeters.com/secure/products.php?pn=0
l www.wifiplug.co.uk

m lab11.eecs.umich.edu/projects/powerblade and see DeBruin et al. 2015
n Information not available on manufacturer’s website.

http://www.currentcost.com/product-iams.html
http://www.p3international.com/products/p4400.html
https://www.plugwise.com/products/energy-management/energy-meters-and-switches
http://www.eq-3.de/produkt-detail-aktoren/items/homematic-funk-schaltaktor-1-fach-zwischenstecker.317.html
http://www.eq-3.de/produkt-detail-aktoren/items/homematic-funk-schaltaktor-1-fach-zwischenstecker.317.html
https://www.enmetric.com/platform#Hardware
http://www.dentinstruments.com/power-meter
https://www.egauge.net/products
https://www.wattsupmeters.com/secure/products.php?pn=0
https://www.wattsupmeters.com/secure/products.php?pn=0
http://www.wifiplug.co.uk
http://lab11.eecs.umich.edu/projects/powerblade
http://www.currentcost.com/product-iams.html
http://www.p3international.com/products/p4400.html
https://www.plugwise.com/products/energy-management/energy-meters-and-switches
http://www.eq-3.de/produkt-detail-aktoren/items/homematic-funk-schaltaktor-1-fach-zwischenstecker.317.html
https://www.enmetric.com/platform#Hardware
http://www.dentinstruments.com/power-meter
https://www.egauge.net/products
https://www.wattsupmeters.com/secure/products.php?pn=0
http://www.wifiplug.co.uk
http://lab11.eecs.umich.edu/projects/powerblade
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it means that NILM can provide information which is not yet available to users. It is bad news

because it suggests that users are not very interested in disaggregated energy data! Perhaps

the small proportion of the population who are especially interested in disaggregated energy

data have already satisfied their hunger for data by buying smart plugs!

3.1.3 Networking for the smart home

There a many competing, incompatible wireless networking standards for the smart home.

‘Conventional’ Wi-Fi (IEEE 802.11a/b/g/n/ac) is very power-hungry and so is not suitable

for battery-powered nodes. The most recent wireless standard for the internet of things is

a version of Wi-Fi designed for the internet of things: the IEEE 802.11ah standard and its

HaLow™ extension2 (pronounced ‘halo’). It uses the unlicensed 900 MHz band, has a range of

up to 1 km, good penetration through walls, low energy requirements and each access point will

support thousands of HaLow devices. Data transfer speeds are 150 kbps to 18 Mbps and official

product certification from the Wi-Fi Alliance will not begin until 2018, although uncertified

products may appear earlier. Future Wi-Fi access points will likely be tri-band (900 MHz,

2.4 GHz and 5 GHz) and HaLow devices will be able to communicate directly to the home’s

Wi-Fi access point (and hence to the internet). It is this ability of HaLow devices to connect

directly to the internet that is a major advantage of HaLow over competing standards.

An alternative to HaLow is the IEEE 802.15.4 specification which defines the physical (PHY)

and media access control (MAC) layers for low-cost radio communications which operates in

one of three frequency bands (868/915/2450 MHz) depending on the region. Data transfer rates

vary from 20 to 250 kbit/second. 802.15.4 only defines the PHY and MAC layers. Additional

layers are required in order to define a full networking stack.

‘ZigBee’ is built on top of the IEEE 802.15.4 PHY and MAC layers. ZigBee defines the network

layer and application layer to construct an open, wireless mesh-networking standard. One aim

of ZigBee is to be simpler and less expensive than Bluetooth or Wi-Fi (although the new Wi-Fi

HaLow competes more directly with ZigBee). ZigBee was first developed in 1998, standardised

in 2003 and revised in 2006. Transmission distances are limited to 10-100 meters, depending on

2http://www.wi-fi.org/discover-wi-fi/wi-fi-halow

http://www.wi-fi.org/discover-wi-fi/wi-fi-halow
http://www.wi-fi.org/discover-wi-fi/wi-fi-halow
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the power output and local conditions. Longer transmission distances are achieved by sending

the message over multiple ‘hops’.

‘Thread’ is another mesh networking standard built on the IEEE 802.15.4 physical networking

layer (PHY) and medium access control (MAC). Thread’s higher layers include 6LoWPAN

(for using IPv6 in low-power, low-bandwidth devices). Thread includes AES encryption and,

apparently, is sufficiently energy efficient to allow for ‘sleepy’ nodes to run for ‘years’ on a single

AA battery. Google’s Nest products already use Thread and many other organisations are in the

Thread Group3, including ARM, Analog Devices, Atmel, D-Link, Google, HTC, Huawei, Intel,

Johnson Controls, LG, Logitech, Microsoft, Osram, Philips, Qualcomm, Samsung, Schneider

Electric, Whirlpool and others. Thread was launched around 2014.

Z-Wave is a proprietary mesh protocol which operates around 900 MHz and is designed for

low-energy transmission at data rates up to 100 kbit/s. The first Z-Wave products appears in

the early 2000s and the Z-Wave Alliance was formed in 2005.

Bluetooth Low Energy (BLE), marketed as ‘Bluetooth Smart’, is a point-to-point wireless

personal area network designed for low-energy and low-cost applications. It was first developed

in 2006 by Nokia under the name ‘Wibree’ and became part of the Bluetooth Core Specification

Version 4.0 in 2010.

DECT-ULE is an open wireless protocol based on the original Digital European Cordless Tele-

phony (DECT) voice protocol operating at 1.9 GHz. The ultra-low energy (ULE) variant of

DECT appeared in 2011 for home automation products.

X10 was the first general purpose home automation protocol, developed in 1975. It originally

used power line wiring for signalling. A wireless (RF) protocol was later developed, operating

at 310 MHz in the U.S. and 433 MHz in Europe.

Insteon is a home automation mesh networking for communication using power line networking

or radio frequency (RF) comms, or both. Insteon products were launched in 2005 by Smartlabs,

Inc. Insteon is X10-compatible.

WeMo, a brand owned by Belkin, is not a wireless networking standard in its own right but

instead piggybacks on top of Wi-Fi.
3http://www.threadgroup.org/ABOUT/Our-Group

http://www.threadgroup.org/ABOUT/Our-Group
http://www.threadgroup.org/ABOUT/Our-Group
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As well as the above standards, there are a myriad of proprietary wireless networking protocols.

Wi-Fi is emerging as dominant for mains powered smart appliances.

As outlined above, there are many networking standards for the internet of things (IoT) and

it is not yet clear which (if any) standard will become dominant for battery-powered nodes.

However, there are signs that ‘conventional’ Wi-Fi (IEEE 802.11a/b/g/n) is becoming the

dominant networking standard for appliances which are plugged into mains power (because

Wi-Fi’s power requirements are not a problem when you have mains power). All the smart

appliances on the market in early 2016 that I researched use Wi-Fi (this is in contrast to, for

example, GE’s Nucleus appliances back in 2010 which used ZigBee Smart Energy Profile).

If appliance manufacturers converge on Wi-Fi instead of ZigBee then this raises the question of

whether the smart meter (which uses ZigBee Smart Energy Profile, not Wi-Fi) will remain at

the centre of the smart home (for example, the UK Government in documents such as Richards

et al. 2014 shows the smart meter as being at the heart of the smart home energy management

system). How will Wi-Fi enabled appliances receive demand response signals or energy pricing

signals if they are not attached to the smart meter’s ZigBee network? Technically speaking,

demand response and pricing signals can be sent over the internet and to appliances over

Wi-Fi, perhaps using Smart Energy Profile 2 (see Section 3.1.3). But who will supply this

data? The appliance manufacturers or the utility companies or the government? And how will

appliances know which energy supplier to query to get relevant pricing information? I have

emailed manufacturers to ask this question but have not received a reply.

A common API for energy

Standardising a way for appliances to exchange bits is only part of the challenge. Appliances

also need the know what those bits mean: appliances need a standard ‘language’ to structure

communications about energy consumption.

The ZigBee Alliance define a suite of application-layer protocols. This suite includes a ‘Smart

Energy Profile (SEP)’. The UK’s SMETS2 smart meters (DECC 2014) will use ZigBee Smart

Energy Profile (SEP) 1.2. In the USA, more than 40 million ZigBee electric meters are being

deployed by more than 11 utility companies (ZigBee Alliance 2013).
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SEP2 (ZigBee Alliance & HomePlug Alliance 2013) (standardised in 2013 as IEEE 2030.5-20134)

structures communication about energy usage information, energy pricing, demand response

and load control, control of plug-in electric vehicle charging, distributed energy resources and

more. SEP2 can run over any Internet Protocol (IP) network: it is not tied to ZigBee link

layers. The Zibee Alliance worked with many partners to design SEP2 including the Wi-Fi

Alliance and the HomePlug Alliance. SEP2 has been demonstrated over Wi-Fi, Ethernet and

IEEE 1901 ‘broadband over power lines’ networks (ZigBee Alliance & HomePlug Alliance 2013).

At the time of writing, the Consortium for SEP2 Interoperability (CSEP5) are in the process

of setting up a testing and certification body for SEP2. As time progresses, we are likely to see

‘SEP2’ branding less and less as the standard distances itself from its former home (the ZigBee

Alliance) and emphasises its new home (IEEE) (Robby Simpson, personal communication,

February 2016).

From 2009 to 2013, the Korea Smart Grid Association (KSGA) ran a smart houses test-bed

project in Jeju Island (South Korea) with 1500 houses and more than 60 companies including

LG and Samsung. They used SEP1.1 to test demand response and real-time pricing. More

recently, KSGA have looked at using SEP2 with appliances connected directly to the internet

via Wi-Fi (Kang & Park 2014).

SEP2 defines 21 categories of appliance such as ‘pool pump’, ‘electric vehicle’ and ‘smart appli-

ance’ but SEP2 does not define a fine-grained controlled vocabulary for domestic appliances (e.g.

‘kettle’, ‘toaster’ etc.). Hence one manufacturer’s washing machine may identify as ‘washer’

and another manufacturer’s machine may identify as ‘WM’. This lack of standardisation will

make it harder to build energy management tools. Nordman & H. Y. Cheung 2013 wrote a

draft appliance taxonomy and my NILM Metadata schema also defines a common appliance

vocabulary (see chapter 6). SEP2 uses the Common Information Model (CIM) IEC 61968 /

61970 as its semantic model (Simpson 2013) but CIM appears to be mostly concerned with the

power network upstream of the domestic consumer (McMorran 2007).

We are starting to see SEP2 adopted in the distributed energy resources (DER) space; for

example in solar inverters and battery storage systems. This is particularly true in California

with Rule 216 (for smart inverters) and in Hawaii (Robby Simpson, personal communication,
4https://standards.ieee.org/findstds/standard/2030.5-2013.html
5http://www.csep.org
6http://www.energy.ca.gov/electricity_analysis/rule21

https://standards.ieee.org/findstds/standard/2030.5-2013.html
http://www.csep.org
http://www.energy.ca.gov/electricity_analysis/rule21
https://standards.ieee.org/findstds/standard/2030.5-2013.html
http://www.csep.org
http://www.energy.ca.gov/electricity_analysis/rule21
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February 2016; also see St. John 2015a).

SEP is not the only standard available for energy. Other standards include ANSI/CTA-

2047 (Consumer Technology Association 2014) which enables “consumer electronic devices to

communicate their energy usage information for example over a home network as well as op-

tionally respond to basic demand/response commands. The usage data may be a measured or

estimated value or may use other methods to indicate energy usage” and OpenADR (OpenADR

Alliance 2016) which attempts to standardise, simplify and automate demand response.

The Internet Engineering Task Force (IETF)’s RFC6988 document on “Requirements for En-

ergy Management” (Quittek et al. 2015) defines the requirements for standards specifications

for energy management, mostly focused on networked computer systems. It is a standard to

allow routers, servers etc. to report their power consumption, power state and other information

over an IP network.

Too much diversity?

In the last two years year, the big manufacturers have defined their own general smart home

‘frameworks’: Google has Brillo7 (with three components: an embedded OS based on Android,

core services and a developer kit) and Weave8 (a communication platform for IoT devices).

Electrolux have announced that they will work with Brillo (Thompson 2016).

Samsung has the Artik9 platform, Apple has HomeKit10, ARM has mbed11, Amazon has AWS

IoT12. Microsoft is backing AllJoyn from the AllSeen Alliance13, a consortium that proposes an

open protocol for IoT and includes Philips, Sony, Faber, HoneyWell, HTC, and LG.

Hartog et al. 2014 review 43 semantic assets (frameworks) for smart appliances.

This diversity means that it is unclear which framework (if any) will become dominant. At the

Consumer Electronics Show 2016 (CES), Frank Gillet (an analyst at Forrester) said of smart

home networking that “It’s going to be extremely messy” and Lee Ratliff (an analyst from

7https://developers.google.com/brillo
8https://developers.google.com/weave
9https://www.artik.io

10https://developer.apple.com/homekit
11https://www.mbed.com
12https://aws.amazon.com/iot
13https://allseenalliance.org

https://developers.google.com/brillo
https://developers.google.com/weave
https://www.artik.io
https://developer.apple.com/homekit
https://www.mbed.com
https://aws.amazon.com/iot
https://aws.amazon.com/iot
https://allseenalliance.org
https://developers.google.com/brillo
https://developers.google.com/weave
https://www.artik.io
https://developer.apple.com/homekit
https://www.mbed.com
https://aws.amazon.com/iot
https://allseenalliance.org


60 Chapter 3. Threats and challenges to NILM

Figure 3.4: Smart homes can make life more complex. Source: Cate 2016 (with permission).

IHS) said “I’m afraid we’re looking at many, many, many years of many standards, consumer

confusion, market confusion” (Shankland 2016).

3.1.4 Conclusions regarding smart homes

Will smart appliances and smart plugs make NILM obsolete any time soon?

It has been technically possible for several years to build a smart home which can measure

the power demand of each appliance. For example, Sweden recently announced an urban

development with 150 new apartments all equipped with smart appliances (Electrolux 2015) and

E.ON ran a smart homes trial in Milton Keynes from 2011-2015 called ‘Thinking Energy’ (E.ON

2014).

But the fact that it is technically possible to measure power demand with smart appliances

does not mean that smart homes will be widespread imminently. There are several reasons to

believe that energy-focused smart homes are many years away from widespread adoption:

Expense: Smart plugs and smart appliances are several times more expensive than their

‘dumb’ counterparts.
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Low replacement rate: Household appliances are replaced slowly. The average age of major

domestic appliances in Germany is 13.5 years (Gutberlet 2008).

Uncertain demand: Is there demand for ‘smart’ appliances? The concept of the ‘smart’

home can be traced back to the 1930s (Strengers 2013). The first commercial attempts

at a ‘smart fridge’ came with Electrolux’s Screenfridge (Electrolux 1999) and LG’s ‘In-

ternet Digital DIOS’ fridge (LG Electronics 2000). Both were a commercial flop (Baxter

2010). In fact, internet-enabled appliances have been somewhat of a running joke in some

quarters14. Are users willing to pay large price premiums for appliances which introduce

new security, privacy and reliability issues (Bright 2014; Fox-Brewster 2016), are more

complex to configure and nag users via their phones? Traditional ‘dumb’ appliances just

quietly get on with their job, cannot be hacked and do not crash! See Figure 3.4 for

a recent example of a smart home making life more complex. Do users care about the

‘benefits’ of smart appliances publicised by manufacturers? Or do users see many of these

‘benefits’ as solutions looking for problems? Perhaps many users do have an appetite for

these products given that, for example, in 2015 over 8 000 people pledged $600 000 (USD)

to the KickStarter project HidrateSpark15: “a connected water bottle that tracks your

water intake and glows to make sure that you never forget to drink your water again”. I

would suggest that four billion years of evolution has already solved the remembering-to-

drink-water problem.

Fragmentation: There are many competing, incompatible networking protocols, APIs and

frameworks for the smart home. Will users be happy to commit to one platform if it

might be obsolete soon, especially given the large financial costs involved?

Motivation: Perhaps manufacturers are not interested in energy applications. Hence, even

if smart appliances become widespread soon, appliances might not report their power

demand. We cannot know the motivations of manufacturers for certain but we can spec-

ulate that traditional whitegoods manufacturers are trying to find a way to increase their

profits in a stagnating market. Advertising companies such as Google are hungry to ac-

quire as much data about users as possible to allow them to target adverts. Apple has

profited handsomely in the past from locking users into its ecosystem so why not try to
14See the (rather rude) Tumblr blogs ‘F**k Yeah Internet Fridge’ and ‘We put a chip in it’ whose tag line is

“It was just a dumb thing. Then we put a chip in it. Now it’s a smart thing.”
15http://www.hidratespark.com

http://www.hidratespark.com
http://fuckyeahinternetfridge.tumblr.com
http://weputachipinit.tumblr.com/
http://www.hidratespark.com
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lock users into Apple-compatible smart home products too? And Samsung is looking for a

way to compensate for stagnating sales in smart phones and TVs. Perhaps manufacturers

believe that consumers do not prioritise energy efficiency and hence manufacturers have

little interest in prioritising energy efficiency in their consumer-facing products.

In conclusion, it is impossible to predict with confidence when (if ever) smart homes will give

users disaggregated energy data. But we can put a lower limit on the amount of time it will take.

Even if affordable, stable, secure, compatible, energy-aware smart appliances became available

tomorrow, and if the general public showed demand for these products, it would still take over

a decade for the population to replace their existing appliances with new appliances (Gutberlet

2008).

Smart appliances do not appear to present an imminent threat to NILM. As smart appliances

trickle into homes, they can be integrated into NILM, as shown by Egarter et al. 2015 who

built an energy management system which integrates smart appliances with NILM.

Concerns over smart meters

A vocal minority hold concerns about the privacy, health impacts and financial cost of the

smart grid (Raimi & Carrico 2016). NILM potentially provides even more of a threat to

privacy. Indeed, George Hart (G. W. Hart 1992) discussed the privacy concerns about NILM.

Barbosa et al. 2015 developed techniques to fool NILM techniques in order to preserve privacy.

Skjølsvold & Ryghaug 2015 provides evidence of people feeling alientated by the smart grid. A

recent review of the British public’s perception of the UK smart metering initiative is provided

by Buchanan et al. 2016.

Utility companies are reportedly concerned about the large volume of data that smart meters

will generate. Hence Tariq et al. 2015 adapted the LZMA compression algorithm to smart

meter data and were able to reduce the data size by 98% on average.
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3.2 Conclusions

Let us summarise the challenges facing NILM:

• There is little robust evidence that NILM helps people to save more energy than simpler

forms of feedback such as IHDs (see chapter 2).

• NILM (with sample rates < 100 Hz) cannot disaggregate vampire loads (unless population

averages are used), yet minimising vampire loads plays an important role in energy saving.

• How much 10-second data (or faster) will be available? UK SMETS2 smart meters will

allow users to collect 10-second data using a consumer access device (CAD) but how

many users will actually buy and install CADs? NILM can still be performed on the

half-hourly data that smart meters will send to the utility company but the estimates

will be considerably less accurate than if 10-second data were used for NILM.

• Smart appliances or smart plugs will, at some point, make NILM redundant. We cannot

be sure when smart plugs and smart appliances will be adopted on a wide scale. It could

be 10-20 years from now.

• We have no way to measure progress in NILM algorithm development (see chapter 5).

• Some people have negative feelings towards smart meters and NILM.

• At current energy prices, the energy cost of a typical appliance activation is low (pence),

which may lead users to think that they should not bother to reduce their energy con-

sumption.

• Some NILM companies are selling NILM on the basis of questionable ‘evidence’ on the

efficacy of NILM to help people save energy. If it turns out that the actual energy savings

are considerably lower then the NILM market might react badly.

And let us summarise the advantages of NILM:

• NILM may drive substantial energy savings in the general population. We simply do not

know with confidence! (See chapter 2)
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• There are many unanswered questions about the efficacy of disaggregated feedback to

promote energy reductions (see chapter 2). NILM offers the most cost-effective technique

to investigate these questions.

• Directly driving energy savings is not the only use-case for NILM: There are many other

use-cases, some of which indirectly lead to energy savings (see section 1.3.5).
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Tools to enable disaggregation research
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Chapter 4

The UK domestic appliance-level

electricity dataset (UK-DALE)

To conduct research on disaggregation algorithms, researchers require data describing not just

the aggregate demand per building but also the ‘ground truth’ demand of individual appliances.

In this context, we present UK-DALE: an open-access dataset from the UK recording Domestic

Appliance-Level Electricity at a sample rate of 16 kHz for the whole-house and at 1/6 Hz for

individual appliances. This is the first open access UK dataset at this temporal resolution. We

recorded from five houses, one of which was recorded for 3.5 years, the longest duration we are

aware of for any energy dataset at this sample rate. We also describe the low-cost, open-source,

wireless system we built for collecting our dataset.

This chapter is based on our paper published in Nature Publishing Group’s journal ‘Scientific

Data’, Kelly & Knottenbelt 2015b. Please also see Appendix A for additional details.

4.1 Introduction

Energy disaggregation researchers require access to large datasets recorded in the field to de-

velop disaggregation algorithms but it is not practical for every researcher to record their own

dataset. Hence the creation of open access datasets is key to promote a vibrant research com-

munity.

66
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Researchers at MIT led the way by releasing The Reference Energy Disaggregation Data Set

(REDD) in 2011 (J. Zico Kolter & M. J. Johnson 2011) and more datasets have subsequently

been released.

To test the performance of a disaggregation algorithm for a specific country, it is important

to have access to data from that country because electricity usage varies significantly between

countries; both because different countries use different sets of appliances and also because

different cultures show different usage patterns.

When we set out to record UK-DALE, the only open-access dataset recorded in the UK was

the DECC/DEFRA Household Electricity Study (Zimmermann et al. 2012) which has a sample

period of two minutes. This sample rate is 12 times slower than UK smart meters, which will

sample once every 10 seconds (DECC 2014). It is this smart meter data which will provide the

input to disaggregation algorithms so researchers require access to 10 second data to design

disaggregation algorithms for the UK (some other countries will also use smart meters with

similar sample periods). Since we released UK-DALE, a third UK dataset has been released:

the REFIT dataset (Murray 2015), which samples once every 6-8 seconds.

We present the first open access UK dataset with a high temporal resolution. We recorded from

five houses. Every six seconds we recorded the active power drawn by individual appliances

and the whole-house apparent power demand. Additionally, in three houses, we sampled the

whole-house voltage and current at 44.1 kHz (down-sampled to 16 kHz for storage) and also

calculated the active power, apparent power and RMS voltage at 1 Hz. In House 1, we recorded

for 3.5 years and individually recorded from almost every single appliance in the house resulting

in a recording of 54 separate channels (although less channels were recorded towards the start

of the dataset). We will continue to record from this house for the foreseeable future. We

recorded from the four other houses for several months; each of these houses recorded between

5 to 26 channels of individual appliance data. Figure 4.2 provides an overview of the system

design and Table 4.1 summarises the dataset.

This dataset may also be of use to researchers working on:

• modelling the electricity grid.

• exploring the potential for automated demand response.
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• appliance usage behaviour.

4.2 Methods

Desirable attributes for a disaggregated electricity dataset include:

• Simultaneously record the power demand of each individual appliance in each house; or as

many individual appliances as possible. This data can be used to validate the appliance-

by-appliance estimates produced by a disaggregation system or to train the system.

• Record the whole-house active power. This will be the input to the disaggregation algo-

rithm.

• Sample once every 10 seconds or faster.

• Record for as long as possible.

We first describe our approach to monitoring individual appliances once every 6 seconds and

then describe how we recorded whole-house mains power at 44.1 kHz.

4.2.1 Individual appliance monitoring

In UK houses such as those in our dataset, mains ‘rings’ extend from the fuse box. Many

sockets may share the same ring. Hence, in order to measure individual appliances in the UK,

we must install plug-in individual appliance monitors (IAMs) between each appliance and its

wall socket (see Figure 4.1).

We used EcoManager Transmitter Plugs developed by Current Cost and distributed by EDF

Energy (see Figure 4.3). The standard base station for these IAMs is the EcoManager1. The

EcoManager can only handle a maximum of 14 transmitter plugs and only provides data once

per minute via its serial port. We needed up to 54 appliances monitored per house and data

every 10 seconds or faster. To achieve this, we built our own base station. With the help of
1As of 2016, the EcoManager base station and transmitter plugs are no longer available to purchase.
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Figure 4.1: Two EDF Transmitter Plugs installed in our kitchen.

others in the community (especially GrahamMurphy, Matt Thorpe and Paul Cooper), we recon-

structed the specification of the EcoManager protocol. The Current Cost RF protocol and the

EDF EcoManager RF protocols are available on the GitHub wiki for my rfm_edf_ecomanager

project2.

We built our own base station by programming an open-source, rapid-development platform

called the Nanode3 (see Figure 4.3). The Nanode includes an Atmel ATmega328P microcon-

troller running at 16 MHz (the same microcontroller used on several Arduinos) and a HopeRF

RFM12b4 radio frequency (RF) module. The EcoManager products use the same (or similar)

RF module as the Nanode, tuned to the 433 MHz ISM band (note that, in some countries, it

is illegal to use the 433 MHz band without a license). Please see Appendix A.1 for the details

of how we discovered the wireless configuration parameters.

Each IAM picks its own 32-bit ID at random when the IAM’s ‘pair’ button is pressed. Each

IAM stores its ID in non-volatile memory. Our base station maintains a list of these IDs and

polls each IAM in order. Each IAM replies to its polling packet within 20 ms. The power

demand measurement in this packet may be a few seconds old because the Transmitter Plugs
2https://github.com/JackKelly/rfm_edf_ecomanager/wiki
3http://www.nanode.eu
4http://www.hoperf.com/rf_transceiver/modules/RFM12B.html

https://github.com/JackKelly/rfm_edf_ecomanager/wiki/Technical-details-of-Current-Cost-RF-protocol
https://github.com/JackKelly/rfm_edf_ecomanager/wiki/Technical-details-of-the-EDF-EcoManager-and-accessories
https://github.com/JackKelly/rfm_edf_ecomanager/wiki
https://github.com/JackKelly/rfm_edf_ecomanager/wiki
http://www.nanode.eu
http://www.hoperf.com/rf_transceiver/modules/RFM12B.html
http://www.hoperf.com/rf_transceiver/modules/RFM12B.html
https://github.com/JackKelly/rfm_edf_ecomanager/wiki
http://www.nanode.eu
http://www.hoperf.com/rf_transceiver/modules/RFM12B.html
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Figure 4.2: System diagram for the data collection system. The system has three major com-
ponents: 1) the data logging PC; 2) the sound card power meter and 3) the ‘RFM EDF
Ecomanager’ which uses a Nanode to communicate over the air with a set of individual appli-
ance monitors (IAMs) and current transformer (CT) sensors. On the left is the circuit diagram
for interfacing a sound card to a CT clamp and AC-AC adaptor to measure mains current and
voltage, respectively. The circuit was adapted from Robert Wall’s work (Wall 2012). Each
diode is a 1N5282 (1.3 V forward voltage bias).

appear to sample the power demand every few seconds and store the last measurement in local

memory. Measuring the power demand and responding to polling requests appear to happen

asynchronously in the Transmitter Plugs.

The EcoManager RF protocol uses a modular sum checksum byte to provide some resilience

against RF corruption. Power measurements are sent from our Nanode base station to a data

logging PC over an FTDI-to-USB cable. It is also possible to turn IAMs on or off remotely.

To measure power demand from hard-wired appliances such as boilers and kitchen ceiling

lights, we used Current Cost transmitters5 (TX) with current transformer (CT) clamps. These

transmitters use the same radio frequency as the EDF IAMs but a different protocol. In

particular, the Current Cost transmitters cannot receive RF data. Instead they transmit a

data packet once every 6± 0.3 seconds without first checking if the RF channel is clear. Hence

RF collisions are inevitable and there is no mechanism to request re-transmission of lost data.

To minimise the chance of packet collisions, our base station learns the transmit period of each

Current Cost TX and does not transmit for a short window of time prior to the expected arrival
5http://www.currentcost.com/product-iams.html

http://www.currentcost.com/product-iams.html
http://www.currentcost.com/product-iams.html
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Figure 4.3: An EDF EcoManager Transmitter Plug (left) and a Nanode (right).

of a Current Cost TX packet.

Current Cost transmitters do not use a checksum. Instead they use Manchester encoding. RF

corruption may result in an invalid Manchester code. If this happens then the receiver can

detect the corrupt Manchester code and discard the packet. Unfortunately, corruption may

damage the data payload without invalidating the Manchester encoding, hence corrupt packets

are not guaranteed to be detected from Current Cost transmitters.

4.2.2 Measuring whole-house power demand

Given that there will be a flood of smart meter data in the near future, disaggregation re-

searchers need access to data which is as similar as possible to the data that will be recorded by

smart meters. Unfortunately, ‘real’ smart meters are not trivial to install or to acquire: installa-

tion requires an electrician from the utility company and, critically, back in 2012 when we were

designing our data collection system, the UK smart meter engineering specifications had not

yet been finalised (the SMETS2 document (DECC 2014) is not an engineering specification).

This motivated us to build our own measurement system.
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The iteration of the UK smart meter specification (DECC 2014) available when we started

designing our system was detailed enough to allow us to build our own metering system which

closely mimics what a UK smart meter is likely to provide6. The SMETS2 specifications (DECC

2014) state that smart meters are required to connect to the Home Area Network (HAN) using

ZigBee Smart Energy Protocol v1. Presumably, a disaggregation system would access smart

meter data by way of a ‘Consumer Access Device’ (CAD) connected to the HAN. CADs can

request instantaneous active power and pricing data from the smart electricity meter once every

10 seconds7.

We aimed to build a metering system that would collect active power once a second, as well as

to sample the voltage and current waveforms at 44.1 kHz to allow researchers who are interested

in this high frequency data to use it.

One solution was to use an off-the-shelf Current Cost whole-house transmitter with a current

transformer (CT) clamp. These work with our wireless base station. We used this solution in

several houses where our bespoke solution was impractical.

However, there are several disadvantages to using a CT clamp connected to a wireless trans-

mitter (see Appendix A.2). As such, no existing home energy monitor that we were aware of

provided an accurate proxy for UK smart meters. Expensive power quality monitors costing

several hundred or thousand UK pounds can measure with the accuracy we require but these

are prohibitively expensive and some require CT sensors without a split core, hence requiring

the installer to disconnect the meter tails from the utility company’s meter, which can only be

done with permission from the utility company.

Hence we designed and built a low-cost, high resolution, easy to install system for recording

whole-house mains power demand using a computer sound card, a CT clamp and an AC-AC

adapter.

Typical sound cards have remarkably good analogue to digital converters (ADCs). Typical

specifications of a modern sound card include:

6These specifications are subject to formal change control processes such that any changes are subject to
analysis and stakeholder approval

7Additionally, CADs will be able to request data such as 13 months of half hourly active import data,
3 months of half hourly reactive import data and 3 months of half hourly active and reactive export data
(DECC 2014 and personal communication with DECC, October 2013)
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• 96 kHz sample rate.

• Simultaneous recording of at least 2 channels.

• 90 dB signal to noise.

• 20 bits per sample. Not all of these bits are ‘signal’ though. For example, in the ADC

we used, each bit provides 6 dB of dynamic range, so we effectively have 90/6 = 15 bits of

‘signal’ and 20− 15 = 5 bits of ‘noise’ per sample.

• Built-in high-pass filter.

• Built-in anti-alias filter.

To record mains voltage and current waveforms we built a simple circuit to connect the sound

card to an AC-AC adapter and a CT clamp (see Figure 4.2). This circuit does not require

the user to handle any hazardous voltages. We used the line-input of the sound card rather

than the microphone input because the line-input should provide a lower noise signal path than

the sound card’s microphone pre-amplifier. The standard maximum peak-to-peak voltage for

consumer audio equipment line-input is 0.89 volts. Hence our circuit reduces the output voltage

of each sensor so that we never deliver more than 0.89 volts to the sound card.

To measure mains voltage as safely as possible, we used a standard AC-AC adapter (the ‘Ideal

Power 77DB-06-09’). This provides a peak open-circuit output voltage of approximately 11

volts. Research done by the Open Energy Monitor project (Wall 2012) suggests that the output

of the AC-AC adapter should track the mains input voltage linearly over the range 185.5 V

to 253 V. We reduced the AC-AC adapter’s output voltage with a voltage divider circuit (we

used two resistors: 10 kW and 220 W) to produce about 0.7 V peak-to-peak which is fed into

one channel of the sound card’s line input.

To measure mains current, we used a current transformer (CT) clamp (the ‘YHDC SCT-013-

000’). Both the CT clamp and AC-AC adapter were sourced from the Open Energy Monitor

shop8. The CT is connected in parallel to a 22 W burden resistor. This configuration produces

about 0.89 V peak-to-peak across the burden resistor when the CT is presented with a primary

current of 30 amps RMS which, we believe, is the most current that any of the houses under

study will pull.
8https://shop.openenergymonitor.com

https://shop.openenergymonitor.com
https://shop.openenergymonitor.com
https://shop.openenergymonitor.com
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To protect the sound card against overload, both channels include an 80 mA quick-blow fuse

and a pair of 1N5282 diodes (with a 1.3 V forward voltage bias) to ensure that the circuit is

unlikely to ever deliver more than 1.3 V to the sound card.

Our system has a measurement resolution of 150 mW (please see Appendix A.3 for the calcu-

lation of the measurement resolution).

We now describe the software for our sound card power meter. We use the following relations

to calculate |S| (apparent power) and P (‘real’ or ‘active’ power) from simultaneously recorded

vectors of voltage and current readings (we record in chunks each with a duration of 1 second;

this time period was chosen because REDD uses this sample period for mains data):

|S| = Irms × Vrms (4.1)

P = 1
N

N∑
i=1

IiVi (4.2)

Where Irms and Vrms are the root mean squared values for the current and voltage vectors

respectively; N is the number of samples; Ii and Vi are the ith samples of the current and

voltage vectors respectively. The system does not guarantee that we always process chunks

of length equal to precise integer multiples of the mains cycle period but, as demonstrated in

Section 4.4, we still achieve relative errors consistently less than 2%.

The conclusion is that we achieve a resolution greater than that required to provide a good

proxy for ‘real’ smart meters9. We save P , |S| and Vrms to disk once a second with a precision

of 2 decimal places in a CSV file.

We also save the raw ADC data to disk. To reduce the space required, the ADC data are

down-sampled using the open-source audio tool sox10 to 16 kHz11. The ADC is 20-bit but

few audio processing tools can process 20-bit files so we pad each sample to produce a 24-bit

file. The uncompressed 16 kHz 24-bit files would require 8.3 GBytes per day so we compress

the files using the Free Lossless Audio Codec (FLAC)12 to reduce the storage requirements to
9although we acknowledge that we do not know the precise resolution of ‘real’ smart meters. This decision

is likely to be left to the manufacturers (personal communication with DECC, March 2013)
10http://sox.sourceforge.net
11REDD used 15 kHz and we originally wanted to use the standard defined by REDD but we found that

support for 16 kHz is more common than for 15 kHz in processing tools
12http://xiph.org/flac

http://sox.sourceforge.net
http://xiph.org/flac
http://sox.sourceforge.net
http://xiph.org/flac
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≈ 5 GBytes per day.

After publishing our UK-DALE dataset, we found that other authors have used a sound card

to record electricity data (Quintal et al. 2010; Nunes et al. 2011; Pereira 2011; Englert et al.

2013; Kahl et al. 2016).

Calibration

To convert the raw ADC values to voltage and current readings, we must first find appropriate

conversion constants. We calibrate each data collection system separately to compensate for

manufacturing variability in the components. We calibrate each system once when it is first

setup. We connect a ‘Watts up? PRO meter13’ to the data logging PC via USB during setup to

automatically calibrate voltage and current conversion factors. We typically use a resistive load

like a kettle to calibrate the system. If the ‘Watts up?’ meter reports a power factor greater

than 0.97 then the calibration script also calibrates the phase shift introduced by the sensors.

Open source implementation

We have implemented our power monitoring system as five software projects. All software

packages are available from github.com/JackKelly/<package name>. The packages are:

rfm_edf_ecomanager

Nanode C++ code. This code allows the Nanode to talk directly to multiple Current

Cost whole-house sensors (CC TXs) as well as to multiple EDF Transmitter Plugs (CC

TRXs). Users talk to the Nanode over the serial port. Users send simple commands. It

sends data back to the PC in a simple JSON format.

rfm_ecomanager_logger

A Python script for communicating with the rfm_edf_ecomanager Nanode system. This

provides a command-line tool for ‘pairing’ sensors with the logging system; assigning

human-readable names to those sensors and then recording the data to disk in CSV

files using the same format as MIT’s REDD files. The emphasis is on reliable log-

ging. rfm_ecomanager_logger attempts to restart the Nanode if the Nanode crashes.
13https://www.wattsupmeters.com/secure/products.php?pn=0

https://www.wattsupmeters.com/secure/products.php?pn=0
https://github.com/JackKelly/
https://github.com/JackKelly/rfm_edf_ecomanager
https://github.com/JackKelly/rfm_ecomanager_logger
https://www.wattsupmeters.com/secure/products.php?pn=0
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rfm_ecomanager_logger ensures, as far as possible, that recorded time stamps are cor-

rect (which is not trivial given that the Nanode does not have a real time clock and given

that serial data could be kept in the operating system’s buffer if the system is under heavy

load). Data are recorded approximately once every six seconds for each channel.

powerstats

Produce statistics and graphs from REDD-formatted power data. Mainly used for check-

ing the health of sensors.

babysitter

A Python module for ‘babysitting’ each logging system. Sends an email if a sensor stops

working or if rfm_ecomanager_logger fails. Also sends a ‘heartbeat’ email once a day to

the home owner containing statistics (created by powerstats) describing the last day’s

power data. Also provides useful ‘health’ information about the system such as remaining

disk space.

snd_card_power_meter

System for recording voltage and current waveforms at 44.1 kHz, 20-bit per channel using

a PC’s sound card. Calculates and saves active power, apparent power and RMS voltage

to a CSV file once a second. Records down-sampled ADC data to a FLAC file.

4.2.3 Complete metering setup

To collect our own dataset, we installed the following equipment in each house:

• Multiple EDF Individual Appliance Monitors.

• A CurrentCost CT clamp and transmitter to measure whole-house apparent power.

House 1 used additional CC CT clamps to measure the lighting circuit, kitchen ceiling

lights, boiler and solar hot water pump.

• Nanode running our rfm_edf_ecomanager code.

• A small-footprint Atom PC14. We used the Intel DN2800MT motherboard with a Realtek
14Full component listing of the Atom PCs we built can be found at jack-kelly.com/intel_atom_notes

and a guide to setting up a complete data logging system can be found at
github.com/JackKelly/rfm_ecomanager_logger/wiki/Build-a-complete-logging-system

https://github.com/JackKelly/powerstats
https://github.com/JackKelly/babysitter
https://github.com/JackKelly/snd_card_power_meter
http://jack-kelly.com/intel_atom_notes
https://github.com/JackKelly/rfm_ecomanager_logger/wiki/Build-a-complete-logging-system
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Figure 4.4: The data logging PC is the black case on the bottom. The Nanode is inside the
box on the top. The four wires running in the plane of the ground are the RF ground plane.
Each wire is 1/4-wavelength. The striped wire running upwards is the 1/4-wavelength antenna.

ALC888S audio codec capable of sampling at 96 kHz 20-bit resolution with a signal to

noise ratio of 90 dB; and a line-input socket on the rear; and a 320 GB HDD; runs Ubuntu

Linux Server; consumes 14 W active power.

• Houses 1, 2 and 5 had the sound card power meter system installed to measure whole-

house active and reactive power and voltage.

A system diagram is shown in Figure 4.2. A Nanode and Atom PC can be seen in Figure 4.4.

CSV data files recorded by the data logging PC were transmitted to a remote server every

morning using rsync15. FLAC files were transferred manually using an external hard disk

every two months.

Please see Appendix A.4 for a list of known issues of the data recording system.

4.2.4 Selecting houses to record

The subjects were either MSc students or PhD students in the Computing Department at

Imperial College London. The subjects chose to do a research project with the authors. To
15https://rsync.samba.org

https://rsync.samba.org
https://rsync.samba.org
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assist in both their own project and in the collection of the UK-DALE dataset, the students

kindly agreed to install metering hardware in their respective houses. The upper bound on the

number of houses we could record from was set by a combination of a limited financial budget,

limited time to assemble the metering hardware, and a limit in the number of students who

volunteered to work on research projects relating to domestic energy consumption.

Within each house, the home owner selected which appliances to record, with the recommen-

dation from the authors that the most energy hungry appliances should take priority.

We acknowledge that our participants are not sampled at random from the general population;

and hence are unlikely to be representative of the general population.

4.3 Details of the recorded data

UK-DALE uses a data format similar to that used by the first public disaggregation dataset,

the Reference Energy Disaggregation Data Set (REDD) (J. Zico Kolter & M. J. Johnson 2011).

There are five directories in UK-DALE, one per house. The directories are named house_<x>

where x is an integer between 1 and 5.

Each directory contains a set of channel_<i>.dat CSV files (one file per electricity meter i)

and a labels.dat file which is a CSV file which maps from channel number i to appliance

name. All CSV files in UK-DALE use a single space as the column separator (as per REDD).

One way in which UK-DALE differs from REDD is that UK-DALE includes a set of detailed

metadata files. These follow the NILM Metadata schema (see Chapter 6). The metadata

files are in YAML text file format (YAML is a superset of the JSON format). This metadata

describes properties such as the specifications of each appliance; the mains wiring between the

meters and between meters and appliances; exactly which measurements are provided by each

meter; which room each appliance belongs in etc. The labels.dat file in each directory is

redundant and is only included to provide compatibility with REDD.

All data in UK-DALE as of January 2015 are available from the UK Energy Research Council’s

Energy Data Centre. The data are also available from www.doc.ic.ac.uk/~dk3810/data.

http://www.doc.ic.ac.uk/~dk3810/data/
www.doc.ic.ac.uk/~dk3810/data
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The latter source will be updated as we collect more data. There are three forms of data in

UK-DALE:

• The 6 second data from the Current Cost meters

(DOI:10.5286/UKERC.EDC.000001)

• The 1 second data from our sound card power meter

(DOI:10.5286/UKERC.EDC.000001)

• The 16 kHz data recorded by our sound card power meter

(DOI:10.5286/UKERC.EDC.000002). The complete set of 16 kHz files requires 6 TBytes

of storage. The 16 kHz data is supplied as a set of 200 MByte files. Each file records

1 hour of data.

The 6 second data and 1 second data are stored in CSV files, one CSV file per meter. The first

column is a UNIX timestamp (the number of seconds elapsed since 1970-01-01 00:00:00 UTC).

The UNIX timestamp is UTC (Coordinated Universal Time) and hence ignores daylight saving

transitions (the UK is UTC+0 during winter and UTC+1 during summer).

The 1 second data, 6 second data and metadata are also available as a single HDF5 binary

file, ready for use with the open-source energy disaggregation toolkit NILMTK (see Chapter 5).

The UK-DALE HDF5 binary file is available from www.doc.ic.ac.uk/~dk3810/data and from

the UKERC EDC.

6 second data

For the 6 second data, the second column in each CSV file is a non-negative integer which

records power demand of the downstream electrical load. The file names of the 6 second data

take the form of channel_<X>.dat where X is a positive integer (with no leading zero). There

are two types of 6 second resolution meters:

1. Individual appliance monitor transmitter plugs that record active power (in units of

watts).

2. Current transformer meters that record apparent power (in units of volt-amperes).

http://dx.doi.org/10.5286/UKERC.EDC.000001
http://dx.doi.org/10.5286/UKERC.EDC.000001
http://dx.doi.org/10.5286/UKERC.EDC.000002
http://www.doc.ic.ac.uk/~dk3810/data/
www.doc.ic.ac.uk/~dk3810/data
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Individual appliance monitors have a push-button switch to allow users to turn the connected

appliance on and off. We record the activity of this switch in a channel_<X>_button_press.dat

file. If the switch has just been toggled on then a ‘1’ is recorded. If the switch has just been

toggled off then a ‘0’ is recorded. The motivation behind logging switch-press events is that

these provide (imperfect) room occupancy information.

Switch on events should be a perfectly clean recording (i.e. the only possible reason for an

on-switch event appearing in the data is that the user pressed the switch). Unfortunately,

off-switch events may include false positives. Occasionally IAMs turn off spontaneously (an

event which is impossible to distinguish from a genuine button press). Also, if power is lost

and returned to the IAM within 12 seconds then this will be logged as an off-switch event. If

the power is off for more than 12 seconds then the system assumes that the IAM was deliber-

ately unplugged and hence the system will switch the IAM to its previous power state when it

reappears; this automatic switch event is not recorded.

1 second data

There are four columns in each CSV file recording the whole-house power demand every second:

1. UNIX timestamp.

2. Active power (watts).

3. Apparent power (volt-amperes).

4. Mains RMS voltage.

All four columns record real numbers (not integers). The first column has one decimal place

of precision; the other columns have two decimal places of precision. The 1 second data is in a

CSV file called mains.dat in directories house_1, house_2 and house_5.

16 kHz data

The 16 kHz data is compressed using the Free Lossless Audio Codec (FLAC). For houses

1, 2, and 5 UK-DALE records a stereo 16 kHz audio file of the whole-house current and
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voltage waveforms. The files are labelled vi-<T>.flac where T is a real number recording

the UNIX timestamp with micro-second precision (using an underscore as the decimal place).

This timestamp is the time at which the audio file began recording. The recordings are split

into hour-sized chunks. We also include a calibration.dat file for each house. This is a text

file specifying the multipliers required to convert the raw output of the analogue to digital

converter to amps and volts.

To make use of the FLAC files (for processing in, for example, MATLAB or Python), first

decompress the files to create WAV files. This decompression can be done with many audio

tools. We use the audio tool sox.

With the WAV files in hand, the next task is to convert from the values in the WAV files (in

the range [−1, 1]) to volts and amps. Use the calibration.cfg file for the house in question.

This file specifies an amps_per_adc_step parameter and a volts_per_adc_step parameter.

Users can safely ignore the phase_difference parameter and assume that the measurement

hardware introduces no significant phase shift. Use the following formula to calculate volts

from the WAV files:

volts = value from WAV× volts per ADC step× ADC steps

ADC_steps = 231 for Houses 1 and 2. ADC_steps = 215 for House 5.

Use a similar formula for amps. To explain the formula above: The recording software stores

each sample as a 32 bit integer for Houses 1 and 2; and as a 16-bit integer for House 5. Hence,

for Houses 1 and 2, there are 232 ADC steps for the full range from [−1, 1] and 231 ADC steps

for half the range.

4.4 Exploration of the recorded data

Table 4.1 summarises the UK-DALE dataset. The table includes some metadata (which is also

recorded in the machine-readable metadata supplied with the dataset) including the type of

building, the year of construction, the main heat source, whether the property is bought or

rented, the number of occupants, a description of the occupants, the total number of meters,
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House 1 2 3 4 5
Building type end of terrace end of

terrace
mid-
terrace

flat

Year of construction 1905 1900 1935 2009
Energy improvements solar thermal

& loft
insulation &
solid wall
insulation &
double glazing

cavity wall
insulation &
double
glazing

loft
insulation
& double
glazing

Heating natural gas natural gas natural
gas

natural
gas

Ownership bought bought bought bought
Number of occupants 4 2 2 2
Description of occupants 2 adults and 1

dog started
living in the
house in 2006.
One child born
in 2011.
Second child
born in 2014.

2 adults. 1
at work all
day; the
other
sometimes
home

1 adult
and 1
pensioner

2 adults

Total number of meters 54 20 5 6 26
Number of site (mains) meters 2 2 1 1 2
Sample rate of mains meters 16 kHz & 1 Hz

& 6 seconds
16 kHz & 1
Hz & 6
seconds

6 seconds 6 seconds 16 kHz &
1 Hz & 6
seconds

Date of first measurement 2012-11-09 2013-02-17 2013-02-27 2013-03-09 2014-06-29
Date finished installing all
meters

2013-04-12 2013-05-22 “ “ “

Date of last measurement 2016-05-13 2013-10-10 2013-04-08 2013-10-01 2014-11-13
Date when some meters were
removed

2014-09-06

Total duration (days) 1280 234 39 205 137
Total uptime for mains meter
(days)

1244 140 36 155 131

Uptime proportion 0.97 0.6 0.93 0.75 0.96
Average mains energy
consumption per day (active
kWh)

7.64 7.17 13.75

Average mains energy
consumption per day (apparent
kVAh)

8.9 8 12.35 10.24 17.56

Following statistics calculated
when all meters installed
Correlation of sum of submeters
with mains

0.96 0.86 0.47 0.55 0.9

Proportion of energy
submetered

0.8 0.68 0.19 0.28 0.79

Mean dropout rate (ignoring
large gaps)

0.02 0.02 0.02 0.02 0.02

Table 4.1: Summary statistics for each house.
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the number of site meters, the sample rate of the mains meters and the start and end dates

for the recordings. The table also includes summary statistics calculated using the open source

energy disaggregation tool NILMTK (see Chapter 5): the average mains energy consumed

per day, the correlation of the mains meter with the sum of all submeters, the proportion of

energy submetered, and the dropout rate. The values for the average energy consumption

per day are close to the value of 9.97 kWh per day reported in DECC’s Household Electricity

Survey (Zimmermann et al. 2012) (which surveyed 251 houses in the UK), hence we can have

some confidence that our houses consumed a fairly typical amount of energy for a UK house.

To explain the rest of the row labels in Table 4.1: ‘uptime’ is the total time that the system

was active and recording. The ‘total duration’ is ‘date of last measurement’ minus ‘date of

first measurement’. The correlation of the mains meter with the sum of all submeters gives

an indication of how much of the variance in the mains signal is captured by the submeters.

The proportion of energy submetered is the total energy captured by the submeters divided by

the total energy captured by the mains meter. The dropout rate (ignoring large gaps) gives

a measure of the rate at which packets were lost due to radio errors (large gaps are ignored

because these are often caused by a meter being deliberately unplugged). Some metadata is

not available because the occupants are no longer contactable.

Figures 4.5 to 4.9 (except panel ‘a’ in Figure 4.7) were produced using NILMTK. The scripts

to generate these plots are available at github.com/JackKelly/ukdale_plots.

Figure 4.5 shows the power demand for a typical day for House 1. We show the individual power

demand for the top-five appliances (ranked by energy consumption) and all other submeters

summed together. We also show the whole-house mains power demand. The difference between

the mains power demand and the top of the submetered power demand illustrates the small

amount of energy which is not submetered.

The time periods when each meter was capturing data is shown in Figure 4.6. Note that

the numerous gaps in the data from House 1 are almost all deliberate and not the result of an

equipment failure. For example, some meters in House 1 are manually turned off if the attached

appliance is unplugged.

An example of 16 kHz data captured by our sound card power meter is shown in Figure 4.7

panel ‘a’. Note that the voltage is almost a pure 50 Hz sine wave but the current contains many

https://github.com/JackKelly/ukdale_plots
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Figure 4.5: Power demand for a typical day (Sunday 2014-12-07) in House 1. The thin grey
line shows the mains (whole-house) active power demand recorded using our sound card power
meter. The stacked and filled coloured blocks show the power demand for the top five appli-
ances (by energy consumption) and the dark blue block shows all the other submeters summed
together. The thin white gap between the top of the coloured blocks and the mains plot line
represents the power demand not captured by any submeter.
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Figure 4.6: Time periods when meters were recording. The five houses in the dataset are
represented by the five panels in this plot. The height of each panel is proportional to the
number of meters installed in each house. Each thin row (marked by each y-axis tick mark)
represents a meter. Blue areas indicate time periods when a meter was recording. White gaps
indicate gaps in the dataset. The data for House 1 continues into 2015 and 2016 but that data
has been left off this plot in order to provide enough space to see the detail in the plots for
Houses 2-5.
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Figure 4.7: Mains electricity data. a, 16 kHz sampling of mains voltage and current using our
sound card power meter from House 1 on 2014-09-03 21:00:00+01:00. The green line shows the
current and the blue line shows the voltage. Panel b shows histograms of mains power demand
for each house. The five subplots represent the five houses in the dataset. There is some density
above 500 watts but this has been cropped from this plot to allow us to see detail in the range
between 0 and 500 watts.
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Figure 4.8: Electrical appliance usage in House 1. a, Histograms of daily appliance usage
patterns. Panel b shows average daily energy consumption of the top-five appliances in House 1.
All appliances were ranked by the amount of energy they consumed and the top-five are shown
here. All lights were grouped together. The ‘remainder’ block at the bottom represents the
difference between the total mains energy consumption and the sum of the energy consumption
of the top five appliances. As such, the top edge of the bar shows the average daily total energy
consumption for House 1.

harmonics.

The distribution of values for the mains power demand for each house is shown in Figure 4.7

panel ‘b’. The left-most edge of each density represents the ‘vampire power’ of each house

(i.e. the power demand when no one is using an appliance but power is still being drawn by

always-on appliances and appliances in standby mode).

Figure 4.8 panel ‘a’ shows the hour per day that several appliances are used. For example, the

oven shows two peaks in usage: one around midday (lunch) and one around 18:00 (dinner).

The energy consumed by the top five energy consuming appliances in House 1 is shown in
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Figure 4.9: Histograms of appliance power demand from House 1.

Figure 4.8 panel ‘b’. This is relevant because energy disaggregation researchers often prioritise

the disaggregation of the appliances responsible for the largest energy consumption.

The distribution of values of power demand for individual appliances is shown in Figure 4.9.

Some appliance information can be inferred from the histograms. For example, the top left

panel shows a histogram for the power demand of the fridge: the main peak around 90 W is

the normal compressor cycle, the peak around 17 W is the fridge lamp and the peak around

250 W is the defrosting cycle. The vacuum cleaner has six discrete power settings, all of which

can be seen in its histogram.

Figure 4.10 shows the measurement errors for our sound card power meter and the Current

Cost Current Transformer (CT) sensor across a range of resistive loads. The ground truth was

measured using a ‘Watts up? PRO’ meter16 (with a nominal accuracy of ±1.5%). The range of

loads were created by using three incandescent lamps and by changing the number of primary

turns on the CT from one to seven, in steps of one. For each load, we recorded one minute

of data and took the largest error from that minute of data. The sound card power meter

was calibrated six months prior to the test. This illustrates that our sound card power meter

consistently produces a relative error of less than 2% and that the Current Cost CT meter
16https://www.wattsupmeters.com/secure/products.php?pn=0

https://www.wattsupmeters.com/secure/products.php?pn=0
https://www.wattsupmeters.com/secure/products.php?pn=0
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Figure 4.10: Maximum relative measurement error for power measurements across a range of
loads. A ‘Watts up? PRO’ meter was used to record the ground-truth.

produces errors of less than 6% as long as the power is above 100 watts (the whole-house power

demand very rarely drops below 100 watts).

We compared the total active energy recorded by our sound card power meter for House 1 with

the utility-installed ‘spinning disk’ electricity meter in House 1. We selected the time period of

2013-05-22 20:36 to 2014-11-28 08:55 for the comparison because we have a continuous recording

from our sound card power meter for this period, and we have readings of the utility meter at

the start and end of this period. The total energy recorded by the utility meter for this period

was 4030.60 kWh. The total recorded by the sound card power meter was 4142.93 kWh. The

relative difference is 2.71%.

Houses 1, 2 and 5 had two mains meters: a sound card power meter and a Current Cost

meter. For each of these houses, we compared the apparent energy recorded by the sound card

power meter against the Current Cost whole-house meter. The relative difference was 1.79%

in House 1; 7.30% in house 2 and 5.68% in house 5.

4.4.1 Correlations with weather

We expect the usage of some appliances to be correlated with some weather variables. Previous

studies have demonstrated correlations between temperature and heating/cooling demand in

Australia (de Dear & M. Hart 2002) and between temperature and total household electricity

https://www.wattsupmeters.com/secure/products.php?pn=0
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Figure 4.11: Seasonal variation in boiler usage. In June (bottom panel), the boiler usage
histogram is dominated by the hot water program which runs twice a day. In February (top
panel), considerably more energy is used on space heating than on hot water heating.

usage in America (Kavousian et al. 2013). We wanted to search for similar correlations in our

UK data.

If robust correlations can be demonstrated then a disaggregation system could learn correlations

between weather variables and appliance usage in order to refine its appliance usage estimates.

Weather data are relatively easy to acquire programmatically: for example, the UK Metoffice

provides free access to live weather data via their DataPoint API17.

An example of seasonal variation in boiler usage is shown in Figure 4.11. During February, when

the weather is relatively cold in the UK, the boiler is primarily used to heat to the radiators for

the majority of the day. In May, when the weather is warmer, the space heating requirement

drops away and the twice-daily hot water heating program dominates the usage histogram.

Figure 4.12 shows correlations between lighting usage and solar radiation; between solar ther-

mal pump activity and solar radiation; between boiler usage and maximum temperature and

between fridge activity and minimum external temperature. As one might expect, the strongest

correlation is between solar radiation and the activity of the solar thermal pump (which turns

on automatically when the temperature of the evacuated tube solar thermal panels on the roof

exceed a threshold). Lighting circuit usage correlates with solar radiation although there is con-

siderable variation in lighting usage which is not explained by solar radiation. The correlation

between external maximum temperature and boiler usage is also strong; and it is noteworthy

17http://www.metoffice.gov.uk/datapoint

http://www.metoffice.gov.uk/datapoint
http://www.metoffice.gov.uk/datapoint
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Figure 4.12: Linear regressions showing correlation between appliance activity and weather.
R2 denotes the coefficient of determination, m is the gradient of the regression line and n
is the number of data-points used in each regression. Each data-point represents one day.
Historical daily averages from Heathrow weather station (20 miles due west of the premises
under consideration) were obtained from the UK Met Office under their Educational program.
Days for which the appliance usage was zero were ignored because we assume that the house
was unoccupied on these days.

that the X-axis intercept (≈ 19℃) is approximately the set point for the boiler thermostat, as

one might expect.

Please see Appendix A.5 for the usage notes.

4.5 Reception

According to Google Scholar18, our UK-DALE paper (Kelly & Knottenbelt 2015b) has been

cited 68 times, as of the 6th April 2017. The dataset has been downloaded many more times,

although we do not have a precise number for the downloads because our FTP server does not
18https://scholar.google.co.uk/citations?view_op=view_citation&citation_for_view=

Z9L0TgsAAAAJ:ufrVoPGSRksC

https://scholar.google.co.uk/citations?view_op=view_citation&citation_for_view=Z9L0TgsAAAAJ:ufrVoPGSRksC
https://scholar.google.co.uk/citations?view_op=view_citation&citation_for_view=Z9L0TgsAAAAJ:ufrVoPGSRksC
https://scholar.google.co.uk/citations?view_op=view_citation&citation_for_view=Z9L0TgsAAAAJ:ufrVoPGSRksC
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keep logs longer than one month old.
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Chapter 5

An open-source tool kit for

non-intrusive load monitoring

(NILMTK)

This chapter is based on Batra et al. 2014a; Kelly et al. 2014 and NILMTK’s documentation1.

5.1 Why develop an open-source NILM toolkit?

George Hart, the ‘inventor’ of NILM, gave a keynote presentation2 at the third International

Workshop on NILM3 in Vancouver in May 2016. The following evening, we invited Professor

Hart to the programme committee dinner. Over dinner, Hart mentioned how excited he was

to attend a NILM workshop 32 years since his first publication on NILM (G. W. Hart 1984)

and 21 years since his last publications on NILM (G. W. Hart 1995; Rouvellou & G. W. Hart

1995).

Later that evening, Hart mentioned that, as far as he could tell, the field of energy disaggrega-

tion had not progressed as much as he had expected (Hart has not worked on NILM since the

mid-1990s). This lack of progress had also been worrying me and some of my collaborators.
1http://nilmtk.github.io
2https://www.youtube.com/watch?v=hKy9UJpOFpU
3http://nilmworkshop.org/2016
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http://nilmtk.github.io
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http://nilmworkshop.org/2016
http://nilmtk.github.io
https://www.youtube.com/watch?v=hKy9UJpOFpU
http://nilmworkshop.org/2016
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Figure 5.1: NILM papers published per year. Source: Parson 2015 (with permission).

Why has progress been slower than expected? Part of the explanation is that there was compar-

atively little NILM research done before about 2008 (see Figure 5.1). But there are, perhaps,

deeper problems. Energy disaggregation research has several features which almost certainly

slow the rate of progress. Three of these problems are:

1. It is currently impossible to compare the performance of NILM algorithms presented

across any pair of papers because each paper uses different metrics, different datasets

and different pre-processing steps. Hence we have no way to measure progress over time.

And we have no way to decide which NILM approaches are most promising and hence

most deserving of future research effort. Thus far, NILM research is a little like natural

selection without selection: it is just a random walk!

2. It is hard to replicate algorithms described in papers because little code is shared and

because papers often do not provide full implementation details. Replication is essential

to the scientific process.

3. Each public dataset uses a different format hence importing multiple datasets requires

tedious engineering effort. So, in practice, researchers rarely use more than one dataset.

This reduces our ability to measure the generalisability of NILM algorithms.
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Our aim with NILMTK was to help to fix these three issues by developing an open-source

toolkit for NILM researchers. We wanted to make it easier for researchers to conduct high

quality research. In particular, we wanted to:

1. Provide a common set of pre-processing tools, benchmark NILM algorithms and disag-

gregation metrics to help individual research teams to validate the performance of their

algorithms in a standardised way.

2. Develop, with the community, a standardised way to publish NILM algorithm code.

3. Provide a standard dataset format and also provide converters for datasets to the standard

format.

5.2 Overview of NILMTK

NILMTK is an open-source toolkit for energy disaggregation. NILMTK is written in Python

and the code is freely available on GitHub at github.com/nilmtk/nilmtk. Anyone can propose

changes to the code or documentation; or submit bug reports or feature requests.

The Python files include “docstrings” which document the classes and methods. This API

documentation is automatically extracted from the Python files using the documentation tool

Sphinx4 and presented as HTML pages5. NILMTK also has a manual6 and a set of example

scripts presented as iPython notebooks7. I ran a one day hands-on NILMTK workshop at

the 2014 London NILM Workshop8 and an afternoon session on NILMTK at the 2015 London

NILM Workshop9.

An overview of the NILMTK pipeline is shown in Figure 5.2. Datasets are first converted

to NILMTK’s standard data format which is based on the HDF5 file format. Then users

can invoke NILMTK’s dataset statistics functions to identify issues with the dataset, or to

compute informative statistics. NILMTK also provides a set of pre-processing functions to
4http://sphinx-doc.org
5http://nilmtk.github.io/nilmtk/master/index.html
6http://github.com/nilmtk/nilmtk/tree/master/docs/manual
7http://github.com/nilmtk/nilmtk/tree/master/notebooks
8http://www.oliverparson.co.uk/nilm-2014-london
9http://www.nilm.eu/energy_disaggregation_in_industry__academia

https://github.com/nilmtk/nilmtk
http://sphinx-doc.org
http://nilmtk.github.io/nilmtk/master/index.html
http://github.com/nilmtk/nilmtk/tree/master/docs/manual
http://github.com/nilmtk/nilmtk/tree/master/notebooks
http://github.com/nilmtk/nilmtk/tree/master/notebooks
http://www.oliverparson.co.uk/nilm-2014-london
http://www.nilm.eu/energy_disaggregation_in_industry__academia
http://www.nilm.eu/energy_disaggregation_in_industry__academia
http://sphinx-doc.org
http://nilmtk.github.io/nilmtk/master/index.html
http://github.com/nilmtk/nilmtk/tree/master/docs/manual
http://github.com/nilmtk/nilmtk/tree/master/notebooks
http://www.oliverparson.co.uk/nilm-2014-london
http://www.nilm.eu/energy_disaggregation_in_industry__academia
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Figure 5.2: The NILMTK data processing pipeline (Figure created in collaboration with Oliver
Parson and Nipun Batra).

clean up imperfections or to re-sample data to a different timebase (e.g. downsampling 1 Hz

data to 1 minutely data). NILMTK has a number of benchmark NILM algorithms which can

be trained on disaggregated data and then, once models are inferred, aggregate data can be

disaggregated. Finally, NILMTK provides a set of standard metrics functions to compute the

disaggregation performance.

NILMTK has gone through two major versions. NILMTK v0.1 was described in Batra et al.

2014a. NILMTK v0.2 was a complete rewrite of NILMTK and was described in Kelly et al.

2014. I designed most of the architecture and wrote most of the code for NILMTK v0.2.

5.3 The NILMTK developers

The majority of the code and documentation for NILMTK was written by a “core team” of three

people: Nipun Batra10 (who was doing his PhD at the Indraprastha Institute of Information

Technology (IIIT) Delhi11 when we started NILMTK; and moved to University of Virginia12 in

March 2017); Oliver Parson13 (who was at the University of Southampton during the majority

of NILMTK’s development but is now at Centrica Connected Home14); and me. Work started

on NILMTK towards the end of November 2013. The NILMTK project was first proposed by

Nipun.

A substantial proportion of the code has been contributed by people not in the “core team”.

Several of NILMTK’s eleven dataset converters were written by the dataset authors. Two of

NILMTK’s disaggregation algorithms were written by the algorithm developers.
10http://nipunbatra.github.io
11https://www.iiitd.ac.in
12http://www.cs.virginia.edu/~nb2cz
13http://www.oliverparson.co.uk
14https://www.centrica.com/about-us/what-we-do/connected-home

http://nipunbatra.github.io
https://www.iiitd.ac.in
https://www.iiitd.ac.in
http://www.cs.virginia.edu/~nb2cz
http://www.oliverparson.co.uk
https://www.centrica.com/about-us/what-we-do/connected-home
http://nipunbatra.github.io
https://www.iiitd.ac.in
http://www.cs.virginia.edu/~nb2cz
http://www.oliverparson.co.uk
https://www.centrica.com/about-us/what-we-do/connected-home
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5.4 Other open-source tool kits

Shortly after NILMTK was released, a research group at ETH Zurich released NILM-Eval15, a

NILM toolkit written in MATLAB (Cicchetti 2014; Beckel et al. 2014). To quote NILM-Eval’s

GitHub page:

NILM-Eval is a MATLAB framework that allows to evaluate non-intrusive load

monitoring algorithms in different scenarios to gain a comprehensive view on their

performance. NILM-Eval makes it easy to evaluate algorithms on multiple data sets,

households, data granularities, time periods, and specific algorithm parameters. By

encapsulating those parameters in configurations, NILM-Eval further allows the user

with little effort to repeat experiments performed by others, to evaluate an algorithm

on a new data set, and to fine-tune configurations to improve the performance of

an algorithm in a new setting.

Later in 2014, the Data Science for Social Good Summer Fellowship at the University of

Chicago16 ran an energy disaggregation project which resulted in an open source framework for

disaggregated energy data17.

As far as we can tell, NILMTK is had a larger impact on the NILM community than NILM-Eval

or the DSSG project. One imperfect way to measure impact is to look at the number of “stars”

each project has on GitHub. NILMTK has 186 stars; NILM-Eval has 21 stars and the DSSG

project has 17 stars.

5.5 NILMTK’s design and features

We will now discuss in detail the design and features of NILMTK v0.2. Please see Appendix B.1

for a list of software dependencies for NILMTK.

15https://github.com/beckel/nilm-eval
16https://dssg.uchicago.edu
17https://dssg.uchicago.edu/project/building-open-source-tools-to-analyze-smart-meter-data/

https://github.com/beckel/nilm-eval
https://dssg.uchicago.edu
https://dssg.uchicago.edu
https://dssg.uchicago.edu/project/building-open-source-tools-to-analyze-smart-meter-data/
https://dssg.uchicago.edu/project/building-open-source-tools-to-analyze-smart-meter-data/
https://github.com/beckel/nilm-eval
https://dssg.uchicago.edu
https://dssg.uchicago.edu/project/building-open-source-tools-to-analyze-smart-meter-data/


5.5. NILMTK’s design and features 97

... ...

arbitrary quantity of data from disk

preprocessing

load chunk from disk

statistics

disaggregation

...

save appliance estimates 
to disk

Figure 5.3: NILMTK v0.2 can process an arbitrary quantity of data by loading data from disk
in chunks. This figure illustrates the loading of a chunk of aggregate data from disk (top) and
then pushing this chunk through a processing pipeline which ends in saving appliance estimates
to disk chunk-by-chunk.

5.5.1 NILMTK can handle an arbitrary amount of data

One of the main differences between NILMTK v0.1 and v0.2 is that v0.2 can handle an arbitrary

amount of data. It does this by loading data from disk in chunks such that each chunk can fit

into memory (see Figure 5.3).

This “out of core” processing is implemented using Python’s generator functions. Generators

provide a convenient way to define iterators. Each time iterator.next() is called, new data

is returned. This provides a natural way to iterate through an arbitrary amount of data.

A simple generator example is provided by the Python wiki documentation on generators18:

18https://wiki.python.org/moin/Generators

https://wiki.python.org/moin/Generators
https://wiki.python.org/moin/Generators
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# a genera tor t ha t y i e l d s i tems in s t ead o f r e tu rn ing a l i s t

def f i r s t n (n ) : # de f i n e a func t i on which t a k e s a s i n g l e parameter , n

num = 0

while num < n :

y i e l d num # The loop re turns ‘num ’ ; pauses and re turns

# con t r o l to the c a l l i n g code u n t i l

# ‘ next ( ) ’ i s c a l l e d again on the i t e r a t o r o b j e c t

num += 1

sum_of_first_n = sum( f i r s t n (1000000))

Iterators can be chained such that each step in the processing pathway takes an iterator as

input and returns a new iterator. This mechanism is used in NILMTK to allow processing

pipelines to be defined in a lazy way. In other words, the processing transformations can be

defined and chained independently of the data. It is only when the user tries to pull data out

of the very end of the processing pipeline that any data is loaded into memory from disk.

Out of core processing allows NILMTK to handle datasets which are too big to fit into system

memory and also allows NILMTK to limit its memory usage. One problem with NILMTK v0.1

was that it would try to use more memory than was available to Python, which would result

in the entire system becoming unresponsive.

5.5.2 Classes

A UML diagram for NILMTK v0.2 is shown in Figure 5.4. The following sections will briefly

describe the main classes in NILMTK v0.2.

The design of NILMTK can be considered as being divided into layers of abstraction where the

bottom layer is closest to the hardware and the top layer provides the highest level of abstraction

in order to provide a convenient interface for users. These layers are loosely inspired by the

abstraction layers in the TCP/IP stack.
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Figure 5.4: UML diagram for NILMTK v0.2.

The DataStore class

The DataStore class defines the interface for loading and writing data. The DataStore class is

in NILMTK’s bottom abstraction layer. It loads a single chunk of data at a time and returns

a generator of Pandas DataFrame objects (an in-memory 2D matrix).

The DataStore class is totally agnostic about what the data ‘means’. Each column could

represent voltage, current, temperature, PIR readings etc. This is similar to how the Link layer

in TCP/IP is totally agnostic about what the packet’s payload ‘means’.

We have implemented two DataStore subclasses: HDFDataStore and CSVDataStore. Other

DataStores could, in principal, be implemented. These might include classes for pulling data

from big data stores on the network, or from meters etc.

To minimise memory usage, DataStore.load() can be told exactly which columns to load and

can be given a list of TimeFrames to load from disk.

http://nilmtk.github.io/nilmtk/master/nilmtk.datastore.html#module-nilmtk.datastore.datastore
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Figure 5.5: Histograms of power consumption. The filled grey plots show histograms of nor-
malised power. The thin, grey, semi-transparent lines drawn over the filled plots show his-
tograms of un-normalised power.

The TimeFrame class and the TimeFrameGroup class

A TimeFrame object represents a time period with an arbitrary start date and an ar-

bitrary end date. It contains methods for manipulating time periods. For example,

tf1.check_for_overlap(tf2) returns True if tf1 and tf2 overlap.

The TimeFrameGroup class exists to store multiple TimeFrame objects. It contains methods to,

for example, find the intersection between two TimeFrameGroup objects.

The Electric superclass, ElecMeter class and MeterGroup class

The Electric class exists one level of abstraction above the DataStore class. The Electric

class has two subclasses: the ElecMeter and MeterGroup classes.

The Electric class provides methods such as plot_power_histogram() which can be used to

create histograms like the one shown in Figure 5.5.

The ElecMeter class represents a single electricity meter. The MeterGroup class represents

multiple electricity meters (for example, all the meters in a single home; or all the meters in a

dataset which measure lights).

MeterGroup contains a set of methods for selecting ElecMeters. For example,

MeterGroup.select_top_k(k=5) will return a new MeterGroup which contains only the top

five ElecMeters, ranked by energy consumption, allowing for the creation of graphs like that

in Figure 5.6.

Another way to select from a MeterGroup is to search by the appliance type connected to the

meter. For example, metergroup[‘kettle’] will select the ElecMeter connected to the kettle.

http://nilmtk.github.io/nilmtk/master/nilmtk.html#module-nilmtk.timeframe
http://nilmtk.github.io/nilmtk/master/nilmtk.html#module-nilmtk.timeframegroup
http://nilmtk.github.io/nilmtk/master/nilmtk.html#module-nilmtk.electric
http://nilmtk.github.io/nilmtk/master/nilmtk.html#module-nilmtk.elecmeter
http://nilmtk.github.io/nilmtk/master/nilmtk.html#module-nilmtk.metergroup
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Figure 5.6: Top five appliances in terms of the proportion of the total energy used in a single
house (house 1) in each of REDD (USA), iAWE (India) and UK-DALE.

ElecMeters can have a substantial amount of metadata associated with them, as per the NILM

Metadata schema.

The Appliance class

Just as in our NILM Metadata schema, NILMTK distinguishes between appliances and elec-

tricity meters so that we can represent any arbitrary relationship between electricity meters

and appliances. The Appliance class represents a single electric appliance, such as a kettle or

toaster.

Appliances can have detailed metadata associated with them, as per the NILM Metadata

schema. That metadata might come from the dataset itself (such as the make and model of

the appliance) or might come from NILM Metadata’s central store of metadata (such as the

fact that a kettle is often found in the kitchen).

The Building class and the DataSet class

The Building class represents a physical building such as a house. Each Building object has

an elec attribute which is a MeterGroup object which represents all the ElecMeters in that

building. Each Building object also has a metadata attribute which is a Python dictionary

http://nilmtk.github.io/nilmtk/master/nilmtk.html#module-nilmtk.appliance
http://nilmtk.github.io/nilmtk/master/nilmtk.html#module-nilmtk.building
http://nilmtk.github.io/nilmtk/master/nilmtk.html#module-nilmtk.dataset
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Figure 5.7: Lost samples per hour from a representative subset of channels in REDD house 1.

Data set Number of
appliances

Percentage
energy

sub-metered

Dropout rate
(percent)

ignoring gaps

Mains up-time
per house

(days)

Percentage
up-time

REDD 9, 16, 23 58, 71, 89 0, 10, 16 4, 18, 19 8, 40, 79
Smart* 25 86 0 88 96

Pecan Street 13, 14, 22 75, 87, 150 0, 0, 0 7, 7, 7 100, 100, 100
AMPds 20 97 0 364 100
iAWE 10 48 8 47 93

UK-DALE 4, 12, 53 19, 48, 82 0, 7, 22 36, 102, 470 73, 84, 100

Table 5.1: Summary of dataset results calculated by the diagnostic and statistical functions
in NILMTK. Each cell represents the range of values across all households per data set. The
three numbers per cell are the minimum, median and maximum values. AMPds, Smart* and
iAWE each contain just a single house, hence these rows have a single number per cell.

recording metadata about the building, using the NILM Metadata schema.

A DataSet object holds all the Buildings in a single dataset and provides some methods for

computing statistics for the entire dataset such as plot_good_sections which can be used to

create plots like the one shown in Figure 5.7. It is also possible to compute a range of statistics

across the entire dataset, such as the statistics presented in Figure 5.1. DataSet.set_window()

allows users to define a TimeFrame over which all subsequent computations will be performed.

The Disaggregator class

The Disaggregator class provides a common interface to train and test disaggregation al-

gorithms. There are four implementations in NILMTK: CombinatorialOptimisation; FHMM

for training and performing exact inference on a factorial hidden Markov model; Hart85 for

performing disaggregation in a similar way to that described in G. W. Hart 1985 (originally

implemented by one of my 2014 MSc individual project students, Simon Leigh); and MLE for

performing maximum likelihood estimation (originally implemented by José Alcalá working

http://nilmtk.github.io/nilmtk/master/nilmtk.disaggregate.html#module-nilmtk.disaggregate.disaggregator
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Figure 5.8: Predicted power estimates generated by the CO and FHMM algorithms and, for
comparison, the ground truth for air conditioner 2 in the iAWE data set. Figure created by
Nipun Batra.

with Oliver Parson).

We decided that third party, cutting-edge NILM algorithms should be maintained by the orig-

inal developer (instead of becoming part of the core NILMTK project). A list of third-party

NILM algorithms compatible with NILMTK are listed in the NILMTK wiki19.

5.5.3 Data format

NILMTK stores disaggregated datasets and the output of disaggregation algorithms in a com-

mon format. We have designed a hierarchical data structure which can be implemented using

either a set of CSV files in a folder hierarchy of or, more commonly, a single HDF5 file per

dataset. The full details of NILMTK’s dataset format are presented in NILMTK’s manual20.

5.5.4 Disaggregation

Once a Disaggregator object has been trained (or once a pre-trained model has been loaded),

it is possible to use Disaggregator.disaggregate() to produce a set of appliance-by-appliance

estimates. Figure 5.8 shows the ground truth power for an air conditioner and the predicted

power using the combinatorial optimisation algorithm and the FHMM algorithm.
19https://github.com/nilmtk/nilmtk/wiki/NILM-Algorithms
20https://github.com/nilmtk/nilmtk/blob/master/docs/manual/development_guide/writing_a_

dataset_converter.md

https://github.com/nilmtk/nilmtk/wiki/NILM-Algorithms
https://github.com/nilmtk/nilmtk/blob/master/docs/manual/development_guide/writing_a_dataset_converter.md
https://github.com/nilmtk/nilmtk/wiki/NILM-Algorithms
https://github.com/nilmtk/nilmtk/blob/master/docs/manual/development_guide/writing_a_dataset_converter.md
https://github.com/nilmtk/nilmtk/blob/master/docs/manual/development_guide/writing_a_dataset_converter.md
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5.5.5 Automated unit testing

We have written a suite of unit tests. The tests cover 55% of the code. One of the main benefits

of having a set of unit tests is that it allows us to quickly check if any new code has broken any

functionality. We use the free Travis Continuous Integration (CI) service21 to automatically

run all unit tests whenever new code is committed to github or whenever a new pull request is

submitted. This has allowed us to catch and fix multiple bugs.

5.6 NILMTK and the community

The wider community can interact with NILMTK and the NILMTK developers through several

channels:

• The NILMTK issue queue on GitHub22.

• Pull requests on github.

• The energy disaggregation mailing list23 (which I set up).

• Direct emails to developers.

• Face to face at workshops and conferences.

The NILMTK issue queue on GitHub is the primary channel through which the community

interacts with the NILMTK project. There are a total of 522 issues on the issue queue, of which

359 are closed and 130 are open (as of 2016-08-23).

Keeping up with the issue queue has been a substantial challenge for us. Sometimes multiple

issues will be submitted per day, each of which might take several hours to fix.

A large proportion of the issues submitted to the issue queue are not bug reports but are

requests for help. In retrospect, we should have put more effort towards writing comprehensive

documentation near the beginning of the project. This would have saved a lot of time on the

issue queue!
21https://travis-ci.org/nilmtk/nilmtk
22https://github.com/nilmtk/nilmtk/issues
23https://groups.google.com/forum/#!forum/energy-disaggregation

https://travis-ci.org/nilmtk/nilmtk
https://github.com/nilmtk/nilmtk/issues
https://groups.google.com/forum/#!forum/energy-disaggregation
https://travis-ci.org/nilmtk/nilmtk
https://github.com/nilmtk/nilmtk/issues
https://groups.google.com/forum/#!forum/energy-disaggregation
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5.7 Conclusion

NILMTK is an open source toolkit and it certainly has the potential to satisfy the aims that

we described at the start of this chapter. NILMTK has certainly achieved recognition in the

NILM community: our first NILMTK paper (Batra et al. 2014a) has been cited 109 times

(according to Google Scholar on 2017-04-07); and we frequently receive email correspondence

about NILMTK. But it is not yet clear whether it has driven substantial change in the NILM

research community. This might, in part, be because NILMTK is over-complicated. Ideas for

simplifying NILMTK are presented in the next section.

5.7.1 Future work: simplifying NILMTK

Perhaps the most pressing need is to simplify the NILMTK code. No developers outside the

“core team” have contributed code to the majority of NILMTK’s classes. This is likely to be

because NILMTK’s code is complex.

For example, I designed and implemented a mechanism whereby, prior to executing any dataset

statistics, NILMTK would check a dataset’s metadata to see if the data was in the correct state

(for example, had all the gaps been filled?). This metadata-checking feature has, as far as I

can tell, never been used. Yet it adds a fair amount of complexity to the code.

The out-of-core processing in NILMTK complicates the majority of the code. Now that system

memory is relatively cheap,24 perhaps it would be prudent to go back to processing everything

in-memory (but to have simple checks to make sure NILMTK did not try to load more data into

memory than is available to Python). This would significantly simplify the code. Alternatively,

NILMTK could make use of modern Python packages such as Blaze25 and Dask26 which handle

out-of-core processing (this idea is discussed further in issue #248 on the issue queue27).

Another issue with NILMTK’s current design is that it is a monolithic “walled garden”. NILMTK

wraps data in complex objects which carry lots of state. This makes it easy to pass data through
2416 GBytes of DDR4 RAM is £120 including VAT, as of April 2017. And technologies like Intel’s Optane

(also known as “3D XPoint”) might enable computers to have hundreds of gigabytes of core memory for relatively
small amount of money within a few years.

25http://blaze.pydata.org
26http://dask.readthedocs.io
27https://github.com/nilmtk/nilmtk/issues/248

http://blaze.pydata.org
http://dask.readthedocs.io
https://github.com/nilmtk/nilmtk/issues/248
http://blaze.pydata.org
http://dask.readthedocs.io
https://github.com/nilmtk/nilmtk/issues/248
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a pure-NILMTK tool chain. But it is hard to create a hybrid tool chain where NILMTK is

used for only part of the processing. As such, we are considering redesigning NILMTK so

that it more closely follows the “UNIX design philosophy” (McIlroy et al. 1978) and becomes

a set of small, well defined tools; rather than a sprawling monolith (these ideas for simplifying

NILMTK are further discussed in issue #47928).

Other ideas for simplifying NILMTK are tagged with the “simplify” label29 on the NILMTK

issue queue.

28https://github.com/nilmtk/nilmtk/issues/479
29https://github.com/nilmtk/nilmtk/labels/simplify

https://github.com/nilmtk/nilmtk/issues/479
https://github.com/nilmtk/nilmtk/labels/simplify
https://github.com/nilmtk/nilmtk/issues/479
https://github.com/nilmtk/nilmtk/labels/simplify


Chapter 6

A metadata schema for disaggregated

energy data

Multiple disaggregated electricity datasets have been released over the last few years. Each

dataset uses a different format to communicate essential characteristics of the dataset. For

example, the metadata might be in a CSV file or a plain-text README. The lack of a standard

metadata schema makes it unnecessarily time-consuming to write software (such as NILMTK)

to process multiple datasets. Worse, the lack of a metadata standard means that crucial

information is absent from some datasets.

This chapter describes a metadata schema for representing appliances, meters, buildings, datasets,

prior knowledge about appliances and appliance models. The schema defines a graph-based rep-

resentation and provides a simple but powerful inheritance mechanism. This chapter is based

on a published conference paper, Kelly & Knottenbelt 2014.

In this chapter we first introduce the need for a metadata schema (Section 6.1), then we

outline related work (Section 6.2); then we describe the design (Section 6.3) and implementation

(Section C.1); then we discuss limitations of the schema (Section 6.4). Towards the end of the

chapter we discuss the community’s reaction to the metadata schema since its publication

in 2014 (Section 6.5). This motivates a discussion of whether a simpler metadata schema is

required (Section 6.4.1) and, finally, the chapter concludes (Section 6.6).

107
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6.1 Introduction

In the quest to design and implement a high performance energy disaggregation system, re-

searchers require several types of data:

The primary requirement is for datasets which record the power demand of whole homes as

well as the ‘ground truth’ power demand of individual appliances within the home. In 2011,

researchers at MIT released the first public dataset for energy disaggregation research (J. Zico

Kolter & M. J. Johnson 2011). Since then, eleven more datasets have been released (Pecan

Street 2011; Reinhardt et al. 2012; Holcomb 2012; K. Anderson et al. 2012; Batra et al. 2013;

Sean Barker et al. 2012; Zimmermann et al. 2012; Makonin et al. 2013; Beckel et al. 2014;

Kelly & Knottenbelt 2015b; Gao et al. 2015; Nambi et al. 2015; Kahl et al. 2016; Makonin

et al. 2016).

These datasets have been well received but, because each dataset uses a different file format, it is

time consuming to import multiple datasets. This is an issue because an important criteria for

evaluating any machine learning algorithm is how well it generalises across multiple datasets. A

further challenge with existing datasets is that machine-readable metadata is often minimal and

uses a schema and vocabulary unique to that dataset. At best, the lack of a standard metadata

schema makes it time-consuming to write software to process multiple datasets. At worse,

some datasets simply lack sufficient metadata to allow the data to be properly interpreted. For

example, the mains wiring connecting meters to each other and to appliances forms a tree (with

the whole-house meter at the root and appliances at the leaves). This tree structure has more

than two levels in some datasets yet the metadata rarely specifies the wiring tree.

A secondary requirement is for data describing the behaviour of appliances (e.g. a probability

distribution describing the typical times per day that each appliance is used). This prior

knowledge can be used to fine-tune the estimates produced by a disaggregation system. Such

data is available in research papers and industry reports, but not in a machine-readable form.

Finally, consumers are unlikely to put effort into training a disaggregation tool. As such, if

open-source disaggregation solutions such as NILMTK (see Chapter 5) are to be viable as

consumer-facing disaggregation solutions then researchers must distribute pre-trained models

for each appliance. If these models adhere to a standard metadata schema then multiple



6.2. Related work 109

software systems can exchange models.

Against this background, we propose a hierarchical metadata schema for energy disaggregation.

Specifically, our schema models electricity meters, appliances (including prior knowledge such

as probability distributions describing typical times of use and parameters describing inferred

models of appliances), buildings and datasets.

Although we have made every effort to ensure that our proposed schema and controlled vo-

cabularies capture the information present in all the datasets we are aware of, our schema can

undoubtedly be improved and so the schema is presented as an open-source project1 (under a

permissive Apache 2.0 license) to which contributions are most welcome!

6.2 Related work

The general principal of using metadata to describe research datasets is not new. For example,

the not-for-profit organisation DataCite2 (established in 2009) publishes the DataCite Meta-

data Schema for describing research datasets. Additional general schemas include SensorML3

for describing general sensor data and the DDI CodeBook4 for describing social science survey

data. The OGC Observations and Measurements (O&M) standard5 (also published as ISO/DIS

19156) defines an XML schema for sampling and making observations and there exists a spe-

cialisation of O&M for environmental data, the Metadata Objects for Linking Environmental

Sciences (MOLES3) (Parton et al. 2015).

In late-2013, the Nature Publishing Group launched a journal called ‘Scientific Data6’ for de-

scribing datasets. The machine-readable description of each dataset is captured using the

ISA_Tab metadata specification7 which specifies a hierarchical schema consisting of the ‘inves-

tigation’ (the project context), the ‘study’ (a unit of research) and the ‘assay’ (an analytical

measurement).

1https://github.com/nilmtk/nilm_metadata
2http://www.datacite.org
3http://www.opengeospatial.org/standards/sensorml
4http://www.ddialliance.org/Specification/DDI-Codebook
5http://www.opengeospatial.org/standards/om
6http://www.nature.com/scientificdata
7http://isa-tools.org

https://github.com/nilmtk/nilm_metadata
http://www.datacite.org
http://www.opengeospatial.org/standards/sensorml
http://www.ddialliance.org/Specification/DDI-Codebook
http://www.opengeospatial.org/standards/om
http://www.nature.com/scientificdata
http://isa-tools.org
https://github.com/nilmtk/nilm_metadata
http://www.datacite.org
http://www.opengeospatial.org/standards/sensorml
http://www.ddialliance.org/Specification/DDI-Codebook
http://www.opengeospatial.org/standards/om
http://www.nature.com/scientificdata
http://isa-tools.org
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Biology researchers have embraced the need for metadata schemas and controlled vocabularies

as demonstrated by, for example, The Open Biological and Biomedical Ontologies database8

which aims to enable the creation of a suite of interoperable reference ontologies for the biomed-

ical domain.

Project Haystack9 is an open-source initiative to develop taxonomies and tagging conventions

for a building’s equipment and operational data. Amongst other achievements, Haystack defines

a language for describing electricity meters, including which parameters each meter records and

the relationships between meters, and between meters and loads. But Haystack is primarily

targeted at large commercial buildings rather than domestic buildings, and does not define a

controlled vocabulary for appliance names, let alone more granular detail about appliances.

The UK Energy Research Council’s Energy Data Centre provides a simple schema10 based on

the Dublin Core Metadata Initiative11 (DCMI).

The Power Consumption Database12 is a community project which aims to collect a database of

appliance power consumption information. As of April 2017, the power consumption database

has 1,257 entries and is being actively added to. Also, Samsung have done research into building

a common database of appliance power demand data for training NILM algorithms (Lai et al.

2012).

Bruce Nordman13 at the Lawrence Berkeley National Laboratory (in California, USA) has

written multiple reports on energy reporting over Internet Protocols (Nordman 2013; Nordman

2014; Nordman & I. Cheung 2016) and device classification. For example, he has assembled a

taxonomy of Miscellaneous and Low Power Products (Nordman & Sanchez 2006).

To summarise the related work: there are many metadata projects for describing general

datasets but only a small number of metadata projects for describing energy datasets. To

the best of our knowledge, there are no existing metadata schemas specifically for describing

objects relevant to energy disaggregation. Existing datasets for energy disaggregation do pro-

vide some metadata (e.g. a text file mapping appliance names to recording channels) but this

8http://www.obofoundry.org
9http://project-haystack.org

10http://ukedc.rl.ac.uk/format.html
11http://dublincore.org
12http://www.tpcdb.com
13http://nordman.lbl.gov

http://www.obofoundry.org
http://project-haystack.org
http://ukedc.rl.ac.uk/format.html
http://dublincore.org
http://www.tpcdb.com
http://nordman.lbl.gov
http://www.obofoundry.org
http://project-haystack.org
http://ukedc.rl.ac.uk/format.html
http://dublincore.org
http://www.tpcdb.com
http://nordman.lbl.gov
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metadata does not use a controlled vocabulary and often provides scant details. Hence we set

out to design a metadata schema specifically for disaggregated energy data.

6.3 Design

The NILM Metadata schema models several objects relevant to energy disaggregation: elec-

tricity meters; appliances; prior knowledge about appliances; appliance models; buildings; and

datasets. The schema specifies property names for each object; the data type for each value;

and controlled vocabularies (e.g. for appliance names and categories).

A UML Class diagram showing the relationship between classes is shown in Figure 6.1 and a

brief example metadata instance is shown in Figure 6.2.

In the sections below, we describe our Dataset and Building schemas; the distinction be-

tween meters and appliances; the representation of electricity meters; the representation of

the mains wiring; the inheritance mechanism for appliances; categorisation; the containment

mechanism that allows an appliance to contain other appliances; prior knowledge; and finally

our representation of learnt models.

6.3.1 Dataset

NILM Metadata places the primary objects of interest into a tree-shaped hierarchy (Figure 6.1).

At the root is a dataset object. This contains buildings, each of which contains electricity

meters, many of which measure the power demand of appliances.

This tree hierarchy captures all datasets we are aware of except one: the ‘Tracebase’ dataset (Rein-

hardt et al. 2012), which describes appliances without their building context. To handle trace-

base, meter objects in NILM Metadata can be directly contained within a dataset object (with-

out requiring a building object).

The dataset schema records properties such as date∗, rights_list∗,

geospatial_coverage∗, timeframe∗, funding, creators∗, related_documents∗,
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Figure 6.1: UML Class Diagram showing the relationships between classes. A dark black
diamond indicates a ‘composition’ relationship whilst a hollow diamond indicates an ‘aggre-
gation’ relationship. For example, the relationship between Dataset and Building is read as
‘each Dataset contains any number of Buildings and each Building belongs to exactly one
Dataset ’. We use hollow diamonds to mean that objects of one class refer to objects in another
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Metadata project. Some ApplianceTypes contain Appliances, hence the box representing the
Appliance class slightly protrudes into the ‘common metadata’ area on the right.

Mains feed into
house from 

utility company
Key

Meter group 

ElecMeter

2

43

kettle 

washing machine
(240 V)

12
0 

V

12
0 

V

6

7

...
kitchen 
lights

other ceiling lights

lighting circuit

# building1.yaml
instance: 1
elec_meters:
  1:
    site_meter: true,
    device_model: Whole-House Meter Model FOO
  2:
    site_meter: true,
    device_model: Whole-House Meter Model FOO
  3:
    submeter_of: 1
    device_model: Individual Appliance Monitor Model BAR
  4:
    submeter_of: 1
    device_model: Individual Appliance Monitor Model BAR
  5:
    submeter_of: 2
    device_model: Individual Appliance Monitor Model BAR
  6:
    submeter_of: 2
    device_model: Circuit Monitor Model BAZ
  7:
    submeter_of: 6
    device_model: Circuit Monitor Model BAZ

appliances:
- {type: kettle, instance: 1, room: kitchen, meters: [3]}
- {type: washing machine, instance: 1, meters: [4,5]}
- {type: light, instance: 1, room: kitchen, meters: [7]}
- {type: light, instance: 2, multiple: true, meters: [6]}

1

5

Figure 6.2: The illustration on the left shows a cartoon mains wiring diagram for a domestic
building. Black lines indicate mains wires. This home has a split-phase mains supply (common
in North America, for example). The washing machine draws power across both splits. All
other appliances draw power from a single split. The text on the right shows a minimalistic
description (using the NILM Metadata schema) of the wiring diagram on the left.
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timezone and geo_location. The starred properties (∗) are adapted from the Dublin Core

metadata initiative (DCMI).

6.3.2 Building

Buildings are identified by an integer property instance (unique within the dataset). Each

building may have a list of rooms (using a controlled vocabulary for room names), and some

properties shared with dataset: timeframe, geo_location, timezone. These properties de-

fault to the values set in the parent dataset but can be overridden per building. Each building

contains an elec_meters property which stores a dictionary of ElecMeter objects (each key is

a meter instance integer).

6.3.3 Meters are distinct from appliances

A tempting simplification would be to assume a one-to-one relationship between electricity

meters and appliances. But we often observe one-to-many relationships such as a single me-

ter connected to a multi-way mains adapter which, in turn, feeds multiple appliances. And

we occasionally observe many-to-one relationships: for example, in the US and Canada many

large domestic appliances like washing machines draw a total of 240 volts from two 120 volt

‘split-phase’ supplies found in a typical house. Some datasets use one meter per 120 volt

feed and hence use two meters for each 240 volt appliance. We also frequently observe situa-

tions where some appliances are not submetered. To handle the case where a single appliance

receives more than one power supply (e.g. split-phase or three-phase power), we allow each

Appliance object to contain a list of meter instances, each of which refers uniquely to one

ElecMeter. To handle the case where a single meter is connected to multiple appliances, each

ElecMeter can be referred to by any number of Appliance objects. The meter may also specify

a dominant_appliance to specify if a single appliance is on more often than other appliances

on that meter.
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6.3.4 ElecMeters and MeterDevices

To record the specifications of each meter, we use one MeterDevice object per meter type.

MeterDevice objects record properties which apply to a specific model of electricity meter. For

example, it captures the sample_period in seconds; the measurements recorded by the meter

(e.g. voltage, reactive power, active energy etc.); the meter manufacturer and model.

ElecMeter objects are distinct from MeterDevice objects. ElecMeter objects represent each

physical meter installed in a building. Each ElecMeter references exactly one MeterDevice.

ElecMeter is also the place where any pre-processing carried out on the data can be described

(for example, have gaps been filled? Or unrealistic values been removed?)

6.3.5 Mains wiring

Each building in a typical dataset will have one meter which records the aggregate, whole-

building mains power demand. Downstream of this meter might be meters which measure

entire circuits within the building (e.g. the lighting circuit). Finally, there are often meters

which measure individual appliances. An example wiring diagram is shown in Figure 6.2.

Nordman 2014 also discusses the need for describing wiring trees.

As such, the mains wiring connecting meters with each other can be described as a tree.

Each ElecMeter can specify either a submeter_of property (the numeric ID of the upstream

meter) or a site_meter property (a boolean flag which is set to true if this meter mea-

sures the whole-building aggregate). The property names ‘submeter_of’ and ‘site_meter’ are

adapted from Project Haystack. The wiring hierarchy can be any depth. In large, commer-

cial installations, a meter in one building may be downstream of a meter in another build-

ing. This case can be handled by specifying the numeric ID of the other building using the

upstream_meter_in_building property. If this property is absent then we assume the up-

stream meter is in the same building.
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6.3.6 Appliance and ApplianceType

Each Appliance object represents an appliance instance in the real world. Each Appliance ob-

ject has a type property which refers to an ApplianceType object. ApplianceType objects are

not shipped with the dataset; instead they are stored within NILM Metadata. ApplianceType

objects capture knowledge about appliance types (e.g. the categories each appliance type falls

within; probability distributions describing the power demand for the appliance etc.). The set

of names of each ApplianceType is the controlled vocabulary for appliance types.

6.3.7 Inheritance for ApplianceTypes

A ‘wine cooler’ can be considered a specialisation of a ‘fridge’. As this example illustrates,

electrical appliances can be described as a hierarchical tree.

Inheritance is a well-established technique in software engineering for maximising code re-use.

NILM Metadata implements a simple but powerful form of inheritance known as prototype-

based inheritance (first implemented in the Self programming language Chambers et al. 1989

and used in JavaScript). Objects in prototype-based programming languages are not instances

of a class but, instead, inherit from any other object (the ‘parent’ or ‘prototype’ object). In

NILM Metadata, each ApplianceType object has a parent from which it inherits properties.

These properties can be modified by the child and the child can specify properties not specified

by the parent. The inheritance tree can be any depth.

Inheritance follows a small number of rules. If a property is contained in the parent and absent

in the child then it is copied to the child. If a property is present in both parent and child then

it is handled differently depending on the type of the property:

1. list (array) objects become the union of the parent and child lists.

2. scalar objects in the child override (‘shadow’) properties in the parent.

3. objects (dictionaries) are recursively updated using the rules above.

Child objects can specify a do_not_inherit property to specify a list of property names which

should not be inherited.
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Subtypes versus inheritance. Appliance objects have a subtype property (which must

be set to a member of the appliance type’s subtypes set). What is the difference between a

subtype and a child object? Subtypes are useful when two related appliances are so similar that

we can safely ignore the differences for the purposes of energy disaggregation. For example,

an analogue radio and a digital radio are sufficiently similar to mean that they can both be

subtypes of the ‘radio’ object. On the other hand, an electric cooker has a significantly different

electricity load profile compared to a cooker fuelled by natural gas, so these are separate objects.

Additional properties. Some appliances have rare properties. For example, a television might

have a screen_size property. We do not want to pollute the common ‘appliance’ schema with

these properties (because, for example, it makes no sense for a cooker to be able to specify a

screen_size property!). Instead, appliance objects can define an additional_properties

property. This specifies the schema for any additional properties (using JSON Schema).

additional_properties is inherited using the same rules as any other property.

6.3.8 Appliance categorisation

When analysing domestic power consumption, we often want to group appliances into certain

categories. For example, we might want to ask ‘what is the total energy consumption for all

consumer electronics?’.

Domestic appliances are traditionally classified as one of ‘wet’, ‘cold’, ‘consumer electronics’,

‘ICT’, ‘cooking’, ‘lighting’ or ‘heating’.

An alternative classification is a simple binary classification of ‘large appliances’ (e.g. dish

washer) versus ‘small appliances’ (e.g. a radio).

A more finely-grained classification based on the electrical properties of appliances was proposed

by Tsagarakis et al. 2013. For example, the taxonomy proposed by Tsagarakis et al. splits

lighting into general incandescent lamps, fluorescent lamps and light-emitting diode (LED)

sources. Each appliance can have multiple classifications from this taxonomy.

Yet another taxonomy for domestic appliances is the Google product taxonomy14 (used on

Google Shopping). This taxonomy is a tree which we represent as list of classifications.
14https://support.google.com/merchants/answer/160081

https://support.google.com/merchants/answer/160081
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NILM Metadata currently supports all four taxonomies listed above and it would be trivial to

add more. We specify a controlled vocabulary for the category names. Our appliance schema

specifies a categories property which is an object with the following properties: traditional

(string), size (string), electrical (array of strings) and google_shopping (array of strings).

At present, all ApplianceTypes the NILMMetadata have a ‘traditional’ classification and many

have classifications for the other taxonomies.

6.3.9 Appliances can contain other appliances

Some appliances can be modelled as a container of other objects. For example, a washing

machine can be modelled as a drum motor and a water heating element (and a few other

components). Appliance and ApplianceType objects in NILM Metadata have a components

property which stores an array of appliance objects. Containment is recursive and can be

of any depth. Nordman 2014 also talks of Devices (the entire appliance) which can contain

Components.

Of course, all appliances can be decomposed into components. Do we model each individual

resistor and transistor? No; the end-goal is to model appliances only in sufficient detail to

allow an energy disaggregation system to identify the whole appliance given prior knowledge of

the components. As such, we only describe individual components if their electrical behaviour

is observable from a typical mains electricity meter. It is also important that components be

truly separate entities from an electrical perspective. For example, a fridge freezer should not

be modelled as containing both a fridge and a freezer because that would imply that a fridge

freezer has two separate compressors but - as far as we are aware - fridge freezers typically have

one compressor.

If an appliance contains multiple instances of the same component then we use the count

property in the component to specify the number of instances. If an appliance contains multiple

instances of the same component but the exact number of components is unknown then set

multiple to ‘true’.

The container appliance inherits categories from each of its components. This is useful mostly

for the ‘electrical’ taxonomy. For example, if we model a washing machine as a motor and a

heater then the washing machine inherits the appropriate electrical classifications from both
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the motor and the heater.

Our representation of lighting exploits NILM Metadata’s containment mechanism. We distin-

guish between the light fitting (also called the luminaire or fixture) and the electric lamp(s)

within each fitting. We have a ‘light’ object which contains any number of ‘lamps’ (of which

there are several kinds including ‘LED lamp’ and ‘incandescent lamp’). Light objects can also

contain a ‘dimmer’ object.

6.3.10 Prior knowledge

Disaggregation algorithms could refine their output by exploiting prior knowledge such as the

typical time of day each appliance is used or correlations with other appliances (e.g. the com-

puter monitor is often on when the computer is on).

NILM Metadata specifies a Prior class which holds several properties, including:

distribution_of_data: The distribution of the data expressed as normalised frequencies per

discrete bin (for continuous variables) or per category (for categorical variables).

model: Describes a model fitted to describe the probability density function (for continuous

variables) or the probability mass function (for discrete variables).

source: Where did the prior come from? Is it a subjective guess, or the result of primary data

analysis, or taken from a published paper?

specific_to: Is the prior relevant to a defined set of countries?

training_data: What data was used to ‘train’ the prior?

The ApplianceType class specifies an optional distributions property which is a dictionary

with the following keys (the value corresponding to each key is an array of Prior objects):

on_power, on_duration, off_duration, usage_hour_per_day, usage_day_per_week,

usage_month_per_year, rooms, subtypes, appliance_correlations, ownership,

ownership_per_country, ownership_per_continent.
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We store an array of priors (rather than a single prior) for each distribution. This allows

us to store multiple beliefs about each distribution (which could be combined using Bayesian

statistics). For example, we might find several published papers which provide evidence about

the distribution over the power consumption of an appliance. Furthermore, NILM Metadata

collects all relevant priors as it descends the inheritance hierarchy for each object (for example,

a ‘wine cooler’ might not have any priors associated with it but it will inherit prior knowledge

from its parent ‘fridge’ object). Of course, priors from a distant ancestor are less relevant than

priors from a recent ancestor so, as we traverse the inheritance tree, we tag each prior with a

distance property (a positive integer indicating the number of ‘generations’ away the prior is

from the appliance in question).

6.3.11 Learnt models of appliances

End-users of domestic disaggregation software are unlikely to put any effort into training the

system. This means that we must use either a supervised learning algorithm with pre-trained

models or an unsupervised disaggregation algorithm (which must still have some form of prior

appliance model to be able to provide human-readable names for each appliance). To store

learnt model parameters for each appliance type, we specify a simple DisaggregationModel

class. This has properties such as model_type (a controlled vocabulary with terms such as

‘HMM’ for hidden Markov model), training_data, date_prepared etc. The model’s param-

eters are stored in a parameters object.

The DisaggregationModel schema can be used to fully specify an appliance model that has

been learnt from the data. There can be one learnt model for each model type (e.g. ‘HMM’) and

for each appliance type (e.g. ‘fridge’). This allows the model parameters to be produced and

shared by a researcher and then any user can take advantages of these models for disaggregation.

The end result is that only a small number of researchers need to put effort into generating mod-

els and then anyone with an internet connection can make use of the models in a disaggregation

system.

Please see Appendix C for additional details regarding the Python implementation of the meta-

data schema; the file organisation; and a short example.
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6.4 Limitations and future work

At present, the schema cannot accommodate micro-generation (e.g. solar panels).

The schema is not as easy to use as it could be. For example, an automatic validator for

metadata has been requested by some users. As has an automatic ‘wizard’ to guide users,

step-by-step, though the creation of a valid metadata description of their dataset. Finally, it

would help if the schema defined some sensible defaults so users did not have to specify so many

things in their metadata.

6.4.1 Simplification

On the one hand, we are yet to come across a NILM dataset which cannot be described using

NILM Metadata. On the other hand, the majority of datasets that we have encountered do not

require the full expressive power of the schema. The community would probably benefit from

a ‘simple profile’ of NILM Metadata schema.

There are plenty of features of NILM Metadata which appear to have never been used in

practice so these could simply be removed from the specification:

• DisaggregationModel

• Prior

• The ability for an Appliance to contain other Appliance objects (e.g. for a light fitting

to contain multiple lamps)

Also, it turns out that people would prefer CSV files to contain the metadata rather than YAML

files because CSV files can be read easily by every ‘data science’ platform and programming

language.

Further discussion of how best to simplify the schema is available on the NILM Metadata’s

github issue queue: https://github.com/nilmtk/nilm_metadata/issues/16

https://github.com/nilmtk/nilm_metadata/issues/16
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6.5 Usage within the community

The schema was first released in 2014. It is now an integral part of NILMTK and, as such, is

used by all 11 dataset converters in NILMTK, many of which have been contributed by the

dataset authors themselves. Judging from emails and conversations at workshops, it seems

likely that the schema has also been used ‘internally’ by several researchers, although it is hard

to quantify this.

6.6 Conclusions

We have proposed a metadata schema for representing objects relevant to energy disaggregation.

The schema adapts ideas from DCMI, Project Haystack, ISA_Tab and DataCite; and adds new

elements relevant to energy disaggregation. We also propose a simple but powerful inheritance

mechanism to minimise duplication of information and effort. The schema has successfully

been used to capture metadata for at least eleven datasets.

Whilst NILM Metadata is fit for use now, there will inevitably be use-cases that we have

neglected hence we warmly welcome contributions from the community! NILM Metadata is

open-source to facilitate collaboration and is available at github.com/nilmtk/nilm_metadata

https://github.com/nilmtk/nilm_metadata
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Chapter 7

Review of NILM algorithms

In this chapter, we discuss some prior NILM algorithms and why deep neural networks might

be expected to perform better than these previous approaches.

There are two broad approaches to disaggregation: optimisation (“non-event-based NILM”)

and pattern recognition (“event-based NILM”).

7.1 Disaggregation framed as an optimisation problem

The optimisation problem can be described as follows: a smart meter signal is a time-series

Y = {y1, y2, ..., yk} where k is the number of samples and yt is the meter reading at time t. We

describe the state of each appliance with a boolean vector A = {a1, a2, ..., an} for n appliances.

If appliance i is on then ai = 1; else ai = 0. The power consumption of each appliance is

described in vector P = {p1, p2, ..., pn}. For example, if appliance 1 is a fridge which uses

100 watts and is currently on then a1 = 1 and p1 = 100. The total power consumption yt at

time t is the sum the power consumption of all active appliances:

yt =
n∑

i=1
aipi + et (7.1)

Where et is an error term.

If the power consumption of every appliance is know then disaggregation can be stated as a

123
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combinatorial optimisation problem where, for every time slice t we try to find a state vector

A∗
t such that:

A∗
t = arg min

A

∣∣∣∣∣∣yt −
n∑

i=1
aipi

∣∣∣∣∣∣ (7.2)

7.1.1 Optimisation is computationally intractable

George Hart, one of the early pioneers of disaggregation research, points out that the optimi-

sation problem specified in equation 7.2 is an NP-complete “weighted set” problem and that

a precise solution is only achievable by enumerating every possible state (G. W. Hart 1992).

This is computationally impractical because n appliances, each of which can occupy any one

of s states, can be configured in sn combinations so the computational complexity blows up

exponentially as O(sn). Say we have thirty appliances, each of which can be in one of four

states, and we have a month of data sampled once every five seconds. That is approximately

1024 operations1, which would take 5×1010 seconds (∼ 1 700 years) on NVIDIA’s top-of-the-line

GPU at the time of writing2.

Whilst the optimisation problem specified in equation 7.2 is a succinct description of the prob-

lem, it fails to capture many of the challenges present in practical systems. These problems

include (but are not limited to):

1. We are unlikely to know the power consumption of every appliance.

2. We are unlikely to know the total number of appliances.

3. Many appliances do not draw tidy, discrete levels of power; instead their power consump-

tion may spike, undershoot, oscillate or ramp over time.

4. A smart meter may sample less frequently than is required to faithfully capture rapid

changes. In other words, the meter may sample at sub-Nyquist rates. This results in

considerable distortion of the digital recording.
1Each sample yt requires sn = 430 multiplications and sn = 430 additions. Total number of samples

k = 30days per month × 24 hrs per day × 60mins per hour × 60 secs per min ÷ 1 sample every 5 seconds.
Total number of operations = 2× 430 × k ≈ 1024.

2The NVIDIA GTX 1080 Ti, a top-end gaming GPU released at the end of March 2017, can do 11.3 TFLOPS
(fused multiply-adds).
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5. Many appliances (like washing machines and tumble driers) have multiple internal states.

Transitions between these states may be non-deterministic. Each run of the appliance

may produce a different waveform (see Figure 7.1).

6. Different appliances of the same class produce different waveforms (which is a problem if

we want to build a common database of appliances for multiple users).

7. Some appliances generate identical waveforms (e.g. a kettle and the water heater in a

washing machine generate very similar waveforms).

8. Appliance signatures overlap and occlude each other in the aggregate smart meter signal.

9. The mains voltage in the UK is nominally 230 volts but can range from 216 volts to

253 volts which is -6%, +10% of the nominal 230 volt supply voltage3. Assuming a linear

load, we can expect the power consumption to vary by -12%, +20%. Home energy meters

do not measure voltage, but utility-installed smart meters do.

10. Ultimately users care more about how much energy each appliance uses rather than when

each appliance is on. Estimating energy consumption for a simple two-state appliance

like a toaster is trivial if we know how long the appliance has run for. But estimating

power consumption of complex appliances like washing machines is less trivial.

These challenges mean that conventional optimisation approaches such as combinatorial opti-

misation are not feasible for anything other than toy scenarios.

7.2 Blind source separation

Blind source separation (BSS) refers to a group of methods which includes principal component

analysis (PCA), singular value decomposition (SVD), independent component analysis (ICA)

and non-negative matrix factorisation (NNMF).

In general, BSS aims to recover a set of individual source signals s(t) = (s1(t), ..., sn(t))T (where

t is the time step from 1 to T and n is the number of source signals) from a set of mixed signals
3www.decc.gov.uk/en/content/cms/meeting_energy/en_security/gas_electric/electricity/electricity.aspx

Note that the rather ugly formulation of “230 volts -6%, +10%” is set to change to “230 volts ±10%”.

http://www.decc.gov.uk/en/content/cms/meeting_energy/en_security/gas_electric/electricity/electricity.aspx
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a) Washer A, 30°C wash

b) Washer A, 30°C wash

c) Washer A, 40°C wash

d) Washer A, 40°C quick wash

e) Washer A, 40°C quick wash

f) Washer B, 30°C wash

Figure 7.1: Six washing machine waveforms. a - e were produced by the same washing machine.

x(t) = (x1(t), ..., xm(t))T (where m is the number of mixed signals). Typically in BSS, the

number of mixed signals m is equal to the number of source signals n. For example, in the

“cocktail party” problem, we have a number of people talking at the same time and we also

have the same number of microphones dotted around the room. In this setting, BSS can un-mix

the audio to produce one audio track for each person.

In NILM, we typically have m < n (for example, we might have a single smart meter which

measures 50 appliances). Hence the classic formulation of BSS may not be suitable for NILM.

7.3 Extracting steady states from a smart meter signal

Most disaggregation systems within our scope share a common first step (and I will argue later

that our system should not start with this step because it throws away valuable information).

This first step is to identify “steady states” in the smart meter signal (see figure 7.2). The

aim is to deliberately remove rapid transients in the signal such as, for example, when a motor

first turns on it draws a large amount of power for a short period as it accelerates, and then

the power consumption drops to a steady plateau. After steady states have been identified,
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Figure 7.2: Hart’s “steady-state” detection. Taken from G. W. Hart 1992.

changes in steady states are identified. These “change events” are output to the next step in

the signal processing pathway.

What exactly qualifies as a “steady state”? Hart describes the criteria he used in some detail

(G. W. Hart 1985; G. W. Hart 1992). First, the signal is partitioned into “steady” and “chang-

ing” sections, as illustrated in figure 7.2. A “steady” section must have a certain minimum

length (Hart used three samples, which for his 1 Hz system is equivalent to three seconds)

and the signal must not vary by more than 15 watts or VAR in any component. All sections

not labelled “steady” are labelled “changing”. The samples in each “steady” section are aver-

aged. Finally, changes in “steady” states are identified. The first sample in the corresponding

“changing” period provides the time stamp. Changes below a certain minimum threshold are

discarded. The final output is a list of <timestamp, value> pairs.

An alternative algorithm for determining steady-states based on the ratio value between rect-

angular areas defined by the signal samples is developed in M. Figueiredo et al. 2010 and tested

in M. B. Figueiredo et al. 2011; M. Figueiredo et al. 2012.

One of my central hypotheses is that converting a smart meter signal to a sequence of steady

states looses information and that it would be better to take advantage of transient and

frequency-domain features to increase disaggregation performance. Figure 7.3 shows the power

consumed by a tumble drier, sampled at 1 Hz. Note the low-amplitude (≈ 200W) repetitive

spikes during the first forty minutes (these correspond to the drum spinning one direction for

about one minute; stopping; and reversing for another minute etc.). Then, after forty min-

utes, the heating element cycles on and off to prevent the drier from exceeding some maximum

temperature; a behaviour which produces high-amplitude (≈ 2 kW) spikes in the power con-
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Figure 7.3: Tumble drier signature sampled at 1Hz

sumption.

Why are these rapid changes a problem? Steady-state algorithms have two options when faced

with an appliance like a tumble drier: either smooth out the rapid changes (hence losing a lot of

information: those high frequency features are rather distinctive) or attempt to track the high

frequency changes (hence violating the design assumption that a steady state is steady). We

could also consider the TV waveform in figure 8.1 where the signature’s “noise” is a decidedly

distinctive feature yet this would be completely smoothed out by a steady-state algorithm. A

further issue with rapidly-changing waveforms is that the smart meter may sample the aggregate

signal at sub-Nyquist rates, hence aliasing the signal.

7.4 Hart’s non-intrusive load monitoring algorithm

The “non-intrusive load monitoring” (NILM4) technique was developed primarily by George

Hart between the mid-1980s to mid-1990s at various institutions, starting at MIT (G. W. Hart

1984; G. W. Hart 1992; G. W. Hart 1995). Hart, Kern and Schweppe of MIT patented the

technique in 1989 (G. W. Hart et al. 1989). George Hart is often cited as the “godfather” of

disaggregation.

G. W. Hart 1992 describes a ‘signature taxonomy’ of features (see Figure 7.4) which might

be useful for distinguishing between appliances. His earliest work from 1984 described experi-

ments of extracting more detailed features5. However, Hart subsequently decided to focus on

extracting only transitions between steady-states. Many NILM algorithms designed for low
4Hart originally called this technique “Nonintrusive Appliance Load Monitoring” which he abbreviated to

NALM, but the term “NILM” is more common today.
5This claim is taken from G. W. Hart 1992 because no copy of George Hart’s 1984 technical report was

available.
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Figure 7.4: George Hart’s ‘signature taxonomy’. Source: G. W. Hart 1992 (with permission).

frequency data (1 Hz or slower) follow Hart’s lead and only extract a small number of features.

In contrast, in high frequency NILM (sampling at kHz or MHz), there are numerous examples

in the literature of manually engineering rich feature extractors (e.g. Steven B Leeb et al. 1995;

Amirach et al. 2014).

George Hart’s NILM algorithm takes as its input readings of real power, reactive power and

voltage sampled once a second (for a brief introduction to the difference between real and

reactive power please see Appendix D but for the following discussion it is only necessary to

know that real power and reactive power are two different parameters we can measure for any

alternating current load). Variations in mains voltage are corrected by normalising the power

readings. Steady states are identified and then changes between steady states are located.

For example, consider a 500 watt heater turning on and off. The real power reading will increase

by 500 watts the moment the heater turns on and will decrease by 500 watts the moment the

heater turns off.

Changes with equal magnitudes and opposite signs are then paired. In our example, the

+500 watt event corresponding to the heater turning on would be paired to the -500 watt event
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Figure 7.5: Distinguishing between a heater and a fridge by comparing real and reactive power
consumption. The heater is a purely resistive load and hence pulls no reactive power. The
refrigerator mostly pulls real power but also pulls some reactive power. These two variables
allow us to discriminate between most devices. This diagram is taken from US patent 4858141,
filed by George Hart and colleagues from MIT in 1989 (G. W. Hart et al. 1989).

corresponding to the heater turning off and hence the NILM algorithm can deduce the length

of time the device has been active and the total energy consumption for each device.

Most devices draw both real power and reactive power. Different devices draw different pro-

portions of real and reactive power. Hence, if we measure both real and reactive power then

we can plot devices on a two-dimensional plot like the one in figure 7.5. This allows us to tease

apart some appliances which may be indistinguishable when measuring just real power. The

draft specifications for UK smart meters (DECC 2014) requires that the UK’s smart meters

must measure both real and reactive power but home energy monitors like the Current Cost

only measure apparent power.

The original NILM algorithm consists of these five steps:

Hart identified three classes of devices (G. W. Hart 1992):

1. on / off (e.g. toaster, light bulb, kettle)
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Algorithm 1 The original NILM algorithm
1. An “edge detector” identifies changes in steady-state levels in the normalised aggregate

power consumption (see figure 7.5).

2. Cluster analysis is performed to locate these changes in a two-dimensional signature space
of real and reactive power (figure 7.5). Hart et al. developed a clustering algorithm which
works in a single pass through the data. The algorithm involves “splitting” and “merging”
clusters as new data-points are encountered (G. W. Hart 1985; G. W. Hart 1995).

3. Clusters of similar magnitude and opposite sign are paired. This catches simple, “two-
state” loads like heaters which can only be either on or off but fails to fully pair clusters
attributable to complex devices like dish washers which have many states.

4. Unmatched clusters are associated with existing or new clusters according to a best like-
lihood algorithm. This step is known as anomaly resolution.

5. Events are assigned human-readable labels (e.g. “kettle” rather than “load#213”) by
matching events to a database of known device power consumption learnt during a training
phase.

2. finite state machines (e.g. washing machine, tumble drier)

3. continuously variable (e.g. dimmable lights)

The NILM algorithm models each multi-state appliance (like washing machines) as a finite

state machine (G. W. Hart 1995; Rouvellou & G. W. Hart 1995). A washer typically has a

water heater and a drum motor. The NILM algorithm attempts to identify that the heater and

motor always come on together so that “washing machine” power consumption can be reported

to the user rather than “heater” and “motor” power consumption. As we will discuss shortly,

the NILM algorithm did not entirely succeed in modelling multi-state appliances.

How does the NILM approach disaggregate an aggregate signal given a set of learnt finite state

models? G. W. Hart 1992 notes that the Viterbi algorithm is a promising starting point but that

the Viterbi algorithm cannot correct errors in which symbols (changes between steady states)

are inserted into or deleted from a message sequence. Hence Hart and colleagues developed

a generalised version of the Viterbi algorithm which optimally corrects insertions, deletions,

mergers and many other types of error (A. Bouloutas et al. 1991; G. W. Hart 1992; G. W.

Hart & A. T. Bouloutas 1993).

How does the NILM approach learn finite state models in the first place? A brief overview is

given in G. W. Hart 1992 and the details are given in G. W. Hart 1994; G. W. Hart 1995 but
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unfortunately I have not yet been able to locate copies of these references. Rouvellou & G. W.

Hart 1995 describes a solution to a similar problem.

There are two classes of NILM algorithm (G. W. Hart 1992):

1. Manual-Setup NILM (MS-NILM). This requires a manual setup stage where the system

asks the installer to turn each appliance on and off in turn.

2. Automatic-Setup NILM (AS-NILM). This uses a priori knowledge about the character-

istics of appliances. No manual setup is required. As far as the user and installer are

concerned, the AS-NILM is plug-and-play.

The first MS-NILM system was built and field tested in in 1984 (G. W. Hart 1984) and the

first AS-NILM system a year later (G. W. Hart 1985).

An especially fascinating section of G. W. Hart 1992 discusses disaggregation from an informa-

tion theoretic perspective in which appliances are considered to be emitting symbols (signature

features) across a common bus (the mains wiring). Under this framework, the job of the

disaggregation system is to act as a receiver / decoder.

For reviews of NILM techniques, see G. W. Hart 1992; Laughman et al. 2003; Zeifman & Roth

2011; Froehlich et al. 2011; Zoha et al. 2012; Makonin 2012; Ying & Peng 2013; Wong et al.

2013; Armel et al. 2013; A. Ridi et al. 2014; Bonfigli et al. 2015; Adabi et al. 2015.

7.4.1 Performance of Hart’s NILM algorithm

How well does Hart’s NILM algorithm perform in field tests? A report prepared for the Electric

Power Research Institute (EPRI) (Paragon Consulting Services LLC 1998) (Hart worked at

EPRI for a few years) reported the results of a field test of commercial NILM devices. It is

not clear whether these NILM devices implemented every one of Hart’s ideas but it is likely

that they implemented a sizable subset of Hart’s ideas given that Hart appears to have finished

working on NILM around 1995 and the EPRI field tests were conducted in the late 1990s. The

report states (my emphasis):
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“The conclusions of the beta test were based on 26 sites and 128 appliances mon-

itored... the [NILM] software was able to determine two-state loads (‘on’ or ‘off’) in

the mid 90% range accuracy (using the parallel metering data as the baseline). Re-

frigerators were measured, on average, in the mid 80% range. Multi-state appliances

(e.g. dishwashers, clothes washers, heat pumps) registered lower results, indicating

the need for improvement in the algorithm.

...Although effective as a load research tool for single-state appliances, enhance-

ments must be made to the [NILM] algorithm to improve the monitor-

ing for multi-state appliances and variable-speed loads. Without the

ability to monitor all types of appliances within a residence, [NILM]

does not provide a full-featured monitoring system.”

The EPRI also published a report detailing the results of a beta test of a NILM device in a

commercial setting (Hadden 1999):

“In several cases, the instrument was able to detect the presence of over twenty

individual loads. Serious limitations were identified in the current version, however.

The [commercial NILM] units were unable to:

• Identify individual loads if they turned on or off simultaneously.

• Successfully identify and properly calculate the energy consumption of multiple

identical loads.

• Combine the individual loads in ‘multi-state’ devices such as refrigerators into

one load identifiable as ‘refrigerator’, although the individual constituent loads

were often recognizable.

• Correctly calculate the energy consumption of loads with variable thermal char-

acteristics such as refrigerators.

• Identify a load signal and correlate that signal to a named load. A trained

technician must manually assign a load name to the loads identified by the

instrument.”
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7.4.2 Limitations of Hart’s NILM algorithm

• Only uses steady-state features (deliberately ignores transient events).

• Appliances consuming similar power may not be separated correctly.

• Requires measurements of both real and reactive power at 1 Hz or faster.

• Deliberately ignores appliances with power consumption below 150 watts (modern appli-

ances like game consoles, PCs etc. use less than 150 watts, as do most electric lights).

• Cannot process continually variable devices; and has poor performance on multi-state

appliances.

• Many modern appliances have similar power factors hence it may be hard to tease them

apart using real and reactive power.

7.4.3 Extending Hart’s NILM algorithm

Transients

Consider two different types of load: 1) a washing machine’s motor accelerating from standstill

to full-speed; and 2) a large TV. Both loads might draw 200 watts when running. One difference

between them is that the washing machine motor controller gently accelerates the motor over

30 seconds so the power consumption ramps from 0 watts to 200 watts over a 30 second period;

whilst the TV instantly draws 200 watts. The washing machine’s “transient” power ramp can

be used as an identifying feature. Can these “transients” be used to increase disaggregation

performance?

G. W. Hart 1992 discussed the difference between “steady state” and “transient” signature

features. For example, an electric motor draws a large “in-rush” current the moment it starts

up but the motor’s power draw quickly stabilises to a steady state power draw. G. W. Hart 1992

contains a fascinating discussion on the incorporation of “transients” into the NILM framework.

Hart decided not to use transients for a number of reasons, including the fact that they are

rather intermittent.
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Norford and Leeb, both at MIT, extended the NILM algorithm to process start-up tran-

sients (Steven B Leeb et al. 1995; Norford & Steven B. Leeb 1996; Steven B. Leeb & Kirtley

1996; Steven B. Leeb et al. 1998; Shaw et al. 1998; Shaw & Steven B. Leeb 1999). They

observed that, when using sample rates considerably higher than 1 Hz, most loads have repeat-

able transient profiles. Disaggregation based on recognition of transients permits near-real-time

identification of devices. Transients in the aggregate data are identified by comparing them to

a set of exemplar transients learnt during a training phase. To enable transients to be identified

even if multiple transients overlap, transients are broken down into a series of segments and

these segments are matched using a traversal filter. This approach is described in detail in

Steven B Leeb et al. 1995. Other studies which use transient features extracted from high-

frequency sample rate smart meter data include Wilkinson & M. D. Cox 1996; Khan et al.

1997; Cole & Albicki 1998b; Shaw & Steven B. Leeb 1999; C. H. Kim & Aggarwal 2000; H.-H.

Chang et al. 2010; R. Cox et al. 2006; H.-T. Yang et al. 2007; Reeg & Overbye 2010; Davies

2011; Lin & Tsai 2011.

Norford and Leeb used sample rates well in excess of 1 Hz. Yet the UK’s smart meters will

sample once every ten seconds. Hence these smart meters cannot reliably detect transients

which last less than 20 seconds. This fact appears to have prevented researchers from using

transient detection with low-sample rate meters. However, I argue that we should explore

ways to take advantage of transients. Intermittent transients can be handled in a probabilistic

fashion. Some appliances exhibit ramps which last for many seconds (e.g. a washing machine

motor might gently accelerate over half a minute) and many appliances exhibit oscillations

which could be used as discriminative features.

Using additional features

Hart’s algorithm only extracts a single feature from the meter signal: changes between steady

states. Cole and Albicki extend Hart’s algorithm to take advantage of two additional features of

appliances with large power draw: “edges” (the initial spike observed at start-up) and “slopes”

(the slower variation that occurs during turn-on events) (Cole & Albicki 1998b; Cole & Albicki

1998a). See Figure 7.6 for examples of an “edge” and a “slope”.
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Figure 7.6: A heat pump compressor waveform. The “edge” is the initial spike at about
70 seconds. The “slope” is the increase from 70 seconds onwards. Taken from Cole & Albicki
1998b.

7.5 Sparse coding

J. Z. Kolter et al. 2010 developed a novel extension to a machine learning technique known

as sparse coding to disaggregate home energy monitor data with a temporal resolution of one

hour. Their method uses “structured prediction” to train sparse coding algorithms to maximise

disaggregation performance.

This approach builds upon sparse coding methods developed for single-channel source separa-

tion. A sparse coding algorithm is used to learn a model of each device’s power consumption

over a typical week from a large corpus of training data. These learnt models are combined

to predict the power consumption of devices in previously unseen homes. Given the very low

temporal resolution of the aggregate data, it is impressive that this technique achieves a test

accuracy of 55%.
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7.6 Hidden Markov models

Hidden Markov models (L. E. Baum & Petrie 1966; L. E. Baum & Eagon 1967; L. E. Baum & Sell

1968; L. E. Baum et al. 1970; L. Baum 1972) have been well-studied in the NILM literature.

The idea is to use the hidden state as the state of the appliance in question, and to use the power

demand as the observation. We learn a transition matrix to describe the probability of the ap-

pliance transitioning between states. An extension to the hidden Markov model, the factorial

hidden Markov model (FHMM) uses multiple hidden Markov chains (Ghahramani & Jordan

1997). At each time step, the observation is some aggregation of the observations from each

individual Markov chain. In NILM, we typically consider FHMMs where the observation is the

sum of the output from each individual Markov chain. Hence each individual Markov chain

represents each appliance in the home; and the observation is the aggregate power demand.

7.6.1 Conditional factorial hidden semi-Markov models

In 2011, Kim & Han at the University of Illinois collaborated with Marwah, Arlitt and Lyon

from HP Labs Palo Alto to develop an unsupervised disaggregation approach (H. Kim et al.

2011) which shares many of our design aims: they assume only low frequency measurements

are available and they use empirical data collected from seven homes over a six month period.

However, Kim et al.’s approach is dissimilar to ours in that theirs is an unsupervised learning

system: it trains itself from the aggregate signal. Besides describing a novel approach to

NILM, Kim et al.’s paper is also a treasure-trove of data analysis: notable figures include

histograms of appliance power consumption; histograms of appliance on- and off -durations;

Pearson’s coefficients of all pairs of appliances displayed as a heatmap; and daily and weekly

usage patterns.

The authors model the data using four HMM variants and compare the performance of the four

models. The four models are:

1. a Factorial HMM (Ghahramani & Jordan 1997) where the single hidden state variable

in a conventional HMM is replaced by multiple hidden state variables, all influencing

the observation variable. In Kim et al.’s work each hidden state variable represents an

appliance.
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2. a Conditional FHMM which extends FHMM to incorporate additional features (e.g. time

of day, other sensor measurements, dependency between appliances).

3. a factorial hidden semi-Markov model (FHSMM) which extends FHMM to allow for

alternative probability density functions to be used for the state occupancy durations of

the appliances (the authors use a gamma distribution).

4. a merger of the FHSMM and CFHMM which the authors label a Conditional Factorial

Hidden Semi-Markov Model (CFHSMM).

Parameters are estimated using an EM algorithm in which Gibbs sampling is used as the E-

step. Hidden states are estimated using simulated annealing (the authors state that dynamic

programming (e.g. the Viterbi algorithm) is computationally intractable for CFHSMMs). This

approach models the stable steady-state real power consumption of each device, although the

authors point out that the approach could be modified to accept additional measurements such

as reactive power.

The authors demonstrate that the CFHSMM outperforms the other HMM variants at disag-

gregation but that CFHMM comes a very close second, suggesting that the inclusion of extra

parameters such as time-of-day and dependencies between appliances are more important than

swapping the Gaussian probability distribution function for a delta function in the semi-Markov

model.

This approach does not attempt to model multi-state appliances: the system is only capable of

explicitly modelling two-state appliances. In their conclusion, the authors note that “our results

revealed that the tested methods work well for appliances with simple or modestly complex power

signatures, but less well for more complex signatures.” Having said this, Kim et al.’s approach

does explicitly model dependencies between appliances and so should be able to model some

multi-state appliances as collections of highly dependent components. So this paper presents

an intriguing approach but it is not clear how its performance compares to Hart et al.’s “AS-

NALM” approach (G. W. Hart 1992), which also does a good job of disaggregating simple

devices but performs less well for complex appliances (although Kim et al.’s approach appears

perfectly capable of disaggregating appliances with power consumptions of less than 150 watts

using only a real power measurement taken at 1 Hz or less whilst Hart’s approach ignored
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appliances < 150 watts and required real, reactive and voltage measurements). The authors

report an accuracy of up to 78% for households with eight active appliances.

Kim et al. also comment that their approach needs to be explicitly told how many appliances are

active in the aggregate signal; it cannot automatically determine this. This is unattractive for

two reasons: firstly, most users will not want to spend time counting the number of appliances

they own and secondly the number of appliances varies over time.

7.6.2 Generic models and house-specific models

Parson et al. (Parson et al. 2011; Parson et al. 2012) built a system capable of disaggregating

individual appliances from an aggregate load without requiring prior knowledge about the

number or type of appliances within the home, or access to appliance-level metering data.

A fascinating and novel contribution of Parson et al.’s paper is that training is done by tuning

prior, generic appliance models to specific appliance instances within the household currently

being disaggregated. This house-specific training is done using only the household’s aggregate

signal. The transition matrix for each generic model consists of a sparse binary matrix, where

ones represent possible state transitions. Each appliance’s expected demand is represented as

values of the Gaussian emission function’s mean and variance.

When exposed to aggregate data from a previously unseen house, the system first uses the

Expectation-Maximisation (EM) algorithm (initialised with the transition matrix and power

demand from the generic model) to locate clean appliance signatures within the aggregate

data. This is done by applying the EM algorithm to small overlapping windows of aggregate

data which effectively locates windows of aggregate data generated by only the modelled ap-

pliance. The system then tunes each hidden Markov model using the signatures teased from

the aggregate data.

Once the HMMs have been tuned, disaggregation is performed using an extension of the Viterbi

algorithm which filters the aggregate signal to remove all previously disaggregated appliances.

The Viterbi algorithm is robust against situations in which the modelled appliance’s obser-

vations have been filtered out in a previous step. Interference from unmodelled appliances is

minimised by allowing the forward pass to filter out observations for which the point probability
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is below a predefined threshold.

These steps are repeated until all known devices have been disaggregated. Inference is done

using Gibbs sampling.

Unlike the HMMs used by Kim et al., Parson et al.’s HMMs use hidden states to represent

two concepts: 1) changes in steady state; and 2) the steady state. For example, a fridge state

transition model has four hidden states: {off (0W), turn on (+80W), on (80W), turn off

(-80W)}. Hence hidden states only emit non-zero observations when the appliance’s power

demand changes. Another difference between Parson’s HMMs and Kim’s HMMs is that Kim

et al. used the steady-state power consumption as the observed sequence whilst Parson et al.

use the changes between steady states as the observed sequence.

To quantify the performance of their system, the authors used the REDD data set (J. Zico

Kolter & M. J. Johnson 2011) downsampled to one sample every minute. The authors modelled

three appliances: the fridge, the microwave and the clothes drier which together constitute

35% of the household energy consumption. The approach disaggregated these appliances to an

accuracy of 83%. Interestingly, the greatest disaggregation error was seen for the clothes dryer

(the most complex device they attempted to disaggregate).

Parson et al. state that “we also aim to investigate the gain of disaggregating appliances in

parallel, instead of iteratively, to resolve conflicts caused by two or more appliances changing

state simultaneously”.

7.6.3 Computationally efficient methods for inference in FHMMs

Tuplets of overlapping appliances

Zeifman 2012 points out that the FHMM disaggregation techniques developed by H. Kim et al.

2011 are of limited practical use: “the most severe limitations are computational complexity and

heavy reliance on the iterative optimization methods for both estimation and disaggregation”.

The computational complexity grows exponentially with the number of appliances.

Zeifman also describes a problem with Hart’s method: it struggles to distinguish between

appliances with similar power draw.
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To address these two issues, Zeifman proposes a disaggregation system where tuplets of over-

lapping appliances are modelled as a Markov Chain and are disaggregated together using a

modified Viterbi algorithm. State durations are used to calculate transition probabilities.

Zeifman reports an accuracy of at least 80-90% for two-state appliances.

7.6.4 Approximate inference in additive factorial HMMs

J. Zico Kolter & Jaakkola 2012, both at MIT’s Computer Science and AI lab in 2012, describe

an innovative and efficient technique for approximate inference in additive FHMMs (additive

FHMMs are used by H. Kim et al. 2011 and Parson et al. 2012). An “additive” FHMM is

a factorial HMM where each observation is the sum of the (unobserved) real-valued emissions

from each hidden state. Exact inference is computationally intractable in such models. Existing

approximate inference techniques for additive FHMMs are prone to local optima (J. Zico

Kolter & Jaakkola 2012) and rather computationally expensive.

Kolter & Jaakkola exploit the structure of additive FHMMs in several ways. Firstly, they

use the forward difference of the aggregate signal as the observation. Secondly, they use a

“robust” mixture component to handle unmodelled observations and, finally, they constrain

the posterior so that at most one hidden state can change at a time (as a side-effect, this

system cannot handle overlapping state transitions). The resulting method is computationally

efficient (scales almost linearly in the number of HMMs) and can handle non-IID noise. It is

also free from local optima. The end result is a convex approximate inference method which

can be solved rapidly for hundreds of thousands of variables.

The system learns in an unsupervised fashion from the aggregate data. It does this by extracting

all candidate device “snippets” from the signal (where a “snippet” is a clean cycle of just one

appliance in the aggregate data) and then uses spectral clustering to compute similarities

between these snippets (hence, as the authors acknowledge, it can only learn devices with

relatively short durations). The system can cope with appliances with more than two states.

Their system, when applied to two weeks of real meter data, achieves an average precision score

of 87.2% on seven circuits.
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7.6.5 Disadvantages of using HMMs to model multi-state appliances

1. Several types of appliance violate the Markov assumption (that the next state

depends only on the current state and not on the preceding states). For example, consider

a simplified model of a washing machine with three states: wash, heat and spin. A typical

sequence might be wash→heat→wash→heat→wash→spin. The transition matrix for a

first-order Markov model would encode that the washer can transition from wash to either

heat or spin. But this is an oversimplification: the washer can transition to spin only if

it has previously heated the water several times. So, first-order HMMs are not a perfect

fit to our problem domain. Does this matter? Might a first-order HMM be good enough?

Other researchers have had some success with HMMs (e.g. H. Kim et al. 2011; Parson

et al. 2012).

2. HMMs do not explicitly encode state duration. HMMs are well suited to applica-

tion domains like speech recognition where the duration of each state does not vary much

(even so, some researchers have explored explicitly encoding duration in speech recogni-

tion HMMs, e.g. Vaseghi 1995). But are HMMs well suited to applications where state

duration can vary by orders of magnitude? Some appliance states might last one minute

(e.g. a kettle) whilst other states might last for hours (e.g. the office computer might

be on for many hours during the day). Traditional HMMs cannot explicitly represent

state duration. Instead they implicitly encode state duration in the self-loop probabilities

where the probability of staying in state i for d consecutive time slices pi(d) is equal to the

probability of d− 1 self-loop transitions and a state exit transition: pi(d) = ad−1
ii (1− aii).

In other words, the probability of staying in one state decreases exponentially with time.

This is definitely not what we want. If we know that, say, the computer is usually on for

eight hours then we want our model to expect that the computer is most likely to turn

off eight hours after turning on, with the probability dropping away either side of the

eight-hour mark. Researchers have explored various ways to encode state duration into

an HMM. For example, Vaseghi 1995 replaces the state transition probabilities aijwith

duration-dependent variables aij(d); Hauberg & Sloth 2008 describe a system where the

discrete Markov model in an HMM is replaced by a state-space model with a continuous

hidden variable variable determining the discrete state of the system, this system is im-

plemented as a particle filter. M. T. Johnson 2005 provides an analysis of the capacity
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and complexity of HMM duration modelling techniques. The bottom line is that yes,

an HMM can be modified to represent state duration but this comes with considerable

implications for time-complexity and implementation-complexity. And, because HMMs

do not explicitly encode state duration, they cannot take advantage of state duration in-

formation to speed up disaggregation (for example, if we know that a state is very likely

to finish an hour after starting then it makes sense to start our search for evidence of the

state finishing an hour after it starts, rather than starting one time-slice after the start).

3. HMMs typically require that every appliance is modelled.

4. HMMs typically start by “denoising” the input signal. One of my hypotheses is

that we can do better by exploiting the “texture” in the raw signal.

7.7 Other approaches

Other approaches described in the literature include a rule-based pattern recognition sys-

tem (Farinaccio & Zmeureanu 1999) for disaggregating aggregate data sampled once every

16 seconds from a clamp-on sensor. Each appliance is recognised by checking candidate wave-

forms in the aggregate data against a set of rules. It is assumed that simultaneous events do not

occur. The system takes advantage of both steady state features and some transient features.

Training is done from individual metering of appliances for about a week each. It would appear

that rules are hand-built for each appliance.

Other approaches include:

Neural networks: Prudenzi 2002; Srinivasan et al. 2006; H.-T. Yang et al. 2007; Aydinalp-

Koksal & Ugursal 2008; Ruzzelli et al. 2010

Genetic algorithms: Baranski & Voss 2004b; Baranski & Voss 2004a; H.-H. Chang et al.

2011; Egarter & Elmenreich 2013; Egarter et al. 2013; G. Zhang et al. 2015

Support vector machines: T. Onoda et al. 2000; Murata & Takashi Onoda 2001; Srinivasan

et al. 2006; Lin & Tsai 2011; Jiang et al. 2013; Altrabalsi et al. 2014; Jiang et al. 2014;

Kleiminger et al. 2015
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Manual feature extraction experiments

In the previous chapter, we argued that a disadvantage of many existing NILM algorithms is

that they deliberately filter out many of the rich features of the raw aggregate power demand

signal. One of our primary hypotheses is that we can improve disaggregation performance by

extracting a rich set of features from the aggregate power demand signal. In Chapter 9, we

describe how we used deep neural networks to extract rich features from the raw aggregate

power demand signal.

As a proof of the concept that rich features can be extracted from low-frequency smart meter

data, we developed and experimented with a novel feature extraction algorithm for NILM: our

“spike histogram” algorithm.

Many appliances emit a waveform with distinctive time-domain patterns. For example, most

appliances which contain electric heating elements control temperature not by varying the

power delivered to the heating element (which would require lots of power to be dissipated by

the control circuitry) but rather by turning the heating element on-and-off (a technique called

“pulse-width modulation”).

For example, our bread maker turns its 570 watt heater on and off roughly every 30 seconds

(see Figure 8.1), and the heater’s power demand when on is fairly constant (it ranges from

555-580 watts). TVs1 draw more power when displaying bright images than when displaying

dark images; for example our TV consumes between 90 and 130 watts (see Figure 8.1). The

1With the possible exception of LCD TVs because they leave their backlight on constantly.
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Figure 8.1: Analysis of a bread maker (panels a - d) and a CRT TV (panels e - h). The forward
difference of the signature (denoted by ∆signature) at each time t = signature(t+1) - signature(t).
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signatures, forward differences of the signatures, histograms of the signatures and histograms

of the forward difference are shown for our TV and breadmaker in Figure 8.1.

Can we build a feature detector that can efficiently discriminate between, say, the time-domain

patterns produced by a bread maker and a TV?

8.1 Spectrogram

A tool commonly used in signal analysis is the spectrogram which is a 2D plot with time

represented along the x-axis and frequency along the y-axis. For each point on the spectrogram,

the amount of energy carried by that frequency at that time is represented by the pixel colour.

A spectrogram is created by first chopping the input timeseries into overlapping chunks. The

frequency content of each chunk is determined using short-time Fourier transform (STFT). A

simple example of a spectrogram is show in figure 8.2.

Fourier transformation attempts to decompose a timeseries into a set of sine waves. But our

smart meter signals are composed mostly of horizontal steady states and vertical transitions.

The result of decomposing a rectangular wave into a set of sine waves is, for our purposes

at least, rather meaningless. A single rectangular pulse produces a “spray” of energy across

the frequency spectrum. More precisely: an instantaneous edge in the time-domain requires

an infinite bandwidth in the frequency-domain (hence ideal square waves are impossible to

achieve in practice). The top panel of Figure 8.3 illustrates the problem. The spectrogram

was produced from the synthetic rectangular wave shown in the bottom panel. The first half

of the synthetic wave maintains the same amplitude but increases in frequency over time; the

second half maintains the same frequency but decreases in amplitude. The spectrogram fails

to capture these trends.

8.2 Spike histogram

Our “spike histogram” algorithm detects high-frequency changes of a similar magnitude, such

as a bread maker turning its heater on and off every 30 seconds, or the random variation

present in a TV’s signature. As far as I am aware, this is a novel proposal. The motivation
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Figure 8.2: Simple example illustrating the spectrogram (top panel) which results from a “chirp”
(bottom panel) which is a sinusoidal signal whose frequency increases over time. The diagonal
line in the spectrogram indicates that the chirp increases in frequency over time. The two
panels share the same x-axis (time).

is that traditional steady-state detectors developed for NILM struggle to take advantages of

rapid changes.

Can we do better than the spectrogram? My proposed solution is, for want of a better name,

a “spike histogram”. An example is shown in the middle panel of Figure 8.3.

The process is simple. First, for each time t, we calculate the forward difference between the

timeseries value at time t+1 and the value at time t to produce a vector that we denote with ∆.

Next a set of ten “power bins” is created: for example if max(∆) = 1000 then powerBin1
represents spikes between 1-99watts, powerBin2 represents spikes between 100-199watts etc.

Then the forwards difference vector ∆ is broken into overlapping chunks in time where each

chunk is, say, 3 minutes in length. For each chunk, each value of ∆ is assigned to a single

powerBin. The result is a 2D plot where time is represented on the x-axis and each powerBin is

represented on the y-axis. The pixel colour represents the quantity of values in each powerBin.
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Figure 8.3: Synthetic test data (bottom panel) analysed using a spectrogram (top panel) and
my “spike histogram” algorithm (middle panel). All three panels share the same x-axis (which
represents time). During the first half of the synthetic data the amplitude of each rectangular
wave remains the same but the frequency increases. During the second half of the synthetic
data the frequency remains constant but the amplitude decreases. The pixel colour in the
spectrogram represents the amount of energy attributed to the frequency indicated on the
y-axis at the time indicated on the x-axis.
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Figure 8.4: Real smart meter data (bottom panel) analysed using a spectrogram (top panel)
and my “spike histogram” algorithm (middle panel). All three panels share the same x-axis
(which represents time). The middle panel has been manually annotated to illustrate that the
spike histogram feature detector can discriminate between the time-domain patterns emitted
by the breadmaker, dishwasher, washing machine and TV.
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Figure 8.3 illustrates how to “read” a spike histogram plot. The frequency of spikes in the

timeseries is represented by colour in the spike histogram. The magnitude is represented by

vertical position.

In practice, tiny values of ∆ (less than 5watts) are ignored because they are almost certainly

just the result of random noise.

8.2.1 Tests on real smart meter data

How do the spectrogram and the spike histogram perform on real data? Figure 8.4 shows

twenty-four hours of real smart meter data from my house. I have manually annotated the

spike histogram to show which features correspond to which appliances. Note that the only

information discernible from the spectrogram is whether or not any vertical transitions are

present in the smart meter data. In contrast, the spike histogram shows distinct patterns for

the breadmaker, dishwasher, washing machine and television.

8.3 Discussion

The spectrogram is useful for high sample-rate smart meter data (tens or hundreds of kHz)

because, at these high sample-rates, the sinusoidal nature of the mains AC signal2 is faithfully

captured by the analogue-to-digital conversion. But standard smart meters only sample once

every ten seconds (0.1 Hz) hence the sinusoidal nature of the analogue signal is lost and the

digital signal contains many sharp edges, each of which causes Fourier analysis to show a spray

of energy across the frequency spectrum. Hence any technique based on Fourier analysis is

unlikely to provide a useful foundation on which to build an informative feature detector for

standard smart meters.

In light of these limitations, I experimented with a “spike histogram” algorithm. My experi-

ments suggest that extraction of “rich” features can work well to detect some appliances, even

with low temporal resolution input data.

2In the UK, mains AC power oscillates at 50 Hz. There is information in many of the higher harmonics.
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Manually engineering multiple feature detectors may be viable for a small number of appliances

and a small number of types of smart meter data. But it would not be viable for the large

and diverse set of appliances available in practice; and for the large and diverse set of smart

meter types. This motivates the use of deep neural networks, which can learn to extract

complex features from raw input data. We discuss deep neural networks applied to NILM in

the following chapter.



Chapter 9

Deep neural networks for energy

disaggregation

Recently, deep neural networks have driven remarkable improvements in classification perfor-

mance in machine learning fields such as image classification and automatic speech recognition.

One of the main benefits of deep neural networks is that they can automatically learn a hierar-

chy of feature extractors from raw input data (provided that enough training data is available).

The hypothesis we test in this chapter is that disaggregation performance can be improved by

automatically learning a hierarchy of feature extractors from raw smart meter data, using deep

neural networks.

In this chapter, we adapt three deep neural network architectures to energy disaggregation:

1) a form of recurrent neural network called ‘long short-term memory’ (LSTM); 2) denoising

autoencoders; and 3) a network which regresses the start time, end time and average power

demand of each appliance activation.

We use seven metrics to test the performance of these algorithms on real aggregate power

data from five appliances. Tests are performed against a house not seen during training and

against houses seen during training. We find that all three neural nets achieve better F1 scores

(averaged over all five appliances) than either combinatorial optimisation or factorial hidden

Markov models and that our neural net algorithms generalise well to an unseen house.

This chapter is based on Kelly & Knottenbelt 2015a.

152



9.1. Motivation 153

0 30 60 90

Time (minutes)

0

1

2

Po
w

er
(k

W
)

Figure 9.1: Example washing machine power demand (from UK-DALE House 1).

9.1 Motivation

Our main hypothesis for this chapter is that recent techniques from machine learning fields

such as image classification can be adapted to automatically learn which features to extract

from smart meter signals; and that this will lead to an increase in NILM performance. As

discussed in Chapter 7, the majority of existing NILM algorithms designed for ten-second data

cannot extract rich features from the raw data. In fact, many algorithms begin by throwing

away much of the texture in the raw data. Our claim is that we can improve disaggregation

performance by exploiting these rich features.

Humans can learn to detect appliances in aggregate data by eye, especially appliances with

feature-rich signatures such as the washing machine signature shown in Figure 9.1. Humans

almost certainly make use of a variety of features such as the rapid on-off cycling of the motor

(which produces the rapid ∼ 200 watt oscillations), the ramps towards the end as the washer

starts to spin the clothes etc. As discussed in the previous chapter, we could consider hand-

engineering feature extractors for these rich features. But this would be time consuming and

the resulting feature detectors may not be robust to noise and artefacts; and may not work for

the wide range of appliances available; and the wide range of smart meter data available.

Before 2012, the dominant approach to extracting features for image classification was to hand-

engineer feature detectors such as scale-invariant feature transform (SIFT) (Lowe 1999) and

difference of Gaussians (DoG). Then, in 2012, Krizhevsky et al.’s winning algorithm in the

ImageNet Large Scale Visual Recognition Challenge achieved a substantially lower error score

(15%) than the second-best approach (26%) (Krizhevsky et al. 2012). Krizhevsky et al.’s

approach did not use hand-engineered feature detectors. Instead they used a deep neural
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network which automatically learnt to extract a hierarchy of features from the raw image.

Deep learning is now a dominant approach not only in image classification but also in fields

such as automatic speech recognition (Graves & Jaitly 2014), machine translation (Sutskever

et al. 2014), even learning to play computer games from scratch (Mnih et al. 2015)!

In this chapter, we investigate whether deep neural nets can be applied to energy disaggregation.

The use of ‘small’ neural nets on NILM dates back at least to Roos et al. 1994 (although that

paper was just a proposal) and continued with H.-T. Yang et al. 2007; Lin & Tsai 2010; Ruzzelli

et al. 2010; and H.-H. Chang et al. 2011. But these small nets do not appear to learn a hierarchy

of feature detectors. A big breakthrough in image classification came when the compute power

(courtesy of GPUs) became available to train deep neural networks on large amounts of data.

In the present research, we want to see if deep neural nets can deliver good performance on

energy disaggregation.

Our main contribution is to adapt three deep neural network architectures to NILM. For each

architecture, we train one network per target appliance. We compare two benchmark disag-

gregation algorithms (combinatorial optimisation and factorial hidden Markov models) to the

disaggregation performance of our three deep neural nets using seven metrics. We also examine

how well our neural nets generalise to appliances in houses not seen during training because,

ultimately, when NILM is used ‘in the field’ we very rarely have ground truth appliance data

for the houses for which we want to disaggregate. So it is essential that NILM algorithms can

generalise to unseen houses.

Please note that, once trained, our neural nets do not need ground truth appliance data from

each house. End-users would only need to provide aggregate data. This is because each

neural network should learn the ‘essence’ of its target appliance such that it can generalise to

unseen instances of that appliance. In a similar fashion, neural networks trained to do image

classification are trained on many examples of each category (dogs, cats, etc.) and generalise

to unseen examples of each category.

To provide more context, we will briefly sketch how our neural networks could be deployed at

scale, in the wild. Each net would undergo supervised training on many examples of its target

appliance type so each network learns to generalise well to unseen appliances.

Training is computationally expensive (days of processing on a fast GPU). But training does
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not have to be performed often. Once these networks are trained, inference is much cheaper

(around a second of processing per network on a fast GPU for a week of aggregate data).

Aggregate data from unseen houses would be fed through each network. Each network should

filter out the power demand for its target appliance. This processing would probably be too

computationally expensive to run on an embedded processor inside a smart meter or in-home-

display. Instead, the aggregate data could be sent from the smart meter to a server in the

cloud.

The storage requirements for one 16 bit integer sample (0–64 kW in 1 watt steps) every ten

seconds is 17 kilobytes per day uncompressed. This signal should be easily compressible because

there are numerous periods in domestic aggregate power demand with little or no change. With

a compression ratio of 5:1, and ignoring the datetime index, the total storage requirements for

a year of data from 10 million users would be 13 terabytes. If one week of aggregate data can

be processed in one second per home (which should be possible given further optimisation)

then data from 10 million users could be processed by 16 GPU compute nodes. Alternatively,

disaggregation could be performed on a compute device within each home (a modern laptop or

mobile phone or a dedicated ‘disaggregation hub’ could handle the disaggregation). A GPU is

not required for disaggregation, although it makes it faster.

This chapter is structured as follows: In Section 9.1 we discuss why – in principal – deep neural

nets might perform better on NILM than previous NILM algorithms. In Section 9.2 we provide

a very brief introduction to artificial neural nets. In Section 9.3 we describe how we prepare the

training data for our nets and how we ‘augment’ the training data by synthesising additional

data. In Section 9.4 we describe how we adapted three neural net architectures to NILM. In

Section 9.5 we describe how we do disaggregation with our nets. In Section 9.6 we present the

disaggregation results of our three neural nets and two benchmark NILM algorithms. Finally,

in Section 9.7 we discuss our results, offer our conclusions and describe some possible future

directions for research.

9.2 Introduction to artificial neural nets

An artificial neural network (ANN) is a directed graph where the nodes are artificial neurons

and the edges allow information from one neuron to pass to another neuron (or the same neuron
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in a future time step). Neurons are typically arranged into layers such that each neuron in layer

l connects to every neuron in layer l+1. Connections are weighted and it is through modification

of these weights that ANNs learn. ANNs have an input layer and an output layer. Any layers in

between are called hidden layers. The forward pass of an ANN is where information flows from

the input layer, through any hidden layers, to the output. Learning (updating the weights)

happens during the backwards pass.

9.2.1 Forwards pass

Each artificial neuron calculates a weighted sum of its inputs, adds a bias and passes this sum

through an activation function. Consider a neuron which receives I inputs. The value of each

input is represented by input vector x. The weight on the connection from input i to neuron

h is denoted by wih (so w is the ‘weights matrix’). The weighted sum (also called the ‘network

input’) of the inputs into neuron h can be written ah = ∑I
i=1 xiwih. The network input ah is

then passed through an activation function θ to produce the neuron’s final output bh where

bh = θ(ah). In this chapter, we use the following activation functions: linear: θ(x) = x; rectified

linear (ReLU): θ(x) = max(0, x); hyperbolic tangent (tanh): θ(x) = sinh x
cosh x

= ex−e−x

ex+e−x .

Multiple nonlinear hidden layers can be used to represent the input data (hopefully by learn-

ing a hierarchy of feature detectors), which gives deep nonlinear networks a lot of expressive

power (Geoffrey E Hinton et al. 2006; Bengio; LeCun et al. 2007).

9.2.2 Backwards pass

After computing a forwards pass through the entire network to get the network’s output for a

specific network input, we then compute the error of the output relative to the target (in all

our experiments we use the mean squared error (MSE) as the objective function). We then

modify the network’s weights in the direction which should reduce the error.

In practice, the forward pass is often computed over a batch of randomly selected input vectors.

In our work, we use a batch size of 64 sequences per batch for all but the largest recurrent

neural network (RNN) experiments. In our largest RNNs we use a batch size of 16 (to allow

the network to fit into the 3GB of RAM on our GPU).
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How do we modify each weight to reduce the error? It would be computationally intractable

to enumerate the entire error surface. MSE gives a smooth error surface and the activation

functions are differentiable hence we can use gradient descent. The first step is to compute the

gradient of the error surface at the position for the current batch by calculating the derivative of

the objective function with respect to each weight. Then we modify each weight by adding the

gradient multiplied by a ‘learning rate’ scalar parameter. To efficiently compute the gradient

(in O(W ) time) we use the backpropagation algorithm (Rumelhart et al. 1985; Werbos 1988;

Williams & Zipser 1995). In all our experiments we use stochastic gradient descent (SGD) with

Nesterov momentum of 0.9.

9.2.3 Convolutional neural nets

Consider the task of identifying objects in a photograph. No matter if we hand engineer

feature detectors or learn feature detectors from the data, it turns out that useful ‘low level’

features concern small patches of the image and include features such as edges of different

orientations, corners, blobs etc. To extract these features, we want to build a small number

of feature detectors (one for horizontal lines, one for blobs etc.) with small receptive fields

(overlapping sub-regions of the input image) and slide these feature detectors across the entire

image. Convolutional neural nets (CNNs) (Fukushima 1980; Atlas et al. 1988; LeCun et al.

1998) build a small number of filters, each with a small receptive field, and these filters are

duplicated (with shared weights) across the entire input.

Similarly to computer vision tasks, in time series problems we often want to extract a small

number of low level features with a small receptive field across the entire input. All of our nets

use at least one 1D convolutional layer at the input.

9.3 Training data

Deep neural nets need a lot of training data because they have a large number of trainable

parameters (the network weights and biases). The nets described in this chapter have between

1 million to 150 million trainable parameters. Large training datasets are important. It is

also common practice in deep learning to increase the effective size of the training set by
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duplicating the training data many times and applying realistic transformations to each copy.

For example, in image classification, we might flip the image horizontally or apply slight affine

transformations.

A related approach to creating a large training dataset is to generate simulated data. For ex-

ample, Google DeepMind train their algorithms (Mnih et al. 2015) on computer games because

they can generate an effectively infinite amount of training data. Realistic synthetic speech

audio data or natural images are harder to produce.

In energy disaggregation, we have the advantage that generating effectively infinite amounts of

synthetic aggregate data is relatively easy by randomly combining real appliance activations.

(We define an ‘appliance activation’ to be the power drawn by a single appliance over one

complete cycle of that appliance. For example, Figure 9.1 shows a single activation for a

washing machine.) We trained our nets on both synthetic aggregate data and real aggregate

data in a 50:50 ratio. We found that synthetic data acts as a regulariser. In other words,

training on a mix of synthetic and real aggregate data rather than just real data appears to

improve the net’s ability to generalise to unseen houses. For validation and testing we use only

real data (not synthetic).

We used UK-DALE (see Chapter 4) as our source dataset. Each submeter in UK-DALE samples

once every 6 seconds. All houses record aggregate apparent mains power once every 6 seconds.

Houses 1, 2 and 5 also record active and reactive mains power once a second. In these houses, we

downsampled the 1 second active mains power to 6 seconds to align with the submetered data

and used this as the real aggregate data from these houses. Any gaps in appliance data shorter

than 3 minutes are assumed to be due to RF issues and so are filled by forward-filling. Any

gaps longer than 3 minutes are assumed to be due to the appliance and meter being switched

off and so are filled with zeros.

We manually checked a random selection of appliance activations from every house. The UK-

DALE metadata shows that House 4’s microwave and washing machine share a single meter (a

fact that we manually verified) and hence these appliances from House 4 are not used in our

training data.

We train one network per target appliance. The target (i.e. the desired output of the net) is the

power demand of the target appliance. The input to every net we describe in this chapter is a
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Table 9.1: Number of training activations per house.
1 2 3 4 5

Kettle 2836 543 44 716 176
Fridge 16 336 3526 0 4681 1488
Washing machine 530 53 0 0 51
Microwave 3266 387 0 0 28
Dish washer 197 98 0 23 0

Table 9.2: Number of testing activations per house.
1 2 3 4 5

Kettle 54 29 40 50 18
Fridge 168 277 0 145 140
Washing machine 10 4 0 0 2
Microwave 90 9 0 0 4
Dish washer 3 7 0 3

window of aggregate power demand. The window width is decided on an appliance-by-appliance

basis and varies from 128 samples (13 minutes) for the kettle to 1536 samples (2.5 hours) for the

dish washer. We found that increasing the window size hurts disaggregation performance for

short-duration appliances (for example, using a sequence length of 1024 for the fridge resulted

in the autoencoder (AE) failing to learn anything useful and the ‘rectangles’ net achieved an

F1 score of 0.68; reducing the sequence length to 512 allowed the AE to get an F1 score of 0.87

and the ‘rectangles’ net got a score of 0.82). On the other hand, it is important to ensure that

the window width is long enough to capture the majority of the appliance activations.

For each house, we reserved the last week of data for testing and used the rest of the data for

training. The number of appliance training activations is show in Table 9.1 and the number of

testing activations is shown in Table 9.2. The specific houses used for training and testing is

shown in Table 9.3. Note that it took around 24 hours to train each network (one network per

appliance and per architecture), so we did not have time to do full cross-validation. Instead we

trained each network once; and tested each network once.

9.3.1 Choice of appliances

We used five target appliances in all our experiments: the fridge, washing machine, dish washer,

kettle and microwave. We chose these appliances because each is present in at least three houses
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Table 9.3: Houses used for training and testing.
Training Testing

Kettle 1, 2, 3, 4 5
Fridge 1, 2, 4 5
Washing machine 1, 5 2
Microwave 1, 2 5
Dish washer 1, 2 5

Table 9.4: Arguments passed to get_activations().
Max On power Min. on Min. off

Appliance power threshold duration duration
(watts) (watts) (secs) (secs)

Kettle 3100 2000 12 0
Fridge 300 50 60 12
Washing m. 2500 20 1800 160
Microwave 3000 200 12 30
Dish washer 2500 10 1800 1800

in UK-DALE. This means that, for each appliance, we can train our nets on at least two houses

and test on a different house. These five appliances consume a significant proportion of energy

and the five appliances represent a range of different power ‘signatures’ from the simple on/off

of the kettle to the complex pattern shown by the washing machine (Figure 9.1).

‘Small’ appliances such as games consoles and phone chargers are problematic for many NILM

algorithms because the effect of small appliances on aggregate power demand tends to get lost

in the noise. By definition, small appliances do not consume much energy individually but

modern homes tend to have a large number of such appliances so their combined consumption

can be significant. Hence it would be useful to detect small appliances using NILM. We have

not explored whether our neural nets perform well on ‘small’ appliances.

9.3.2 Extract activations

Appliance activations are extracted using NILMTK’s Electric.get_activations() method.

The arguments we passed to get_activations() for each appliance are shown in Table 9.4.

On simple appliances such as toasters, we extract activations by finding strictly consecutive

samples above some threshold power. We then throw away any activations shorter than some

threshold duration (to ignore spurious spikes). For more complex appliances such as washing
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machines whose power demand can drop below threshold for short periods during a cycle,

NILMTK ignores short periods of sub-threshold power demand.

The August 2015 release of UK-DALE added the metadata listed in Table 9.4 into UK-DALE’s

metadata. This was done so that NILMTK’s get_activations method can be called without

any explicit arguments and NILMTK will pull these parameters from UK-DALE’s metadata.

9.3.3 Select windows of real aggregate data

First we locate all the activations of the target appliance in the home’s submeter data for

the target appliance. Then, for each training example, the code decides with 50% probability

whether this example should include the target appliance or not. If the code decides not include

the target appliance then it finds a random window of aggregate data in which there are no

activations of the target appliance. Otherwise, the code randomly selects a target appliance

activation and randomly positions this activation within the window of data that will be shown

to the net as the target (with the constraint that the activation must be captured completely

in the window of data shown to the net, unless the window is too short to contain the entire

activation). The corresponding time window of real aggregate data is also loaded and shown

to the net as its input. If other activations of the target appliance happen to appear in the

aggregate data then these are not included in the target sequence. The net is trained to focus

on the first complete target appliance activation in the aggregate data.

9.3.4 Synthetic aggregate data

To create synthetic aggregate data we start by extracting a set of appliance activations for

five appliances across all training houses: kettle, washing machine, dish washer, microwave

and fridge. To create a single sequence of synthetic data, we start with two vectors of zeros:

one vector will become the input to the net; the other will become the target. The length of

each vector defines the ‘window width’ of data that the network sees. We go through the five

appliance classes and decide whether or not to add an activation of that class to the training

sequence. There is a 50% chance that the target appliance will appear in the sequence and a

25% chance for each other ‘distractor’ appliance. For each selected appliance class, we randomly
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select an appliance activation and then randomly pick where to add that activation on the input

vector. Distractor appliances can appear anywhere in the sequence (even if this means that

only part of the activation will be included in the sequence). The target appliance activation

must be completely contained within the sequence (unless it is too large to fit).

Of course, this relatively naïve approach to synthesising aggregate data ignores a lot of struc-

ture that appears in real aggregate data. For example, the kettle and toaster might often

appear within a few minutes of each other in real data, but our simple ‘simulator’ is completely

unaware of this sort of structure. We expect that a more realistic simulator might increase the

performance of deep neural nets on energy disaggregation.

9.3.5 Implementation of data processing

All our code is written in Python and we make use Pandas, Numpy and NILMTK for data

preparation. Each network receives data in a mini-batch of 64 sequences (except for the large

RNN sequences, in which case we use a batch size of 16 sequences). The code is multi-threaded

so the CPU can be busy preparing one batch of data on the fly whilst the GPU is busy training

on the previous batch.

9.3.6 Standardisation

In general, neural nets learn most efficiently if the input data has zero mean. First, the mean

of each sequence is subtracted from the sequence to give each sequence a mean of zero. Every

input sequence is divided by the standard deviation of a random sample of the training set.

We do not divide each sequence by its own standard deviation because that would change the

scaling and the scaling is likely to be important for NILM.

Forcing each sequence to have zero mean throws away information. Information that NILM

algorithms such as combinatorial optimisation and factorial hidden Markov models rely on.

We have done some preliminary experiments and found that neural nets appear to be able to

generalise better if we independently centre each sequence. But there are likely to be ways to

have the best of both worlds: i.e. to give the network information about the absolute power

whilst also allowing the network to generalise well.
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One big advantage of training our nets on sequences which have been independently centred is

that our nets do not need to consider vampire (always on) loads.

Targets are divided by a hand-coded ‘maximum power demand’ for each appliance to put the

target power demand into the range [0, 1].

9.4 Neural network architectures

In this section we describe how we adapted three different neural net architectures to do NILM.

In total, we performed 574 experiments with a range of neural network architectures and train-

ing regimes. The Python scripts for specifying these experiments are available online1. Across

the 574 experiments, we tried a range of configurations and training schemes. Unfortunately, as

we developed the experiments we discovered (and fixed) issues with the data, which somewhat

invalidated the previous results. As such, we cannot directly present a quantitative comparison

of all these experiments. But, below, we list the main experiments we tried and provide some

brief information about the performance implications.

• We tried configuring the nets to output the power demand for multiple appliances per

network. This appeared to work well for simple synthetic data but failed for realistic

data.

• Output a boolean vector specifying whether each appliance is on or off, rather than

outputting the real-valued power demand for the appliance. Boolean vectors did not

appear to work as well as outputting the real-valued power demand for the appliance.

• We tried convolutional layers versus fully-connected layers. Convolutional layers at the

input appear to improve performance.

• We tried implementing batch normalisation (Ioffe & Szegedy 2015) but it did not appear

to improve performance.

• We tried implementing mixture density networks (Bishop 1994) to output a Gaussian

mixture model specifying a probability distribution over the estimated power demand at

each time step for the target appliance. This did not appear to improve performance.
1https://github.com/JackKelly/neuralnilm_prototype

https://github.com/JackKelly/neuralnilm_prototype
https://github.com/JackKelly/neuralnilm_prototype
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• We tried a range of activation functions including linear, rectified linear, sigmoid, and

tanh.

• We tried LSTMs with and without peepholes.

• We tried computing the forwards difference of the input before passing the forwards

difference to the network. This hurt performance.

• We tried a range of weight initialisation schemes.

• For the denoising autoencoder, we tried tying symmetric weights, but this hurt perfor-

mance slightly.

• Tried outputting a polygon with multiple segments. This did not work as well as the

simpler approach of just outputting a single rectangle over the target appliance activation.

• Tried dropout (Geoffrey E. Hinton et al. 2012). This appeared to hurt performance.

• Tried a range of learning rates and momentum settings.

• Tried putting an RNN onto the output of an autoencoder. This did not help.

• Tried skip-connections. This did not help performance.

• We tried varying the training regime. For example:

– We tried training with measured aggregate data versus a mixture of synthetic aggre-

gate data and measured aggregate data. Adding synthetic aggregate data appears

to improve performance and works as a regularizer.

– We tried forcing the target appliance activation to always be fully captured in the

network’s input window; and we tried allowing the activation to start or end outside

of the network’s input window. We got slightly better performance by forcing the

appliance activation to be within the network’s input window.

The three architectures described below offered the best performance.
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9.4.1 Recurrent neural networks

In Section 9.2 we described feed forward neural networks which map from a single input vector

to a single output vector. During inference, when the network is shown a second input vector,

it has no memory of the previous input.

Recurrent neural networks (RNNs) allow cycles in the network graph such that the output

from neuron i in layer l at time step t is fed via weighted connections to every neuron in layer l

(including neuron i) at time step t+ 1. This allows RNNs, in principal, to map from the entire

history of the inputs to an output vector. This makes RNNs especially well suited to sequential

data. In our work, we train RNNs using backpropagation through time (BPTT) (Werbos 1990).

In practice, RNNs can suffer from the ‘vanishing gradient’ problem (Hochreiter & Schmidhuber

1997) where gradient information disappears or explodes as it is propagated back through time.

This can limit an RNN’s memory. One solution to this problem is the ‘long short-term memory’

(LSTM) architecture (Hochreiter & Schmidhuber 1997) which uses a ‘memory cell’ with a gated

input, gated output and gated feedback loop. The intuition behind LSTM is that it is a differ-

entiable latch (where a ‘latch’ is the fundamental unit of a digital computer’s RAM). LSTMs

have been used with success on a wide variety of sequence tasks including automatic speech

recognition (Graves & Jaitly 2014; Chorowski et al. 2014) and machine translation (Sutskever

et al. 2014).

An additional enhancement to RNNs is to use bidirectional layers. In a bidirectional RNN,

there are effectively two parallel RNNs, one reads the input sequence forwards and the other

reads the input sequence backwards. The output from the forwards and backwards halves of

the network are combined either by concatenating them or doing an element-wise sum (we

experimented with both and settled on concatenation, although element-wise sum appeared to

work almost as well and is computationally cheaper).

We should note that bidirectional RNNs are not naturally suited to doing online disaggre-

gation. Bidirectional RNNs could still be used for online disaggregation if we frame ‘online

disaggregation’ as doing frequent, small batches of offline disaggregation.

We experimented with both RNNs and LSTMs and settled on the following architecture for

energy disaggregation:
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1. Input (length determined by appliance duration)

2. 1D convolution (filter size=4, stride=1, number of filters=16, activation function=linear,

border mode=same)

3. bidirectional LSTM (N=128, with peepholes)

4. bidirectional LSTM (N=256, with peepholes)

5. Fully connected (N=128, activation function=TanH)

6. Fully connected (N=1, activation function=linear)

At each time step, the network sees a single sample of aggregate power data and outputs a

single sample of power data for the target appliance.

In principal, the convolutional layer should not be necessary (because the LSTMs should be

able to remember all the context). But we found the addition of a convolution layer to slightly

increase performance (the convolutional layer convolves over the time axis). We also experi-

mented with adding a convolutional layer between the two LSTM layers with a stride > 1 to

implement hierarchical subsampling (Graves 2012). This showed promise but we did not use it

for our final experiments.

On the backwards pass, we clip the gradient at [-10, 10] as per Alex Graves in Graves 2013.

To speed up computation, we propagate the gradient backwards a maximum of 500 time steps.

Figure 9.2 shows an example output of our LSTM network in the two ‘RNN’ rows.

9.4.2 Denoising autoencoders

In this section, we frame energy disaggregation as a ‘denoising’ task. Typical denoising tasks

include removing grain from an old photograph; or removing reverb from an audio recording;

or in-filling a masked part of an image. Energy disaggregation can be viewed as an attempt

to recover the ‘clean’ power demand signal of the target appliance from the background ‘noise’

produced by the other appliances. A successful neural network architecture for denoising tasks

is the ‘denoising autoencoder’.

An autoencoder (AE) is simply a network which tries to reconstruct the input. Described

like this, AEs might not sound very useful! The key is that AEs first encode the input to a
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compact vector representation (in the ‘code layer’) and then decode to reconstruct the input.

The simplest way of forcing the net to discover a compact representation of the data is to have

a code layer with less dimensions than the input. In this case, the AE is doing dimensionality

reduction. Indeed, a linear AE with a single hidden layer is almost equivalent to PCA. But

AEs can be deep and non-linear.

A denoising autoencoder (dAE) (Vincent et al. 2008) is an autoencoder which attempts to re-

construct a clean target from a noisy input. dAEs are typically trained by artificially corrupting

a signal before it goes into the net’s input, and using the clean signal as the net’s target. In

NILM, we consider the corruption as being the power demand from the other appliances. So we

do not add noise artificially. Instead we use the aggregate power demand as the (noisy) input

to the net and ask the net to reconstruct the clean power demand of the target appliance.

The first and last layers of our NILM dAEs are 1D convolutional layers. We use convolutional

layers because we want the network to learn low level feature detectors which are applied

equally across the entire input window (for example, a step change of 1000 watts might be a

useful feature to extract, no matter where it is found in the input). The aim is to provide some

invariance to where exactly the activation is positioned within the input window. The last layer

does a ‘deconvolution’.

The exact architecture is as follows:

1. Input (length determined by appliance duration)

2. 1D conv (filter size=4, stride=1, number of filters=8, activation function=linear, border

mode=valid)

3. Fully connected (N=(sequence length - 3) × 8, activation function=ReLU)

4. Fully connected (N=128; activation function=ReLU)

5. Fully connected (N=(sequence length - 3) × 8, activation function=ReLU)

6. 1D conv (filter size=4, stride=1, number of filters=1, activation function=linear, border

mode=valid)

Layer 4 is the middle, code layer. The entire dAE is trained end-to-end in one go (we do not do

layer-wise pre-training as we found it did not increase performance). We do not tie the weights
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as we found this also appears to not enhance NILM performance. An example output of our

NILM dAE is shown in Figure 9.2 in the two ‘Autoencoder’ rows.

9.4.3 Regress start time, end time & power

Many applications of energy disaggregation do not require a detailed second-by-second re-

construction of the appliance power demand. Instead, most energy disaggregation use-cases

require, for each appliance activation, the identification of the start time, end time and energy

consumed. In other words, we want to draw a rectangle around each appliance activation in

the aggregate data where the left side of the rectangle is the start time, the right side is the

end time and the height is the average power demand of the appliance between the start and

end times.

Deep neural networks have been used with great success on related tasks. For example,

Nouri used deep neural networks to estimate the 2D location of ‘facial keypoints’ in images

of faces (Nouri 2014). Example ‘keypoints’ are ‘left eye centre’ or ‘mouth centre top lip’. The

input to Nouri’s neural net is the raw image of a face. The output of the network is a set of

x, y coordinates for each keypoint.

Our idea was to train a neural network to estimate three scalar, real-valued outputs: the start

time, the end time and mean power demand of the first appliance activation to appear in the

aggregate power signal. If there is no target appliance in the aggregate data then all three

outputs should be zero. If there is more than one activation in the aggregate signal then the

network should ignore all but the first activation. All outputs are in the range [0, 1]. The start

and end times are encoded as a proportion of the input’s time window. For example, the start

of the time window is encoded as 0, the end is encoded as 1 and half way through the time

window is encoded as 0.5. For example, consider a scenario where the input window width is

10 minutes and an appliance activation starts 1 minute into the window and ends 1 minute

before the end of the window. This activation would be encoded as having a start location of

0.1 and an end location of 0.9. Example output is shown in Figure 9.2 in the two ‘Rectangles’

rows.

The three target values for each sequence are calculated during data pre-processing. As for

all of our other networks, the network’s objective is to minimise the mean squared error. The
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exact architecture is as follows:

1. Input (length determined by appliance duration)

2. 1D conv (filter size=4, stride=1, number of filters=16, activation function=linear, border

mode=valid)

3. 1D conv (filter size=4, stride=1, number of filters=16, activation function=linear, border

mode=valid)

4. Fully connected (N=4096, activation function=ReLU)

5. Fully connected (N=3072; activation function=ReLU)

6. Fully connected (N=2048, activation function=ReLU)

7. Fully connected (N=512, activation function=ReLU)

8. Fully connected (N=3, activation function=linear)

9.4.4 Neural net implementation

We implemented our neural nets in Python using the Lasagne library2. Lasagne is built on

top of Theano (Bergstra et al. 2010; Bastien et al. 2012). We trained our nets on an nVidia

GTX 780Ti GPU with 3 GB of RAM (but note that Theano also allows code to be run on the

CPU without requiring any changes to the user’s code). On this GPU, our nets typically took

between 1 and 12 hours to train per appliance. The exact code used to create the results in this

chapter is available in our ‘NeuralNILM Prototype’ repository3 and a more elegant re-write is

available in our ‘NeuralNILM’ repository4.

We manually defined the number of weight updates to perform during training for each ex-

periment. For the RNNs we performed 10 000 updates, for the denoising autoencoders we

performed 100 000 and for the regression network we performed 300 000 updates. Neither the

RNNs nor the AEs appeared to continue learning past this number of updates. The regression

networks appear to keep learning no matter how many updates we perform!
2github.com/Lasagne/Lasagne
3github.com/JackKelly/neuralnilm_prototype
4github.com/JackKelly/neuralnilm

https://github.com/Lasagne/Lasagne
http://www.deeplearning.net/software/theano/
https://github.com/JackKelly/neuralnilm_prototype
https://github.com/JackKelly/neuralnilm
https://github.com/Lasagne/Lasagne
https://github.com/JackKelly/neuralnilm_prototype
https://github.com/JackKelly/neuralnilm
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The nets have a wide variation in the number of trainable parameters. The largest dAE nets

range from 1M to 150M (depending on the input size); the RNNs all had 1M parameters and

the regression nets varied from 28M to 120M parameters (depending on the input size).

All our network weights were initialised randomly using Lasagne’s default initialisation. All

of the experiments presented in this chapter trained end-to-end from random initialisation (no

layerwise pre-training).

9.5 Disaggregation

How do we disaggregate arbitrarily long sequences of aggregate data given that each net has

an input window duration of, at most, a few hours? We first pad the beginning and end of the

input with zeros. Then we slide the net along the input sequence. As such, the first sequence

we show to the network will be all zeros. Then we shift the input window STRIDE samples

to the right, where STRIDE is a manually defined positive, non-zero integer. If STRIDE is less

than the length of the net’s input window then the net will see overlapping input sequences.

This allows the network to have multiple attempts at processing each appliance activation in

the aggregate signal, and on each attempt each activation will be shifted to the left by STRIDE

samples.

Over the course of disaggregation, the network produces multiple estimated values for each

time step because we give the network overlapping segments of the input. For our first two

network architectures, we combine the multiple values per timestep simply by taking the mean.

Combing the output from our third network is a little more complex. We layer every predicted

‘appliance rectangle’ on top of each other. We measure the overlap and normalise the overlap

to [0, 1]. This gives a probabilistic output for each appliance’s power demand. To convert this

to a single vector per appliance, we threshold the power and probability.

9.6 Results

The disaggregation results on an unseen house are shown in Figure 9.3. The results on houses

seen during training are shown in Figure 9.4.
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We used benchmark implementations from NILMTK (see Chapter 5) of the combinatorial

optimisation (CO) and factorial hidden Markov model (FHMM) algorithms.

On the unseen house (Figure 9.3), both the denoising autoencoder and the net which regresses

the start time, end time and power demand (the ‘rectangles’ architecture) out-perform CO and

FHMM on every appliance on F1 score, precision score, proportion of total energy correctly

assigned and mean absolute error. The LSTM out-performs CO and FHMM on two-state appli-

ances (kettle, fridge and microwave) but falls behind CO and FHMM on multi-state appliances

(dish washer and washing machine).

On the houses seen during training (Figure 9.4), the dAE outperforms CO and FHMM on every

appliance on every metric except relative error in total energy. The ‘rectangles’ architecture

outperforms CO and FHMM on every appliance (except the microwave) on F1, precision,

accuracy, proportion of total energy correctly assigned and mean absolute error.

The full disaggregated time series for all our algorithms and the aggregate data and appliance

ground truth data are available at www.doc.ic.ac.uk/∼dk3810/neuralnilm

The classification metrics we used are:

TP = number of true positives (9.1)

FP = number of false positives (9.2)

FN = number of false negatives (9.3)

P = number of positives in ground truth (9.4)

N = number of negatives in ground truth (9.5)

recall = TP
TP + FN (9.6)

precision = TP
TP + FP (9.7)

F1 = 2× precision× recall
precision + recall (9.8)

accuracy = TP + TN
P + N (9.9)

For the classification metrics, we thresholded the power demand using the on_power_threshold

http://www.doc.ic.ac.uk/~dk3810/neuralnilm
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parameter defined in Table 9.4 to create a binary on/off vector for the ground-truth power

demand and the estimated power demand.

The disaggregation metrics we used are:

E = total actual energy (9.10)

Ê = total predicted energy (9.11)

y(i)
t = appliance i actual power at time t (9.12)

ŷ(i)
t = appliance i estimated power at time t (9.13)

ȳt = aggregate actual power at time t (9.14)

relative error in total energy = Ê − E
max(E, Ê)

(9.15)

mean absolute error = 1/T
T∑

t=1
|ŷt − yt| (9.16)

proportion of total energy correctly assigned =

1−
∑T

t=1
∑n

i=1 |ŷ
(i)
t − y

(i)
t |

2∑T
t=1 ȳt

(9.17)

The proportion of total energy correctly assigned is taken from (J. Zico Kolter & M. J. Johnson

2011).

We used multiple metrics because, in our view, no single metric is informative for all use-cases.

For example, consider the use-case where we want to provide users with a weekly breakdown

of the energy used by each appliance. In this case, we care about getting the estimated energy

correct; but we do not care about getting the timing correct. Hence, in this case, a metric

such as the mean absolute error would be informative. On the other hand, if our use-case is

informing users which appliances are currently switched on, then we care about timing but we

do not care about energy estimation. Hence a metric such as F1-score might be appropriate.
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Figure 9.2: Example outputs produced by all three neural network architectures for three
appliances. Each column shows data for a different appliance. The rows are in three groups
(the tall grey rectangles on the far left). The top group shows measured data from House 1. The
top row shows the measured aggregate power data from House 1 (the input to the neural nets).
The Y-axis scale for the aggregate data is standardised such that its mean is 0 and its standard
deviation is 1 across the data set. The Y-axis range for all other subplots is [0, 1]. The second
row shows the single-appliance power demand (i.e. what the neural nets are trying to estimate).
The middle group of rows shows the raw output from each neural network (one pass through
each network). The bottom rows show the result of sliding the network over the aggregate data
with STRIDE=16 and overlapping the output. For the ‘rectangles’ net, the the rectangle height
should be the mean power demand over the duration of the identified activation.
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Figure 9.3: Disaggregation performance on a house not seen during training.
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Figure 9.4: Disaggregation performance on houses seen during training (the time window used
for testing is different to that used for training).
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9.7 Conclusions & future work

We have adapted three neural network architectures to NILM. The denoising autoencoder and

the ‘rectangles’ architectures perform well, especially on unseen houses. We believe that deep

neural nets show great promise for NILM. But there is plenty of work still to do!

It is worth noting that our comparison between each architecture is not entirely fair because

the architectures have a wide range of trainable parameters. For example, every LSTM we used

had 1M parameters whilst the larger dAE and rectangles nets had over 150M parameters (we

did try training an LSTM with more parameters but it did not appear to improve performance).

Such large networks are likely to be prone to overfitting. We attempted to protect against

overfitting by training on an effectively infinitely large dataset of synthetic aggregate data.

We also validated the performance against homes which were not seen by the networks during

training. However, more work could be done to train and test on large numbers of houses.

The advantage of such large networks is that they are highly “expressive” and appear able

to learn to detect and reconstruct the nuanced features of each appliance we tested on. Our

original hypothesis was that deep neural networks would learn to extract complex features from

the data. This appears to have happened; although future work would benefit from a detailed

examination of exactly which features the networks are learning to extract.

Our LSTM results suggest that LSTMs work best for two-state appliances but do not perform

well on multi-state appliances such as the dish washer and washing machine. One possible

reason is that, for these appliances, informative ‘events’ in the power signal can be many time

steps apart (e.g. for the washing machine there might be over 1 000 time steps between the first

heater activation and the spin cycle). In principal, LSTMs have an arbitrarily long memory. But

these long gaps between informative events may present a challenge for LSTMs. Further work

is required to understand exactly why LSTMs struggle on multi-state appliances. One aspect

of our LSTM results that we did expect was that processing overlapping windows of aggregate

data would not be necessary for LSTMs because they always output the same estimates, no

matter what the offset of the input window (see Figure 9.2).

However, LSTMs are by no means a dead end for NILM. Mauch & B. Yang 2015 (published

shortly after our Neural NILM paper) achieve good NILM performance using LSTMs.
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Another study (Nascimento 2016) published after our Neural NILM work compares multiple

deep learning architectures on NILM. Nascimento compares CNNs, recurrent convolutional

neural nets (RCNN), LSTMs, gated recurrent units (GRU) and a residual architecture. Nasci-

mento finds that the GRU architecture performed the best and LSTMs performed the worst

(which is consistent with our findings). Whilst direct comparisons are not possible, it is likely

that Nascimento achieved better performance than we did. The differences between our work

and his include: he used deeper networks than we did; he framed NILM as a classification

problem (instead of the regression approach that we used) and hence his networks estimated

the state of each appliance instead of directly estimating the power demand; he used categor-

ical cross-entropy as the loss function (we used MSE); he used L2 regularisation and batch

normalisation.

We must also note that the FHMM implementation used in our work is not ‘state of the art’

and neither is it especially tuned. Other FHMM implementations are likely to perform better.

We encourage other researchers to download5 our disaggregation estimates and ground truth

data and directly compare against our algorithms!

This work represents just a first step towards adapting the vast number of techniques from the

deep learning community to NILM, for example:

9.7.1 Train on more data

UK-DALE has many hundreds of days of data but only from five houses. Any machine learning

algorithm is only able to generalise if given enough variety in the training set. For example,

House 5’s dish washer sometimes has four activations of its heater but the dish washers in the

two training houses (1 and 2) only ever have two peaks. Hence the autoencoder completely

ignores the first two peaks of House 5’s dish washer! If neural nets are to learn to generalise well

then we must train on much larger numbers of appliances (hundreds or thousands). This should

help the networks to generalise across the wide variation seen in some classes of appliance.

5Data available from www.doc.ic.ac.uk/∼dk3810/neuralnilm

http://www.doc.ic.ac.uk/~dk3810/neuralnilm
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9.7.2 Unsupervised pre-training

In NILM, we generally have access to much more unlabelled data than labelled data. One

advantage of neural nets is that they could, in principal, be ‘pre-trained’ on unlabelled data

before being fine-tuned on labelled data. ‘Pre-training’ should allow the networks to start to

identify useful features from the data but does not allow the nets to learn to label appliances.

(Pre-training is rarely used in modern image classification tasks because very large labelled

datasets are available for image classification. But in NILM we have much more unlabelled

data than labelled data, so pre-training is likely to be useful.) After unsupervised pre-training,

each net would undergo supervised training. Instead of (or as well as) pre-training on all

available unlabelled data, it may also be interesting to try pre-training largely on unlabelled

data from each house that we wish to disaggregate.

9.7.3 Additional ideas for future work

1. Perform a grid search to find the optimal hyper-parameters for each architecture.

2. Train with both unlabelled data and labelled data: either by performing unsupervised

pre-training or ladder networks (Rasmus et al. 2015).

3. Combine all three approaches: pre-train a ‘rectangles’ net on unlabelled data as an au-

toencoder. Then attach an RNN to the output to capture detailed temporal patterns. Or

use an ensemble of multiple different approaches.

4. Experiment with more permutations of the nets.

5. Experiment with dropout and batch normalisation, especially batch normalisation mod-

ified for RNNs (Cooijmans et al. 2016).

6. Try training one large net to do multiple appliances.

7. Improve the ‘rectangle’ method to output multiple states per appliance.

8. Exploit external features such as the time of day that appliances are often used; or

correlations with external temperature (see Chapter 4 for examples of these patterns).

9. Build more sophisticated synthesiser of aggregate data.
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10. Experiment with ways to give the network information about the absolute power (in-

stead of independently centring each input sequence) whilst also allowing the network to

generalise well.

11. Try variational autoencoders.

12. Generate a probabilistic output (either using existing ‘layering’ approach or mixture den-

sity networks or variational approaches).

13. Perform fully integrated, multi-appliance disaggregation: use discrete optimisation to find

most likely set of appliances. Or an RNN which sees aggregate data as well as output of

upstream appliance classifier.

14. Try adapting Spatial Transformer Networks (Jaderberg et al. 2015; Sønderby et al. 2015)

to NILM. i.e. allow explicit invariance to where in the input window the appliance

activation appears.

15. We need to handle multiple instances of the same class of appliance (e.g. a house with two

fridges). If using AEs, perhaps each instance would have a different code layer activation,

which would allow for some separation.

16. Try adapting attention-based RNNs to NILM (Bahdanau et al. 2016).

17. Try regularising RNNs with temporal coherence (Jonschkowski & Brock 2015) or, perhaps

better, the ‘stabilising activations’ regulariser developed by Krueger & Memisevic 2015.

18. Deep Residual Learning for Image Recognition (He et al. 2015).

19. Combine Neighbourhood NILM (Batra et al. 2016a) with Neural NILM. Or train a net

to exploit similar patterns found in Batra’s work. My expectation is that the best perfor-

mance (when 10-second data is available) would be achieved by combining Neighbourhood-

NILM with Neural NILM. i.e. use neural nets to identify signatures, then use Neighbourhood-

NILM to exploit prior information over the population. Or perhaps train a (smallish)

neural net to replace the KNN in Neighbourhood-NILM (i.e. where the neural net learns

to map from monthly aggregate data (and any available metadata) to monthly appliance

break down).

20. Try using Grid long short-term memory cells (Kalchbrenner et al. 2016).



Chapter 10

Conclusion

This thesis addressed several questions on the topic of non-intrusive load monitoring. We

have contributed to multiple sub-fields within NILM including datasets, metadata, algorithm

development and the social science of disaggregated energy feedback.

10.1 Summary of thesis achievements

The thesis achievements are outlined below:

• We built a cost-effective and accurate hardware and software system for collecting electric-

ity demand data from homes. We demonstrated that the system has a high measurement

accuracy.

• Our data collection system was deployed to five homes to record the UK-DALE dataset.

This dataset is the only UK dataset recorded at high temporal resolution.

• We collaborated with other NILM researchers to build NILMTK, an open-source NILM

toolkit. This has many features including the ability to work with datasets too large to

fit into system memory and the implementation of multiple reference NILM algorithms

and metrics.

• To make it easier for researchers to describe and consume datasets, we developed the first

metadata schema for disaggregated electricity data, the NILM Metadata schema.
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• We presented the first application of deep neural networks to energy disaggregation and

we demonstrated that all three of our neural Neural NILM algorithms achieve better F1

scores (averaged over all five appliances) than the benchmark algorithms that we tested

against.

• Finally, we presented the first systematic review of the social science literature on whether

disaggregated energy data actually helps people to reduce their energy consumption.

10.2 Future work

In this section, we discuss general ways to extend the work discussed in this thesis. Please note

that chapters 5, 6, 9 and 2 each discussed future work relevant to the chapter in question.

10.2.1 A NILM algorithm competition

One problem with NILM research which is holding back innovation is that it is currently

impossible to compare the performance of NILM algorithms across researchers. We developed

NILMTK, in part, to help researchers to validate their NILM algorithms using a common set

of metrics and datasets; but researchers are still free to cherry pick which metrics to publish.

A more robust approach to compare the performance of NILM algorithms may be to run a

regular NILM algorithm competition. All teams would download a common dataset against

which to compare their algorithms. Part of the downloaded dataset would include ‘ground

truth’ data to train the algorithms. A second part of the dataset for testing would be have the

ground truth hidden. Each team would upload their appliance-by-appliance estimates to the

competition’s web platform which would automatically compare each team’s estimates against

the hidden ground truth and would compute a range of metrics.

Regular competitions have been used to great effect in some other fields of machine learning.

For example, the ImageNet Large Scale Visual Recognition Challenge (Russakovsky et al. 2015)

has played a crucial role in the recent dramatic increase in performance of visual recognition

algorithms.
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I wrote a detailed proposal for a NILM competition1 and submitted it to the Energy Disaggre-

gation mailing list2 for discussion (Kelly 2016).

10.2.2 Build a NILM web service

Building a NILM web service means running an Internet server which can accept aggregate

power data and returns disaggregated estimates.

The ultimate aim would be to make disaggregation as easy as possible.

There could be two interfaces: 1) a simple web interface for humans to use and 2) a simple

API to allow other machines to interact with the disaggregation service and hence allow other

developers to build new services based on my disaggregation web service. There are several

advantages to providing an open-source web service:

• Lower the barrier to entry: Allow other disaggregation researchers to dive straight

into working on an open-source state-of-the-art disaggregation algorithm without having

to reinvent the wheel.

• Provide a benchmark against which other algorithms can be compared: It

is currently practically impossible to compare any pair of disaggregation papers. Each

paper uses a different dataset, different metrics, different pre-processing etc. As such, we

cannot measure progress. Having a high performance open-source algorithm would allow

other researchers to directly compare their approaches to ours, and hence we can start to

measure progress.

• Existing commercial disaggregation services only provide very sparse output

(e.g. just summary statistics for a week of estimates). This greatly reduces the usefulness

of the output.

Tang et al. 2014 have built a disaggregation web service but it requires manually entering each

appliance’s rated power demand. The aim with our web service would be to pre-train our Neural

NILM algorithm (see chapter 9) to automatically recognise appliances, without requiring input

from users.
1https://docs.google.com/document/d/1CGoiNNkcnAFpo7Lci0Dv7AIliK3xz7Rjq_mBBh0WwrQ
2https://groups.google.com/forum/#!topic/energy-disaggregation/4I9rHMpkMTY

https://docs.google.com/document/d/1CGoiNNkcnAFpo7Lci0Dv7AIliK3xz7Rjq_mBBh0WwrQ
https://groups.google.com/forum/#!topic/energy-disaggregation/4I9rHMpkMTY
https://groups.google.com/forum/#!topic/energy-disaggregation/4I9rHMpkMTY
https://docs.google.com/document/d/1CGoiNNkcnAFpo7Lci0Dv7AIliK3xz7Rjq_mBBh0WwrQ
https://groups.google.com/forum/#!topic/energy-disaggregation/4I9rHMpkMTY
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10.2.3 Run a large randomised controlled trial

As discussed in chapter 2, the only two field trials that we are aware of which directly compare

disaggregated feedback against aggregate feedback (Churchwell et al. 2014; Sokoloski 2015)

compare aggregate feedback on an in home display against disaggregate feedback on a web-

site. Hence these studies do not ‘cleanly’ compare disaggregated feedback against aggregate

feedback because the trial is confounded by the effect of using different display media in the

two conditions. Hence it would be interesting to run a large, randomised controlled trial which

compares disaggregated feedback against aggregate feedback using the same display media in

both conditions.



Appendix A

UK-DALE

A.1 Radio frequency (RF) details

The RFM12b module has a large number of configuration settings. In order to communicate

with the EDF Transmitter Plugs, we give our own base station the same RF configuration

settings used by the EDF equipment. The RMF12b has far too many parameters to search

manually. So we found the appropriate starting point for our RF configuration settings by

‘sniffing’ configuration packets from the Serial Peripheral Interface (SPI) which connects the

EcoManager’s microcontroller to its RF module (see Figure A.1). We used a Bus Pirate1 to

sniff the SPI bus.

To maximise the distance over which we can transmit, we experimented with several antenna

and RF module configurations. We settled on a 1/4-wavelength antenna combined with a ground

plane composed of four 1/4-wavelength wires in a cross shape running in the plane of the ground,

originating from just below the point at which the antenna connects to the Nanode’s printed

circuit board.

1http://dangerousprototypes.com/docs/Bus_Pirate
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Figure A.1: Sniffing the wireless configuration parameters from the Current Cost base station.
The image on the left shows a Bus Pirate (the small red circuit board on the far right of the
image) connected to a Current Cost base station, ready to ‘sniff’ configuration data from the
serial bus on the Current Cost base station. The image on the right shows a close up of the
wireless module on the Current Cost base station.

A.2 Disadvantages of using a CT clamp connected to a

wireless transmitter

• CT clamps measure current (I). The transmitter usually has no way to measure voltage

and so must use a hard-coded value for voltage (V ) to calculate a power reading (P )

using P = I × V . However, mains voltage in the UK is allowed to vary by +10% to -6%

(sometimes quite abruptly) so power readings for a linear resistive load can vary by

+20% to -12% (as noted by G. W. Hart 1992). These abrupt changes due to external

noise are problematic for disaggregation algorithms because disaggregation algorithms

tend to rely on changes in power demand to detect appliance state changes. However,

not all appliances are affected by voltage variations. The power demand for ‘constant

power’ devices remains constant across the legal voltage range. So, even if we have

a measurement of voltage, it is not desirable to normalise the power demand by the

measured voltage signal because different appliances respond differently to variation in

supply voltage.
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• Battery powered transmitters tend to sparsely sample from their CT clamp in order to

minimise battery usage. Hence rapid changes may not be captured.

• Without instantaneous measurements of both voltage and current, it is not possible to

measure active power or reactive power. Hence CT clamps without voltage measurements

can only estimate apparent power.

• The OpenEnergyMonitor2 emonTx is unaffected by all three disadvantages mentioned

above. However, the version of the emonTx available in 2012 when we designed our

system used an analogue to digital converter with only 10 bits of resolution. If we want

to measure a primary current which varies from, say, 0 to 30 amps then the emonTx

can only resolve changes larger than 14 watts. (The emonTx uses 10 bits of resolution to

capture both the positive and negative sides of the AC signal so in effect it uses only 9 bits

to cover a 30 amp range. 30 A ÷ 29 ADC steps = 0.06 A per ADC step so it can resolve

changes in current larger than or equal to 0.06 A. And 0.06 A× 230 V = 13.8 W). ‘Real’

smart meters will almost certainly have considerably higher resolution so, unfortunately,

the emonTx available in 2012 when we were designing our system was not a suitable proxy

for a ‘real’ smart meter.

A.3 Calculation of measurement resolution

Let us calculate a rough estimate for our measurement resolution. If we want to measure

a primary current with a range of 0 to 30 Arms then we should be able to resolve changes

in primary current of approximately 3 mA per sample (30 Arms ×
√

2× 2 ≈ 85 Apeak-to-peak and

85 Apeak-to-peak÷215ADC steps ≈ 3 mA). For the voltage measurement, if we want a range of 0 to

253 Vrms (230 Vrms+10 %) then we should be able to resolve changes of approximately 22 mV per

sample (253 voltrms ×
√

2× 2 ≈ 716 Vpeak-to-peak and 716 Vpeak-to-peak ÷ 215ADC steps ≈ 22 mV).

Given that the sensors are likely to be noisy and given that we are only providing 0.7 Vpeak-to-peak

to the ADC for the voltage measurements, we should downgrade our resolution per sample to

about 30 mV and 5 mA for voltage and current respectively. This gives us a resolution for power

of approximately 30 mV× 5 mA = 150 mW.

2https://openenergymonitor.org

https://openenergymonitor.org
https://openenergymonitor.org
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A.4 Known issues

• Each IAM draws a little power (active power ≈ 0.9 W; apparent power ≈ 2.4 VA).

House 1 has IAMs installed on almost every appliance and the correlation of the sum of all

submeters in House 1 with the mains is 0.96. Yet the proportion of energy submetered in

House 1 is only 80%. This reasonably low value for the proportion of energy submetered

is likely due in large part to the fact that the 52 EDF IAMs installed in House 1 draw

approximately 50 W in total, yet this power is not measured by the individual appliance

meters.

• The IAMs and the Current Cost transmitters occasionally report spurious readings.

rfm_ecomanager_logger filters out any readings above 4 kW for IAMs and above 20 kW

for whole-house readings. 4 kW is above the safe maximum power draw for a UK mains

appliance (2.99 kW = 13 amps × 230 volts). 20 kW is more than twice the maximum

whole house power reading we have recorded (8.765 kW) across all houses in our dataset.

• Whilst the Atom motherboard’s ADC is capable of sampling at 96 kHz, we had to use

44.1 kHz because the system produced buffer overflow errors if the sample rate was above

44.1 kHz. There remain some missing samples in the 16 kHz data due to buffer overflow

errors during recording.

A.5 Usage notes

Any software designed to process REDD files should be able to open UK-DALE data (although

the extra metadata provided by UK-DALE will be ignored).

The open-source energy disaggregation toolkit NILMTK (see Chapter 5) includes an importer

for UK-DALE data. NILMTK can handle the metadata provided with UK-DALE. An HDF5

version of the UK-DALE dataset for use with NILMTK is available for download (please see

Section 4.3 of this chapter).

There are several aspects of the dataset that might need to be addressed using appropriate

pre-processing:
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Data packets from the wireless meters are occasionally lost in transmission. Around 6% of

packets are lost from the Current Transformer sensors and around 0.02% of packets are lost

from Individual Appliance Monitor plugs. The sample period for the 6 second data may drift

up or down by a second.

Some individual appliance monitors are switched off (and hence do not transmit any data)

when the appliance is switched off from the mains. We switch them off to reduce the risk of

an electrical fault causing a fire, and to save energy. Some appliances are unplugged for the

majority of the time. For example, the vacuum cleaner is physically unplugged from the wall

socket when not in use and the vacuum cleaner’s meter is left attached to the cleaner’s power

plug (and hence is not powered). As a rule of thumb, any gap in the data longer than two

minutes can be assumed to be caused by the appliance (and monitor) being switched off from

the mains. Hence gaps longer than two minutes can safely be filled with zeros. The threshold of

two minutes was chosen because we observed gaps less than two minutes caused by a succession

of radio transmission errors. Any gap shorter than two minutes can be forward-filled from the

previous reading.

Some appliances draw more than 0 watts when nominally ‘off’. We typically use 5 watts as the

threshold between ‘on’ and ‘off’. The metadata includes an on_power_threshold property for

each appliance. This property is present if the on power threshold for that appliance is not

5 watts.

NILMTK contains preprocessing tools for handling these scenarios.
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NILMTK

B.1 Dependencies

One reason that we decided to use the Python language is because Python has a large number

of high quality, open-source libraries for data analysis, plotting and machine learning (T. E.

Oliphant 2007; Millman & Aivazis 2011). In the following list, we will briefly describe some of

NILMTK’s main dependencies:

The following packages are part of the SciPy Stack1 (pronounced ‘sigh-pie’):

NumPy (pronounced ‘num-pie’) provides N-dimensional arrays and many powerful operators

to manipulate those arrays (van der Walt et al. 2011).

pandas builds on top of Numpy to provide, amongst other features, excellent support for time

series data. For example, Pandas.DataFrame.resample() can elegantly up-sample or

down-sample a time series (McKinney 2010).

Matplotlib is a plotting library (Hunter 2007).

IPython is an advanced, powerful interactive shell for Python, which is particularly well suited

to scientific applications (Perez & Granger 2007).

SciPy (the library) provides efficient numerical routines such as numerical integration and

optimisation (Jones et al. 2001–).
1https://www.scipy.org
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The following packages are also used by NILMTK:

scikit-learn is a machine learning library (Pedregosa et al. 2011; Buitinck et al. 2013).

NILM Metadata is the implementation of our NILM Metadata schema (see Chapter 6).

NILMTK v0.2 is tightly integrated with the NILM Metadata schema and uses many of

the same concepts.

http://scikit-learn.org
https://github.com/nilmtk/nilm_metadata
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NILM Metadata

C.1 Implementation

We initially used defined the syntactic elements of the schema using JSON Schema Draft

41. But specifying a formal schema with all the complexity of NILM Metadata quickly be-

came impractical. So the schema does not currently have a machine-readable definition.

Instead the schema is specified using extensive human-readable documentation available at

http://nilm-metadata.readthedocs.io.

The companion code which implements the inheritance mechanism in NILM Metadata and per-

forms validation is written in Python. We make use of the jsonschema2 package for validation

and PyYAML3 for loading YAML files. Metadata instances can be written in JSON or YAML.

Prior to validating each appliance, the properties object specified by the ‘appliance’ schema

is updated with concatenated additional_properties specified by the appliance’s ancestors.

C.2 File organisation

To make the metadata reasonably easy for a human to navigate, we split the metadata into

separate files, all contained within a metadata folder. Each metadata folder will have exactly
1http://json-schema.org/
2https://github.com/Julian/jsonschema
3http://pyyaml.org/wiki/PyYAML
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one dataset.yaml file and some number of building<I>.yaml files (where I is an integer).

C.3 Example

dataset.yaml

name : UK−DALE

long_name : >

UK Domestic Appliance−Level E l e c t r i c i t y

meter_devices.yaml

− model : EnviR

manufacturer : Current Cost

measurements :

− phys ica l_quant i ty : power

ac_type : apparent

lower_l imit : 0

upper_l imit : 30000

building1.yaml

i n s t ance : 1

rooms :

− {name : kitchen , i n s t anc e : 1}

− {name : lounge , i n s t anc e : 1}

e lec_meters :

1 :

device_model : EnviR

site_meter : t rue

s en so r s :

− data_locat ion : house1/channel_1 . dat

2 :

device_model : EnviR
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submeter_of : 1

s en so r s :

− data_locat ion : house1/channel_2 . dat

preproce s s ing_app l i ed :

c l i p : {maximum: 4000}

app l i ance s :

− type : l i g h t

components :

− type : LED lamp

count : 10

nominal_consumption : {on_power : 10}

manufacturer : Ph i l i p s

year_of_manufacture : 2011

− type : dimmer

on_power_threshold : 10

main_room_light : t rue

dates_act ive :

− { s t a r t : 2012 , end : 2013}



Appendix D

Reactive power versus real power

Some utility-installed smart meters can measure several variables at once: voltage, reactive

power and real power. What is the difference between reactive power and real power?

Mains is an alternating current source. If the load is a simple resistive load like a heater then

current and voltage are perfectly in phase (as you might expect). Resistive loads passively

accept changes in the supply voltage without opposition because they have no ability to store

charge.

Some loads oppose the change inherent in an AC supply. These loads have a capacitance or

inductance which allows them to store charge. This stored charge causes them to react to

change in the supply. If the load is purely reactive then voltage and current will be 90 degrees

out of phase hence the product of voltage and current will be positive for half a cycle and

negative for the other half, hence no net energy flows to the device (but energy is lost in the

wiring). No practical devices are purely reactive.

Most devices draw both real power and reactive power. Different devices draw different pro-

portions of real and reactive power. Hence, if we measure both real and reactive power then

we can plot devices on a two-dimensional plot like the one in Figure 7.5.
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Copyright permissions

Table E.1: Copyright permissions table

Figure or
Table # Caption Source Copyright holder

Permission
requested

on
Permission

granted? Notes

Fig 1.1
and 5.1

Number of NILM
publications per year Parson 2015 Oliver Parson 2016-08-18 Yes -

Fig 1.2
Screenshot of

Smappee’s itemised
bill

St. John 2015b Greentech Media 2016-08-31 Not yet -

Tables 1.1
& 1.2 NILM companies

Adapted and
extended from

Parson
2012–2016

Oliver Parson 2016-08-31 Yes -

Fig 1.3

Fossil-fuel emissions
estimated to be

compatible with a
global temperature

rise of 2°C

Gasser et al.
2015

Nature Publishing
Group / Macmillan
Publishers Ltd.

2016-08-31 Yes
Automatically
cleared using
RightsLink

Fig 1.4
Past and future
changes in global
mean sea level

Clark et al.
2016

Nature Publishing
Group / Macmillan
Publishers Ltd.

2016-08-31 Yes
Automatically
cleared using
RightsLink

Table 1.3
Responses to the
question “Do you
think accuracte
information...”

Mansouri et al.
1996 Elsevier 2016-08-31 Yes

Automatically
cleared using
RightsLink

Fig 1.5 GB electricity demand
profiles Gavin 2014 Claire Gavin 2016-08-31 Not yet -

Fig 4.2,
Table 4.1,
Fig 4.5,
Fig 4.6,
Fig 4.7,
Fig 4.8,
Fig 4.9,
Fig 4.10,
Fig 4.9

Various
Kelly & Knot-
tenbelt 2015b
(my work)

Nature Publishing
Group / Macmillan
Publishers Ltd.

2016-08-31 Yes

distributed
under a
Creative
Commons

CC-BY license

Continued on next page
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Table E.1 – continued from previous page

Figure or
Table # Caption Source Copyright holder

Permission
requested

on
Permission

granted? Notes

Fig 5.3,
Fig 5.5,
Fig 5.6,
Fig 5.7,
Table 5.1

Various

Batra et al.
2014a and
Kelly et al.

2014 (I created
these figures)

ACM 2016-08-31 Yes
ACM permit
authors to

re-use their own
work

Fig 5.8
Predicted power

estimates generated by
the CO and FHMM

algorithms

Batra et al.
2014a (Nipun
Batra’s figure)

ACM 2016-08-31 Yes
ACM permit
authors to

re-use their own
work

Fig 6.1,
Fig 6.2 Various

Kelly & Knot-
tenbelt 2014 (I
created these

figures)
IEEE 2016-08-31 Yes

“IEEE does not
require

individuals
working on a

thesis to obtain
a formal reuse

license”

Fig 7.4 George Hart’s
‘signature taxonomy’

G. W. Hart
1992 IEEE 2016-08-31 Yes
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BLE Bluetooth low energy

CAD consumer access device

Datasets for NILM
AMPds The almanac of minutely power dataset recorded by Makonin et al. 2013 and avail-
able at http://ampds.org
Dataport The Pecan Street Dataport dataset, available at https://dataport.pecanstreet.
org
iAWE The Indian dataset for ambient water and energy recorded by Batra et al. 2013 and
available at http://iawe.github.io
REDD The reference energy disaggregation data set recorded by J. Zico Kolter & M. J.
Johnson 2011 and available at http://redd.csail.mit.edu
Tracebase A dataset of appliance signatures recorded by Reinhardt et al. 2012 and available
at https://www.tracebase.org
UK-DALE The UK domestic appliance-level electricity dataset recorded by Kelly & Knot-
tenbelt 2015b and available at http://www.doc.ic.ac.uk/~dk3810/data/

IAM individual appliance monitor
IEEE 802.15.4 a wireless networking standard which specifies the physical layer (PHY) and
media access control (MAC).
IHD in-home display
IoT internet of things
IP Internet Protocol

MAC medium access control

PHY physical networking layer
PLC power-line communication

SEP Smart Energy Profile
SMETS smart metering equipment technical specification

Thread A low-power mesh wireless networking standard built on top of the IEEE 802.15.4
physical networking layer (PHY) and medium access control (MAC).
TRX transceiver
TX transmitter

WSN wireless sensor network

ZigBee A low-power mesh wireless networking standard built on top of the IEEE 802.15.4
PHY and MAC.
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