
Self-Adaptive Containers:
Interoperability Extensions and Cloud Integration

Wei-Chih Huang
Department of Computing, Imperial College London

London, SW7 2AZ, United Kingdom
Email: wei-chih.huang11@imperial.ac.uk

William Knottenbelt
Department of Computing, Imperial College London

London, SW7 2AZ, United Kingdom
Email: wjk@imperial.ac.uk

Abstract—Driven by an ever-increasing diversity of applica-
tion contexts, execution environments and scalability require-
ments, modern software is faced with the challenge of frequent
code refactoring. To address this, we have proposed an STL-like
self-adaptive container library, which dynamically changes its
data structures and resource usage to meet programmer-specified
Service Level Objectives relating to performance, reliability and
primary memory use. A prototype of this library has been
implemented and utilised in two case studies to prove its viability.
In the present work, we explore a low-cost means to extend
our library to satisfy wider classes of Service Level Objectives.
This is achieved through the integration of third-party container
frameworks, which exploit parallelism to boost performance and
disk-based data offloading to reduce primary memory consump-
tion, and the integration of cloud storage services, which offer
cost-effective location-free storage. We demonstrate our library’s
application in a state-space exploration case study. With very low
programmer overhead, experimental results show that our library
can improve performance with a 76% reduction in insertion time
and an 86% reduction in search time, and can also exploit out-
of-core storage, including cloud storage.

Keywords—Self-Adaptive Systems; Containers; Standard Tem-
plate Library; Out-Of-Core Storage; Cloud Storage; Parallelism

I. INTRODUCTION

The number of execution environments in which applica-
tions are deployed (e.g. smartphones, servers, laptops, tablets,
etc.) is growing rapidly. It is a non-trivial challenge to write
software which can meet Quality of Service (QoS) require-
ments in diverse application contexts and execution environ-
ments, especially where resources are limited and scalability
requirements are high [1, 2]. Traditional software engineering
techniques [3–5] cannot effectively cater for such diversity,
which results in either a small code base which cannot guar-
antee QoS or multiple manually-optimised code bases which
are difficult to maintain [6].

To address the above-mentioned challenges, we have in-
troduced a self-adaptive container library [7] which can dy-
namically adapt to support large input data and can auto-
matically change its underlying data structures in order to
satisfy resource constraints and QoS requirements pertaining
to the current execution environment. Our library features
a mechanism for tighter functionality specification, which
enables greater scope for efficiency optimisations including
the exploitation of out-of-core storage, probabilistic data struc-
tures, and parallelism. Additionally, the adopted data structure
is associated with desired Service Level Objectives (SLOs)

rigorously specified in the WSLA [8] format. Our work focuses
on containers because they are frequently the performance
and capacity bottlenecks in real systems [9], and choice of
underlying data structures is critical to delivered performance,
memory usage, and reliability [10]. This implies that change
of the adopted data structure affects QoS and resource usage
[11]. The usage of our library is designed to be as similar
as possible to that of the Standard Template Library (STL)
[12] with the aim of reducing required levels of expertise
and programmer effort. To illustrate our library’s viability,
applicability, and scalability, a prototype including a single
value container and an associative key-value store container
is implemented and utilised in two case studies [7, 13] –
state-space exploration and route planning – exploiting out-
of-core storage and probabilistic data structures. The results
of the two studies show that our library provides a ready
route to easily adapt software to each different execution
environment; the library also has the ability to automatically
meet programmer-specified SLOs with respect to performance,
memory consumption, and reliability.

Many research teams have proposed their container frame-
works to support efficient out-of-core storage (e.g. STXXL
[14], TPIE [15], LEDA-SM [16], PSTL [17]) and parallelism
(e.g. TBB [18], STAPL [19], HPC++ [20]). These frameworks
provide well-developed functionalities and member functions,
which considerably decreases development time and lowers
the required level of expertise. Although these frameworks can
effectively help programmers, they still need to be reconfigured
when execution environments and application contexts change.
However, through integration of these frameworks, our library
can reduce the complexity of implementing out-of-core storage
and parallel software, provide a broader class of SLOs, and
automatically configure these frameworks on-the-fly.

Recent years have seen the rise of cloud storage, which
carries many benefits (e.g. low cost, high security, location
independence). To exploit cloud storage, the functionalities
accessing stored data have to be modified. Further, because
the performance of cloud storage is lower than that of disks,
the overall performance is notably worsened when most data
is stored in the cloud. Thus, it is critical to dynamically adjust
the utilisation rates of local disks and cloud storage. Currently,
to the best of our knowledge, no container library makes use of
cloud storage. Our library aims to supply programmers with
alternative out-of-core memory dynamically exploited when
local disks are not available and with efficient access functions
in an effort to reduce the degree to which code is modified.

This paper yields the following three contributions.

• We integrate a well-developed third-party out-of-core
container library, STXXL [14], into our library for
efficient out-of-core storage, which eliminates the
need for high expertise and programmer effort of
implementing out-of-core storage.

• Our library now supports automatic parallelism, which
is not entailed in our previous implementation, through
cooperation with Intel Threading Building Blocks
(TBB) [18], which supplies widely-used containers
and algorithms in order to lessen the complexity
of developing concurrent software. This allows our
library to satisfy a broader class of Service Level
Objectives, particularly those relating to performance,
without affecting existing code.

• By means of the dynamic exploitation of Amazon
Simple Storage Service (S3) [21], our library can now
provide alternative memory to store data when primary
memory and local disks are not available. Transfer
of data to and from cloud storage is transparently
managed by our library, rather than being the explicit
responsibility of programmers.

The remainder of this paper is organised as follows. Sec-
tion II describes background and related work. Section III
presents the self-adaptive container framework, while Sec-
tion IV introduces the use of third-party container frameworks.
Section V shows the exploitation of cloud storage. Section VI
shows the experimental results, and Section VII summarises
the conclusion and future work.

II. BACKGROUND AND RELATED CONTEXT

A. Containers

Containers are responsible for storing related objects which
can be accessed through supported member functions. They are
implemented as template classes, which allows programmers to
specify built-in/user-defined data types. The most commonly-
used container libraries are the STL [12] (implemented in C++)
and Java Collections Framework [22]. Since our library is im-
plemented in C++, this subsection will focus on the STL. The
STL’s containers can be categorised into sequence containers,
associative containers, container adaptors, and unordered asso-
ciative containers. Sequence containers store inserted elements
according to their original orders, which enables programmers
to specify positions of inserted elements. Falling into the
category of sequence containers are vector, list, and deque.
Associative containers maintain inserted elements in a pre-
defined order (e.g. sorted ascending). They can be further
divided into set (including set and multiset) and map (including
map and multimap). Both set and map apply trees as their
underlying data structures. Container adaptors, consisting of
stack, queue, and priority_queue, are interfaces on top of
other containers. For example, stack’s functionalities can be
supported through vector, list, or deque. The STL’s containers’
final category, unordered associative containers, makes use
of hash tables to store elements. Although they are used to
improve performance, they have two constraints. First, when
programs adopt unordered associative containers, -std=c++0x
has to be set in compiler options. Second, when user-defined
elements are stored, custom hash functions are required.

B. Related Work and Context

In the late 1990s and early 2000s, IBM coined the term
of autonomic computing [23], derived from human autonomic
nervous systems, which can unconsciously control human
bodies (e.g. heart rate, salivation, perspiration). The purpose
of autonomic computing is to deal with the challenge of
managing rapidly growing system complexity. To achieve this
purpose, a system should be equipped with self-CHOP prop-
erties [24] (self-configuration, self-healing, self-optimisation,
and self-protection), which are fulfilled by sensors, effectors,
and autonomic managers. Sensors are used to retrieve required
information from managed resources, and effectors are used to
manage resources. Each autonomic manager contains a self-
adaptive cycle composed of an observation phase, an analysis
phase, and an adaptation phase [25]. The cycle starts from the
observation phase, which monitors managed resources and col-
lects required data from sensors. The analysis phase determines
if an adaptation action should be taken in accordance with
comparison results of the data reported from the observation
phase and expectations (e.g. knowledge, rules, etc.) and plans
a suitable adaptation action as necessary. The adaptation phase
performs the adaptation action selected in the analysis phase
by means of effectors.

Many researchers have proposed their reference models
for building self-adaptive systems. MAPE-K [26, 27] is one
reference model, which divides the functionalities of self-
adaptive systems into five functions, Monitor, Analyse, Plan,
Execute, and Knowledge. Some research work focuses on
model-based approaches (e.g. [28–30]). Some researchers at-
tempt to develop self-adaptive systems through architecture-
based self-adaptations (e.g. Rainbow [31]). Some pieces of
research are related to requirements-based approaches (e.g.
Zanshin [32]). In addition to the above-mentioned methodolo-
gies, some researchers adopt language-level self-adaptations,
which can be classified into meta-programming [33], aspect-
oriented programming [34], and context-oriented programming
[35] based on Salvaneschi et al.’s work [36]. The latter study
lists programming language extensions which can perform
adaptation actions (e.g. Iguana/J [37], JAsCo [38], ContextJ
[39], ContextErlang [40]). However, compared to our library,
programmer overhead, i.e. the amount of code that needs to be
changed relative to a naïve implementation, is relatively high.

Among approaches automatically changing data structures
to save resources are SILT [41] and OSKI [42]. SILT is a
flash-based key-value store system featuring several underlying
candidate data structures with data being converted between
them according to the size of key fragments at run time.
However, it only focuses on memory usage. Other QoS metrics
(e.g. performance or reliability) are not taken into account.
OSKI, which is a collection of low-level primitives, provides
automatically tuned computational kernels as well as a mecha-
nism selecting a data structure and code transformations. Sim-
ilarly, the application areas of OSKI are restricted because in
addition to performance it does not consider other QoS metrics.
Indeed, there is no mechanism for specifying any Service Level
Objectives, which leads to difficulties in adapting software to
each execution environment and application context.

III. SELF-ADAPTIVE CONTAINER FRAMEWORK

This section will briefly introduce our library’s frame-
work, self-adaptive mechanism, and adaptation actions. For
full details, please refer to our previous publications [7, 13].
As can be seen in Figure 1, the library consists of two
major components, Application Programming Interface (API)
and Self-Adaptive Unit (SAU). The former provides a means
through which programmers can lay down required operations
and control the library, and the latter performs operations and
activates the self-adaptive mechanism. API provides program-
mers with two template classes covering most functionalities
of the STL: ICollection, which implements the function-
alities of the STL’s vector, list, queue, priority_queue, stack,
deque, set, and multiset and IKeyValue, supporting key-
value stores (i.e. the STL’s map and multimap). The member
functions of ICollection and IKeyValue can be divided
into operation interfaces, which are a group of commonly-
used operations, and configuration interfaces, which provide
a way of controlling the library. The usage of the container
constructors are expressed as follows.

ICollection<T,Compare = less < T >>(op_desc,
SLO_file[, freq])

and

IKeyValue<K,V,Compare = less < K >>(op_desc,
SLO_file[, freq])

where op_desc describes the required functionalities, SLO_file
indicates a path to an XML file containing a description of
the SLOs related to the container in WSLA format, and freq
(optional parameter) specifies the frequency with which the
self-adaptive mechanism is activated. An example of how to
express SLOs for our self-adaptive containers in WSLA format
is shown in [7].

The SAU comprises an Execution unit, an SLO store,
an Observer, an Analyzer, and an Adaptor. The Execution
unit performs container manipulation commands given by
operation interfaces. The SLO store holds all SLOs laid
down by configuration interfaces. The Observer monitors per
operation response time (via the clock_gettime() system call
in Linux and the QueryPerformanceFrequency function in
Windows), computes memory consumption, and calculates
reliability when a probabilistic data structure is exploited. The
Analyzer determines whether an adaptation action should be
taken and where appropriate plans an adaptation action. The
Adaptor performs the selected adaptation action.

The self-adaptive mechanism of our library is a classical
self-adaptive cycle [25], which is formed by the Observer,
the Analyzer, and the Adaptor. The mechanism starts working
when the Observer monitors the Execution unit to obtain oper-
ation profiles (e.g. per operation response time, memory usage,
and, where appropriate, reliability). The operation profiles are
then sent to the Analyzer, which compares them with SLOs
to determine if any SLOs are violated. If a certain SLO is
violated, the Analyzer will decide if an adaptation action is
required based on the following rules:

(a) The adaptation action is expected to result in either the
satisfaction of the SLO or a reduction in the degree to
which the SLO is flouted.

(b) The adaptation action is not expected to violate a currently-
satisfied SLO of higher priority.

We design Rule (a) because we have recognised that it may
not be possible to meet all (or any) of the SLOs within resource
constraints. The purpose of Rule (b) is to prevent an adaptation
action taken to address one violated SLO from violating
another SLO. For example, the adaptation action taken to
reduce primary memory may lead to performance drop. In
order to solve the above-mentioned issue, each SLO is assigned
a distinct priority according to its declaration sequence. The
Analyzer addresses each SLO in priority order. If the SLO
being addressed is satisfied, no adaptation is necessary. If the
SLO is violated, the Adaptor is called in for adaptation.

The Adaptor may perform three kinds of adaptation actions
in accordance with the nature of the violated SLO and its
priority ordering. If it is performance-related (e.g. an SLO
related to insertion or search response time), then gains may
be had from subdividing the underlying data structure. In
general this will increase memory consumption but in the
case of a probabilistic data structure this adaptation will also
increase reliability. If the violated SLO is memory-related,
then gains may be had from utilising out-of-core storage (with
the side effect of hurting performance), or, should reliability
and functionality requirements allow, moving to a probabilistic
underlying data structure. Finally, if the violated SLO is
reliability-related (e.g. the number of elements inserted into
our container with only “insert” and “search” functionality has
increased to such an extent that the underlying probabilistic
data structure no longer meets its reliability SLO), then the
data structure should be subdivided (with the side effect of
improving performance and increasing memory).

IV. THE UTILISATION OF THIRD-PARTY CONTAINER
FRAMEWORKS

In this work, our library integrates STXXL [14] and MC-
STL [43] for out-of-core storage and Intel Threading Building
Blocks (TBB) [18] for parallelism. STXXL provides out-of-
core containers and algorithms, both of which aim to deal
with a huge amount of data in out-of-core memory. We choose
to integrate STXXL rather than other out-of-core libraries for
the following reasons. First, STXXL gives transparent support
of parallel disks and implements parallel disk algorithms.
Second, it makes use of “pipelining” and “overlapping” to
improve performance and resource utilisation, respectively.
Third, STXXL can cooperate with MCSTL for the purpose of
internal computation improvement. MCSTL is an OpenMP-
based [44] algorithm library exploiting multiprocessors and
the multi-cores of a processor. Software adopting MCSTL can
achieve performance improvement without any changes due
to the common algorithm names shared by MCSTL and the
STL. In spite of these advantages, MCSTL restricts adopted
compilers (i.e. gcc and g++) to lower versions (lower than
version 4.2).

Despite the benefits brought by STXXL and MCSTL,
there are two drawbacks which may lead to performance
deterioration. First, when primary memory is sufficient to hold
all data, the activation of STXXL will result in considerable
performance decline owing to frequent access of out-of-core
memory. Second, STXXL is not equipped with a mechanism

Application Programming Interface

Self-Adaptive Unit

ICollection
Configuration interfaces

setAdaptationFrequency

Container constructors

Operation interfaces

…

insert

push pop

search remove

IKeyValue
Configuration interfaces

setAdaptationFrequency

Container constructors

Operation interfaces

insert search remove

operator[] …

SLO store

Analyzer

Observer Adaptor

Execution unit

AVL Tree list sparse Bloom filter heap … queue vector

operator*

STXXL MCSTL WebStor TBB

Figure 1. The self-adaptive container library architecture

for dynamically adjusting the in-core and out-of-core memory
utilisation rates. When data is moved into external memory,
this means more available primary memory. As a result,
newly inserted data should be stored in in-core memory. Once
primary memory is full, part of the data should be moved
to external memory again. Because STXXL cannot specify
primary memory constraints, it allocates a pre-defined amount
of primary memory for caching data. This causes in-core
memory usage to be hardly optimised. To reap the benefits
of STXXL and avoid the disadvantages, our library acts as
a controller which determines when to trigger STXXL and
dynamically transfers data from in-core memory to out-of-core
memory according to primary memory constraints.

Intel TBB is a concurrent library which supplies containers
(e.g. concurrent_queue, concurrent_hash_map) and algorithms
(e.g. parallel_sort, parallel_for) in order to reduce the com-
plexity of developing multi-threaded software. TBB has the
ability to detect the number of cores, which prevents recon-
figuration when execution environments change; it adopts the
technique of task stealing [45], which enables tasks to be
dynamically reassigned to different cores, in order to enhance
core utilisation. TBB’s performance is affected by the number
of threads, which implies that its performance can be dynam-
ically adjusted by way of re-specifying the maximum number
of threads. Additionally, even though TBB provides STL-like
interfaces, programmers still have to learn how to control it
and how to utilise the modified interfaces. For example, TBB’s
concurrent_queue does not support front operations and its pop
operations require a parameter for storing a removed element.

V. THE EXPLOITATION OF CLOUD STORAGE

Cloud storage refers to a data storage model where data is
stored in the cloud and managed by a hosting company (e.g.
Amazon [21], Google [46], Dropbox [47], etc.). Companies
storing their data in the cloud do not need to purchase
expensive disks or spend time backing up. Further, data stored
in the cloud can be accessed through the internet at any time
at any place (i.e. local-independent). The major downside to
cloud storage is its dependency on and consumption of network

bandwidth. If the internet connection is unstable or slow,
the stored data may not be accessible. However, as network
bandwidth is broadened and connectivity becomes ubiquitous,
it is possible to overcome this barrier.

Since cloud storage services have been adopted by many
companies, programmers may frequently adapt their software
to meet different cloud storage services and their capacity
limits. This adaptation process can be simplified by the self-
adaptive mechanism our library possesses. It is capable of
dynamically exploiting programmer-specified cloud storage
services. Simultaneously, memory consumption is monitored
in conformity with capacity limits. Our library makes use of
WebStor [48] library, which provides C++ APIs, to implement
the required functionalities of cloud storage. WebStor is de-
signed for the cloud storage services supporting Cloud Storage
Engine for MySQL (ClouSE), e.g. Google Cloud Storage or
Amazon S3. Additionally, it supports parallel operations (e.g.
put, get, delete), which can improve throughput to a large
extent. To boost performance and reduce cost, our library splits
data and transfers them to buckets under different accounts.
There are two reasons for this design. First, most cloud storage
service providers offer each customer free but limited post
and get operations as well as capacity. Second, cloud storage
does not come with search operations, and nor is it capable
of specifying a position indicator associated with a stream,
which means when an element is searched, the file where this
element may be stored has to be fully downloaded in order to
ascertain whether or not it exists. As a result, the subdivision
of data can expeditiously reduce both the size of individual
files stored in each account and the number of required post
and get operations.

VI. CASE STUDY

The case study chosen to illustrate our library’s applica-
bility is an explicit state-space exploration algorithm, which is
commonly employed in the domains of model checking [49]
and concurrent performance analysis [50]. This algorithm is
executed on a Linux machine with 64 Intel Xeon E5-4650
CPUs (2.70 GHz) and 528 GB memory. As can be seen in

void bfs (Graph G, State s)

{

queue<State> unexplored;

set<State> explored;

unexplored.push(s);

explored.insert(s);

while (!unexplored.empty()) {

State next = unexplored.front();

unexplored.pop();

for (State *w = G.first_edge(next) ; w ; w = G.next_edge(next)) {

if (!explored.search(*w)) {

unexplored.push(*w);

explored.insert(*w);

}

}

}

}

void bfs (Graph G, State s)

{

ICollection<State> unexplored(OP_QUEUE, “UnexploredSLOs.xml”);

ICollection<State> explored (OP_INSERT|OP_SEARCH, “ExploredSLOs.xml”, 100);

unexplored.push(s);

explored.insert(s);

while (!unexplored.empty()) {

State next = unexplored.front();

unexplored.pop();

for (State *w = G.first_edge(next) ; w ; w = G.next_edge(next)) {

if (!explored.search(*w)) {

unexplored.push(*w);

explored.insert(*w);

}

}

}

}

Figure 2. The naïve program (left) and the program adopting our library (right)

Figure 2, the only difference between the naïve program and
the program adopting our library is the container declarations
(one for the queue of unexplored states, and one for the table
of explored states). The following subsections will show the
library’s behaviour when STXXL, MCSTL, TBB and Amazon
S3 are activated.

A. Exploiting STXXL and MCSTL for Efficient Out-of-core
Storage

Figures 3 and 4 show the average insertion time and
search time taken by different memory-sensitive container
frameworks. As can be seen, when our library utilises MCSTL
and STXXL’s map, its average search time is close to that of
our baseline implementation, but the average insertion time
is slower than that of the baseline implementation. STXXL
makes use of a B-tree to store data in out-of-core memory,
which requires more I/O access to adjust the tree’s height.
By contrast, when our library employs MCSTL and STXXL’s
vector, whose elements are sorted, its insertion performance
is better but its search performance is slower. That is because
the number of I/O is reduced when data is transferred to out-
of-core memory, the number of I/O increased when data is
searched. The two figures also indicate that when STXXL is
utilised alone, performance is the lowest, the reason for which
is all the data stored in out-of-core memory. In summary, this
experiment illustrates that through the utilisation of STXXL
programmer effort and expertise required to implement out-
of-core storage are reduced.

The response times for push and pop operations expended
by our baseline implementation and STXXL’s queue are de-
picted in Figures 5 and 6, which show that the performance of
baseline implementation is similar to that of STXXL. That is
because both implementations adopt the same methodology in
which the head and tail blocks are kept in primary memory.

B. Exploiting TBB for High Performance

The average insertion time and search time expended by
STL’s set and our library adopting TBB under 8 threads are

exhibited in Figures 7 and 8. As can be seen, when our library
utilises TBB’s concurrent_hash_map exploiting 8 threads to
store explored states, performance is improved. Specifically,
insertion time is reduced by 76%, search time reduced by 86%.

Figures 9 and 10 depict the average push and pop times
of STL’s queue and our library utilising TBB under different
maximum numbers of threads. Similarly, our library, adopting
TBB’s concurrent_queue, is faster than STL’s queue (i.e. 54%
reduction in push time and 77% reduction in pop time when
the maximum number of threads is 8).

C. Exploiting Cloud Storage

In the case study, Amazon S3 is utilised to demonstrate
the dynamic exploitation of cloud storage. Figures 11 and 12
indicate the average insertion time and search time expended
by our library exploiting baseline implementation and Amazon
S3. As can be seen, the performance of Amazon S3 is lower
than that of the baseline implementation, which is in keeping
with the actual situation where disk I/O performance is faster
than network performance.

Figure 13 represents primary memory consumed by the
baseline out-of-core implementation and cloud storage. It
shows that when the number of stored states is approximately
31,000 our library activates cloud storage in order to protect
the memory-related SLO.

VII. CONCLUSION AND FUTURE WORK

In this work, we have shown that the self-adaptive container
library not only has the ability of automatically changing its
underlying data structures but dynamically deploying third-
party container frameworks and cloud storage. These frame-
works enable our library to reduce the complexity of develop-
ing out-of-core storage and parallel software and to provide
a broader class of Service Level Objectives. Further, the
dynamic deployment of cloud storage supplies programmers
with alternative out-of-core memory which can be utilised
when local disks are not available. The efficacy has been

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

A
v
e
ra

g
e
 i
n
se

rt
io

n
 t

im
e
 (

n
s)

Number of stored states

Baseline implementation
Our library + STXXL Map

Our library + STXXL vector
STXXL

Figure 3. Average insertion time of different memory-sensitive container
frameworks

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

A
v
e
ra

g
e
 s

e
a
rc

h
 t

im
e
 (

n
s)

Number of searches

Baseline implementation
Our library + STXXL map

Our library + STXXL vector
STXXL

Figure 4. Average search time of different memory-sensitive container frame-
works

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08

A
v
e
ra

g
e
 r

e
sp

o
n
se

 t
im

e
 (

n
s)

Number of invoked push operations

Baseline implementation
STXXL queue

Figure 5. Average response time of push operations

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08

A
v
e
ra

g
e
 r

e
sp

o
n
se

 t
im

e
 (

n
s)

Number of invoked pop operations

Baseline implementation
STXXL queue

Figure 6. Average response time of pop operations

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

A
v
e
ra

g
e
 i
n
se

rt
io

n
 t

im
e
 (

n
s)

Number of stored states

STL set
Our library using 8 threads

Figure 7. Average insertion time consumed by STL’s set and our library adopting
TBB

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

A
v
e
ra

g
e
 s

e
a
rc

h
 t

im
e
 (

n
s)

Number of searches

STL set
Our library using 8 threads

Figure 8. Average search time consumed by STL’s set and our library adopting
TBB

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

A
v
e
ra

g
e
 r

e
sp

o
n
se

 t
im

e
 (

n
s)

Number of invoked push operations

STL queue
Our library using 2 threads
Our library using 4 threads
Our library using 8 threads

Figure 9. Average response time of invoked push operations expended by STL’s
queue and our library

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

A
v
e
ra

g
e
 r

e
sp

o
n
se

 t
im

e
 (

n
s)

Number of invoked pop operations

STL queue
Our library using 2 threads
Our library using 4 threads
Our library using 8 threads

Figure 10. Average response time of invoked pop operations expended by STL’s
queue and our library

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

A
v
e
ra

g
e
 i
n
se

rt
io

n
 t

im
e
 (

n
s)

Number of stored states

Baseline implementation
Our library exploiting Amazon S3

Figure 11. Average insertion time taken by our library exploiting the baseline
implementation and Amazon S3

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000 1e+06

A
v
e
ra

g
e
 s

e
a
rc

h
 t

im
e
 (

n
s)

Number of searches

Baseline implementation
Our library exploiting Amazon S3

Figure 12. Average search time taken by our library exploiting the baseline
implementation and Amazon S3

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

M
e
m

o
ry

 c
o
n
su

m
p

ti
o
n
 (

b
y
te

)

Number of stored states

Baseline implementation
Our library exploiting Amazon S3

Figure 13. Memory usage consumed by our library exploiting the baseline
implementation and Amazon S3

proven in a case study, which illustrates that how a naïve
implementation of an algorithm utilising our library can easily
become scalable, resource-efficient, and parallel. Simultane-
ously, the programmer overhead of migrating software from

one execution environment to another is reduced to redefinition
of Service Level Objectives which are suitable for the resource
constraints of the new environment.

Currently, our library chooses either disks or cloud storage
to store out-of-core data. In the future, a combination of disks
and cloud storage will very likely be employed. This can be
achieved by a mechanism which specifies different types of
out-of-core storage. This will enable our self-adaptive mecha-
nism to dynamically move data among primary memory, disks,
and cloud. Further, because cloud storage service providers
have different costs and features, these should also be taken
into consideration when cloud storage is deployed.

REFERENCES

[1] D. Perez-Palacin, J. Merseguer, and R. Mirandola, “Analysis of
bursty workload-aware self-adaptive systems,” in Proceedings of the
3rd ACM/SPEC International Conference on Performance Engineering
(ICPE), Boston, USA, Apr. 2012, pp. 75–84.

[2] I. Boutsis and V. Kalogeraki, “Radar: Adaptive rate allocation in dis-
tributed stream processing systems under bursty workloads.” in Pro-
ceedings of the IEEE 31st Symposium on Reliable Distributed Systems
(SRDS), Irvine, USA, Oct. 2012, pp. 285–290.

[3] A. Mili, R. Mili, and R. T. Mittermeir, “A survey of software reuse
libraries,” Annals of Software Engineering, vol. 5, no. 1, pp. 349–414,
Jan. 1998.

[4] P. Clements and L. Northrop, Software Product Lines: Practices and

Patterns. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 2001.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-oriented Software. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1995.

[6] J. Sametinger, Software Engineering with Reusable Components. New
York, NY, USA: Springer-Verlag New York, Inc., 1997.

[7] W.-C. Huang and W. J. Knottenbelt, “Self-adaptive containers: Building
resource-efficient applications with low programmer overhead,” in Pro-
ceedings of the 8th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS), San Francisco, USA,
May 2013, pp. 123–132.

[8] A. Keller and H. Ludwig, “The WSLA framework: Specifying and
monitoring service level agreements for web services,” Journal of
Network and Systems Management, vol. 11, no. 1, pp. 57–81, Mar. 2003.

[9] P. Isensee. C++ optimization strategies and techniques. [Online].
Available: http://www.tantalon.com/pete/cppopt/main.html

[10] S. Meyers, Effective STL: 50 Specific Ways to Improve Your Use of the
Standard Template Library. Essex, UK, UK: Addison-Wesley Longman
Ltd., 2001.

[11] A. B. Bondi, “Characteristics of scalability and their impact on perfor-
mance,” in Proceedings of the 2nd International Workshop on Software
and Performance, Ottawa, Canada, Sep. 2000, pp. 195–203.

[12] N. M. Josuttis, The C++ Standard Library: A Tutorial and Reference,
2nd ed. Addison-Wesley Professional, 2012.

[13] W.-C. Huang and W. J. Knottenbelt, “Self-adaptive containers: Func-
tionality extensions and further case study,” in Proceedings of the 6th
International Conference on Adaptive and Self-Adaptive Systems and
Applications (ADAPTIVE), Venice, Italy, May 2014, pp. 92–98.

[14] R. Dementiev, L. Kettner, and P. Sanders, “STXXL: Standard template
library for xxl data sets,” Software- Practice & Experience, vol. 38, no. 6,
pp. 589–637, May 2008.

[15] D. E. Vengroff, “A transparent parallel i/o environment,” in Proceed-
ings of the 3rd DAGS Symposium on Parallel Computation, Hanover,
Germany, Jul. 1994, pp. 117–134.

[16] A. Crauser and K. Mehlhorn, “LEDA-SM extending LEDA to secondary
memory,” in Proceedings of the 3rd International Workshop on Algo-
rithm Engineering (WAE), London, UK, Jul. 1999, pp. 228–242.

[17] T. Gschwind, “PSTL: A c++ persistent standard template library,” in
Proceedings of the 6th Conference on USENIX Conference on Object-
Oriented Technologies and Systems, San Antonio, USA, Feb. 2001, pp.
147–158.

[18] Intel. (2014) Threading building blocks. [Online]. Available:
https://www.threadingbuildingblocks.org/

[19] P. An, A. Jula, S. Rus, S. Saunders, T. Smith, G. Tanase, N. Thomas,
N. Amato, and L. Rauchwerger, “STAPL: An adaptive, generic parallel
c++ library,” in Proceedings of the 14th International Conference on
Languages and Compilers for Parallel Computing, Cumberland Falls,
USA, Aug. 2001, pp. 193–208.

[20] E. Johnson and D. Gannon, “HPC++: Experiments with the parallel
standard template library,” in Proceedings of the 11th International
Conference on Supercomputing, Vienna, Austria, Jul. 1997, pp. 124–
131.

[21] Amazon. (2014) Amazon simple service storage. [Online]. Available:
http://aws.amazon.com/s3/

[22] W. J. Collins, Data Structures and the Java Collections Framework.
McGraw-Hill Higher Education, 2001.

[23] P. Horn, “Autonomic Computing: IBM’s Perspective on the State of
Information Technology,” 2011, presented at AGENDA 2001, Socttsdale,
Available via http://www.research.ibm.com/autonomic/.

[24] R. Murch, Autonomic Computing. IBM Press, 2004.
[25] M. Rohr, S. Giesecke, W. Hasselbring, M. Hiel, W.-J. van den Heuvel,

and H. Weigand, “A classification scheme for self-adaptation research,”
in Proceedings of the International Conference on Self-Organization
and Autonomous Systems In Computing and Communications, Erfurt,
Germany, Sep. 2006, pp. 1–5.

[26] IBM Corp., An architectural blueprint for autonomic computing. IBM
Corp., Oct. 2004.

[27] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, Jan. 2003.

[28] B. Chen, X. Peng, Y. Yu, B. Nuseibeh, and W. Zhao, “Self-adaptation
through incremental generative model transformations at runtime,” in
Proceedings of the 36th International Conference on Software Engineer-
ing (ICSE), Hyderabad, India, May 2014, pp. 676–687.

[29] D. Garlan and B. Schmerl, “Model-based adaptation for self-healing
systems,” in Proceedings of the First Workshop on Self-healing Systems,
Charleston, USA, Nov. 2002, pp. 27–32.

[30] S. H. Young, T. A. Mazzuchi, and S. Sarkani, “A model-based framework
for predicting performance in self-adaptive systems,” in Proceedings
of the 12th Annual Conference on Systems Engineering Research, Los
Angeles, USA, Mar. 2014, pp. 513–521.

[31] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste,
“Rainbow: Architecture-based self-adaptation with reusable infrastruc-
ture,” Computer, vol. 37, no. 10, pp. 46–54, Oct. 2004.

[32] G. Tallabaci and V. E. S. Souza., “Engineering adaptation with Zanshin:
an experience report,” in Proceedings of the 8th International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), San Francisco, USA, May 2013, pp. 93–102.

[33] D. Abrahams and A. Gurtovoy, C++ Template Metaprogramming:
Concepts, Tools, and Techniques from Boost and Beyond. Addison-
Wesley Professional, 2004.

[34] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M.
Loingtier, and J. Irwin, “Aspect-oriented programming,” in Proceedings
of the 11th European Conference on Object-Oriented Programming,
Jyväskylä, Finland, Jun. 1997, pp. 220–242.

[35] R. Hirschfeld, P. Costanza, and O. Nierstrasz, “Context-oriented pro-
gramming,” Journal of Object Technology, vol. 7, no. 3, pp. 125–151,
2008.

[36] G. Salvaneschi, C. Ghezzi, and M. Pradella, “An analysis of language-
level support for self-adaptive software,” ACM Transactions on Au-
tonomous and Adaptive Systems, vol. 8, no. 2, pp. 7:1–7:29, Jul. 2013.

[37] B. Redmond and V. Cahill, “Supporting unanticipated dynamic adap-
tation of application behaviour,” in Proceedings of the 16th European
Conference on Object-Oriented Programming, Málaga, Spain, Jun. 2002,
pp. 205–230.

[38] D. Suvée, W. Vanderperren, and V. Jonckers, “JAsCo: An aspect-
oriented approach tailored for component based software development,”
in Proceedings of the 2nd International Conference on Aspect-oriented
Software Development, Boston, USA, Mar. 2003, pp. 21–29.

[39] M. Appeltauer, R. Hirschfeld, M. Haupt, and H. Masuhara, “ContextJ:
Context-oriented programming with Java,” Journal of the Japan Society
for Software Science and Technology on Computer Software, vol. 28,
no. 1, pp. 272–292, 2011.

[40] G. Salvaneschi, C. Ghezzi, and M. Pradella, “ContextErlang: Introducing
context-oriented programming in the actor model,” in Proceedings of
the 11th Annual International Conference on Aspect-oriented Software
Development, Potsdam, Germany, Mar. 2012, pp. 191–202.

[41] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky, “SILT: A memory-
efficient, high-performance key-value store,” in Proceedings of the 23th
ACM Symposium on Operating Systems Principles, Cascais, Portugal,
Oct. 2011, pp. 1–13.

[42] R. Vuduc, J. W. Demmel, and K. A. Yelick, “Oski: A library of
automatically tuned sparse matrix kernels,” in Proceedings of SciDAC
2005, Journal of Physics: Conference Series, vol. 16, Jun. 2005, pp.
521–530.

[43] J. Singler, P. Sanders, and F. Putze, “MCSTL: The multi-core standard
template library,” in Proceedings of the 13th International Euro-Par
Conference on Parallel Processing, Rennes, France, Aug. 2007, pp. 682–
694.

[44] L. Dagum and R. Menon, “OpenMP: An industry-standard API for
shared-memory programming,” IEEE Computational Science & Engi-
neering, vol. 5, no. 1, pp. 46–55, Jan. 1998.

[45] J. P. Singh, C. Holt, T. Totsuka, A. Gupta, and J. Hennessy, “Load
balancing and data locality in adaptive hierarchical n-body methods:
Barnes-hut, fast multipole, and radiosity,” Journal of Parallel and
Distributed Computing, vol. 27, no. 2, pp. 118–141, Jun. 1995.

[46] Google. (2014) Google cloud platform. [Online]. Available:
http://cloud.google.com/

[47] Dropbox. (2014) Dropbox. [Online]. Available:
https://www.dropbox.com/

[48] OblakSoft. (2014) WebStor: high-performance API for cloud storage.
[Online]. Available: http://www.oblaksoft.com/downloads/

[49] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled, Model Checking.
Cambridge, MA, USA: MIT Press, 1999.

[50] W. J. Knottenbelt, “Parallel performance analysis of large Markov
models,” Ph.D. dissertation, Department of Computing, Imperial College
of Science, Technology and Medicine. University of London., Dec. 1999.

