
Self-Adaptive Containers:
Functionality Extensions and Further Case Study

Wei-Chih Huang and William J. Knottenbelt
Department of Computing, Imperial College London

{wei-chih.huang11, wjk}@imperial.ac.uk

Abstract—As the number of execution environments and appli-
cation contexts rises exponentially, ever-changing non-functional
requirements can lead to repeated code refactoring. In addition,
scaling up software to support large input sizes may require
major modification of code. To address these challenges, we
have previously proposed a framework of self-adaptive containers
which can automatically adjust their resource usage to meet
Service Level Objectives and dynamically deploy the techniques
of out-of-core storage and probabilistic data structures. A pro-
totype with limited functionalities was implemented and applied
to explicit state space exploration to prove the viability of our
framework. In this paper, we broaden the library’s functionalities
through support for the important container class of key-value
stores and integration of priority queues’ functionalities into our
previously-developed container class. We then utilise them in a
new case study centred on route planning, adopting Dijkstra’s
shortest path algorithm. For this, a graph representing the full
USA road network, which contains approximately 24 million
nodes and 58 million arcs, is input to the algorithm so as to find
the shortest paths from a random node to all the other nodes. The
experimental results have shown that, under particular Service
Level Objectives our library reduces update time by 21.4%,
primary memory usage of node storage by 85.3%, and primary
memory consumption required by the priority queue by 78%,
compared with the Standard Template Library.

Keywords-Self-Adaptive Systems; Containers; Standard Tem-
plate Library; Probabilistic Data Structures.

I. INTRODUCTION

Traditional software engineering methodologies are facing
a new challenge – a rapidly growing number of system
environments, where software is executed (e.g., tablets, servers,
smartphones, laptops, routers). The applications may operate
under different resource constraints and Quality of Service
(QoS) requirements [1], based on the environments in which
they are executed. Adapting software to each possible execu-
tion environment and application context in order to maintain
QoS requirements is not a trivial job, especially in the situation
where bursty and/or high-intensity workloads may frequently
exhaust system resources [2] [3]. Further, this may take months
or years of programmer effort to modify the majority of pro-
gram code and may entail considerable programmer expertise
[4][5]. These new challenges cannot be dealt with simply
through use of traditional software engineering techniques [6–
8], which results in either one of the two possible scenarios:
a small code base which cannot guarantee QoS or multiple
manually-optimised code bases which are difficult to maintain.

We have previously presented a framework of self-adaptive
containers [9], which attempts to tackle the above-mentioned
challenges via change of data structures. Instead of manu-
ally choosing a container and its underlying data structure,
our self-adaptive containers provide two classes which au-
tomatically take such actions and dynamically change their
underlying data structures in accordance with programmer-
specified Service Level Objectives (SLOs) and the required
functionalities. The former aims to easily satisfy ever-changing
QoS requirements through modification of SLO specification,
and the latter intends to provide a greater scope for efficiency
optimisation. Conventional standardised container libraries are
built for general purpose contexts, where all functionalities are
always ready to be supplied, which restricts the possibility of
optimisation. Through tighter functionality specification, our
containers are able to exploit the techniques which can only be
utilised when certain functionalities are entailed, including out-
of-core storage and probabilistic data structures. To illustrate
the viability of our framework, a prototype that fulfilled
partial functionalities, highlighted in yellow in Figure 1, was
implemented and utilised by the breadth first search algorithm,
which explored up to 240 million states. The experimental
results showed that our containers could not only dynamically
boost their performance but save substantial memory space.
Further, the containers’ behaviour varied according to assigned
SLOs, indicating that the self-adaptive containers could easily
adapt to different execution environments.

Our framework with limited functionalities has been im-
plemented to prove that it is feasible. In this paper, we add
support for key-value stores (IKeyValue) and priority queues
into our previously-built container class (ICollection). As
described more fully in Sections IV and V, both of these
data structures are widely-used in industry and are fundamen-
tal to many core computer science algorithms. IKeyValue
supports commonly used member functions such as insert
and the direct access operator. The functionalities of priority
queues are supported by ICollection, which provides the
required member functions and automatic deployment of out-
of-core storage. The instances of either ICollection or
IKeyValue can be assigned SLOs specified in the standard
Web Service Level Agreement (WSLA) [10] format, which
allows programmers to clearly and easily define resource
constraints and QoS requirements. When currently-consumed
resources violate the SLOs, our library’s self-adaptive mecha-
nism will determine if an adaptation action is needed in order
to either satisfy the violated SLOs or reduce the degree to
which the SLOs are contravened.

Our library is applied to a new case study, route planning,
which adopts Dijkstra’s algorithm, in order to show its en-
hanced functionalities. The experimental results suggest that
our containers can effortlessly be adopted and considerably
enhance both performance and memory efficiency. They also
illustrate that the containers are capable of responding to
programmer-specified SLOs.

This paper yields the following contributions:

• The functionalities of our self-adaptive container li-
brary are broadened through support for the funda-
mental container class of key-value stores and im-
plementation of the functionalities of priority queues
in our previously-developed container class, which
expands application areas where our library may be
applied.

• A new case study is investigated to illustrate our
library’s applicability. It shows how a naïve implemen-
tation of a core computer science algorithm in combi-
nation with our library can become resource-efficient
and can achieve different programmer-specified Ser-
vice Level Objectives.

The remainder of this paper is organised as follows.
Section II introduces self-adaptive systems, reference models
for building such systems and resource-aware systems. Sec-
tion III describes our library’s architecture and self-adaptive
mechanism. While Section IV presents the design and imple-
mentation of key-value stores, Section V describes the out-of-
core priority queue’s implementation. Section VI presents the
case study. Section VII concludes this paper and points out
possibilities of future work.

II. SELF-ADAPTIVE SYSTEMS, REFERENCE MODELS,
AND RESOURCE-AWARE SYSTEMS

The foundation of the research regarding modern self-
adaptive systems arose in the late 1990s and early 2000s, when
IBM coined the term of autonomic computing [11], derived
from human autonomic nervous systems, which could un-
consciously control human bodies (e.g., heart rate, salivation,
perspiration). A system adopting autonomic computing should
involve the properties of self-configuration, self-healing, self-
optimisation, and self-protection. To be equipped with these
properties, a system should contain a self-adaptive cycle com-
posed of an observation phase, an analysis phase, and an
adaptation phase [12]. The observation phase is responsible
for monitoring and collecting required data. The analysis
phase determines if an adaptation action should be taken in
accordance with the data reported from the observation phase
and chooses a suitable adaptation action. The adaptation phase
performes the adaptation action selected in the analysis phase.

After autonomic computing is introduced, a reference
model for building self-adaptive systems, MAPE-K (monitor,
analyse, plan, execute, and knowledge), is put forward [13] and
implemented in several projects [14–16]. MAPE-K contains a
cycle formed by the five functions, which are used to observe
and collect data from managed resources, analyse the data,
plan an adaptation action, perform the adaptation action to
adjust managed resources, and store managed resources’ goals,
respectively. Garlan et al. [17] present another framework,

Rainbow, which utilises an external approach for building self-
adaptive systems.

To adapt to execution environments with different resource
constraints, software should have the ability to detect its
current resource usage. Sumatra [18], introduced by Acharya
et al., is a Java extension, which provids four programming
abstractions for monitoring resources and building resource-
aware programs. In their work, they also suggest the aware-
ness requirement, the agility requirement, and the authority
requirement should be satisfied in the context of mobile agent
software. However, the programmer overhead is relatively high
in terms of adapting existing code to a tightly-specified mobile
software architecture.

Among approaches automatically changing data structures
to save resources is SILT [19] , which is a flash-based key-
value store system featuring several underlying candidate data
structures with data being converted between them according
to the size of key fragments at run time. However, it only fo-
cuses on memory usage. Other QoS metrics (e.g., performance
or reliability) are not taken into account. Indeed, there is no
mechanism for sepcifying any Service Level Objectives, which
leads to difficulties in adapting software to each execution
environment and application context.

III. LIBRARY ARCHITECTURE AND SELF-ADAPTIVE
MECHANISM

This section will briefly introduce our library’s framework
and self-adaptive mechanism. For full details, please refer to
our previous publication [9]. As can be seen in Figure 1, the
library consists of two major components, Application Pro-
gramming Interface (API) and Self-Adaptive Unit (SAU). The
API provides programmers with two template classes covering
most functionalities of the Standard Template Library (STL)
[20]: ICollection, which has been partially implemented
in our previous prototype, and IKeyValue, supporting key-
value stores. The member functions of ICollection and
IKeyValue can be divided into operation interfaces and
configuration interfaces. The former is a group of commonly-
used operations. The latter acts as the means through which
functionality requirements, SLOs, and the frequency with
which the SLO compliance should be checked are imparted
to the library.

The SAU, which performs operations and manages the
self-adaptive mechanism, is composed of an Execution unit,
a SLO store, an Observer, an Analyzer, and an Adaptor. The
Execution unit performs container manipulation commands
given by operation interfaces. The SLO store holds all SLOs
laid down by configuration interfaces. The Observer monitors
per operation response times, computes memory consumption,
and calculates reliability when a probabilistic data structure
is exploited. These operation profiles are then reported to
the Analyzer, which determines whether an adaptation action
should be taken. If an adaptation action is required, the Adaptor
will be invoked to perform an adaptation action.

The self-adaptive mechanism of our library is a classical
self-adaptive cycle [12], which is formed by the Observer,
the Analyzer, and the Adaptor. The mechanism starts working
when the Observer monitors the Execution unit to obtain

operation profiles (e.g., per operation response times, mem-
ory usage, and, where appropriate, reliability). The operation
profiles are then sent to the Analyzer, which compares them
with SLOs to determine if any SLOs are violated. If a certain
SLO is violated, the Analyzer will decide if an adaptation
action (e.g., the subdivision of the underlying data structure,
the activation of out-of-core technique, or the deployment of
probabilistic data structures) is required based on the following
rules: (a) the adaptation action is expected to result in either
the satisfaction of the SLO or a reduction in the degree to
which the SLO is flouted and (b) the adaptation action is not
expected to violate a currently-satisfied SLO of higher priority.
We design these rules for two reasons. First, it may not be
possible to meet all (or any) of the SLOs within resource
constraints. Second, an adaptation action taken to address one
violated SLO may cause the violation of another SLO. To solve
these issues, each SLO is assigned a distinct priority according
to its declaration sequence. The Analyzer addresses each SLO
in priority order. If the SLO being addressed is satisfied, no
adaptation is necessary. If the SLO is violated, the Adaptor is
called in for an adaptation action.

IV. KEY-VALUE STORES DESIGN AND IMPLEMENTATION

Key-value stores, which represent data stored in pairs of
keys and values, have been adopted in many industries manag-
ing large-scale data (e.g., Amazon [21], Facebook [22], Twitter
[23][24], Linkedin [25]). As stored data accumulate, relational
databases, which offer general purpose data stores, are inca-
pable of providing acceptable data manipulation time. Many
programming language data structures (e.g., map of the STL,
HashMap of Java, and the dictionary data type in Python) and
libraries (sparkey [26], LevelDB [27], YDB [28]) can be used
to implement key-value stores and of course, recent years have
seen the rise of persistent counterparts in the form of NoSQL
databases (e.g., Cassandra [29], Riak [30], Tokyo Cabinet [31],
Aerospike [32]). Our library supports the functionalities of
key-value stores in IKeyValue, which chooses either a tree
data structure (e.g., red black tree or AVL (Adelson-Velskii
and Landis) tree or, where appropriate, a sparse Bloom filter
[33], which transforms larger-sized elements into smaller-sized
keys via hashing techniques to save considerable memory
space, as the underlying data structure. As can be seen in
Figure 1, IKeyValue API contains configuration interfaces
and operation interfaces. The operation interfaces support
the member functions which are needed to manipulate key-
value stores, and the configuration interfaces including the
constructor and setAdaptationFrequency are used for
management purposes. The usage of IKeyValue’s construc-
tor is illustrated as follows:

IKeyValue<K,V >(op_desc, SLO_file[, freq])

where op_desc specifies the required set of functionalities (so-
called operation descriptors), SLO_file shows a path to an XML
file containing a description of SLOs in WSLA format, and
freq is an optional parameter defining the frequency with which
the self-adaptive mechanism is activated.

IKeyValue is also capable of dynamically and auto-
matically adjusting its underlying data structure through the
SAU in order to meet SLOs. If its performance has to be
improved, the underlying data structure will be subdivided. For

example, when a sparse Bloom filter, which utilises a forest
of AVL trees, is selected as the currently-used data structure,
the number of AVL trees is increased to reduce the number
of comparisons. If the reliability of IKeyValue needs to be
increased, its underlying data structure will be subdivided as
well. When the consumed memory space exceeds resource
constraints, out-of-core storage may be activated. However,
when the activation commences, some of the stored elements
may be allocated to external memory, which makes the direct
access operator (i.e., operator[]) unable to return a reference
to the mapped value. To solve this issue, IKeyValue’s direct
access operator will return a reference to a proxy class, which
overloads the assignment operator (i.e., operator=) and the
cast operator (i.e., operator()) to satisfy the functionalities of
assignment and retrieval, respectively.

V. OUT-OF-CORE PRIORITY QUEUE

Priority queues, whose underlying data structures are
heaps, provide push operations as well as pop and top opera-
tions, which manipulate the largest (or smallest) element. As
the number of stored elements increases, primary memory may
be unable to store new elements, which leads to the utilisation
of external memory. Because the performance of external
memory is orders of magnitude slower than that of internal
memory, out-of-core priority queues require I/O efficient algo-
rithms [34–36]. In our library, the functionalities of priority
queues specified by operation descriptors are embedded in
ICollection, which now accepts a custom comparison
operator as an optional template parameter, which defaults to
less-than operator, to decide that either the largest or smallest
element should be manipulated. When the internal memory
limit has not been reached, ICollection behaves like the
STL’s priority_queue. Once the self-adaptive mechanism com-
putes the memory consumption and sees it exceeds the primary
memory limit, the mechanism will then take the following
actions. First, it will sort the priority queue in primary memory
and move the sorted elements to external memory. Next, the
priority queue’s largest (or smallest) element is inserted into a
max (or min) heap which is intended to reduce response times
of pop and top operations. These actions may be performed
many times to keep memory consumption lower than the
primary memory limit. When out-of-core storage is activated,
pop and top operations should access not only the priority
queue in internal memory but the root of the heap. If the root
of the heap has to be removed, it will be deleted and the next
larger (or smaller) element is then inserted into the heap.

Some researchers have proposed implementations of out-
of-core priority queues (e.g., Standard Template Library for
Extra Large Data Sets [37]), which considerably enhance I/O
efficiency. However, they cannot dynamically determine when
to trigger out-of-core storage, which deteriorates the perfor-
mance of priority queues when in-core memory is sufficient.
We have seen this drawback and aimed for our library to act
as a controller which decides when to make use of out-of-core
priority queues.

VI. CASE STUDY

The case study chosen to illustrate our library’s applica-
bility is Dijkstra’s shortest path algorithm, which has been
extensively applied to route planning [38] and social network

Application Programming Interface

Self-Adaptive Unit

Implemented in previous work Implemented in this work Still to be implemented

ICollection
Configuration interfaces

setAdaptationFrequency

Container constructors

Operation interfaces

…

insert

push pop

search remove

IKeyValue
Configuration interfaces

setAdaptationFrequency

Container constructors

Operation interfaces

insert search remove

operator[] …

SLO store

Analyzer

Observer Adaptor

Execution unit

AVL Tree list sparse Bloom filter heap … queue vector

operator*

Figure 1. The highlight components of the library

analysis [39]. A naïve implementation of this algorithm is
shown in Figure 2. Figure 3 displays the same algorithm
via use of our library. As can be seen, the only difference
between the two programs is the declaration of the key-value
store variable, Distance (which stores the shortest distances
from a given random node to all the other nodes), and of
priority queue variable, PQ (which is used to locate the node
with the shortest distance). To observe the library’s behaviour
under different SLOs, the following SLOs were assigned to
Distance:

1) 80% of insertion times should be less than 1350 ns,
and 90% of search times should be less than 500 ns.

2) Reliability should be higher than 0.995.
3) Memory use should be no more than 500 MB.

The above-mentioned SLOs were stored in DistanceS-
LOs.xml in WSLA format. An example of how to express
SLOs fit for our self-adaptive containers in WSLA format
is shown in [9]. Similarly, an SLO that requires the primary
memory consumption of PQ to remain below 300 KB was
assigned to PQSLO.xml. For Distance, the value of the
optional parameter, AdaptationFrequency, was 100. In
other words, the Analyzer was triggered every 100 opera-
tions. Naturally, the value of AdaptationFrequency may
affect response times. In our previous case study, we have
assigned different values to see the influence, which shows
that when values of AdaptationFrequency are small,
response times are lessened on account of a reduction in the
Analyzer’s activation times. As values rise, response times
begin to increase due to delay of adaptation actions.

In this case study, a graph depicting the full USA road net-
work [40], which contains approximately 23 million vertices
and 58 million edges, was input. The performance and memory
consumption from a given random node to all the others were
compared, using the STL’s class and our library. The SLOs of
Distance were then input to different sequences to observe
the library’s behaviour. Finally, the memory consumed by
both the STL’s priority_queue and our library were displayed,
showing improvement of memory efficiency.

A. Comparison with STL’s map

To evaluate our library’s effectiveness, Dijkstra’s shortest
path algorithm utilised to compute the shortest paths from a
random node to all the other nodes was executed using the
STL’s map and our library. Figures 4 and 5 display average
insertion and update times for Distance. The insertion time
consumed by our library was close to that consumed by the
STL’s map. That was because our library spent extra time
performing adaptation actions when elements were inserted.
The sudden rises in insertion times indicated that our library
changed its underlying data structures to boost performance
or reliability. Although adaptation actions initially added to
insertion times, they considerably improve scalability going
forward. Indeed, insertion time and update time SLO are both
subsequently maintained with only occasional adaptations.

Figure 6 depicts the memory space consumed by the STL’s
map and our library. Our library used an order of magnitude
less memory space than the STL’s map.

B. Influence of SLO priority

Figures 7 and 8 illustrate the performance-related SLOs
and the time spent by our library under different priority
orderings. For example, PerRelMem means that performance is
the highest in order of priority, reliability has the next highest
priority, and memory consumption’s priority is the lowest.
These figures indicate that when the given SLOs specified
performance has higher priority over memory consumption,
our library expends considerably less insertion time and update
time. This phenomenon can be seen in the following orders
of SLO metrics: PerMemRel, PerRelMem, and RelPerMem.
When their performances cannot achieve the performance-
related SLOs, the library still improves performance even if
it means violating the memory limit. By contrast, when the
memory-related SLO is the highest in order of priority, it
causes our library to consume substantial insertion time and
update time due to frequent out-of-core memory access.

The library’s memory consumption conditions under the
six priority sequences are depicted in Figure 9, which shows
two different types of behaviour in accordance with priority in

void Dijkstra_algorithm(Graph G, Node s)

{

 priority_queue< pair<Node, double>, compare > PQ;

 map<Node, double> Distance;

 Node u, v ;

 double cost;

 for (Node *w = G.start_node() ; w != G.end_node() ; w = G.next_node()) {

 Distance.insert(pair<Node, double>(*w, numeric_limits<double>::infinity()));

 }

 Distance[s] = 0;

 PQ.push(pair<Node, double>(s, Distance[s]));

 while (!PQ.empty()) {

 u = PQ.top().first;

 PQ.pop();

 pair<Node, double> *z = G.first_edge(u);

 for (; z ; z = G.next_edge(u)) {

 v = (*z).first ;

 cost = (*z).second;

 if (Distance[v] > Distance[u]+cost) {

 Distance[v] = Distance[u] + cost ;

 PQ.push(pair<Node, double>(v, Distance[v]));

 }

 }

 }

}

Figure 2. The naïve shortest-path algorithm

void Dijkstra_algorithm(Graph G, Node s)

{

 ICollection< pair<Node, double>, compare > PQ(OP_P QUEUE, “PQSLO.xml”);

 IKeyValue<Node, double> Distance(OP_INSERT|OP_INDE X, “DistanceSLO.xml”, 100);

 Node u, v ;

 double cost;

 for (Node *w = G.start_node() ; w != G.end_node() ; w = G.next_node()) {

 Distance.insert(pair<Node, double>(*w, numeric_limits<double>::infinity()));

 }

 Distance[s] = 0;

 PQ.push(pair<Node, double>(s, Distance[s]));

 while (!PQ.empty()) {

 u = PQ.top().first;

 PQ.pop();

 pair<Node, double> *z = G.first_edge(u);

 for (; z ; z = G.next_edge(u)) {

 v = (*z).first ;

 cost = (*z).second;

 if (Distance[v] > Distance[u]+cost) {

 Distance[v] = Distance[u] + cost ;

 PQ.push(pair<Node, double>(v, Distance[v]));

 }

 }

 }

}

Figure 3. The resource-aware algorithm using self-adaptive containers

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07

A
v
e
ra

g
e
 i
n
se

rt
io

n
 t

im
e
 (

n
s)

Number of stored nodes

STL Map
Our Library

Insertion Time SLO

Figure 4. Average insertion time

 0

 200

 400

 600

 800

 1000

 1200

 0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08

A
v
e
ra

g
e
 u

p
d
a
te

 t
im

e
 (

n
s)

Number of updates

STL Map
Our Library

Update Time SLO

Figure 5. Average update time

 0

 1e+09

 2e+09

 3e+09

 4e+09

 5e+09

 6e+09

 7e+09

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07

M
e
m

o
ry

 c
o
n
su

m
p
ti

o
n
 (

b
y
te

)

Number of stored nodes

STL Map
Our Library

Memory SLO

Figure 6. Memory consumption

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

A
v
e
ra

g
e
 i
n
se

rt
io

n
 t

im
e
 (

n
s)

Number of stored nodes

PerRelMem
RelMemPer
MemPerRel
PerMemRel
MemRelPer
RelPerMem

Insertion Time SLO

Figure 7. Average insertion times under different SLO priorities

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

A
v
e
ra

g
e
 u

p
d
a
te

 t
im

e
 (

n
s)

Number of updates

PerRelMem
RelMemPer
MemPerRel
PerMemRel
MemRelPer
RelPerMem

Update Time SLO

Figure 8. Average update times under different SLO priorities

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07

M
e
m

o
ry

 c
o
n
su

m
p
ti

o
n
 (

b
y
te

)

Number of stored nodes

PerRelMem
RelMemPer
MemPerRel
PerMemRel
MemRelPer
RelPerMem

Memory SLO

Figure 9. Memory consumption under different SLO priorities

 0.993

 0.994

 0.995

 0.996

 0.997

 0.998

 0.999

 1

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07

R
e
lia

b
ili

ty

Number of stored nodes

PerRelMem
RelMemPer
MemPerRel
PerMemRel
MemRelPer
RelPerMem

Reliability SLO

Figure 10. Reliability under different SLO priorities

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

N
u
m

b
e
r

o
f

n
o
d
e
s

in
 p

ri
m

a
ry

 m
e
m

o
ry

Number of explored nodes

Naive Queue
Intelligent Queue

Figure 11. Memory consumptions of the naïve priority queue and the intelligent
queue

memory consumption. When memory consumption is lowest
in order of priority, more memory space is consumed to
enhance performance or reliability. By contrast, when memory
consumption has the highest priority (MemPerRel and Mem-
RelPer), the consumed memory space is the least. This figure
also indicates that when MemPerRel and MemRelPer reach the
memory limit, our library, whose currently-used data structure
is an improved sparse Bloom filter, reduces the number of AVL
trees to save memory space. Once the number of AVL trees
cannot be reduced, out-of-core storage is activated.

The variation in our library’s reliability is depicted in
Figure 10. As can be seen, when reliability has the highest
priority (RelPerMem and RelMemPer), the reliability is kept
at a desirable level – over 0.995. According to the two rules
of our self-adaptive mechanism, when reliability is the highest
in order of priority, it can be boosted without consideration
of the side effects – most notably the increase in memory
consumption. As a result, RelPerMem and RelMemPer re-
bound several times when reliability is equal to or lower
than 0.995. But when reliability is lower in order of priority,

the library’s reliability descends as the number of inserted
elements increases. Take MemRelPer for example. Memory
consumption has higher priority than reliability, which implies
that reliability cannot be improved once the memory limit
is reached. Further, the reliability sharply deteriorates after
adaptation actions which reduce the number of AVL trees
are taken. While PerRelMem keeps reliability over 0.995,
PerMemRel does not enhance reliability when the number of
inserted elements is approximately one million. That is because
for PerMemRel’s memory consumption has higher priority
than reliability. Consequently, when the current reliability is
lower than the desired reliability, PerMemRel does not enhance
reliability so as to prevent consumed memory exceeding the
memory quota.

C. Out-of-core Storage for Priority Queue

As mentioned, the memory limit of the variable, PQ,
was 300 KB. The primary memory consumptions using our
library and the STL’s priority_queue are shown in Figure 11.
It indicates that our library consumed 300 KB, which was

a mere 78% of the memory space consumed by the STL’s
priority_queue.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have broadened the functionalities of our
self-adaptive container library, which now supports the funda-
mental container class of key-value stores and enhances our
previously-developed container class with the functionalities
of priority queues. The new functionalities can dynamically
exploit probabilistic data structures and out-of-core storage in
an effort to meet different QoS requirements. Their efficacy
has been proven in a case study, which illustrates how a
naïve implementation of an algorithm utilising our library
becomes scalable and resource-efficient by swift library-driven
adaptations which successfully maintain programmer-specified
Service Level Objectives in order of priority. Simultaneously,
programmer overhead is kept low in terms of adapting software
to a new environment. This can be easily achieved by means of
redefining SLOs which are suitable for the resource constraints
of a new environment.

So far, the library’s self-adaptive mechanism follows a strict
order of priority, which can be further extended to multi-
objective optimisation methods such as a weighted product or
a weighted sum of multiple SLOs. Another future direction
of the library entails the cooperation with other container
frameworks. Integrating them into our library can increase
flexibility of the library in terms of its ability to meet SLOs
in resource-constraint environments.

REFERENCES

[1] A. Hervieu, B. Baudry, and A. Gotlieb, “Managing execution environ-
ment variability during software testing: an industrial experience,” in
Proceedings of the International Conference on Testing Software and
Systems (ICTSS), 2012, pp. 24–38.

[2] D. Perez-Palacin, J. Merseguer, and R. Mirandola, “Analysis of bursty
workload-aware self-adaptive systems,” in Proceedings of the 3rd
ACM/SPEC International Conference on Performance Engineering, ser.
ICPE ’12, 2012, pp. 75–84.

[3] I. Boutsis and V. Kalogeraki, “Radar: Adaptive rate allocation in dis-
tributed stream processing systems under bursty workloads,” in SRDS,
October 2012, pp. 285–290.

[4] R. Weiss, K. Krogmann, Z. Durdik, J. Stammel, B. Klatt, and H. Kozi-
olek, “Sustainability guidelines for long-living software systems,” in
Proceedings of the 2012 IEEE International Conference on Software
Maintenance (ICSM), ser. ICSM ’12, September 2012, pp. 517–526.

[5] J. Greenfield and K. Short, Software Factories: Assembling Applications
with Patterns, Frameworks, Models and Tools. John Wiley and Sons,
2002.

[6] A. Mili, R. Mili, and R. Mittermeir, “A survey of software reuse
libraries,” Annals Software Eng., vol. 5, 1998, pp. 349–414.

[7] P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns. Addison-Wesley, 2002.

[8] E. Gamma, R. Helm, J. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley, 1995.

[9] W.-C. Huang and W. J. Knottenbelt, “Self-adaptive containers: Building
resource-efficient applications with low programmer overhead,” in Pro-
ceedings of the 8th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, 2013, pp. 123–132.

[10] A. Keller and H. Ludwig, “The WSLA framework: Specifying and mon-
itoring service level agreements for web services,” Journal of Network
and Systems Management, vol. 11, 2003, pp. 57–81.

[11] P. Horn, “Autonomic Computing: IBM’s Perspective on the State of
Information Technology,” 2011, presented at AGENDA 2001, Socttsdale,
Available via http://www.research.ibm.com/autonomic/.

[12] M. Rohr et al., “A classification scheme for self-adaptation research,” in
Proc. International Conference on Self-Organization and Autonomous
Systems In Computing and Communications (SOAS’2006), September
2006, p. 5.

[13] IBM Corp., An architectural blueprint for autonomic computing. IBM
Corp., Oct. 2004.

[14] IBM. Autonomic computing toolkit. [Online]. Available:
http://www.ibm.com/developerworks/autonomic/r3/overview.html [re-
trieved: April, 2005]

[15] J. P. Bigus, D. A. Schlosnagle, J. R. Pilgrim, W. N. Mills, and Y. Diao,
“Able: A toolkit for building multiagent autonomic systems,” IBM Syst.
J., vol. 41, no. 3, Jul. 2002, pp. 350–371.

[16] G. E. Kaiser, J. J. Parekh, P. Gross, and G. Valetto, “Kinesthetics
extreme: An external infrastructure for monitoring distributed legacy
systems,” in Active Middleware Services, 2003, pp. 22–31.

[17] D. Garlan, S.-W. Cheng, A.-C. Huang, B. R. Schmerl, and P. Steenkiste,
“Rainbow: Architecture-based self-adaptation with reusable infrastruc-
ture,” IEEE Computer, vol. 37, no. 10, 2004, pp. 46–54.

[18] A. Acharya, M. Ranganathan, and J. Saltz, “Sumatra: A language for
resource-aware mobile programs,” in Mobile Object Systems. Springer-
Verlag, 1997, pp. 111–130.

[19] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky, “Silt: A memory-
efficient, high-performance key-value store,” in Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles, ser.
SOSP ’11, 2011, pp. 1–13.

[20] D. R. Musser, G. J. Derge, and A. Saini, STL Tutorial and Reference
Guide: C++ Programming with the Standard Template Library. Boston,
Mass. Addison-Wesley, 2001.

[21] G. DeCandia et al., “Dynamo: Amazon’s highly available key-value
store,” in Proceedings of Twenty-first ACM SIGOPS Symposium on
Operating Systems Principles, 2007, pp. 205–220.

[22] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny, “Work-
load analysis of a large-scale key-value store,” in Proceedings of the 12th
ACM SIGMETRICS/PERFORMANCE Joint International Conference
on Measurement and Modeling of Computer Systems, 2012, pp. 53–64.

[23] B. Fitzpatrick, “Distributed caching with memcached,” Linux J., no. 124,
Aug. 2004, p. 5.

[24] J. Petrovic, “Using memcached for data distribution in industrial envi-
ronment.” in ICONS, 2008, pp. 368–372.

[25] Linkedin. Project Voldemort. [Online]. Available: http://www.project-
voldemort.com/voldemort/ [retrieved: January, 2014]

[26] M. Bruggmann. Sparkey. [Online]. Available:
https://github.com/spotify/sparkey-java [retrieved: March, 2014]

[27] Google. leveldb. [Online]. Available: http://code.google.com/p/leveldb/
[retrieved: December, 2013]

[28] M. Majkowski. Ydb. [Online]. Available: http://code.google.com/p/ydb/
[retrieved: October, 2010]

[29] Cassandra. Apache Cassandra. [Online]. Available:
http://cassandra.apache.org/ [retrieved: February, 2014]

[30] Basho. Riak. [Online]. Available: http://basho.com/riak/ [retrieved:
February, 2014]

[31] F. Labs. Tokyo Cabinet. [Online]. Available:
http://fallabs.com/tokyocabinet/ [retrieved: August, 2012]

[32] Aerospike. Aerospike. [Online]. Available: http://www.aerospike.com/
[retrieved: February, 2014]

[33] W. Knottenbelt, “Performance analysis of large Markov models,” Ph.D.
dissertation, Imperial College of Science, Technology and Medicine,
February 2000.

[34] Chiang et al., “External-memory graph algorithms,” in Proceedings of the
Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, 1995,
pp. 139–149.

[35] U. Meyer, P. Sanders, and J. F. Sibeyn, Eds., Algorithms for Memory
Hierarchies, Advanced Lectures [Dagstuhl Research Seminar, March 10-
14, 2002], ser. Lecture Notes in Computer Science, vol. 2625. Springer,
2003.

[36] N. R. Zeh, “I/O-efficient algorithms for shortest path related problems,”
Ph.D. dissertation, Carleton University, April 2002.

[37] R. Dementiev, L. Kettner, and P. Sanders, “STXXL: Standard Template
Library for XXL data sets,” Software: Practice and Experience, Aug
2007.

[38] D. Delling, P. Sanders, D. Schultes, and D. Wagner, “Engineering route
planning algorithms,” in Algorithmics of Large and Complex Networks.
Lecture Notes in Computer Science. Springer, 2009.

[39] U. Brandes, “A faster algorithm for betweenness centrality,” Journal of
Mathematical Sociology, vol. 25, 2001, pp. 163–177.

[40] 9th DIMACS Implementation Challenge. Shortest paths. [Online]. Avail-
able: http://www.dis.uniroma1.it/challenge9/download.shtml [retrieved:
June, 2010]

