Self-Adaptive Containers:
Building Resource-Efficient Applications
with Low Programmer Overhead

Wei-Chih Huang and William J. Knottenbelt
Department of Computing, Imperial College London,
South Kensington Campus, London, SW7 2AZ, United Kingdom
{wei-chih.huangl1, wjk} @imperial.ac.uk

Abstract—Despite advances in operating system resource man-
agement and the availability of standardised container libraries,
developing scalable high-capacity applications remains a non-
trivial endeavour. Naive implementations of fundamental algo-
rithms often rapidly exhaust system resources under heavy load.
Resolving this via manual refactoring is usually possible but
requires significant programmer effort, an effort which often
has to be repeated in order to meet the resource constraints
encountered in each different execution environment.

This paper proposes a library of self-adaptive containers which
provide a ready route to developing scalable applications with
low programmer overhead. Given an execution environment, the
library flexibly adapts its use of data structures in an effort to
meet programmer-specified service level objectives. The library
features a mechanism for tighter functionality specification than
that provided by standard container libraries. This enables
greater scope for efficiency optimisations, including the exploita-
tion of probabilistic data structures and out-of-core storage.

We have demonstrated the capabilities of the proposed library
through a prototype implementation in C++. We show that when
a Breadth First Search explicit state space exploration algorithm
is executed, using the proposed library reduces insertion time by
68.5%, search time by 86.1%, and primary memory usage by
90.1% compared with the Standard Template Library.

Index Terms—Self-Adaptive Systems, Containers, Standard
Template Library, Probabilistic Data Structures

I. INTRODUCTION

The variety of system environments in which software may
be expected to execute is exploding (e.g. servers, laptops,
tablets, smartphones). Adapting software to the different re-
source constraints and performability (performance and de-
pendability [1]) requirements of software executing in each
environment is a high-overhead operation requiring substantial
programmer expertise and effort. Further, scaling software
to be able to support large input sizes can require months
or years of programmer time and frequently results in the
refactoring of the majority of program code. By contrast,
the idea of the present paper is to propose a framework for
“intelligent” software which adapts at run-time to the resource
constraints of its environment, as well as automatically scaling
up to handle large input sizes while respecting performability
requirements. The method of developing such software should
be as close to that of developing ordinary software as possible,
in order to reduce required expertise and programmer effort.

A key motivation for our work is the observation that
similar techniques end up being adopted across apparently
very different application domains in order to boost soft-
ware performance and scalability. For example, consider the
problem of explicit state space exploration. This is a key
preliminary step in the model checking or performance anal-
ysis of concurrent systems and is based around a breadth-
first search core. Over three decades, the gradual adoption of
probabilistic data structures and algorithms [2—-7], out-of-core
storage [6, 8—11] and parallelism [6, 7, 12-16] have driven
supported capacities from ~ 10° states to ~ 100 states [6].
A fundamental problem in the field of bioinformatics which
has seen a similar evolution over the last 20 years or so is that
of assembling genomic sequences from a set of overlapping
reads. First proposed in 1995, de Bruijn graphs [17] were
incorporated into the Euler [18] and Velvet [19] DNA assem-
bly software packages, respectively. However, their memory
requirements prohibit their use with large genomes. Subse-
quent adoption of parallelism [20-23], out-of-core methods
[22, 24, 25] and very recently probabilistic techniques [26—
28] have seen commodity computers increase their practical
assembly capability from organisms with ~ 10° base pairs
(e.g. simple viruses) to organisms with ~ 107 base pairs (e.g.
humans), the latter requiring just 5.7GB RAM and around 23
hours wall clock time. Deeper investigation into the adopted
techniques across both domains reveals a lot of commonality
e.g. the probabilistic improvements universally involve the
adoption of some variant of a Bloom filter [15, 26-28].

In addition, while most past research concerning software
reuse has addressed development time [29-31], it has been
observed that run-time issues warrant attention [32]. Many
applications have seen the need to equip software with the
ability to self-reconfigure at execution time [33, 34]. This need
to self-adapt may complicate the development process because
programmers have to adjust applications to meet different
service level objectives (SLOs), which may in turn depend on
both the execution environment and the class of application.

In this paper, we present a container library that allows
programmers to build resource-aware software that adjusts
according to its execution environment. Each data structure is
associated with desired SLOs specified in the standard WSLA
[35] format. These can specify desired per operation response

time, reliability and maximum primary memory consumption
for each container, which then adapts autonomously at run
time according to its current capacity and required function-
ality. Where appropriate, the library deploys probabilistic data
structures in order to dramatically reduce memory consump-
tion and boost performance. It also stores data in out-of-
core memory (secondary memory) when the in-core memory
(RAM) limit of the container is reached.

To encourage adoption of our library, and to lower program-
mer overhead, we have designed our library to provide similar
functionality as is provided by existing container libraries
such as the C++ Standard Template Library (STL) [36], albeit
with a reduced number of template classes, most notably the
ICollection and IKeyValue classes. As will be shown
in the case study, this allows straightforward adaptation of
existing code.

This paper yields the following three contributions:

o We propose a resource-aware container library which dy-
namically adjusts the underlying data structure associated
with each container at execution time in order to satisfy
resource constraints and SLOs specified in WSLA.

e Our library makes use of probabilistic data structures
where appropriate and dynamically transfers data onto
out-of-core memory when the in-core memory limit of a
container is reached.

« By including the major member functions associated with
containers, the library provides a straightforward way to
adapt naive implementations of fundamental algorithms
so they they become scalable and suitable for deployment
in multiple system environments.

The remainder of this paper is organised as follows. Sec-
tion II presents relevant background and related work. Sec-
tion III describes the detailed design of our library while
Section IV illustrates its use of probabilistic data structures.
Experimental results are shown in Section V. Finally, the
conclusion and future work are summarised in Section VI.

II. BACKGROUND AND RELATED WORK

A. Autonomic Computing

Autonomic computing, introduced by IBM in 2001 [37],
refers to a computing model which enables any system
adopting it to self-manage through an adaptive process. The
process [38] consists of three steps: observation, analysis,
and adaptation. Firstly, the observation step is responsible for
monitoring system status and recording required information
such as response time and memory consumption. After that,
the analysis step carries out the tasks of analysing data and
selecting operations — only if any constraint is violated. If
none of the constraints is broken, the process returns to the
observation step; otherwise, the analysis step is followed by
the adaptation step, where the selected operations are executed.
When the final step of adaptation is completed, the whole
process is repeated.

B. Containers

Containers are collections of objects of the same data type.
Because they are usually implemented as template classes,
they can store a variety of built-in and user-defined data types.
There are three categories of STL containers, namely sequence
containers, associative containers, and container adaptors [36].
The sequence containers, consisting of deque (double-ended
queue), list, and vector, maintain an ordered set of
elements, and allow developers to specify the position of an
inserted element. The associative containers, comprised by
set, multiset, map, and multimap, maintain inserted
elements in some predefined order. Container adaptors are
interfaces which provide functionalities on top of an underly-
ing container. For example, a stack, whose default underlying
container is a deque, is a container adaptor which provides
LIFO-based operations.

C. Bloom Filters

Bloom filters [39] were invented by Burton Howard Bloom
in 1970. They can reduce the time of inserting and determining
the presence of given elements in a collection by way of an
m-bit array B (initialised with zeros) and %k hash functions
hi,ha, ..., hy with range {0,1,...,m—1}. Item ¢ is inserted
by setting bits hq (i), ha(i),. .., hi(i) in the bit array. When
searching for element 7, it is supposed to exist in the collection
if and only if Hle B[h;(j)] = 1. The primary benefit of
using Bloom filters is memory efficiency (since the elements
themselves are not explicitly stored). The primary drawback is
the possibility of false positives arising from hash collisions.
Fortunately the latter can be quantified and kept arbitrarily
small [15]. Indeed, observing that Bloom filters with very low
false positive probability are typically very sparsely populated,
further memory savings arise by storing the position of marked
bits rather than a dense bit array. Sparse Bloom filters, as de-
veloped by e.g. [15] implement this idea and allocate memory
dynamically rather than statically. A secondary drawback is
the inability to delete elements or to support multisets; this
is straightforward to overcome using integer counters rather
than bits, resulting in a counting Bloom filter. The latter have
memory-efficient implementations (see e.g. [40, 41]), now
made available in open-source libraries (e.g. [42]).

D. Web Service Level Agreements

Web Service Level Agreement (WSLA) [43] is an XML-
based standard which allows service providers and customers
to specify service targets. A WSLA instance contains three
sections, namely Parties, Service Description, and Obligations.
Farties defines the involved participants, who are divided into
signatory parties and supporting parties. Service Description
describes related information about a service, including any
number of SLAParameters and Metrics. SLAParameters are
used to define observable parameters of any service, such as
response time and throughput. Each SLAParameter is mapped
to a Metric, which defines how to measure the value of the
SLAParameter. The final section, Obligations, specifies service
level objectives and their action guarantees. The service level

objectives indicate desired service levels via comparison with
their corresponding SLAParameters. When a service level
objective is not met, its corresponding action guarantee is
intended to result in a particular notification or control activity.

E. Related Work and Context

Self-adaptive software is a vast research area. Interested
readers are directed to [33, 44] for two surveys of its evolution
and current challenges. In terms of the classification presented
in [33], we note that our proposed technique can be classed
as strong adaptation through the replacement, addition or
deletion of entities (in our case data structures) that have the
same interface but different non-functional characteristics [45],
the overarching goal being QoS management. Furthermore,
both [33] and [44] mention that policies and QoS management
are important factors of self-adaptive software which drive
the adaptions of software. Although QoS requirements can be
written in many formats, our library applies WSLA to clearly
define these in a standards-conformant manner.

In terms of efforts to develop scalable container libraries,
there have been several attempts, most of which have sought to
exploit either parallelism, e.g. the Parallel Standard Template
Library [46] and STAPL [47], or out-of-core techniques, e.g.
STXXL [48]. In contrast to the present work, however, the
programmer overhead, required expertise and configuration
effort involved in using these libraries are relatively high, there
is no ability to specify SLOs on containers and probabilistic
data structures are rarely deployed.

III. LIBRARY DESIGN AND IMPLEMENTATION

The library in this paper is developed with reference to
the concepts of containers, which store collections of objects
while hiding their implementation details from software devel-
opers, and the concept of autonomic computing, which enables
our library to monitor and alter its consumption of system
resources. Figure 1 shows the architecture of the library,
which consists of two major components: the Application
Programming Interface, and the Self-adaptive Unit.

A. Application Programming Interface

The Application Programming Interface (API) provides
software developers with two container template classes in-
tended to provide most of the functionalities of STL con-
tainers: ICollection, which subsumes the vector, list, set,
stack, and queue classes, and TKeyValue which subsumes
the map class. These classes have methods of two kinds: con-
figuration interfaces and operation interfaces. Configuration
interfaces act as the means through which resource constraints,
functionality requirements and service level objectives are im-
parted to the library while operation interfaces are responsible
for manipulating containers managed by the library.

1) Configuration Interfaces: The constructors of our con-
tainer classes are used to set the range of functionality that
should be provided by a particular container as well as
the service level objectives applicable to that container and

TABLE I
DEFINITIONS OF OPERATION DESCRIPTORS

Operation descriptor Definition
OP_INSERT Insertion
OP_ERASE Deletion
OP_FIND Find (retrival)
OP_SEARCH Search (existence)
OP_INDEX Direct index-based access

OP_ITERATOR
OP_INSERT_FRONT

Iterator support
Front insertion

OP_FRONT |-5p"ERASE FRONT | Front deletion
OP_INSERT_BACK Back insertion
OP_BACK 5P ERASE_BACK | Back deletion

(optionally) the frequency with which the SLO compliance
should be checked.
The corresponding constructors are:
ICollection<T> (op_desc, SLO_file[, freq])
and
IKeyValue<K, V> (op_desc, SLO_file[, freq])
where

e op_desc describes a required set of container function-
alities (so-called operation descriptors). This recognises
that it is rarely the case that every container instance
will utilise its full set of potential functionality, allowing
for more efficient underlying data structures. The defini-
tions of all currently supported operation descriptors are
listed in Table I, and the corresponding functionalities
are shown in Table II. To elegantly achieve commonly-
desired combinations of functionalities, combined opera-
tion descriptors are provided, as shown in Table III.

e SLO_file specifies a path to an XML file containing a de-
scription of the SLOs relevant to the container in WSLA
format. SLOs can relate to response time, reliability or
primary memory consumption and are described in a
configuration file in WSLA format. The library infers
the priority of each SLO according to their order of
appearance (those appearing earlier are assigned higher
priority). Where MeasurementURIs are required to spec-
ify the target of measurement operations, we use the
Uniform Resource Name (URN) scheme to describe these
as follows:
urn: ContainerClass:ResourceName:OperationDescriptor
ContainerClass may be ICollection or IKeyValue.
ResourceName specifies the name of target resource. The
available resource names are listed in Table IV. The
OperationDescriptor is used to provide further infor-
mation of ResourceName. For example, ResponseTime
can be related to insertion time, search time, or dele-
tion time, which can be specified through OP_INSERT,
OP_SEARCH, and OP_ERASE, respectively.

e freq is an optional parameter specifying the fre-
quency with which adaptation actions are carried
out. This may be subsequently updated via the
setAdaptationFrequency control interface.

Application Programming Interface

ICollection and IKeyValue

Configuration interfaces

Operation interfaces

Container constructors

insert search remove

setAdaptationFrequency

push pop

Self-adaptive unit

|

E—

Execution unit |

il

| Observer |

| Adaptor |

\/

1l

| SLO store

—>

Analyzer

h

Fig. 1.

TABLE I

The architecture of the library

MEMBER FUNCTIONS AND INVOLVED OPERATION DESCRIPTORS

ICollection<T> method

IKeyValue<K,V> method

Involved operation descriptor

insert(const T& x)

insert(const std::pair<K, V>T& x)

OP_INSERT

insert(iterator position, const T& x)

insert(iterator position, const std::pair<K, V>& x)

OP_INSERT | OP_ITERATOR

erase(const T& x) erase(const K& x) OP_ERASE

find(const T& x) find(const K& x) OP_FIND | OP_ITERATOR
search(const T& x) search(const K& x) OP_SEARCH

begin(), end() begin(), end() OP_ITERATOR

operator][] operator][] OP_INDEX

push_front()

OP_INSERT_FRONT

push_back()

OP_INSERT_BACK

pop_back()

OP_ERASE_BACK

pop_front()

OP_ERASE_FRONT

TABLE III

COMBINED OPERATION DESCRIPTORS

Data type | Representative descriptor | Involved operation descriptors
List OP LIST OP_INSERT | OP_ERASE [OP_SEARCH |
18 - OP_ITERATOR | OP_BACK | OP_FRONT

OP_INSERT | OP_ERASE | OP_SEARCH |

Vector OP_VECTOR OP_ITERATOR | OP_BACK | OP_INDEX
OP_INSERT | OP_ERASE | OP_SEARCH |

Set OP_SET OP_ITERATOR

Stack OP_STACK OP_INSERT_FRONT | OP_ERASE_FRONT

Queue OP_QUEUE OP_INSERT_BACK | OP_ERASE_FRONT

TABLE IV
POSSIBLE VALUES OF ResourceName

Resource Name

Definition

RAM

Primary memory consumption

ResponseTime

The response time of a certain operation

Reliability

The container’s reliability

2) Operation Interfaces: The Operation interfaces in our
library provide commonly used operations such as insert,
search, remove, push, and pop.

B. Self-adaptive Unit

The Self-adaptive unit maintains the currently used data
structure and decides if it should be adjusted. It consists of
an SLO store, an Execution unit, an Observer, an Analyzer,
and an Adaptor.

1) SLO Store: The SLO store holds all service level
objectives laid down by the configuration interfaces. These
objectives include per operation response times (insertion time,
search time, and deletion time), maximum primary memory
usage, and reliability, which for probabilistic data structures
is defined as the probability that every inserted element is
mapped to a unique key [15]. For response times, soft require-
ments based on percentiles can be indicated, which means a
certain percentage of response times can be above a response
time target without violating the SLO.

2) Execution Unit: The Execution unit accepts container
manipulation commands given via the APIL. If a command
is compatible with the functionality that the target container
should provide (as declared via the configuration interfaces),
it is applied to the underlying data structure currently selected
by the Analyzer for that container. Otherwise the command is
rejected and an appropriate exception is thrown.

3) Observer: The Observer monitors per operation re-
sponse times and computes memory consumption according
to current container capacity, and, where appropriate, (i.e. for
probabilistic data structures) reliability.

4) Analyzer: The Analyzer is a decision maker, which
periodically determines if the library needs to adjust its data
structures. The frequency of its activation is controlled through
the setAdaptationFrequency configuration interface.
When activated the Analyzer compares the Observer’s profile
data against the expectations of the SLOs in the SLO store.
If the results indicated the violation of an SLO, the Analyzer
determines if an adaptation could address it. Of course it may
not be possible to meet some subset (or any) of the SLOs
within resource constraints. Our library recognises this and
therefore makes no guarantees that SLOs will be satisfied. In
addition, actions taken to address one violated SLO may result
in the subsequent violation of another (for example enforcing
restrictions on memory consumption by applying out-of-core
techniques may result in unacceptably large response times).

We resolve the ambiguity of which SLOs the library should
attempt to satisfy by requiring each SLO to be assigned a
distinct priority according to application and execution con-
text. The adaptation mechanism addresses each of the SLOs
in priority order, beginning with the highest. If the SLO being
addressed is currently satisfied, no action is taken. If the SLO
is violated, then an adaptation is invoked, provided that (a) the
adaptation is expected to result in either the satisfaction of the
SLO or a reduction in the degree of violation of the SLO and
(b) the adaptation is not expected to result in the violation of
a currently-satisfied SLO of higher priority.

5) Adaptor: The Adaptor executes adaptations that are
expected to improve container compliance with its SLOs, as
identified by the Analyzer.

There are three kinds of adaptations which can be made,
according to the nature of the violated SLO and subject to
the priority restrictions mentioned above. If it is performance-
related (e.g. an SLO related to insertion or search response
time), then gains may be had from subdividing the under-
lying data structure. In general this will increase memory
consumption but in the case of a probabilistic data structure
this adaptation will also increase reliability. If the violated
SLO is memory-related, then gains may be had from utilising
out-of-core storage, or, should reliability and functionality
requirements allow, moving to a probabilistic underlying data
structure. Finally, if the violated SLO is reliability related (e.g.
the number of elements inserted into a set with only “insert”
and “search” functionality has increased to such an extent that
the underlying probabilistic data structure no longer meets its
reliability SLO), then the data structure should be subdivided
(with the side effect of improving performance).

IV. PROBABILISTIC CONTAINER DATA STRUCTURES

An improved sparse Bloom filter is one of the many data
structures adopted in our library. Such an underlying data
structure may be appropriate given a container that does not
require iterator-based functionality and which has reliability
requirements less than 100%. It utilises a forest of AVL
trees, whose number can be dynamically adjusted, in order
to store hash keys of items. In contrast with many container
libraries, users need not generate the hash keys themselves,
since we make use of the CityHash [49] function library to
do so. CityHash is capable of generating 32, 64, 128 and
256 bit hash keys from arbitrary data according to reliability
requirements. This is adequate to provide search, insert and
delete functionality on containers like sets. For containers
where multiplicity of items is important (e.g. in multisets) a
sparse counting Bloom filter [40, 41] is used to provide the
necessary functionality.

V. CASE STUDY

The case study chosen is the breadth-first-search (BFS) core
of an explicit state-space exploration algorithm (commonly
employed in the domains of model checking [50] and per-
formance analysis [15]). A naive implementation of the BFS
algorithm is shown in Figure 2. Figure 3 displays the modified
program adopting our library; note that it differs from the
naive program only in terms of the container declarations (one
for the queue of unexplored states and one for the table of
explored states). To evaluate the library’s self-adaptive ability,
the following SLOs were specified on the table of explored
states (the variable explored in Fig. 3):

1) 90% of insertion times should be less than 1000ns, and

85% of search times should be less than 1200ns.
2) Reliability should be higher than 0.99.
3) Memory consumption should be no more than 7.5GB

void bfs (Graph G, State s)
{
queue<State> unexplored;

set<State> explored;

unexplored.push(s);
explored.insert(s);
while (lunexplored.empty()) {
State next = unexplored.front();
unexplored.pop();
foreach (State s' in G.succ(next)) {
if (lexplored.search(s’)) {
unexplored.push(s’);

explored.insert(s’);

void bfs (Graph G, State s)

{
ICollection<State> unexplored(OP_QUEUE, “UnexploredSLOs.xml”);
ICollection<State> explored(OP_INSERT| OP_SEARCH, “ExploredSLOs.xml”, 100);

unexplored.push(s);

explored.insert(s);

while (lunexplored.empty()) {
State next = unexplored.front();
unexplored.pop();
foreach (State s' in G.succ(next)) {

if (lexplored.search(s’)) {
unexplored.push(s’);

explored.insert(s’);

Fig. 2. The naive algorithm

The above SLOs were input to our library in the format
of WSLA in a configuration file “ExploredSLOs.xml”, the
contents of which is shown in the Appendix in Listing 1.
In a similar manner, an SLO requiring the primary memory
consumption of the unexplored state queue (the variable un-
explored in Fig. 3) to remain below 8MB was input via a
configuration file “UnexploredSLOs.xml”. As can be seen in
Fig. 3, the value of AdaptationFrequency is 100, i.e.
the Analyzer is activated every 100 operations. The influence
of different values of AdaptationFrequency on response
time is shown in Table V, which indicates that increasing the
value of AdaptationFrequency could reduce response
times. However, when its value reaches 1000, the response
times rise due to the postponement of adaptations.

In order to evaluate the performance, the memory con-
sumption and the reliability of our library, the algorithm was
executed using a STL set, an AVL tree, a standard Bloom filter,
and our library. In addition, the SLOs were put in different
orders of priority, yielding six possible SLO sequences so as to
observe our library’s behaviour under different SLO priorities.

A. Comparison with Conventional Containers

In order to evaluate the efficacy of our library, the al-
gorithm was executed using several conventional containers
(an AVL tree, a STL set and a standard Bloom filter) and
our library. Their insertion and search times, and primary
memory consumptions were then compared. The results of
insertion and search times are shown in Figures 4 and 5,
which illustrate that our library yields better performance than
conventional data structures. The two figures also show that
our library’s insertion time and search time rose suddenly at
some points. That was because our library needed to adjust its
data structures to satisfy the SLOs.

Figure 6 depicts the relationship between the average search
time and the number of stored elements, while Figure 7
exhibits the memory consumptions of the AVL tree, the STL
set, the Bloom filter, and our library. Our library used an order

Fig. 3. The resource-aware algorithm using self-adaptive containers

of magnitude less memory space than the AVL tree and the
STL set. It was not as memory efficient as a standard Bloom
filter, although its reliability was considerably higher.

1e+13 T T T T T T

Te+12

Te+11 |

1e+10 |

1e+09

1e+08

T

Cumulative insertion time (ns)

1e+07

T
!

1e+06 AVL Tree
P Standard Bloom Filter
= STL Set -------

Our Lib(ary

N\

100000 L L
1 100000 1e+06

Number of stored states

L L
00 1000 10000 1e+07 1e+08 1e+09

Fig. 4. Cumulative insertion times

B. Influence of SLO Priority

The results of insertion and search times are shown in
Figures 8 and 9, which illustrate that when the given SLOs
indicated that performance had higher priority over memory
consumption, our library would expend considerably less exe-
cution time. The two figures also show that when the memory
consumption was highest in order of priority, it would cost our
library more in terms of execution time, because of frequent
access to out-of-core memory.

The library’s memory consumption conditions under the six
priority orders is depicted in Figure 10. When memory con-
sumption has the highest priority (MemPerRel or MemRelPer),
the consumed memory space is the least. On the other hand,
when memory consumption was lowest in order of priority,

Cumulative search time (ns)

Memory consumption (byte)

Cumulative search time (ns)

le+14

1e+13

1e+12

Te+11

1e+10

1e+09

1e+08

1e+07

1e+06

AVL Tree
Standard Bloom Filter
STL Set --

Our Library

100000
100

1e+12

1000 10000 100000 1e+06
Number of stored states

1e+07 1e+08

Fig. 5. Cumulative search times

1e+09

Te+11

1e+10

1e+09

2.5e+0¢

1e+07 E
1e+06 k!
100000 | E
AVL Tree and STL Set
Standard Bloom Filter
Our Library --
10000 L L L L
0 5e+07 1e+08 1.5e+08 2e+08
Number of stored states
Fig. 7. Memory consumption
1e+14
1e+13 | E
Te+12 | E
Te+11 | E
1e+10 | E
1e+09 k!
1e+08 - E
1e+07 E
PerMemRel
FPKeIEeEMem
L erRelMem -
Te+06 MemPerRel
RelMemPer
MemRelPer
100000 : : : : : :
100 1000 10000 100000 1e+06 1e+07 1e+08
Number of stored states
Fig. 9. Cumulative search times under different SLO priorities

1e+09

Average search time (ns)

Cumulative insertion time (ns)

Memory consumption (byte)

100000

10000

1000 | B
AVL Tree
Standard Bloom Filter
STL Set --
Our Library
100 | | | n
0 5e+07 1e+08 1.5e+08 2e+08 2.5e+0¢
Number of stored states
Fig. 6. Average search times
1e+13
Te+12 | E
le+11 | E
1e+10 | E
1e+09 E
1e+08 E
1e+07 E
PerMemRel
RelPerMem
1e+06 - PerRelMem -- E
MemPerRel
RelMemPer
MemRelPer
100000 L L L L L L
100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09
Number of stored states
Fig. 8. Cumulative insertion times under different SLO priorities
4.5e+10
PerMemRel
RelPerMem
PerRelMem -- 1
4e+10 I MemPerRel | b
RelMemPer I
MemRelPer |
3.5e+10 | | e
3e+10 - f E
|
2.5e+10 | B
2e+10 B
|
1.5e410 | g
1e+10 | p
5e+09 B
0 " L L L L
0 5e+07 1e+08 1.5e+08 2e+08 2.5e+0¢
Number of stored states
Fig. 10. Memory consumption under different SLO priorities

TABLE V
THE INFLUENCE OF VARIOUS VALUES OF ADAPTATIONFREQUENCY ON RESPONSE TIME

AdaptationFrequency

1 10

100 1000

Insertion time (ns) | 3.26591 % 1011

1.53390 * 1011

1.02284 % 1011 | 1.40904 = 1011

Search time (ns) 1.62012 % 1012

1.51335 % 1012

1.50460 * 1012 | 1.63597 x 1012

more memory space was consumed so as to boost performance
and the reliability. This figure also indicates that when memory
consumption reached its limit, MemPerRel and MemRelPer
saved memory by reducing the number of AVL trees used.
When the number of AVL trees could not be reduced, an
out-of-core technique was activated to store states on disk.
Additionally, notice that PerRelMem increased the number
of AVL trees when the states’ number was approximately
100 million while PerMemRel did not. That was because in
the latter case memory consumption has higher priority than
reliability. As a result, when the actual reliability was lower
than the required reliability, PerMemRel would not enhance
reliability to protect the memory quota.

The change in our library’s reliability is shown in Fig. 11,
which reveals that when reliability had the highest priority
(RelMemPer and RelPerMem), the library would adapt its data
structures to maintain a desirable reliability — over 0.99. By
contrast, if reliability was the lowest in order of priority, the
library’s reliability would deteriorate as stored states increased.

C. Exploiting Out-of-core Storage

As mentioned, the variable unexplored in Fig. 3 was
assigned an SLO indicating a maximum quota of primary
memory of 8 MB. The actual memory consumptions of a
queue adopting a naive implementation and using our library,
respectively, are shown in Figure 12. The queue adopting
ICollection consumed a mere 8 MB primary memory space,
which reduced primary memory consumption when compared
with a naive queue implementation by 97%.

VI. CONCLUSION AND FUTURE WORK

In this paper we have introduced a container library whose
instances have the ability to adapt to various system environ-
ments and offered load at run time. Containers automatically
deploy probabilistic and out-of-core techniques in an effort to
meet SLOs defined on per operation response time, primary
memory usage and reliability. Programmer overhead is kept
low in terms of migrating existing code and moving software
from one execution environment to another can be as simple
as redefining the SLOs to be appropriate to the resource
constraints of a new environment.

So far, we have proposed a framework for the use and
deployment of self-adaptive containers and implemented part
of the required functionalities. Besides completing the re-
maining functionalities, we could further reduce programmers’
overheads of developing resource-aware software by devel-
oping tools capable of automatically scanning existing code
to ascertain what subset of container functionality is being

used, and hence work towards the automated transformation
of existing code that uses container functionality into modified
code that exploits our library.

REFERENCES
(1]
(2]
[3]

J. E. Meyer, “On evaluating the performability of degradable computing
systems,” IEEE Trans. Computers, vol. 29, no. 8, pp. 720-731, 1980.
G. J. Holzmann, “An improved protocol reachability analysis technique,”
Software Practice and Experience, vol. 18, no. 2, pp. 137-161, 1988.
P. Wolper and D. Leroy, “Reliable hashing without collision detection,”
in CAV, 1993, pp. 59-70.

U. Stern and D. L. Dill, “Improved probabilistic verification by hash
compaction,” in CHARME, 1995, pp. 206-224.

B. Haverkort, A. Bell, and H. Bohnenkamp, “On the efficient sequential
and distributed generation of very large Markov chains from stochastic
Petri nets,” in Proc. 8th International Conference on Petri Nets and
Performance Models, 1999, pp. 12-21.

B. Bingham, J. Bingham, F. M. de Paula, J. Erickson, G. Singh, and
M. Reitblatt, “Industrial strength distributed explicit state model check-
ing,” in Proc. 9th International Workshop on Parallel and Distributed
Methods in Verification, 2010, pp. 28-36.

R. T. Saad, S. D. Zilio, and B. Berthomieu, “A general lock-free algo-
rithm for parallel state space construction,” in Proc. 9th International
Workshop on Parallel and Distributed Methods in Verification, 2010, pp.
8-16.

D. D. Deavours and W. H. Sanders, “An efficient disk-based tool for
solving very large Markov models,” in Proc. 9th International Confer-
ence on Computer Performance Evaluation: Modelling Techniques and
Tools, 1997, pp. 58-71.

W. Knottenbelt and P. Harrison, “Distributed disk-based solution tech-
niques for large Markov models,” in Proc. 3rd International Workshop
on the Numerical Solution of Markov Chains (NSMC ’99), Sep. 1999,
pp. 58-75.

A. Bell and B. Haverkort, “Serial and parallel out-of-core solution of
linear systems arising from Generalised Stochastic Petri Nets,” in Proc.
High Performance Computing, 2001, pp. 181-200.

M. Z. Kwiatkowska and R. Mehmood, “Out-of-core solution of large
linear systems of equations arising from stochastic modelling,” in Proc.
2nd Intl. Workshop on Process Algebra and Probabilistic Methods,
Performance Modeling and Verification, 2002, pp. 135-151.

S. C. Allmaier and G. Horton, “Parallel shared-memory state-space
exploration in stochastic modeling,” in Proc. IRREGULAR 1997, 1997,
pp. 207-218.

S. Caselli, G. Conte, and P. Marenzoni, ‘“Parallel State Space Exploration
for GSPN Models,” in Proc. Application and Theory of Petri Nets, vol.
935. Springer-Verlag, Berlin, 1995, pp. 181-200.

G. Ciardo, J. Gluckman, and D. Nicol, “Distributed state-space gener-
ation of discrete-state stochastic models,” INFORMS J. of Computing,
vol. 10, pp. 82-93, 1996.

W. Knottenbelt, “Performance analysis of large Markov models,” Ph.D.
dissertation, Imperial College of Science, Technology and Medicine,
February 2000.

S. Edelkamp and D. Sulewski, “Efficient explicit-state model checking
on general purpose graphics processors,” in Proc. 17th International
SPIN Conference on Model Checking Software, 2010, pp. 106-123.

R. M. Idury and M. S. Waterman, “A new algorithm for DNA sequence
assembly,” Journal of Computational Biology, vol. 2, pp. 291-306, 1995.
P. A. Pevzner, H. Tang, and M. S. Waterman, “An Eulerian path approach
to DNA fragment assembly,” Proc. Natl. Acad. Sci. USA, vol. 98, no. 17,
pp. 9748-9753, Aug. 2001.

D. R. Zerbino and E. Birney, “Velvet: Algorithms for de novo short read

[4]
[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

Reliability

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]
[30]
[31]

(32]

(33]

[34]

0.98 4

0.96 I perMemRel b

RelPerMem
PerRelMem -------
MemPerRel
RelMemPer
MemRelPer
0.95 : : : :
0 5e+07 1e+08 1.5e+08 2e+08 2.5e+0¢
Number of stored states
Fig. 11. Reliability under different SLO priorities

assembly using de Bruijn graphs,” Genome Research, vol. 18, no. 5, pp.
821-829, 2008.

J. Butler et al., “ALLPATHS: De novo assembly of whole-genome
shotgun microreads,” Genome Research, vol. 18, no. 5, pp. 810-820,
2008.

B. G. Jackson, M. Regennitter, X. Yang, P. S. Schnable, and S. Aluru,
“Parallel de novo assembly of large genomes from high-throughput
short reads.” in 24th International Parallel and Distributed Processing
Symposium (IPDPS), 2010, pp. 1-10.

V. Kundeti, S. Rajasekaran, H. Dinh, M. Vaughn, and V. Thapar,
“Efficient parallel and out of core algorithms for constructing large bi-
directed de Bruijn graphs,” BMC Bioinformatics, vol. 11, p. 560, 2010.
Y. Liu, B. Schmidt, and D. L. Maskell, “Parallelized short read assembly
of large genomes using de Bruijn graphs.” BMC Bioinformatics, vol. 12,
p. 354, 2011.

Y. Li, P. Kamousi, F. Han, S. Yang, X. Yan, and S. Suri, “Memory
efficient de Bruijn graph construction,” CoRR, vol. abs/1207.3532, 2012.
J. J. Cook and C. B. Zilles, “Characterizing and optimizing the memory
footprint of de novo short read DNA sequence assembly.” in ISPASS,
2009, pp. 143-152.

P. Melsted and J. K. Pritchard, “Efficient counting of k-mers in DNA
sequences using a Bloom filter.” BMC Bioinformatics, vol. 12, p. 333,
2011.

J. Pell, A. Hintze, R. Canino-Koning, A. Howe, J. M. Tiedje, and C. T.
Brown, “Scaling metagenome sequence assembly with probabilistic de
Bruijn graphs,” Proceedings of the National Academy of Sciences, vol.
109, no. 33, pp. 13272-13277, 2012.

R. Chikhi and G. Rizk, “Space-efficient and exact de Bruijn graph
representation based on a Bloom filter,” Algorithms in Bioinformatics,
vol. 7534 of Lecture Notes in Computer Science, pp. 236-248, 2012.
A. Mili, R. Mili, and R. Mittermeir, “A survey of software reuse
libraries,” Annals Software Eng., vol. 5, pp. 349-414, 1998.

P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns. Addison-Wesley, 2002.

E. Gamma, R. Helm, J. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley, 1995.
W. Frakes and K. Kang, “Software reuse research: Status and future,”
IEEE Transactions on Software Engineering, vol. 31, pp. 529-536, July
2005.

M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and
research challenges,” ACM Trans. Auton. Adapt. Syst., vol. 4, no. 2, pp.
14:1-14:42, May 2009.

B. H. Cheng et al., “Software engineering for self-adaptive systems,”
B. H. Cheng, R. Lemos, H. Giese, P. Inverardi, and J. Magee, Eds.
Berlin, Heidelberg: Springer-Verlag, 2009, ch. Software Engineering for

Number of states in the primary memory

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]

[48]

[49]

[50]

700000

Naive Queu‘e’
"Intelligent Queue’

600000

T
!

500000

T
!

400000 Bl

300000

T
!

200000

T
!

T
!

100000

1.4e+07 1.6e+07

0 i i i t 1

1.2e+07

0 20406 46406 6e+06 8e+06 1e+07
Number of generated states
Fig. 12. Memory consumptions of naive queue and intelligent queue

Self-Adaptive Systems: A Research Roadmap, pp. 1-26.

A. Keller and H. Ludwig, “The WSLA framework: Specifying and
monitoring service level agreements for web services,” Journal of
Network and Systems Management, vol. 11, p. 2003, 2003.

D. R. Musser, G. J. Derge, and A. Saini, St/ Tutorial and Reference
Guide: C++ Programming with the Standard Template Library. Boston,

Mass. Addison-Wesley, 2001.

J. Kephart and D. Chess, “The vision of autonomic computing,” Com-
puter, vol. 36, no. 1, pp. 41-50, 2003.

M. Rohr, S. Giesecke, W. Hasselbring, M. Hiel, W.-J. van den Heuvel,
and H. Weigand, “A classification scheme for self-adaptation research,”
in Proc. International Conference on Self-Organization and Autonomous
Systems In Computing and Communications (SOAS’2006), September
2006.

B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, pp. 422-426, July 1970.
F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese,
“An improved construction for counting Bloom filters,” in LNCS 4168:
Proc. ESA 2006, 2006, pp. 684—695.

O. Rottenstreich, Y. Kanizo, and I. Keslassy, “The variable-increment
counting Bloom filter,” in Proc. Infocom 2012, 2012.

J. Hines et al, “dablooms: An open source, scal-
able counting Bloom filter library,” 2012. [Online].
Available: http://word.bitly.com/post/28558800777/dablooms-an-open-
source-scalable-counting-bloom

H. Ludwig, A. Keller, A. Dan, R. P. King, and R. Franck, Web service
level agreement (WSLA) language specification, IBM Corporation Std.,
2003.

M. C. Huebscher and J. A. McCann, “A survey of autonomic computing
- degrees, models, and applications,” ACM Comput. Surv., vol. 40, no. 3,
2008.

P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C. Cheng,
“Composing adaptive software,” Computer, vol. 37, no. 7, pp. 56-64,
Jul. 2004.

E. Johnson and D. Gannon, “HPC++: Experiments with the Parallel
Standard Template Library,” in Proc. ICS "97, 1997, pp. 124-131.

G. Tanase et al., “The STAPL parallel container framework,” in Proc.
ACM SIGPLAN Symp. Prin. Prac. Par. Prog. (PPOPP), 2011.

R. Dementiev, L. Kettner, and P. Sanders, “STXXL: Standard Template
Library for XXL data sets,” Software: Practice and Experience, Aug
2007.

G. Pike and J. Alakuijala, “The CityHash family of hash functions,”
2010. [Online]. Available: http://code.google.com/p/cityhash/

O. Grumberg, E. Clarke, and D. Peled, Model Checking. MIT Press,
Cambridge, 2000.

NelieBEN e R o S

APPENDIX

Listing 1. The SLO configuration file of explored
<?xml version='1.0" 2>
<SLA xmlns="http://www.ibm.com/wsla" xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance">

<Parties>
<ServiceProvider />
<ServiceConsumer />
</Parties>

<ServiceDefinition name=’SampleService’>

<Operation name=’insert’>

<SLAParameter name="InsertTimeRatio" unit="Percent">

<Metric> InsertTimeRatio_Metric </Metric>

</SLAParameter>

<Metric name="InsertTimeRatio_Metric"

<Source>ServiceProvider</Source>

<Function xsi:type="PercentageLessThanThreshold">
<Metric> InsertTime_Metric </Metric>
<Value> <LongScalar> 1000 </LongScalar> </Value>

</Function>

</Metric>

<Metric name="InsertTime_Metric"

<Source>ServiceProvider</Source>

<MeasurementDirective xsi:type="ResponseTime">
<MeasurementURI>
urn:ICollection.ResponseTime.OP_INSERT

</MeasurementURI>
</MeasurementDirective>
</Metric>
</Operation>

unit="Percent">

unit="ns">

<Operation name=’search’>

<SLAParameter name="SearchTimeRatio" unit="Percent">
<Metric> SearchTimeRatio_Metric </Metric>

</SLAParameter>

<Metric name="SearchTimeRatio_Metric"
<Source>ServiceProvider</Source>
<Function xsi:type="PercentageLessThanThreshold">
<Metric> SearchTime_Metric </Metric>
<Value> <LongScalar> 1200 </LongScalar> </Value>
</Function>

</Metric>

<Metric name="SearchTime_Metric"
<Source>ServiceProvider</Source>
<MeasurementDirective xsi:type="ResponseTime">
<MeasurementURI>

urn:ICollection.ResponseTime.OP_SEARCH
</MeasurementURI>
</MeasurementDirective>
</Metric>
</Operation>

unit="Percent">

unit="ns">

<Operation name='Reliability’>
<SLAParameter name="CurrentReliability" unit="">
<Metric> CurrentReliability Metric </Metric>
</SLAParameter>
<Metric name="CurrentReliability_ Metric" unit="">
<Source>ServiceProvider</Source>
<MeasurementDirective xsi:type="wsla:Gauge">
<MeasurementURI>
urn:ICollection.Reliability.OP_Reliability
</MeasurementURI>
</MeasurementDirective>
</Metric>
</Operation>

<Operation name=’RAM’>
<SLAParameter name="RAMSIZE" unit="GB">
<Metric> RAMSIZE_Metric </Metric>
</SLAParameter>
<Metric name="RAMSIZE_Metric" unit="GB">
<Source>ServiceProvider</Source>
<MeasurementDirective xsi:type="wsla:Gauge">
<MeasurementURI>
urn:ICollection.RAM.OP_RAM

</MeasurementURI>
</MeasurementDirective>

</Metri¢>
</Operation>

</ServiceDefinition>
<Obligations>

<ServiceLevelObjective name="InsertTimeSLO">
<Obliged>service_provider</Obliged>
<Validity>
<Start>2013-01-01T14:00:00</Start>
<End>2014-01-01T14:00:00</End>
</Validity>
<Expression>
<Predicate xsi:type="GreaterEqual">
<SLAParameter>
InsertTimeRatio
</SLAParameter>
<Value> 0.9 </Value>
</Predicate>
</Expression>
<EvaluationEvent>NewValue</EvaluationEvent>
</ServicelevelObjective>

<ServiceLevelObjective name="SearchTimeSLO">
<Obliged>service_provider</Obliged>
<Validity>
<Start>2013-01-01T14:00:00</Start>
<End>2014-01-01T14:00:00</End>
</Validity>
<Expression>
<Predicate xsi:type="GreaterEqual">
<SLAParameter>
SearchTimeRatio
</SLAParameter>
<Value> 0.85 </Value>
</Predicate>
</Expression>
<EvaluationEvent>NewValue</EvaluationEvent>
</ServicelLevelObjective>

<ServiceLevelObjective name="ReliabilitySLO">
<Obliged>service_provider</Obliged>
<Validity>
<Start>2013-01-01T14:00:00</Start>
<End>2014-01-01T14:00:00</End>
</Validity>
<Expression>
<Predicate xsi:type="GreaterEqual">
<SLAParameter>
CurrentReliability
</SLAParameter>
<Value> 0.99 </Value>
</Predicate>
</Expression>
<EvaluationEvent>NewValue</EvaluationEvent>
</ServicelLevelObjective>

<ServiceLevelObjective name="RAMSIZESLO">
<Obliged>service_provider</Obliged>
<Validity>
<Start>2013-01-01T14:00:00</Start>
<End>2014-01-01T14:00:00</End>
</Validity>
<Expression>
<Predicate xsi:type="LessEqual">
<SLAParameter>
RAMSIZE
</SLAParameter>
<Value> 7.5 </Value>
</Predicate>
</Expression>
<EvaluationEvent>NewValue</EvaluationEvent>
</ServicelevelObjective>

</Obligations>

</SLA>

