
Imperial College London
Department of Computing

Self-Adaptive Containers:
A Novel Framework for Building Scalable QoS-Aware

Software with Low Programmer Overhead

Wei-Chih Huang

Submitted in part fulfillment of the requirements for the degree of
Doctor of Philosophy in Computing of Imperial College London

and the Diploma of Imperial College London
March 2015

Abstract

As the number of execution environments increases dramatically, ever-changing non-functional re-

quirements often lead to the challenge of frequent code refactoring. Despite help of traditional soft-

ware engineering techniques, adapting software to meet each execution environment and application

context remains a non-trivial endeavour. Manually reimplementing software possibly takes months

or years of programmer effort and requires high levels of expertise. Furthermore, to build software

for different execution environments often results in either a small code base which cannot guarantee

Quality of Service or a large manually-optimised code base which is difficult to maintain.

This thesis presents a novel self-adaptive container framework which can dynamically adjust its re-

source usage in an effort to meet resource constraints and scalability requirements. Each container

instance is associated with programmer-specified Service Level Objectives with respect to perfor-

mance, reliability, and primary memory use. To prevent ambiguity among multiple Service Level

Objectives, each of them is specified in the format of standard Web Service Level Agreement. This

framework features tighter functionality specification than that of standard container frameworks,

which enables greater scope for efficiency optimisations, including the exploitation of probabilistic

data structures, out-of-core storage, parallelism, and cloud storage. These techniques are utilised in

a low-cost way through the integration of third-party libraries, which also enable our framework to

provide a wider class of Service Level Objectives. In addition, to reduce the time of learning how to

use the framework, its interfaces are designed to be close to those of standardised libraries.

The framework has been implemented in C++ and utilised in two case studies centred on explicit

state-space exploration adopting a breadth-first search algorithm, and route planning adopting a Dijk-

stra’s shortest path algorithm. In order to illustrate the framework’s viability and capability, various

Service Level Objectives are assigned. Furthermore, the implementation of our framework is utilised

to explore approximately 240 million states in the first case study and to find the shortest path of a

graph representing the USA road network, containing approximately 24 million nodes and 58 mil-

lion arcs. The experimental results show that the framework is capable of dynamically adjusting its

resource usage according to assigned Service Level Objectives and dealing with large-scale data. At

the same time, the programmer overhead is kept low in terms of the degree to which code is modified.

3

4

Acknowledgements

I would like to thank:

• My supervisor, Dr. William Knottenbelt, for teaching me how to be a qualified researcher and

inspiring me to think and explore cutting-edge techniques

• My wife, Yaru, for keeping me company, taking care of me, helping me deal with trivia, and

giving me the most precious gift, Ian

• My parents, who give me full support to fulfil my dream

5

6

Dedication

This thesis is dedicated to my family. Without them, I won’t have the courage to leave my comfort

zone and to explore other possibilities in my life.

7

‘You must be shapeless, formless, like water. When you pour water in a cup, it becomes the cup.
When you pour water in a bottle, it becomes the bottle. When you pour water in a teapot, it becomes
the teapot. Water can drip and it can crash. Become like water my friend.’
Bruce Lee, Actor (1940 –1973)

8

Contents

Abstract 3

Acknowledgements 5

1 Introduction 19

1.1 Motivation . 19

1.2 Objectives . 24

1.3 Contributions . 25

1.4 Thesis Outline . 26

1.5 Publications and Statement of Originality . 28

2 Background and Related Context 30

2.1 Introduction . 30

2.2 Autonomic Computing . 32

2.3 Containers . 38

2.4 QoS Specification Languages . 40

2.5 Probabilistic Data Structures . 47

9

10 CONTENTS

2.6 Cloud Storage . 49

2.7 Third-Party Container Libraries . 51

2.8 Related Contexts . 53

2.8.1 Language Extensions for Building Self-Adaptive Systems 55

2.8.2 Reference Models for Building Self-Adaptive Systems 57

2.8.3 Dynamic Deployment of Data Structures 64

3 A Novel Self-Adaptive Container Framework 66

3.1 Introduction . 66

3.2 The Design of the Novel Self-Adaptive Container Framework 68

3.2.1 Application Programming Interface . 68

3.2.2 Self-Adaptive Unit . 73

3.2.3 Third-Party Libraries . 73

3.3 Self-Adaptive Mechanism . 74

3.3.1 SLO Metric . 74

3.3.2 Self-Adaptive Cycle . 74

3.3.3 Adaptation Actions . 75

3.4 The Utilisation of Probabilistic Data Structures . 76

3.5 A Prototype Implementation of the Self-Adaptive Container Framework 78

3.6 Case Study . 79

3.6.1 Comparison with Conventional Containers 81

3.6.2 Influence of SLO Priority Ordering . 83

CONTENTS 11

3.6.3 Exploiting Out-of-core Storage . 86

3.7 Conclusion . 86

4 Functionality Extension and Further Case Study 89

4.1 Introduction . 89

4.2 Key-Value Stores Design and Implementation . 91

4.3 Priority Queue . 92

4.4 Case Study . 94

4.4.1 Comparison with Conventional Containers 96

4.4.2 Influence of SLO Priority . 97

4.4.3 Exploiting Out-of-core Storage . 100

4.5 Conclusion . 101

5 Interoperability Extensions and Cloud Integration 103

5.1 Introduction . 103

5.2 The Integration of Out-of-core Container Frameworks 105

5.3 Parallelism Integration . 108

5.4 Cloud Storage Integration . 110

5.5 Case Study . 111

5.5.1 The Automatic Deployment of an Out-of-core Container Library 111

5.5.2 The Automatic Deployment of Parallelism 111

5.5.3 The Automatic Deployment of Cloud Storage 115

5.6 Conclusion . 121

6 Conclusion 122

6.1 Summary of Achievements . 122

6.2 Applications . 124

6.3 Future Work . 126

6.4 Final Thoughts . 128

Appendices 130

Appendix A An Expression of Service Level Objectives in WSLA format 130

Bibliography 148

12

List of Tables

1.1 The application domains adopting out-of-core storage, probabilistic data structures,

and parallelism . 22

2.1 The containers supported by Standard Template Library 39

2.2 The containers supported by the Java Collections Framework 40

2.3 The containers supported by Python . 41

2.4 The relationships between the involved parties and the types of Service Level Agree-

ments in SLAng . 43

2.5 The comparison of cloud storage services . 51

2.6 The third-party libraries supporting the techniques of out-of-core storage, probabilis-

tic data structures, parallelism, and self-adaptation 54

3.1 Definitions of Operation Descriptors . 70

3.2 Member functions provided by our framework and involved Operation Descriptors . 71

3.3 Combined Operation Descriptors for frequently used functionality 72

3.4 Currently supported QoS metrics . 72

3.5 The influence of various values of AdaptationFrequency on cumulative response time 81

13

6.1 The discussion of scenarios where programmers can or cannot benefit from our frame-

work . 126

14

List of Figures

1.1 The importance of QoS requirements on difference application contexts and execution

environments . 20

1.2 The conventional way to develop software for different execution environments . . . 24

1.3 Our vision to build single-version software for all execution environments 25

2.1 The architecture of autonomic elements (IBM, 2003; Kephart & Chess, 2003) 33

2.2 The hierarchy view of self-adaptive systems (Salehie & Tahvildari, 2009) 35

2.3 The XML schema and structure of Web Service Level Agreement (Ludwig, Keller,

Dan, King, & Franck, 2003) . 42

2.4 The XML schema and structure of Web Service Agreement (Andrieux et al., 2005) . 43

2.5 The structure of SLAng (Lamanna, Skene, & Emmerich, 2003) 44

2.6 The XML schema and structure of Web Service Offerings Language (Tosic, Patel, &

Pagurek, 2002) . 46

2.7 An example of how to express a performance query in the form of a performance tree

(Suto, Bradley, & Knottenbelt, 2006) . 46

2.8 The architecture of the self-testing autonomic container (Stevens, Parsons, & King,

2007) . 57

15

16 LIST OF FIGURES

2.9 Kramer and Magee’s three-layer reference model (Kramer & Magee, 2007) 58

2.10 The architecture of MADAM (Floch et al., 2006) 59

2.11 The adaptation infrastructure of Rainbow (Garlan, Cheng, Huang, Schmerl, & Steenkiste,

2004) . 60

2.12 The architecture of dynamicTao (Kon et al., 2000) 61

2.13 The architecture of Zanshin (Souza, 2012) . 62

2.14 The architecture of Aura (Garlan, Siewiorek, Smailagic, & Steenkiste, 2002) 63

2.15 The architecture of TOTA (Mamei & Zambonelli, 2009) 64

3.1 The self-adaptive container framework architecture 68

3.2 The structure of the improved sparse Bloom filter 77

3.3 The structure of our FIFO queue . 79

3.4 The naïve BFS (left) and the BFS adopting our framework (right) 80

3.5 The average insertion time of explored adopting conventional containers and our

framework . 82

3.6 The average search time of explored adopting conventional containers and our frame-

work . 82

3.7 The memory consumption of explored adopting conventional containers and our frame-

work . 83

3.8 The average insertion time under the six priority orderings 84

3.9 The average search time under the six priority orderings 84

3.10 The memory consumption under the six priority orderings 85

3.11 The reliability under the six priority orderings . 86

LIST OF FIGURES 17

3.12 The memory consumption of unexplored adopting STL’s queue (naïve queue) and our

framework (intelligent queue) . 87

4.1 The underlying data structures of the priority queue 94

4.2 The naïve Dijkstra’s shortest path algorithm (left) and the same algorithm adopting

our framework (right) . 95

4.3 The average insertion time of Distance adopting the STL map and our framework . . 96

4.4 The average update time of Distance adopting the STL map and our framework . . . 97

4.5 The memory consumption of Distance adopting the STL map and our framework . . 98

4.6 The average insertion time of our framework under the six priority orderings 98

4.7 The average update time of our framework under the six priority orderings 99

4.8 The memory consumption of our framework under the six priority orderings 100

4.9 The reliability variation of our framework under the six priority orderings 101

4.10 The memory consumption of PQ using the STL priority_queue (naïve queue) and our

framework (intelligent queue) . 102

5.1 The average insertion time of explored adopting STXXL, our framework using base-

line implementation, and our framework using STXXL 112

5.2 The average search time of explored adopting STXXL, our framework using baseline

implementation, and our framework using STXXL 112

5.3 The average insertion time of the STL set and our framework using TBB 113

5.4 The average search time of the STL set and our framework using TBB 114

5.5 The average push time of the STL queue and our framework using TBB 114

5.6 The average pop time of the STL queue and our framework using TBB 115

5.7 The average insertion time of STL map and our framework adopting TBB 116

5.8 The average update time of STL map and our framework adopting TBB 116

5.9 The average push time of STL priority_queue and our framework adopting TBB . . . 117

5.10 The average pop time of STL priority_queue and our framework adopting TBB . . . 117

5.11 The average insertion time of our framework using out-of-core storage and Amazon S3 118

5.12 The average search time of our framework using out-of-core storage and Amazon S3 119

5.13 The memory consumption of our framework using Amazon S3 119

5.14 The memory consumption of our framework using Amazon S3 for route planning . . 120

18

Chapter 1

Introduction

‘Our dilemma is that we hate change and love it at the same time; what we really want is for things to

remain the same but get better.’

Sydney J. Harris, American Journalist (1914 –1986)

1.1 Motivation

Modern software industries are faced with the explosion in number of execution environments (e.g.

tablet, smartphone, laptop, server, etc.) and application contexts (any information that can charac-

terise the situation of an application). When software is ported to a new execution environment,

its functionality requirements, which describe what software is supposed to do, can be easily sat-

isfied via cross-platform tools e.g. Marmalade (Marmalade, 2014), Titanium (Appcelerator, 2014),

Unity (Unity Technologies, 2015). However, these tools cannot automatically fulfil non-functional

requirements, which define how software is supposed to be. Consequently, software reimplementa-

tion remains a non-trivial job.

Applications in each potential execution environment may be assigned different non-functional re-

quirements (also known as Quality of Service requirements) in order to provide high quality user

19

20 Chapter 1. Introduction

experience. Consider Figure 1.1, which exhibits the importance of three common Quality of Ser-

vice (QoS) parameters on different application contexts and execution environments. As can be seen,

when games are executed on game consoles, their performance is expected at a high level in an ef-

fort to meet players’ expectation, which may result in high consumption of memory and electricity

power. By contrast, if games are operated on smartphones, lower performance can be allowed. That

is because high performance may rapidly exhaust limited memory space and battery power. A similar

situation can also be observed when web browsers run on smartphones, servers and game consoles.

Web browsers are frequently-used applications on smartphones, which leads to the demand of high

performance with low memory consumption. The same demand is not required when they are exe-

cuted on servers and game consoles because these two execution environments can supply sufficient

memory space and are not expected to be the main means of browsing web pages. As a result, QoS

requirements vary according to the target execution environment and application context.

Performance

Memory efficiency

Reliability

Antivirus Web browser Games

Game console

Smartphones

Servers

Critical

Non-Critical

Desirable

Figure 1.1: The importance of QoS requirements on difference application contexts and execution
environments

Adapting software to each execution environment and application context is not a trivial job, which

may involve months or years of programmer effort and require high levels of expertise. Even if

sound software engineering techniques are adopted to maximise software reuse, frequent and time-

consuming software reimplementation remains an unsolved challenge. To address this, we propose

a novel self-adaptive container framework which dynamically adapts to the QoS and scalability re-

quirements of its current execution environment.

1.1. Motivation 21

Our work is inspired by the discovery that similar techniques are reinvented for scalability, robust-

ness, and performance improvement across apparently different application domains. Table 1.1 lists

five application domains utilising the techniques of out-of-core storage, parallelism, and probabilis-

tic data structures to deal with massive input data. The first application domain, explicit state-space

exploration, is a main approach to performance verification of model-based concurrent systems. The

major issue regarding this domain is the large number of states, which causes the shortage of pri-

mary memory and performance deterioration. Subsequent adoption of these techniques has carried

the supported states forward (from ∼ 105 states to ∼ 1010 states (Bingham et al., 2010)).

The second application domain, DNA sequence assembly, refers to DNA sequence aligning and merg-

ing in order to reconstruct the original sequence. To effectively assemble DNA fragments, Idury and

Waterman (Idury & Waterman, 1995) introduce de Bruijn graphs, whose directed edges represent se-

quence reads or fragments of fixed size. It is then implemented in Euler (Pevzner, Tang, & Waterman,

2001, 17) and Velvet (Zerbino & Birney, 2008) software packages. However, the prohibitive memory

consumption of the two packages restricts the capacity to small genomes. To solve this issue, many

research teams make use of the similar techniques displayed in Table 1.1, which drive the assembly

capacity from organisms with ∼ 106 base pairs (e.g. simple virus) to organisms with ∼ 109 base

pairs (e.g. humans) (Chikhi & Rizk, 2012). Specifically, when impatiens genome (containing approx-

imately 300 million reads) is assembled, Velvet requires 20 GB memory space. By contrast, Minia

only consumes 1.2 GB (Kleftogiannis, Kalnis, & Bajic, 2013).

The third application domain, route planning, refers to the computation of the optimal route involving

several stopovers between two geographical locations. It has been widely used in GPS systems, whose

memory architecture consists of faster but limited primary memory and sufficient but slower out-of-

core memory (e.g. flash memory, memory card). Such architecture may rapidly exhaust primary

memory when a large-scale map is input. Through the adoption of parallelism, out-of-core storage,

and probabilistic data structures seen in Table 1.1, performance is considerably boosted and primary

memory consumption is reduced. For example, the query time of computing a route containing 30

million nodes is improved from 329 seconds to 42 seconds. Simultaneously, memory consumption

is reduced from 3735 MB (Goldberg & Werneck, 2005b) to 548 MB (P. Sanders, Schultes, & Vetter,

2008).

22 Chapter 1. Introduction

Application Domains Applied Techniques

Out-of-core Storage Probabilistic Data
Structures Parallelism

Explicit state-space
exploration

(Deavours &
W. H. Sanders, 1998)

(Knottenbelt &
Harrison, 1999)
(Kwiatkowska &

Mehmood, 2002)
(Bingham et al., 2010)

(Holzmann, 1988)
(Wolper & Leroy,

1993)
(Stern & Dill, 1995)
(Knottenbelt, 2000)
(Haverkort, Bell, &

Bohnenkamp, 1999)
(Bingham et al., 2010)

(Saad, Zilio, &
Berthomieu, 2010)

(Caselli, Conte, &
Marenzoni, 1995)
(Allmaier & Horton,

1997)
(Ciardo, Gluckman, &

Nicol, 1998)
(Knottenbelt &

Harrison, 1999)
(Edelkamp &

Sulewski, 2010)
(Bingham et al., 2010)

(Saad, Zilio, &
Berthomieu, 2010)

DNA sequence assembly

(Cook & Zilles, 2009)
(Kundeti,

Rajasekaran, Dinh,
Vaughn, & Thapar,

2010)
(Y. Li et al., 2012)

(Melsted & Pritchard,
2011)

(Pell et al., 2012)
(Chikhi & Rizk, 2012)

(Butler et al., 2008)
(B. G. Jackson,

Regennitter, Yang,
Schnable, & Aluru,

2010)
(Kundeti,

Rajasekaran, Dinh,
Vaughn, & Thapar,

2010)
(Y. Liu, Schmidt, &

Maskell, 2011)

Route planning / motion
planning

(T. Li, Yang, & Lian,
2012)

(Edelkamp & Schrödl,
2000)

(Goldberg &
Werneck, 2005a)

(Jiang, Ji, Wang, Zhu,
& Cheng, 2014)

(Wewetzer,
Scheuermann, Lübke,

& Mauve, 2009)
(Chi, Ning, Lang, &

Yuan, 2009)

(Witkowski, 1983)
(Gudaitis, Lamont, &

Terzuoli, 1995)
(Delling, Katz, &

Pajor, 2012)

Visualisation

(Chiang & Silva,
1999)

(Cignoni, Montani,
Rocchini, &

Scopigno, 2003)
(Vo, Silva,

Scheidegger, &
Pascucci, 2012)

(Upson et al., 1989)
(Abram & Treinish,

1995)
(Meredith, Ahern,

Pugmire, & Sisneros,
2012)

Similarity search

(Gionis, Indyk, &
Motwani, 1999)
(Fogaras & Rácz,

2005)
(Wang & K. Liu,

2012)

(Krishnamurthy et al.,
2007)

(Nie, Hua, Feng, Li,
& Sun, 2014)

(Zhao, Tang, & Ye,
2012)

(Berchtold, Böhm,
Braunmüller, Keim, &

Kriegel, 1997)
(Teodoro, Valle,

Mariano, Torres, &
Meira, 2011)

(Alabduljalil, Tang, &
Yang, 2013)

Table 1.1: The application domains adopting out-of-core storage, probabilistic data structures, and
parallelism

1.1. Motivation 23

The fourth application domain, visualisation, refers to a technique which makes use of images, di-

agrams, or animations to express data. When massive data is displayed, it has to be separated into

two parts (i.e. one part of data is stored in primary memory and the other part of data is stored in

disk) in an effort to reduce primary memory use. However, this may cause considerable performance

drop. A stockpile of research adopts parallelism and efficient out-of-core algorithms to boost process

time. Among them, Vo et al. lessen the time of visualising the Happy Buddha statue (Levoy, 2013),

which consists of approximately 0.5 million vertices and one million triangles, from 71 seconds to

0.4 second (Vo, Silva, Scheidegger, & Pascucci, 2012).

The final application domain, similarity search, represents the finding of the closet pairs in a data li-

brary. Its application entails multimedia, chemistry, and biology. Similar to the above-mentioned ap-

plication domains, a large-sized data library may cause either performance decline or primary memory

shortage. The similar techniques (i.e. out-of-core storage, parallelism, and probabilistic data struc-

tures) are also adopted to solve this issue. Take protein search on a 20 giga-base pairs dataset for

example. Zhao et al. exploit a probabilistic data structure, which reduces memory consumption from

8 GB to 2 GB and response time from 3 weeks to 5 hours (Zhao, Tang, & Ye, 2012).

The above-mentioned application domains reveal a lot of commonality. First, Bloom filters or their

variants are commonly adopted to reduce primary memory use. Second, the adopted techniques are

implemented and maintained by individual research teams. Finally, the problems they try to solve

are all related to how to efficiently manipulate large-scale data. This is the reason why this thesis

focuses on containers, which encapsulate the ways of storing data and manipulating it. In other

words, data is efficiently stored and manipulated by our containers. Furthermore, the selection of a

proper container data structure is frequently the bottleneck of QoS (Isensee, 2014). As a result, we

design and implement self-adaptive containers that can automatically choose a data structure when

software starts to be executed and dynamically change it to meet QoS requirements.

Through the utilisation of self-adaptive containers, our vision is to build a single code base which

satisfies functional requirements and adapt at run time to meet varying QoS requirements in differ-

ent execution environments. As can be seen in Figure 1.2, traditionally, functional requirements and

QoS requirements are hard-coded in programs. Since QoS requirements are mixed with code and

24 Chapter 1. Introduction

functional requirements, the modification of QoS requirements may lead to software reimplementa-

tion. By contrast, as can be seen in Figure 1.3, the concern of QoS requirements is separated from

programs and QoS requirements of target environments are dynamically achieved by our framework.

This brings the following advantages to programmers, managers, and end-users. For programmers,

the tedium of reimplementing software to meet various execution environments, application contexts,

and QoS requirements is prevented through the self-adaptive mechanism, which will take care of pe-

ripheral concerns (Lalanda, McCann, & Diaconescu, 2013). As a result, programmers can put their

effort on algorithm implementations. For managers, the effort to build robust and scalable software

and the requirement for very skilled programmers are considerably reduced (Kramer & Magee, 2007).

Furthermore, software becomes easily managed owing to a single code base of software which can

satisfy varying QoS requirements. For end-users, the Quality of Service they experience is consistent

with the expectation of Service Level Objectives on different environments.



Programmer Program







Environment

Implement

Library
…… ••••

SLO1

SLO2
SLO3

QoS Req. Code

Assign

Deploy

Functional Req.

…… +

Library
…… ••••

SLO1

SLO2
SLO3

QoS Req. Code

Assign

Deploy

Functional Req.

…… +

Library
…… ••••

SLO1
SLO2
SLO3

QoS Req. Code

Assign

Deploy

Functional Req.

…… +

Library
…… ••••

SLO1

SLO2
SLO3

QoS Req. Code

Assign

Deploy

Functional Req.

…… +

Figure 1.2: The conventional way to develop software for different execution environments

1.2 Objectives

The aims and objectives of this thesis are

• To offer a container framework which separates out QoS concerns from programs and dynami-

cally adjusts its underlying data structures so as to prevent frequent software reimplementation.

1.3. Contributions 25

Program






Environment

SLO1
SLO2
SLO3

QoS requirement

SLO1
SLO2
SLO3

SLO1
SLO2
SLO3

SLO1
SLO2
SLO3

…..



Programmer

Our framework

API

SAU

…..

Library

Assign

Deploy

Implement

…..

Functional Req.

Code

Figure 1.3: Our vision to build single-version software for all execution environments

• To feature tighter functionality specification in an effort to provide greater scope for efficiency

optimisation, including the techniques of parallelism, probabilistic data structures, and out-of-

core storage.

• To provide a mechanism for specifying Service Level Objectives.

• To exploit third-party container libraries in order to broaden the class of Service Level Objec-

tives at low cost.

• To investigate alternatives to disk-based out-of-core memory space.

• To devise a means of providing a straightforward and low-overhead way of satisfying different

QoS requirements and migrating existing code from one execution environment to another.

1.3 Contributions

This thesis presents a container framework which dynamically adapts its data structures in order

to meet Service Level Objectives (SLOs) and which features tighter functionality specification for

greater scope of efficiency optimisations. This thesis yields the following specific contributions:

26 Chapter 1. Introduction

• The self-adaptive container framework is designed and implemented in C++. Its underlying data

structures are automatically selected and dynamically changed by a classical self-adaptive cycle

composed of an Observer, an Analyser, and an Adaptor according to specified functionalities

and Service Level Objectives in terms of performance, primary memory use, and reliability.

• The framework supplies operation descriptors through which a suitable data structure (e.g.

FIFO queue, priority queue, trees, probabilistic data structures, out-of-core data structures)

can be chosen at run time. For probabilistic data structures, an improved sparse Bloom filter,

whose performance, memory use, and reliability can be dynamically adjusted, is implemented.

• It accepts programmer-specified Service Level Objectives in the format of Web Service Level

Agreement.

• It contains an abstract layer to integrate third-party libraries and APIs including CityHash for

generating uniformly-distributed hash keys, STXXL for out-of-core storage, Intel Threading

Building Blocks for parallelism, and WebStor for cloud storage.

• It can dynamically transfer data from and to cloud storage (Amazon Simple Storage Service)

via the utilisation of WebStor when memory-related SLOs are violated.

• The framework is applied to the domains of state-space exploration adopting a breadth-first

search algorithm and route planning adopting a Dijkstra’s shortest path algorithm. The former

algorithm is used to explore approximately 240 million states, and the latter is assigned approx-

imately 23 million nodes and 58 million edges. The results suggest that software deploying

the framework can dynamically adjust itself to satisfy specified SLOs. Simultaneously, existing

code only needs to modify declaration of container variables.

1.4 Thesis Outline

The remainder of this thesis is organised as follows.

Chapter 2 introduces the two fundamental concepts of this framework, autonomic computing and

containers. We then present QoS specification languages including Web Server Level Agreements,

1.4. Thesis Outline 27

Web Service Agreement specification, SLAng, Web Service Offerings Language, and Performance

Trees. After the description and comparison of the QoS specification languages, Bloom filters and

their variants are presented. Cloud storage is then introduced. Next, we compare the capability of

well-developed container libraries from the perspectives of out-of-core storage, parallelism, proba-

bilistic data structures, and self-adaptation. Finally, we discuss related contexts which involve lan-

guage extensions and reference models for building self-adaptive systems as well as techniques of

dynamically changing data structures.

Chapter 3 presents the novel self-adaptive container framework from the functionality of its three

major components to the responsibilities of units in each major component. We then describe the

core of our framework, self-adaptive mechanism, in detail. The whole mechanism is formed by SLO

metrics, a self-adaptive cycle, and adaptation actions. Finally, a prototype is implemented and applied

to a case study centred on explicit state-space exploration, adopting a breadth-first search algorithm,

in order to show the viability, capability, and scalability of the framework.

Chapter 4 illustrates the extensions of our framework’s functionality. The functionality of the previ-

ously developed prototype is broadened through the implementation of key-value stores and priority

queues. The former have been supported by many programming languages and adopted in many in-

dustries managing large-scale data, and the latter are widely exploited by scheduling and networking.

In addition, the enhanced prototype is applied to a new case study centred on route planning, adopting

a Dijkstra’s shortest path algorithm. The experimental results suggest that the extended functionalities

support the dynamic adjustment of QoS with low programmer overhead.

Chapter 5 presents the way to cooperate with other container libraries and cloud storage. The purpose

of cooperation with other libraries is to achieve out-of-core storage and parallelism at low cost and

to provide a broader class of Service Level Objectives. The container libraries we choose to fulfil

the functionality of out-of-core storage and parallelism are STXXL and Intel Threading Building

Blocks, respectively. We then describe how to effectively utilise cloud storage, which has become

important in recent years. The dynamic deployment of cloud storage can supply alternative external

memory when other memory spaces are not available and prevent programmers from reimplementing

software when cloud storage services change. The case studies utilised in Chapter 3 and Chapter 4 are

28 Chapter 1. Introduction

investigated again to show the impact on performance and memory consumption when our framework

dynamically activates these libraries and cloud storage.

Chapter 6 concludes this thesis with a summary of our achievement, a discussion of applications,

and the directions of future research.

Appendix A shows how to express Service Level Objectives in the format of Web Service Level

Agreement.

1.5 Publications and Statement of Originality

I declare that this thesis was composed by myself, and that the work it presents is my own, unless

stated otherwise.

The following publications arose from the work carried out during my PhD:

• 8th International Symposium on Software Engineering for Adaptive and Self-Managing

Systems (SEAMS 2013) (Huang & Knottenbelt, 2013) presents a self-adaptive container frame-

work which can dynamically change the underlying data structures so as to meet programmer-

specified Service Level Objectives expressed in the format of Web Service Level Agreement.

This paper also illustrates the dynamic exploitation of out-of-core storage and probabilistic data

structures. Furthermore, a case study centred on explicit state-space exploration is investigated

to show the feasibility, scalability, and capability. The experimental results reveal that our

framework is capable of boosting performance and reducing memory consumption based on

assigned SLOs. The work presented in Chapter 3 is based on this paper.

• 6th International Conference on Adaptive and Self-Adaptive Systems and Applications

(ADAPTIVE 2014) (Huang & Knottenbelt, 2014b) extends our paper published in SEAMS

2013. This paper broadens the functionality of the previously-developed prototype in terms of

the support of priority queues and key-value stores. In addition, a new case study, route planning

utilising a Dijkstra’s shortest path algorithm, is investigated in order to exhibit the ability of the

1.5. Publications and Statement of Originality 29

enhanced prototype. Similarly, the experimental results suggest that the framework yields better

performance and consume less memory space compared to the STL containers. In addition, the

framework can dynamically adjust the underlying data structures and deploy the techniques

of out-of-core storage and probabilistic data structures. Simultaneously, code modification is

restricted to declaration of container variables. The content of Chapter 4 is based on this paper.

• Chapter 5 in Handbook of Research on Emerging Advancements and Technologies in

Software Engineering (Huang & Knottenbelt, 2014a) surveys many application domains deal-

ing with large-scale data, entailing explicit state-space exploration, route planning, DNA se-

quence assembly, visualisation, and similarity search, as well as related research areas includ-

ing self-adaptive systems, QoS specification languages, probabilistic data structures, and third-

party libraries supporting the techniques of out-of-core storage, parallelism, probabilistic data

structures, and self-adaptation. It also discusses some limitations of the framework and possible

solutions to overcome them. The material presented in Chapter 2 is based on this work.

• 11th IEEE International Conference on Autonomic and Trusted Computing (ATC 2014)

(Huang & Knottenbelt, 2014c) integrates cloud storage and extends the framework’s interop-

erability through the cooperation with third-party libraries. Cooperating with these libraries

enables our framework to explore a low-cost way of supporting out-of-core storage and paral-

lelism and to provide a broader class of Service Level Objectives, especially those related to

performance and memory consumption. The integration of cloud storage enables our frame-

work to offer alternative out-of-core memory and prevent implementation of data access meth-

ods for different cloud storage services. The material featured in Chapter 5 is based on this

paper.

Chapter 2

Background and Related Context

‘Life is neither static nor unchanging. With no individuality, there can be no change, no adaptation

and, in an inherently changing world, any species unable to adapt is also doomed’

Jean M. Auel, American Writer

2.1 Introduction

This chapter introduces the background knowledge we adopt to build the self-adaptive container

framework. We first describe autonomic computing, which aims to reduce rapidly growing software

complexity. An autonomic computing system refers to a system with the ability of self-management.

Such system can be built through a variety of methodologies such as feedback control loops, pro-

gramming language extensions, component-based software engineering, and external self-adaptive

architectures. We will review the most commonly-used feedback control loop, MAPE-K (Kephart

& Chess, 2003; IBM, 2003), and classify our methodology through the taxonomies presented in the

following surveys: Huebscher and McCann, 2008, Salehie and Tahvildari, 2009, Khalid, Haye, Khan,

and Shamail, 2009, Macías-Escrivá, Haber, del Toro, and Hernandez, 2013, and Krupitzer, Roth,

VanSyckel, Schiele, and Becker, 2014.

30

2.1. Introduction 31

Next, we present three standard container libraries, Standard Template Library (Josuttis, 2012), Java

Collections Framework (Watt & D. Brown, 2001), and Python, all of which are implemented as

template classes to store a variety of data types, hide development details from programmers, and

reduce development time in terms of the reuse of existing code.

Our framework accepts programmer-specified Service Level Objectives, which should ideally be de-

fined rigorously. We, therefore, survey five QoS specification languages: Web Service Level Agree-

ment (Keller & Ludwig, 2003), Web Service Agreement Specification (Andrieux et al., 2005), SLAng

(Lamanna, Skene, & Emmerich, 2003), Web Service Offerings Language (Tosic, Patel, & Pagurek,

2002), and Performance Trees (Suto, Bradley, & Knottenbelt, 2006), and compare them in order to

find a QoS specification language which is suitable for our framework.

Probabilistic data structures are an effective means which is capable of considerably saving primary

memory. As a result, our framework may adopt probabilistic data structures as the underlying data

structure when sub-100% reliability requirements and limited functionalities are allowed. We will

review the most widely-used probabilistic data structure: Bloom filters (Bloom, 1970), followed by

their variants, counting Bloom filters (Fan, Cao, Almeida, & Broder, 2000), compressed Bloom filters

(Mitzenmacher, 2001), scalable Bloom filters (Almeida, Baquero, Preguiça, & Hutchison, 2007), and

sparse Bloom filters (Knottenbelt, 2000).

We will present an introduction to cloud storage, including private, public, hybrid, and personal cloud

storage, and challenges to implement software supporting cloud storage. This chapter will also discuss

how to overcome these challenges through the exploitation of our framework.

Next, we classify third-party libraries which enhance the functionality of Standard Template Library

(STL) and Java Collections Framework (JCF) in an effort to deal with large-scale data. STL and

JCF provide general-purpose containers, which suffer from serious performance deterioration and

primary memory shortage when a large amount of data is input. Hence, many container libraries are

implemented so as to boost performance and reduce memory consumption. Furthermore, some of

them have the ability to self-optimise performance. We will analyse these libraries to identify their

abilities, which enables our framework to properly cooperate with them and to provide wider classes

of SLOs.

32 Chapter 2. Background and Related Context

Finally, we conclude this chapter by reviewing existing language extensions and reference models

utilised for building self-adaptive systems as well as the techniques of dynamically changing data

structures.

2.2 Autonomic Computing

The term autonomic computing derives from the human autonomic nervous system, which can un-

consciously control human bodies (e.g. heart rate, salivation, perspiration) and was proposed by

IBM (Horn, 2001). It is aimed at reducing the complexity of a rapidly growing system via self-

management. As a result, an autonomic computing system should exhibit the properties of self-

configuration, self-healing, self-optimisation, and self-protection (so-called self-CHOP) (Murch, 2004),

which are defined as follows:

• Self-configuration: The ability of a system to automatically adjust itself.

• Self-healing: The ability to detect, analyse, and repair faults.

• Self-optimisation: The ability to evaluate the current performance and attempt to keep improv-

ing it with respect to assigned requirements.

• Self-protection: The ability to be aware of potential threats in order to defend against them.

As shown in Figure 2.1, an autonomic computing system is a collection of autonomic elements each

of which consists of autonomic managers and managed resources (Kephart & Chess, 2003). Managed

resources may entail hardware resources (e.g. storage, CPU) or software resources (e.g. database). An

autonomic manager is responsible for monitoring and controlling managed resources through sensors

and effectors, respectively. Furthermore, an autonomic manager should contain a control loop to

manage resources. The most well-known control loop is IBM’s MAPE-K (Monitor, Analyse, Plan,

Execute, and Knowledge) control loop (IBM, 2003; Kephart & Chess, 2003), where Monitoring com-

ponent observes and captures data from managed resources via sensors, Analysing component per-

forms data analysis in accordance with information reported from Monitoring component, Planning

2.2. Autonomic Computing 33

component receives change requests sent from Analysing component and selects a suitable action to

adjust managed resources, Executing component conducts the actions suggested by Planning compo-

nent through effectors, and Knowledge component stores data related to metrics, logs, symptoms, and

policies shared by the other components. MAPE-K has been implemented in several projects such

as Autonomic Toolkit (IBM, 2005), ABLE (Bigus, Schlosnagle, Pilgrim, Mills, & Diao, 2002), and

Kinesthetics eXtreme (Kaiser, Parekh, Gross, & Valetto, 2003).

Managed resources

Sensor Effector

Autonomic Element

Autonomic Manager

Monitor Execute

Analyse Plan

Knowledge

Figure 2.1: The architecture of autonomic elements (IBM, 2003; Kephart & Chess, 2003)

Several studies have been conducted to categorise autonomic computing systems. We will classify

our framework through these studies. After the concept of autonomic computing was proposed, IBM

introduced an Autonomic Computing Adoption Model (IBM, 2003), which divides systems into five

levels according to the degree of autonomic capability. The first level is Basic level, which requires

professional staff to manage systems. The second level is Managed level, where professional staff can

utilise efficient ways to manage systems. In other words, management effort is significantly reduced.

The third level is Predictive level, where system behaviour patterns are recognised for manually pre-

dicting suitable configurations and suggesting an action. The fourth level is Adaptive level, where

human intervention is minimised due to the analysis and actions in response to environment changes

34 Chapter 2. Background and Related Context

being automatically taken by systems. The final level is Autonomic level, where systems dynami-

cally adapt to satisfy Service Level Objectives without external intervention. In the context of IBM’s

model, software utilising our framework meets the definition of Autonomic level because it can adapt

itself according to specified Service Level Objectives.

Huebscher and McCann’s (Huebscher & McCann, 2008) define four elements of autonomicity: Sup-

port, Core, Autonomous, and Autonomic. The Support element refers to a work whose self-adaptation

only focuses on part of its component or functionality. The Core element represents that the core ap-

plication of an system is driven by a self-adaptive mechanism. In addition, systems falling into this

category cannot accept high-level policies. The Autonomous element involves intelligence and agent-

based technologies. Systems falling into this category can adapt themselves to handle failures but they

do not measure performance or adjust themselves to achieve performative goals. The Autonomic el-

ement considers high-level objective specification (e.g. business goals, Service Level Agreements).

Based on this classification, our framework falls into Autonomic category due to the consideration of

Service Level Objectives.

Salehie and Tahvildari (Salehie & Tahvildari, 2009) propose a taxonomy to categorise research related

to autonomic computing. In their point of view, self-adaptive systems can be divided into Primitive

level, Major level, and General level, which can be seen in Figure 2.2, based on their self-* properties.

Systems falling into the Primitive level have the ability to monitor environments and contexts but

cannot manage themselves. Systems falling into the Major level embody a subset of self-CHOP

properties. Systems categorised in the General level contain all self-* properties. Based on this

hierarchy, a system is further classified by answering W5H1 (i.e. where, when, what, why, who, and

how) questions, e.g. which part of the system can be changed? (where), when can the system be

changed? (when), what resources can be adjusted? (what), why is self-adaptation needed? (why),

who is responsible for system changes? (who), and how is the adaptation applied? (how), which

help programmers develop self-adaptive mechanisms in the development phase and enable software

to adapt itself in the operating phase. Self-adaptation in the operating phase is carried out by a

cycle composed of Monitoring, Analysing, Planing, and Executing element. Monitoring element asks

questions related to where, when, what. When an adaptation should be taken is asked by Analysing

element, what resources have to be changed and how to change them are answered by Planning

2.2. Autonomic Computing 35

element. Finally, how, when, and what to change are asked by Executing element. According to

this classification method, software adopting our framework falls into the Major level because it can

automatically optimise and configure itself.

Self-Adaptiveness

Self-Configuring

Self-Optimising

Self-Healing

Self-Protecting

Self-Awareness Context-Awareness
Primitive Level

Major Level

General Level

Figure 2.2: The hierarchy view of self-adaptive systems (Salehie & Tahvildari, 2009)

Khalid et al. (Khalid et al., 2009) review existing autonomic computing frameworks, architectures, in-

frastructures, and techniques. The existing methodologies are categorised into biologically-inspired,

large-scale distributed, agent-based, component-based, technique-focused, service-oriented, and non-

autonomous-system-specific frameworks or architectures. For biologically-inspired methodologies,

their self-adaptive mechanisms mimic biological systems. Large-scale distributed methods focus on

building large-scale distributed databases and systems which are able to manage themselves. Agent-

based methodologies break systems into various agents each of which can manage itself and commu-

nicate with other agents. Component-based methodologies achieve self-adaptation by means of recon-

figuration of components. Technique-focused methodologies utilise artificial intelligence and control

theory to build self-adaptive systems. Service-oriented methodologies refer to the exploitation of self-

adaptive mechanisms in service-based applications such as web services. Non-autonomous-system-

specific methodologies represent the injection of autonomic mechanisms into existing non-autonomic

systems. In addition to the review of existing methodologies, techniques achieving self-CHOP prop-

36 Chapter 2. Background and Related Context

erties (e.g. hot swapping, machine learning, control theory, etc.) are identified as well. Based on this

classification, our framework makes use of component-based methodologies since components (i.e.

data structures) are dynamically changed to meet specified Service Level Objectives.

Macías-Escrivá et al. (Macías-Escrivá et al., 2013) survey recent research to identify research issues

and methods of developing autonomic computing systems. They categorise existing methodologies

into six main approaches, four global tools and methods, as well as three specific tools and meth-

ods. The six main approaches include external control mechanisms, component-based software en-

gineering, model-driven approaches, nature-inspired engineering, multiagent systems, and feedback

systems. The external control mechanisms refer to utilisation of the methodology which splits the

component managing self-adaptation from existing systems. These mechanisms are suitable for soft-

ware whose source code is missing. The component-based software engineering designs components

which can be replaced at run time, utilises numerical metadata to find the most suitable component,

and integrates caching techniques to reduce the time of finding candidate components. The model-

driven approaches make use of abstract models for self-adaptation and then perform transformation

from abstract models to code. The nature-inspired engineering, which refers to the biologically-

inspired methodologies in Khalid et al.’s classification, derives from natural and biological systems.

Multiagent systems, which utilise agent-based technologies, support self-adaptation through agents

which can cooperate with other agents to complete their jobs. The feedback systems exploit con-

trol loops to fulfil the functionality of self-adaptation. Based on their classification, our framework

exploits feedback loop approach because it adopts a control loop to monitor resources, analyse op-

eration profile, and perform adaptations. In addition, we also adopt component-based software engi-

neering to dynamically change components. The four global tools and methods, which are divided

into models, simulation, architecture, and frameworks, are general-purpose methodologies for imple-

menting whole self-adaptive systems. The three specific tools and methods, which are categorised

into feedback control loops, decision-making, and requirements-engineering, only support parts of

self-adaptation such as monitoring or planning.

In Krupitzer et al.’s work (Krupitzer et al., 2014), existing research is reviewed and a taxonomy

is proposed. Their taxonomy, which is similar to Salehie and Tahvildari’s classification methodol-

ogy, comprises five dimensions, Time (corresponding to When question), Reason (corresponding to

2.2. Autonomic Computing 37

Why question), Level (corresponding to Where question), Technique (corresponding to What ques-

tion), and Adaptation Control (corresponding to How question). Since self-adaptation is performed

by self-adaptive mechanisms, Who question is not asked. In addition, their survey classifies exist-

ing approaches through the adaptation logic, which is a process of controlling resources through

monitoring, analysing, and adjusting. Based on the nature of the adaptation logic, approaches for

building self-adaptive systems are model-based, architecture-based, reflection-based, programming

paradigms, control theoretic, service-oriented, agent-based, nature-inspired, formal modelling and

verification-based, learning-based, requirements engineering-based, or task-based approaches. Com-

pared to Macías-Escrivá et al.’s survey, Krupitzer et al.’s work does not include external control

mechanism, component-based software engineering, and feedback systems. Specifically, the ex-

ternal control mechanism is included in the architecture-based approaches. The component-based

software engineering approaches are broken into architecture-based approaches and programming

paradigms. The feedback systems fall into control theory. Furthermore, new categories, namely

reflection-based approaches, programming paradigms, service-oriented approaches, formal modelling

and verification-based approaches, are considered. The reflection-based approaches refer to software

which has the ability to monitor (so-called introspection) and modify (so-called intercession) its ar-

chitecture or behaviour at run time. The programming paradigms represent the development of self-

adaptive systems via the utilisation of programming approaches, which are not originally designed

for building of such systems. The service-oriented approaches make use of services, each of which is

an autonomous unit designed for a specific task, to build self-adaptive systems. The formal modelling

and verification-based approaches refer to the utilisation of formal methods to guarantee behavioural

or structural correctness of self-adaptive systems. One approach adopting formal methods to achieve

self-adaptation is presented by Aidarov, Ezhilchelvan, and Mitrani, 2013, who make use of queueing

models in an effort to minimise energy consumption and maximise performance in service provi-

sioning environments. Furthermore, one of the approaches exploiting formal methods to verify the

behaviour of self-adaptation is proposed by Schaeffer-Filho, Lupu, Sloman, and Eisenbach, 2009.

They introduce a formal model to verify policies and functionality of self-managed cells via the Alloy

analyser (D. Jackson, 2002).

38 Chapter 2. Background and Related Context

2.3 Containers

Containers are abstract data types whose instances hold a collection of objects. They are supported in

many programming languages (e.g. C++, Java, Python) and implemented in various frameworks and

libraries (e.g. Standard Template Library, Java Collections Framework, AS3Commons Collections

Framework, and .NET’s System.Collections) through the use of template classes in order to store

different data types and supply either member functions or iterators to access stored objects. In this

section, we will briefly introduce the most-commonly used container libraries, Standard Template

Library (Josuttis, 2012), Java Collections Framework (Watt & D. Brown, 2001), and Python.

Standard Template Library (STL) is a C++ container library, whose supported containers are shown in

Table 2.1. As can be seen, STL consists of sequence containers, associative containers, unordered as-

sociative containers and container adaptors. Sequence containers support the functionality of sequen-

tial access. Associative containers sort stored objects according to a predefined order (e.g. ascending

order). Unordered associative containers utilise hash tables to store objects. Container adaptors are

interfaces on top of sequence containers. In other words, sequence containers can be exploited to

implement the functionality of a certain container adaptor. For example, the functionality of queue

can be implemented through deque or list.

Containers in Java Collections Framework (JCF) are composed of interfaces and implementations.

The separation between interfaces and implementations allows programmers to implement different

methods for the same interface. Similar to STL, JCF supports generics, which enables the same

container to store different data types without duplicate code. The interfaces provided by JCF are

displayed in Table 2.2, which shows that JCF’s containers are classified as Collection and Map. The

former provides single-value containers, and the latter provides key-value containers.

Python is a programming language which aims to build more readable software with fewer lines of

code compared to other languages such as C++. It provides three types of containers, which are

exhibited in Table 2.3. The first type is the sequence type, which consists of list, bytearray, str,

bytes, and tuple. The difference between list and tuple is the ability of modifying contents. Content

modification is not allowed in tuple, which enables tuple to be used as keys in the mapping type. The

2.3. Containers 39

Sequence Container
Name Description
array statically allocated continuous array
vector dynamically allocated continuous array
deque double-ended queue
forward_list singly-linked list
list doubly-linked list

Associative Container
Name Description
set collection of unique keys, sorted according to predefined orders
map collection of key-value pairs, sorted by unique keys according to predefined orders
multiset collection of keys, sorted according to predefined orders
multimap collection of pairs of keys and values, sorted by keys according to predefined orders

Unordered Associative Container
Name Description
unordered_set collection of unique keys, sorted by hashes of keys
unordered_map collection of key-value pairs, sorted by hashes of keys
unordered_multiset collection of keys, sorted by hashes of keys
unordered_multimap collection of key-value pairs, sorted by hashes of keys

Container Adaptors
Name Description
stack LIFO functionality
queue FIFO functionality
priority_queue data is stored and manipulated according to priorities

Table 2.1: The containers supported by Standard Template Library

40 Chapter 2. Background and Related Context

Collection
Interface Implementation Description
Set HashSet Set implementation which stores objects in hash tables

TreeSet
Set implementation which stores objects in red-black trees according
to their values

LinkedHashSet
Set implementation utilising hash tables where objects can be traversed
through linked lists according to their insertion orders

List ArrayList Resizable array implementation
LinkedList Doubly-linked list

Queue LinkedList FIFO queue
Deque LinkedList Double-ended queue

Map
Interface Implementation Description
Map HashMap Hash table storing key-value pairs and accepting null keys and values

TreeMap
Red-black tree implementation where objects are sorted by their
keys

LinkedHashMap
Implementation combining hash tables and linked list, whereby
elements can be traversed according to their insertion orders through
the linked lists

Table 2.2: The containers supported by the Java Collections Framework

second type is the mapping type (i.e. key-value stores), which contains dist. Elements stored in dist

can have different types, but all of them are unique. In other words, if a duplicate element is inserted,

the earlier stored element will be replaced. The final type is the set type, which is composed of set

and frozenset. They are similar containers, but elements in frozenset cannot be modified.

2.4 QoS Specification Languages

The concept of Quality of Service originates from networking and has now been applied in many

domains to identify the responsibility of involved parties, properties of services, desired levels of

these properties, and consequences if the levels are not met. To clearly specify QoS, involved parties

should sign a Service Level Agreements (SLA) contract. An SLA entails properties of services, met-

rics of these properties (i.e. Service Level Indicators), desired levels of these properties (i.e. Service

Level Objectives), and consequences when objectives are violated. SLAs are frequently confused

with SLOs. Hence, we use the following description given by John Wilkes to explain the difference

between an SLA and an SLO:

2.4. QoS Specification Languages 41

Sequence Type
Name Description
list A list which can store mixed data types
bytearray A sequence of bytes whose content can be modified
str A character string whose content cannot be modified after it is declared
bytes A sequence of byte whose content cannot be modified after it is declared
tuple Similar to list but its content cannot be modified

Mapping Type
Name Description
dict An associative array which stores pairs of key and values

Set type
Name Description

set
A collection of elements which does not have duplicate elements and can contain
mixed data types

frozenset set whose content cannot be modified

Table 2.3: The containers supported by Python

‘Why do people keep talking about "SLA violations"? That makes no sense: SLA stands for Service

Level Agreement – i.e., an agreement, or contract, that includes a service level, not just a specific

agreed-to-service level – the latter is much better called an SLO, or Service Level Objective. (The

SLA adds things like how much you will pay for obtaining that level of service, or penalties if the

provider doesn’t do so.)’

John Wilkes, Principal Software Engineer, Google

Many QoS specification languages have been proposed to help involved parties formally define their

services. This section will present five well-known QoS specification languages: Web Service Level

Agreement (Keller & Ludwig, 2003), Web Service Agreement Specification (Andrieux et al., 2005),

SLAng (Lamanna et al., 2003), Web Service Offerings Language (Tosic et al., 2002), and Performance

Trees (Suto et al., 2006).

Web Service Level Agreement (WSLA) (Keller & Ludwig, 2003) is an XML-based language used

for monitoring and measuring QoS parameters and negotiating Service Level Agreements. The XML

schema and structure of WSLA are shown in Figure 2.3. As can be seen, WSLA consists of a Parties

section, a ServiceDescription section, and an Obligations section. The Parties section involves groups

divided into signatory parties and supporting parties. Signatory parties (i.e. service providers and

service customers) are supposed to sign the SLA. Supporting parties supply signatory parties with

42 Chapter 2. Background and Related Context

measurement and condition evaluation services. The ServiceDefinition section specifies properties of

various services. Each property is mapped to an SLAParameter and a metric. A metric may specify

either a way to measure a source through the definition of MeasurementDirective or a way to compute

the metric through a Function. The Obligations section defines Service Level Objectives and actions

to guarantee them. A Service Level Objective is a commitment of the maintenance of a certain service

level for a period of time. It specifies the target property and service level via a SLAParameter and a

Predicate (i.e. greater than, equal, less than, etc.), respectively. An action guarantee defines activities

(e.g. a particular notification or control activity) to be taken when its corresponding Service Level

Objective is not met.

<xsd:complexType name="WSLAType">

<xsd:sequence>

<xsd:element name="Parties" type="wsla:PartiesType"/>

<xsd:element name="ServiceDefinition"

type="wsla:ServiceDefinitionType"

maxOccurs="unbounded"/>

<xsd:element name="Obligations" type="wsla:ObligationsType"/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name="SLA" type="wsla:WSLAType"/>

Web Service Level Agreement

Parties

Service Definition

Obligations

Figure 2.3: The XML schema and structure of Web Service Level Agreement (Ludwig, Keller, Dan,
King, & Franck, 2003)

Web Service Agreement specification (WS-Agreement) (Andrieux et al., 2005), whose architecture

and XML schema are shown in Figure 2.4, is an XML schema whose objective is to create guarantee

terms between service providers and service customers during service provisioning. It comprises an

optional Name section, a Context section, and a Terms section. The Context section, which is similar

to the Parties section of WSLA, presents the involved participants and the lifetime of the agreement.

The Terms section, consisting of Service Terms and Guarantee Terms, defines a commitment to the

levels of services. The Service Terms express the target services via Service Descriptions, the ref-

erences of the target services via Service References, and the measurable properties of the services

via Service Properties. Each Guarantee Term contains an obligated party, the scope this guarantee

applies to, any number of Service Level Objectives, and business values associated with the service

(e.g. the importance of Service Level Objectives).

2.4. QoS Specification Languages 43

<wsag:Agreement AgreementId=”xs:string”>

<wsag:Name>

xs:string

</wsag:Name> ?

<wsag:AgreementContext>

wsag:AgreementContextType

</wsag:AgreementContext>

<wsag:Terms>

wsag:TermCompositorType

</wsag:Terms>

</wsag:Agreement>

WS-Agreement

Name

Context

Terms

Service Terms

Guarantee Terms

Figure 2.4: The XML schema and structure of Web Service Agreement (Andrieux et al., 2005)

SLAng (Lamanna et al., 2003) is also an XML-based language for describing QoS properties of

SLAs. As can be seen in Figure 2.5, it specifies four vertical SLAs and three horizontal SLAs.

These SLAs are identified through the involved parties (e.g. Application, Web Service, Component,

Container, Storage, and Network). Each SLA is composed of an ID (the identification of the SLA), a

server (the responsibilities of the server), a client (the responsibilities of the client), and a mutual (the

responsibilities of both server and client). The relationships between the type of SLAs and involved

parties are shown in Table 2.4.

SLA Type Server Client
Application Web Services or Applications Components
Hosting Containers Components
Persistence Storage Containers
Communication Network Containers
Service Components Web Services
Container Containers Containers
Networking Network Network

Table 2.4: The relationships between the involved parties and the types of Service Level Agreements
in SLAng

The major functionality of SLAng is similar to other SLA specification languages, but it claims three

differences. First, it can be applied not only to web services but also to domains such as Internet

Service Provision, Application Service Provision, and Storage Service Provision. Second, SLAng

44 Chapter 2. Background and Related Context

is designed with practicality and monitorability in mind, such that constraints can only be placed

on activities that can be observed by contracting parties. Third, the formally defined semantics of

SLAng, which can check the consistency of SLAs, focus on service and client behaviour.

SLAng

Vertical

Application

Hosting

Persistence

Communication

Horizontal

Service

Container

Networking

Figure 2.5: The structure of SLAng (Lamanna, Skene, & Emmerich, 2003)

Web Service Offerings Language (WSOL) (Tosic et al., 2002) is an XML-based specification lan-

guage for service orderings, whose XML schema and structure are depicted in Figure 2.6. As can be

seen, there are 12 elements, import, externalOperationCall, constraint, subscription, price, priceDe-

fault, penalty, penaltyDefault, managementResponsibility, statement, include, CG, CGT, instantiate,

and serviceOffering, which are described as follows:

• import is used to include any number of WSOL files.

• externalOperationCall lays down the format of external services, including input parameters,

return values, and service names.

• constraint specifies any number of functional constraints (e.g. pre-conditions, post-conditions,

and future-conditions), non-functional (i.e. QoS) constraints, and access rights.

• subscription specifies the duration and price of a subscription paid by a service customer to a

service provider.

2.4. QoS Specification Languages 45

• price defines names and domains of particular services.

• priceDefault defines default prices of particular services.

• penalty refers to the money paid due to violation of SLAs.

• penaltyDefault refers to the default amount of money paid due to violation of SLAs.

• managementResponsibility draws up the responsibilities among involved parties.

• statement defines schemas for corresponding statements (i.e. the external operation call state-

ment, the subscription statement, the price statement, the price default statement, the manage-

ment responsibility statement, the include statement, the instantiate statement).

• include is used to include other constructs such as constraint.

• CG represents Constraint Group, which assembles constraints into groups.

• CGT is similar to CG but contains additional parameters.

• instantiate specifies the instantiate relationship between a CGT and a CG.

• serviceOffering defines the format of service offerings.

Compared with the above-mentioned QoS specification languages, Performance Trees (Suto et al.,

2006) are an alternative which provides a more intuitive and graphical way of defining QoS parame-

ters with respect to performance. A performance query is transformed into a tree structure consisting

of nodes and connecting arcs. There are two types of nodes: operation nodes and value nodes. The

former represent performance-related functions, and the latter are used to store literal information

associated with the performance query (e.g. set of states, actions, numerical/Boolean constants). Fig-

ure 2.7 shows an example of how to express a performance query, the expected amount of time

expended from one state to another, in the form of a performance tree. In addition, the structure of

Performance Trees can be generated and analysed via the use of PIPE2 (Dingle, Knottenbelt, & Suto,

2009) software tool.

In summary, WSLA concentrates on web service interactions. It helps involved parties to arrange

resources at deployment time and to monitor Service Level Objectives and to detect violations at run

46 Chapter 2. Background and Related Context

<element name = "WSOLdefinitions" type = "wsol:WSOLdefinitionsType"/> constraint

<complexType name = "WSOLdefinitionsType">

<sequence>

<element ref = "wsol:import" minOccurs = "0" maxOccurs = "unbounded"/>

<element ref = "wsol:externalOperationCall" minOccurs = "0" maxOccurs = "unbounded"/>

<element ref = "wsol:constraint" minOccurs = "0" maxOccurs ="unbounded"/>

<element ref = "wsol:subscription" minOccurs = "0" maxOccurs ="unbounded"/>

<element ref = "wsol:price" minOccurs = "0" maxOccurs = "unbounded"/>

<element ref = "wsol:priceDefault" minOccurs = "0" maxOccurs ="unbounded"/>

<element ref = "wsol:penalty" minOccurs = "0" maxOccurs = "unbounded"/>

<element ref = "wsol:penaltyDefault" minOccurs = "0" maxOccurs ="unbounded"/>

<element ref = "wsol:managementResponsibility" minOccurs = "0" maxOccurs = "unbounded"/>

<element ref = "wsol:statement" minOccurs = "0" maxOccurs ="unbounded"/>

<element ref = "wsol:include" minOccurs = "0" maxOccurs = "unbounded"/>

<element ref = "wsol:CG" minOccurs = "0" maxOccurs = "unbounded"/>

<element ref = "wsol:CGT" minOccurs = "0" maxOccurs = "unbounded"/>

<element ref = "wsol:instantiate" minOccurs = "0" maxOccurs ="unbounded"/>

<element ref = "wsol:serviceOffering" minOccurs = "0" maxOccurs ="unbounded"/>

<any namespace = "##other" processContents = "strict" minOccurs = "0"

maxOccurs = "unbounded"/>

</sequence>

<attribute name = "targetNamespace" type = "anyURI"/>

</complexType>

Web Service Offerings Language

import

externalOperationalCall

constraint

subscription

price

priceDefault

managementResponsibility

statement

CG

CGT

instantiate

serviceOffering

Figure 2.6: The XML schema and structure of Web Service Offerings Language (Tosic, Patel, &
Pagurek, 2002)

E(Xn)

?

Num

1.0

States States

start target

start states target states

moment
density/distribution

Figure 2.7: An example of how to express a performance query in the form of a performance tree
(Suto, Bradley, & Knottenbelt, 2006)

2.5. Probabilistic Data Structures 47

time. SLAng concentrates on both web service interaction and SLA specification for hosting service

provisioning and communication service provisioning. WS-Agreement concentrates on definitions

of protocols which express providers’ capability, create Service Level Agreements, and monitor their

compliance at run time. WSOL focuses on constraint specification and management information.

Performance Trees concentrates on graphical specification of performance queries. Our framework

chooses WSLA to specify QoS requirements for three reasons. First, WSLA is an XML-based stan-

dard, which makes QoS requirements more easily parsed and validated. Second, it can define desired

resources, specify how to measure them, and compare the target resources with SLOs. Third, it does

not have to define hard QoS guarantees because our framework attempts to fulfil QoS requirements

but does not guarantee that they can be satisfied 100% of the time.

2.5 Probabilistic Data Structures

Probabilistic data structures refer to data structures which contain probabilistic factors, which may

lead to wrong answers when an element is tested for membership. The most commonly-used prob-

abilistic data structures are Bloom filters (Bloom, 1970), which provide insertion as well as test-for-

membership operations and have been applied to Google’s Bigtable (Chang et al., 2008) and Chrome

(Geravanda & Ahmadib, 2013) to reduce disk access and represent URL blacklists, respectively. They

are constructed by 𝑘 hash functions (ℎ1, ℎ2, . . . , ℎ𝑘 with range [0,𝑚− 1]) and an 𝑚-bit storage array

(𝐵) whose initial values are 0. With insertion of an element 𝑖, the positions of ℎ1(𝑖), ℎ2(𝑖), . . . , ℎ𝑘(𝑖)

in the 𝑚-bit array are set to 1. When membership of an element 𝑗 is tested, the element is considered

to exist if and only if
∏︀𝑘

𝑖=1𝐵[ℎ𝑖(𝑗)] = 1. Because Bloom filters only make use of 𝑚-bit arrays, their

memory consumption is not related to the number of inserted elements, which saves a huge amount

of memory space. However, the main disadvantage of Bloom filters is the lack of deletion operations.

Furthermore, as we have mentioned, Bloom filters may return wrong answers (so-called false posi-

tives), whose probability is approximately (1 − 𝑒−𝑘𝑛/𝑚)𝑘 where 𝑛 is the number of stored elements.

The equation implies another two drawbacks of Bloom filters. First, they will become unreliable

when too many elements are inserted. Second, their memory space has to be pre-allocated to achieve

a desirable probability of false positives. However, it is difficult to predict how many elements will

48 Chapter 2. Background and Related Context

be inserted, which may waste memory space when the size of bit arrays is not properly configured.

These issues trigger the invention of counting Bloom filters (Fan et al., 2000), scalable Bloom filters

(Almeida et al., 2007), compressed Bloom filters (Mitzenmacher, 2001), and sparse Bloom filters

(Knottenbelt, 2000).

Counting Bloom filters, which are proposed by Fan et al., 2000, aim to solve the issue of lacking

deletion operations. They replace the 𝑚-bit arrays with an array (𝐶) with 𝑚 positions, each of which

contains a counter initially set to zero. With insertion of an element 𝑖, 1 is added to the values of

𝐶[ℎ1(𝑖)], 𝐶[ℎ2(𝑖)], . . . , 𝐶[ℎ𝑘(𝑖)]. Deletions are performed by deducting 1 from the values of 𝐶[ℎ1(𝑖)],

𝐶[ℎ2(𝑖)], . . . , 𝐶[ℎ𝑘(𝑖)]. Although counting Bloom filters support deletion operations, they may also

result in false negatives, which may cause more serious results than false positives. Hence Guo et al.

attempt to find the root cause of this issue and propose a variant to minimise the probability of false

negatives (Guo, Liu, Li, & Yang, 2010). In addition, counting Bloom filters consume more memory

than standard Bloom filters do. As a result, several variants (Bonomi, Mitzenmacher, Panigrahy,

Singh, & Varghese, 2006; Rottenstreich, Kanizo, & Keslassy, 2014) are invented to save memory.

Compressed Bloom filters (Mitzenmacher, 2001) compress standard Bloom filters’ bit arrays in or-

der to reduce transmission size across networks. From the perspective of networking, Bloom filters

are not only data stored in local memory but messages transmitted across networks. The size of

Bloom filters, therefore, becomes a critical issue. When Bloom filters are treated as data, the optimal

number of hash functions should be computed to achieve a desirable probability of false positives.

The formula, (𝑚/𝑛)ln2, is utilised to get an optimal value of 𝑘. However, this optimal number of

hash functions makes the bit arrays less effective (Adler, Chakrabarti, Mitzenmacher, & Rasmussen,

1995). To benefit from compression, compression ratio should be taken into consideration. Hence the

probability of false positives is changed to

𝑓 = (1− 𝑝)
−𝑧ln𝑝
𝑛𝐻(𝑝) (2.1)

where 𝑛 is the number of stored elements, 𝑧 is the compressed size, 𝑝 is the probability with which

each bit in the bit array is 1, and

2.6. Cloud Storage 49

𝐻(𝑝) = −𝑝 log2 𝑝− (1− 𝑝) log2(1− 𝑝). (2.2)

Scalable Bloom filters (Almeida et al., 2007) aim to prevent the need for allocating a fixed amount

of memory space in advance. Each scalable Bloom filter consists of a list of Bloom filters (𝐵𝐹0,

𝐵𝐹1, . . . , 𝐵𝐹𝑖 with ℎ1, ℎ2, . . . , ℎ𝑖 hash functions, respectively). When the maximum probability of

false positives is met, a new Bloom filter is created and inserted into the list in accordance with the

following rule. The false positive of the new Bloom filter should be reduced to 𝑃𝑖 * 𝑟 where 𝑃𝑖 is

the probability of 𝐵𝑖’s false positive and 𝑟 is the tightening ratio with 0 < 𝑟 < 1. As a result, if the

current number of Bloom filters is 𝑙, their maximum false positive rates are 𝑃0, 𝑃0 * 𝑟, . . . , 𝑃0 * 𝑟𝑙−1,

respectively. Their compound false positive rate is 1−
∏︀𝑙−1

𝑖=0(1− 𝑃0𝑟
𝑖). When a test-for-membership

operation is invoked, every existing Bloom filter will be checked. If any filter returns a positive result,

the operation will also give a positive result.

To improve Bloom filters’ reliability and prevent the need of memory preallocation, Knottenbelt

(Knottenbelt, 2000) introduces sparse Bloom filters, which utilise two independent hash functions

and a forest of AVL trees. The first hash function determines which AVL tree should be used to store

elements, and the second hash function generates hash keys. With the insertion of an element 𝑖, it

is input to the first hash function to decide which AVL tree it should be inserted into and then input

to the second hash function to obtain the corresponding hash key. Finally, the key is inserted into

the corresponding AVL tree. In this thesis, we will further improve sparse Bloom filters to dynami-

cally adjust the number of AVL trees and choose the improved sparse Bloom filters as one potential

data structure when reliability requirements are less than 100% and where functionality specification

allows.

2.6 Cloud Storage

Cloud storage refers to a data storage model where data is stored in distributed storage devices and

accessible at any place. This data storage provides high accessibility and protection of data backup.

50 Chapter 2. Background and Related Context

Despite these benefits, cloud storage highly depends on and consumes network bandwidth. Conse-

quently, if the internet connection is unstable or slow, the stored data may not be accessible. This

barrier is possible to be overcome as network bandwidth is broadened and connectivity becomes

ubiquitous.

Cloud storage can be categorised into public cloud storage, private cloud storage, and hybrid cloud

storage. The first type of cloud storage, public cloud storage, represents that data owned by a company

or an individual is stored in and managed by a hosting company e.g. Amazon, Google, Dropbox,

Microsoft. Benefits of public cloud storage include low data maintenance, low storage costs, and

high scalability. Since data is managed by storage providers, purchasing storage hardware is not

needed. Additionally, storage customers can easily scale up and down the storage space they need.

However, public cloud storage is not suitable for the data which is confidential due to security concern

or frequently updated due to performance concern. Another concern of public cloud storage is the

lack of standards among different storage providers, which increases the difficulty of changing storage

providers. As can be seen in Table 2.5, features and prices vary among storage providers. The variety

of public cloud storage services complicates the implementation of transferring data between storage

providers and customers. To ease this difficulty, our framework supplies an abstract layer which

enables programmers to easily integrate software APIs supporting data transfer of different storage

providers.

The second type of cloud storage, private cloud storage (also called internal cloud storage), is sim-

ilar to public cloud storage in that the aim is to provide scalable, flexible, and location-independent

data storage; however, stored data is not publicly accessible. Data stored in private cloud storage is

kept behind the firewall and can be accessed only from the local network or by some secure means

over the Internet. This enhances data security and performance and shifts the responsibility of data

management from storage providers to data owners. Recent years have seen the popularity of such

cloud storage implemented through Network-Attached Storage (NAS) devices. NAS provides easy

data backup, file sharing, and remote access control. Furthermore, it enables data owners to have

full access control of their data and to easily scale up storage space. Many hardware manufacturers

have introduced their NAS devices, e.g. Western Digital’s My Cloud, Seagate’s Central, D-Link’s

ShareCenter, and NetGear’s ReadyNAS.

2.7. Third-Party Container Libraries 51

Amazon Cloud
Drive Google Drive Dropbox Microsoft

OneDrive

File size restriction 2GB 10 GB
300 MB via browsers,
no limit via app 10 GB

Free storage 5 GB 15 GB 2 GB 15 GB
Price per year
(price in March 2015) 20 GB : £6 100 GB : £15 1 TB : £79 100 GB : £15

File sharing Yes Yes Yes Yes
File synchronisation Yes Yes Yes Yes

Desktop app Windows
MAC

Windows
MAC

Windows
Mac

Linux

Windows
MAC

Mobile app Android
iOS

Android
iOS

Android
iOS

Blackberry OS
Fire OS

Android
iOS

Windows

Web GUI Yes Yes Yes Yes

Table 2.5: The comparison of cloud storage services

The third type of cloud storage, hybrid cloud storage, is a combination of public cloud storage and

private cloud storage. Confidential and frequently updated data is stored in private cloud storage.

Non-confidential and rarely-updated data is stored in public cloud storage. The separation of data al-

lows hybrid cloud storage to minimise data transfer latency between storage providers and customers

and to increase security compared to public cloud storage.

2.7 Third-Party Container Libraries

As the scale of data rapidly increases, many container libraries have been invented to boost perfor-

mance and reduce primary memory use via the techniques of out-of-core storage, probabilistic data

structures, parallelism, and self-adaptation. This section will briefly introduce and categorise them

according to the appearance order in Table 2.6.

• Standard Template Library for Extra Large Data Sets (STXXL) is a library implementing out-

of-core containers and algorithms for processing massive input data.

52 Chapter 2. Background and Related Context

• bloom is a container library supporting the functionality of standard Bloom filters and the tech-

nique of compressing bit arrays.

• Parallel Standard Template Library (Parallel STL) is implemented via high-performance C++

and provides distributed containers and parallel algorithms.

• Transparent Parallel I/O Environment (TPIE) supplies external algorithms and data structures

in order to reduce the effort of implementing out-of-core storage.

• dablooms is an implementation of the combination of counting Bloom filters and scalable

Bloom filters.

• Standard Adaptive Parallel Library (STAPL) is a C++ library developed at Texas A&M Univer-

sity for supporting parallelism in application development.

• Library of Efficient Data Types and Algorithms to Secondary Memory (LEDA-SM) is an ex-

tension of LEDA (Mehlhorn & Näher, 1995), which provides external data structures and algo-

rithms for manipulating large input data.

• Intel Threading Building Blocks (TBB) is a library providing concurrent containers and algo-

rithms. We will give more descriptions of Intel TBB in Chapter 5.3.

• Multi-Core Standard Template Library (MCSTL) is an STL-comparable parallel algorithm li-

brary which is capable of utilising multiprocessors or multicore of a processor with shared

memory.

• Persistent Standard Template Library (Persistent STL) intends to replace STL’s containers with

those that can efficiently access data in external memory.

• Smart Data Structures are a group of parallel data structures which can dynamically improve

their performance through a machine learning approach.

• Java Access to Generic Underlying Architectural Resources (Jaguar) provides external objects,

which are stored outside of Java heap.

2.8. Related Contexts 53

• Parallel Java 2 Library (PJ2) is a collection of Java interfaces and middlewares which support

parallel programming.

• Guava is a Java-based library which is composed of several Google’s core libraries. Further-

more, it supports the functionality of Bloom filters.

• Oracle Berkeley DB is a library embedded in a direct persistence layer, which enables fast

object serialisation and deserialisation.

• Joafip is a Java library which manages persistent data in file systems.

Table 2.6 categorises them according to their enhanced functionality. As can be seen, STXXL,

TPIE, LEDA-SM, and Persistent STL are C++-based implementations for out-of-core storage, and

Jaguar, Oracle Berkeley DB, and Joafip are Java-based out-of-core storage implementations. bloom,

dablooms, and Guava implement the functionality of Bloom filters. Parallel STL, STAPL, Intel TBB,

Smart Data Structures, and PJ2 provide parallel containers. Furthermore, Smart Data Structures are

capable of dynamically adjusting themselves to boost performance. Except for Smart Data Structures,

most of these libraries are not able to be aware of QoS at run time. Even if Smart Data Structures

attempt to automatically improve performance, their application area is restricted to distributed en-

vironments. However, these well-developed libraries can provide our framework with fundamental

bases when the techniques of out-of-core storage, probabilistic data structures, and parallelism are

required to be implemented. Through dynamic deployment of these libraries, our framework can

exploit out-of-core storage and parallelism at low cost and provide a broader class of Service Level

Objectives.

2.8 Related Contexts

This section will review the studies which make use of language extensions and reference models for

building self-adaptive systems. In addition, the technique of dynamically changing data structures

across different applications is described as well.

54 Chapter 2. Background and Related Context

Language

Enhanced Functionality

Out-of-core
Storage

Probabilistic
Data

Structures
Parallelism Self-

adaptation

STXXL
(Dementiev,
Kettner, &

Sanders, 2005)

C++ X X

bloom (Partow,
2000)

C++ X

Parallel STL
(Johnson &

Gannon, 1997)
C++ X

TPIE (Vengroff,
1994)

C++ X

dablooms
(Hines, 2013)

C X

STAPL (Buss
et al., 2010)

C++ X

LEDA-SM
(Crauser &
Mehlhorn,

1999)

C++ X

Intel TBB
(Intel, 2014)

C++ X

MCSTL
(Singler,

Sanders, &
Putze, 2007)

C++ X

Persistent STL
(Gschwind,

2001)
C++ X

Smart Data
Structures
(Eastep,

Wingate, &
Agarwal, 2011)

C++ X X

Jaguar (Welsh
& Culler, 2000)

Java X

PJ2 (Kaminsky,
2014)

Java X

Guava
(Andreou &
Bourrillion,

2014)

Java X

Oracle Berkeley
DB (Oracle,

2014)
Java X

Joafip (Peuvrier,
2012)

Java X

Table 2.6: The third-party libraries supporting the techniques of out-of-core storage, probabilistic data
structures, parallelism, and self-adaptation

2.8. Related Contexts 55

2.8.1 Language Extensions for Building Self-Adaptive Systems

Many programming paradigms e.g. meta programming (Abrahams & Gurtovoy, 2004), component-

based programming (Heineman & Councill, 2001), aspect-oriented programming (Kiczales et al.,

1997), generative programming (Czarnecki & Eisenecker, 2000), adaptive programming (Gouda &

Herman, 1991), context-oriented programming (Hirschfeld, Costanza, & Nierstrasz, 2008) have been

adopted for building self-adaptive systems. These paradigms are solidified through programming

languages or language extensions, which will be described below.

Meta programming is the act of developing programs that manipulate other programs (including them-

selves) as input data (e.g. compilers, interpreters, lex, yacc, etc). To modify themselves, meta pro-

grams should have the ability of self-evaluation, which is called reflection. Because reflection supplies

a way to evaluate and modify a program, self-adaptive mechanisms can perform adaptations through

it. Some programming languages (e.g. C#, Lisp, Ruby, etc.) are equipped with this ability, but some

programming languages (e.g. C++, Java) do not support this feature. As a result, their extensions are

implemented to achieve this ability. An example of such extensions is Iguana/J (Dowling, Schäfer,

Cahill, Haraszti, & Redmond, 1999), which is a Java extension for dynamically modifying programs.

Component-based programming (Heineman & Councill, 2001) divides software into individual and

independent components to maximise software reuse. Since functionalities of a system are imple-

mented in different components, self-adaptations are achieved by the way of dynamic replacements

of components. Such actions are controlled by a component which determines when to trigger adap-

tations according to a pre-defined logic. Among language extensions using component-based pro-

gramming to build self-adaptive systems is Julia (Bruneton, Coupaye, Leclercq, Quéma, & Stefani,

2006), which is a Java implementation of the component-based programming model.

Aspect-oriented programming (Kiczales et al., 1997) separates independent concerns in software.

Each concern is developed and then composed to establish the whole software. Languages support-

ing aspect-oriented programming provide the specification of join points where program flows can

be redirected to another concerns. The self-adaptation, therefore, can be accomplished through the

transfer of concerns. An example of a programming language which conducts self-adaptation via this

56 Chapter 2. Background and Related Context

technique is JAsCo (Suvée, Vanderperren, & Jonckers, 2003), which is a Java-based aspect-oriented

programming language.

Generative programming (Czarnecki & Eisenecker, 2000) refers to automatic generation of software

through reusable components and configuration knowledge. In Nierstrasz et al.’s work (Nierstrasz,

Denker, & Renggli, 2009), Reflexity, a platform for dynamic adaptation of software, and Diesel

(Fowler, 2005), a tool for transforming domain specific languages into code, are utilised to build

self-adaptive systems.

Adaptive programming (Gouda & Herman, 1991) is the act of building software which is capable

of dynamically carrying out adaptations in order to respond to changes in input (e.g. environments,

goals). One adaptive programming language is 𝐴2𝐵𝐿 (Simpkins, Bhat, Isbell, & Mateas, 2008), an

Adaptive Behaviour Language , whose adaptivity is achieved through the exploitation of reinforce-

ment learning (Sutton & Barto, 1998).

Context-oriented programming (Hirschfeld et al., 2008) refers to the method of expressing behavioural

variation based on contexts. Since it is designed for performing run-time variations, its is suitable for

the development of self-adaptive systems. Many programming languages extensions, e.g. Context/J

(Hirschfeld et al., 2008), ContextErlang (Salvaneschi, Ghezzi, & Pradella, 2012), ContextL (Costanza

& Hirschfeld, 2005), have been implemented to support context-oriented programming.

In addition to the above-mentioned language extensions, Stevens, Parsons, and King present an au-

tonomic container which is capable of run-time configuration and testing to validate adaptations

(Stevens, Parsons, & King, 2007). In their work, a prototype for the functionality of stack is im-

plemented. As can be seen in Figure 2.8, it consists of an ACApplication, a SysController, and an

Autonomic Container. The ACApplication refers to those applications utilising autonomic contain-

ers. The SysController makes use of threads to execute ACApplications and autonomic containers

in parallel. The autonomic container includes a stack, a SelfConfigAM, which is used to configure

the underlying data structure (i.e. the stack), and a SelfTestManager, which is responsible for mon-

itoring the test process, analysing the test results, and deciding if the adaptation performed by the

SelfConfigAM is allowed.

2.8. Related Contexts 57

ACApplication

SysController
Autonomic Container

SelfConfigAM SelfTestManager

Stack

Figure 2.8: The architecture of the self-testing autonomic container (Stevens, Parsons, & King, 2007)

In summary, these language extensions are able to perform self-adaptations, but compared with our

framework, they require higher programmer overhead in terms of substantial modification of existing

code. Furthermore, they do not provide a mechanism for specifying Service Level Objectives.

2.8.2 Reference Models for Building Self-Adaptive Systems

This subsection will introduce some well-known models for building self-adaptive systems. Kramer

and Magee (Kramer & Magee, 2007) present a three layer reference model which is inspired by

robots. As can be seen in Figure 2.9, the bottom layer is the Component Control layer, which com-

prises components used to accomplish tasks. This layer is able to monitor components in an effort to

report their status to the upper layer and to dynamically create, destroy and communicate with them in

order to perform adaptations. Furthermore, it contains a feedback loop for low-level self-adjustment

(e.g. reconfiguration of parameters). When the current configuration cannot meet a certain situation,

this layer will inform the upper layer of this. The middle layer is the Change Management layer,

which plans adaptations to deal with the situation reported from the lower layer (i.e. Component Con-

trol layer) or to achieve a new objective given by the upper layer. To quickly respond to state changes,

this layer should activate predefined plans. If a plan is missing, this layer will request the upper layer

to lay down the plan. In addition, when the upper layer lays down a new objective, a new plan will

also be given. The highest layer is the Goal Management layer, which generates change plans for the

requests sent from the lower layer and for new goals.

58 Chapter 2. Background and Related Context

 G

 G’ G’

Goal Management

 P1 P2 Change Management

 C1 C2 Component Control

Report status

Request plans

Perform component

changes

Perform plan

changes

Figure 2.9: Kramer and Magee’s three-layer reference model (Kramer & Magee, 2007)

MADAM (Floch et al., 2006) is a middleware which can detect context changes of mobile systems

(e.g. resources, battery), analyse these changes in order to select suitable adaptations, and execute

adaptations. Figure 2.10 displays its architecture, which makes use of Context Model, Framework

Architecture Model, Instance Architecture Model, Context Manager, Adaptation Manager, and Con-

figurator to achieve the purpose of self-adaptations. The Context Model describes related information

of contexts. The Framework Architecture Model stores information of alternative components to help

the Adaptation Manager decide how to replace components. The Instance Architecture Model is used

to evaluate adaptations and to reconfigure applications. The self-adaptive mechanism of MADAM

is formed by the Context Manager, the Adaptation Manager, and the Configurator. While the Con-

text Manager detects context changes, the Adaptation Manager will be notified of these changed and

make use of the Framework Architecture Model and the Instance Framework Model to select a proper

adaptation which can satisfy assigned objectives. The Configurator is then invoked to perform the

adaptation.

Rainbow (Garlan, Cheng, Huang, Schmerl, & Steenkiste, 2004) is an architecture-based self-adaptive

system framework, which implements an external self-adaptive mechanism. Rainbow’s framework

2.8. Related Contexts 59

Context Model

Framework

Architecture

Model

Instance

Architecture

Model

Context

Manager

Adaptation

Manager
Configurator

Report context

change

Perform selected

adaptations

Core

Select adaptations

Figure 2.10: The architecture of MADAM (Floch et al., 2006)

can be divided into system-specific adaptation knowledge and adaptation infrastructure. System-

specific adaptation knowledge provides target systems with operational models in an effort to ensure

that adaptation infrastructure behaves as expected. The operation models involve resource constraints,

adaptation strategies, and information related to target systems (e.g. component types and properties).

As can be seen in Figure 2.11, the adaptation infrastructure is divided into system layer, architecture

layer, and translation layer. At the system layer, Rainbow implements a set of system APIs (e.g.

probes, effectors, resource recovery), which are used to monitor and measure system states, perform

adaptations, and find new resources. At the architecture layer, the decision of performing an adapta-

tion is made according to system states detected by probes. Furthermore, the adaptation is conducted

via effectors. At the translation layer, information is translated between the system layer and the

architecture layer.

dynamicTao (Kon et al., 2000) is a reflective middleware which supports dynamic reconfiguration for

component-based systems. The structure of dynamicTao is shown in Figure 2.12. As can be seen,

Persistent Repository is used to manage categories consisting of a collection of components stored

in local file systems. A Network Broker forwards reconfiguration requests from the network to the

60 Chapter 2. Background and Related Context

Adaptation

Engine

Adaptation

Executer

Constraint

Evaluator

Model Manager

Translation Layer

Effector

System API

Probes
Resource

Discovery

Executing System

System Layer

Architecture Layer

Figure 2.11: The adaptation infrastructure of Rainbow (Garlan, Cheng, Huang, Schmerl, &
Steenkiste, 2004)

Dynamic Service Configurator, which supports dynamic component configuration and contains a Do-

mainConfigurator. It controls so-called servants (server-side applications) and the TaoConfigurator,

where implementations of strategies (e.g. concurrency, security, scheduling, and monitoring) can be

registered. These implementations can be loaded and replaced at run time, which enables dynamic

satisfaction of various constraints. Although dynamicTao can change behaviour of execution environ-

ment at run time, adaptation decisions still rely on administrators.

Zanshin (Souza, 2012), whose architecture is shown in Figure 2.13, is a requirements-based self-

adaptive system framework, which should be applied to systems with the ability to record state

changes of requirements (so-called instrumented systems). Based on this assumption, Zanshin can

identify awareness requirements, which refer to the success or failures of other requirements, and

evolution requirements, which identify desired evolutions of other requirements. When changes in

requirement states are detected by the Monitor component, the Adapt component is triggered if an

adaptation is required. The adaptation decision is based on requirements describing desired strategies

2.8. Related Contexts 61

 Administration

Panel

Reconfiguration

Agents

Network Broker Servant1Configurator

TAOConfigurator

DomainConfigurator

Dynamic Service Configurator

Persistent Repository ACE_Service_Repository ACE_Service_Config

Concurrency Strategy

Scheduling Strategy

Security Strategy

Monitoring Strategy

‧
‧
‧

Process boundary

Local file

system

Figure 2.12: The architecture of dynamicTao (Kon et al., 2000)

and is selected by the Event-Condition-Action-based adaptation component and the qualitative com-

ponent. The ECA-based component is responsible for choosing a suitable adaptation strategy and the

qualia component is responsible for executing the strategy.

Unity (Tesauro et al., 2004) is an architecture which attempts to enable distributed computing systems

to manage themselves through the interaction of autonomous agents (also called autonomic elements).

These elements entail an application manager, a resource arbiter, OSCounters, a registry, a policy

repository, and sentinels, each of which manages its own resources, performs self-adaptations, and

communicates with other elements via standard web service interfaces (e.g. OSGA). The application

manager performs the following four tasks: management of the environment, acquisition of sufficient

resources for achieving system goals, interaction with other elements, and evaluation of the impact of

changes on resources. The resource arbiter is responsible for finding out the optimal resource usage

62 Chapter 2. Background and Related Context

Adapt

Monitor

States change Requirements

Evolution API

Target System

Instrumented
Target System Zanshin Framework

Change

requirements

Report logs

ECA-based

Component

Qualia

Component

Figure 2.13: The architecture of Zanshin (Souza, 2012)

for the whole system. The OSCounters, which are host computers supporting autonomic elements,

activate services or other autonomic elements when a request is received. The registry is a platform

through which an autonomic element can ascertain the element with which it wants to communicate.

The policy repository supplies interfaces via which high-level policies can be laid down. The sentinels

are responsible for monitoring services. When the above-mentioned elements are initialised, they will

locate required elements by means of the registry. The first two elements to start are OSCounters and

the registry. The resource arbiter is then triggered to decide which elements should be activated and

to contact with OSCounters. Next, the policy repository and sentinels are activated and registered

in the registry. After that, the arbiter can be registered, locate registered repositories and sentinels,

and communicate with a sentinel to monitor all repositories. The application manager contacts the

arbiter to allocate required resources. Since Unity is a flexible architecture, it can be implemented for

different applications such as self-healing clusters and self-optimising data centres.

Aura (Garlan, Siewiorek, Smailagic, & Steenkiste, 2002) is a task-based self-adaptive system which

is designed to reduce human intervention at run time. Its architecture is exhibited in Figure 2.14. A

conventional system is inserted into two layers in order to achieve self-tuning. One layer is between

Linux kernel and applications. This layer enables the system to monitor and adjust resources. The

other layer (so-called Prism) is between applications and users. Prism comprises service suppliers, a

task manager, a context observer, and an environment manager. The service suppliers are responsible

2.8. Related Contexts 63

for providing required services to complete users’ tasks. The task manager transforms users’ tasks

into various services and records them. The context observer detects context changes and notifies

the task manager of these changes. The environment manager carries out the commands of resource

monitoring and adjustment given by the task manager.

Prism

Application Layer

Application

1

Application

2

Application

3

…..

Other Aura runtime

support

Spectra Remote

execution

Coda Nomadic

file access

Odyssey Resource

monitoring, adaptation

Linux Kernel

Intelligent networking

C
o

n
te

xt
 O

b
se

rv
er

Task Manager

Environment

Manager Se
rv

ic
e

Su
p

p
lie

r

Se
rv

ic
e

Su
p

p
lie

r

······

Figure 2.14: The architecture of Aura (Garlan, Siewiorek, Smailagic, & Steenkiste, 2002)

TOTA (Tuples On The Air) (Mamei & Zambonelli, 2009), whose architecture is shown in Figure 2.15,

is a middleware and programming approach for building self-adaptive software in pervasive and mo-

bile environments. A tuple is defined as a structured set of data elements. Applications can coordinate

through exchange of tuples. As can be seen in Figure 2.15, TOTA comprises TOTA API, TOTA En-

gine, and Event interface. TOTA API is an interface that allows applications to inject and retrieve

tuples and to lay down events in Event Interface, which reports events received from TOTA Engine.

TOTA Engine is responsible for managing tuples. The management of tuples includes the actions of

injecting, receiving, and updating tuples. In addition, the engine embodies local tuples, which are

used to trace tuples reaching other nodes.

64 Chapter 2. Background and Related Context

Event Interface

Application

TOTA API

TOTA Engine
Local Tuples

Operating System

Network

Neighbour’s TOTA

middleware

Figure 2.15: The architecture of TOTA (Mamei & Zambonelli, 2009)

2.8.3 Dynamic Deployment of Data Structures

Among approaches which automatically change internal data structures to adjust resource usage are

SILT (Lim, Fan, Andersen, & Kaminsky, 2011), OSKI (Vuduc, Demmel, & Yelick, 2005), and Kusum

et al.’s work (Kusum, Neamtiu, & Gupta, 2015). SILT is a flash-based key-value store system featur-

ing several underlying candidate data structures with data being converted between them according

to the size of key fragments at run time. OSKI, which is a collection of low-level primitives, provides

automatically-tuned computational kernels as well as a mechanism for selecting a data structure and

code transformations. Kusum et al. present an approach which dynamically changes data structures

(e.g. change between Adjacency List and Adjacency Matrix) so as to boost performance and mem-

ory efficiency of graph applications. Although the above-mentioned approaches can efficiently utilise

resources, they only focus on memory use and performance. Other QoS metrics are not taken into

account. Furthermore, there is no mechanism for specifying Service Level Objectives, which leads to

difficulties in adapting software to meet different QoS requirements.

In addition to the internal transformation of data structures, Abbasi et al. (Abbasi, Wolf, Schwan,

Eisenhauer, & Hilton, 2004) present a middleware infrastructure, XChange, to exchange data between

different applications. This infrastructure enables applications to dynamically provide their own data

filters and transformation methods. The former can select required data, and the latter converts data

2.8. Related Contexts 65

into required formats. For example, when Application 𝐴 wants to exchange data with Application

𝐵, it needs to first register its data format through an API provided by XChange before data is sent.

Similarly, Application 𝐵 needs to register its data format as well. Additionally, it needs to specify

data transformation methods. As a result, XChange can dynamically perform data exchange and

transformation between applications.

Chapter 3

A Novel Self-Adaptive Container Framework

‘There is at least one point in the history of any company when you have to change dramatically to

rise to the next level of performance. Miss that moment - and you start to decline.’

Andy Grove, Former CEO of Intel

3.1 Introduction

This chapter presents a novel self-adaptive container framework which intends to reduce the frequency

of software reimplementation when application contexts and execution environments change. To

achieve this, the framework is equipped with a self-adaptive mechanism, which dynamically changes

underlying data structures when specified Service Level Objectives are violated.

The diversity of QoS requirements in different execution environments and application contexts has

led to frequent code refactoring. Manually adapting software may require months or years of pro-

grammer effort and a high level of expertise. To solve this issue, software should have “intelligence”

so as to automatically satisfy QoS requirements of different execution environments. This chapter

will present a novel container framework which endows software with the ability of dynamically sat-

isfying QoS requirements with low programmer overhead. This is achieved through a self-adaptive

66

3.1. Introduction 67

mechanism embedded in the framework that is capable of monitoring and measuring SLOs in terms

of response time, memory consumption, and reliability, comparing operation profiles with specified

SLOs, planing adaptations based on the effect of the adopted actions, and executing them so as to

achieve specified Service Level Objectives. The measurable QoS parameters are specified through

a standard QoS specification language, WSLA, which clearly defines the metrics of QoS parame-

ters and how to measure them. In addition, our mechanism deals with each Service Level Objective

according to their priorities, which prevents conflicts when multiple SLOs are assigned.

Our framework focuses on containers because their underlying data structures are critical to software’s

non-functional behaviour (e.g. performance, memory use, and reliability). This implies that the shift

from one data structure (DS1) to another (DS2) may enable software to satisfy a non-functional

requirement which is violated when DS1 is adopted. Through dynamic changes of data structures, our

framework can automatically satisfy specified Service Level Objectives without human intervention.

In addition, this framework features tighter functionality specification, which allows greater scope of

efficiency optimisations, including the techniques of probabilistic data structures, offload storage, and

parallelism.

To prove the framework’s feasibility, we have implemented a prototype in C++, which supports a

single-value container exploiting probabilistic data structures and out-of-core storage. This prototype

supplies insertion and search operations as well as the functionality of FIFO queues. It is then ap-

plied to explicit state-space exploration adopting a breadth-first search algorithm. The evaluation of

the framework is conducted through the comparison with conventional containers’ performance and

memory consumption. Furthermore, the framework is assigned multiple SLOs with different priority

orderings in order to observe the behaviour and influence of priority orderings.

The remainder of this chapter is organised as follows. Section 3.2 presents the architecture of the

self-adaptive container framework and describes each component in the framework. After Section 3.3

introduces the self-adaptive mechanism, an improved probabilistic data structure is proposed in Sec-

tion 3.4. Section 3.5 describes a prototype implementation of the framework supporting out-of-core

storage and the improved probabilistic data structure. A case study is investigated in Section 3.6 to

demonstrate the capability and viability of the framework. Section 3.7 concludes this chapter.

68 Chapter 3. A Novel Self-Adaptive Container Framework

3.2 The Design of the Novel Self-Adaptive Container Framework

The design of our self-adaptive container framework references the concepts of containers and au-

tonomic computing. The former hides complex implementation details of data manipulation from

programmers and prevents duplicate code for different data types, and the latter enables our frame-

work to dynamically adjust resource usage to meet SLOs. The architecture of the framework is shown

in Figure 3.1, which comprises three major components: the Application Programming Interface, the

Self-Adaptive Unit, and Third-Party Libraries.

Figure 3.1: The self-adaptive container framework architecture

3.2.1 Application Programming Interface

The Application Programming Interface (API) is a collection of interfaces through which program-

mers can perform desired operations and control the framework. It contains two template classes (i.e.

3.2. The Design of the Novel Self-Adaptive Container Framework 69

ICollection and IKeyValue) covering most functionalities of the Standard Template Library.

In particular ICollection is a single-value container, whose functionality subsumes STL’s list,

vector, queue, stack, deque, set, priority_queue, multiset, unordered_set, and unordered_multiset.

IKeyValue implements the functionality of key-value stores, which subsumes STL’s map, mul-

timap, unordered_map, and unordered_multimap. A detailed description of key-value stores will

be presented in Section 4.2. The member functions of ICollection and IKeyValue can be

separated into operation interfaces and configuration interfaces. The operation interfaces are a set

of commonly-used operations (e.g. insert, search, remove, etc.). The configuration interfaces (i.e.

setAdaptationFrequency and container constructors) provide a way of controlling the self-

adaptive mechanism, which acts according to parameters of the configuration interfaces. For container

constructors, their usage is

ICollection<𝑇,𝐶𝑜𝑚𝑝𝑎𝑟𝑒 = 𝑙𝑒𝑠𝑠 < 𝑇 >>(op_desc, SLO_file[, freq])

and

IKeyValue<𝐾,𝑉,𝐶𝑜𝑚𝑝𝑎𝑟𝑒 = 𝑙𝑒𝑠𝑠 < 𝐾 >>(op_desc, SLO_file[, freq])

where

• T is the stored data type for the single-value container.

• Compare is a binary predicate, which compares two objects with the same type and returns a

boolean value. Its default value is less, i.e. less-than operator.

• K is the data type of key-value stores’ keys.

• V is the data type of key-value stores’ values.

• op_desc describes a required set of container functionality (so-called operation descriptors).

This recognizes that it is rarely the case that every container instance will utilise its full set

of potential functionality, allowing for the deployment of more efficient underlying data struc-

tures. The definitions of all currently-supported operation descriptors are listed in Table 3.1

and the involved operation descriptors of all member functions are listed in Table 3.2. To easily

70 Chapter 3. A Novel Self-Adaptive Container Framework

configure a desired set of functionality, combined operation descriptors are provided, as shown

in Table 3.3.

• SLO_file specifies a path of an XML file which contains a description of desired SLOs in WSLA

format. SLOs can relate to response time, primary memory use, or reliability. To clearly define

desired QoS parameters and the corresponding operations, the Uniform Resource Name (URN)

scheme is utilised in the MeasurementURI section (see Section 2.4). Its usage is described as

follows:

urn:ContainerClass:QoSMetric:OperationDescriptor

ContainerClass is either ICollection or IKeyValue, which specifies the target container.

QoSMetric indicates the target QoS metrics. The available QoS metrics are listed in Table 3.4.

OperationDescriptor specifies corresponding operations of QoS parameters. For example, re-

sponse time can be related to insertion time, search time, or deletion time, which can be spec-

ified through OP_INSERT, OP_SEARCH, and OP_ERASE, respectively. An example of how

to express desired SLOs in WSLA format is shown in Appendix A.

• Freq is an optional parameter defining the frequency with which the self-adaptive mechanism is

activated. This parameter may also be subsequently updated via setAdaptationFrequency.

Operation descriptor Definition
OP_INSERT Insertion
OP_ERASE Deletion
OP_FIND Find (retrieval)

OP_SEARCH Search (existence)
OP_INDEX Direct index-based access
OP_MULTI Allowance of duplicate elements

OP_UORDER Unordered storage
OP_ITERATOR Iterator support
OP_PRIORITY Prioritised operation

OP_FRONT
OP_INSERT_FRONT Front insertion
OP_ERASE_FRONT Front deletion

OP_BACK
OP_INSERT_BACK Back insertion
OP_ERASE_BACK Back deletion

Table 3.1: Definitions of Operation Descriptors

3.2. The Design of the Novel Self-Adaptive Container Framework 71

ICollection<T> member functions
Function Name Involved Operation Descriptor
insert(const T& x) OP_INSERT
insert(iterator position, const T& x) OP_INSERT | OP_ITERATOR
erase(const T& x) OP_ERASE
find(const T& x) OP_FIND | OP_ITERATOR
search(const T& x) OP_SEARCH
begin(), end() OP_ITERATOR
operator[] OP_INDEX
push() OP_INSERT_FRONT or OP_INSERT_BACK
push_front() OP_INSERT_FRONT
push_back() OP_INSERT_BACK
pop OP_ERASE_BACK or OP_ERASE_FRONT
pop_back() OP_ERASE_BACK
pop_front() OP_ERASE_FRONT

IKeyValue<K,V> member functions
Function Name Involved Operation Descriptor
insert(const pair<K, V>& x) OP_INSERT
insert(iterator position, const pair<K, V>& x) OP_INSERT | OP_ITERATOR
erase(const K& x) OP_ERASE
find(const K& x) OP_FIND | OP_ITERATOR
search(const K& x) OP_SEARCH
begin(), end() OP_ITERATOR
operator[] OP_INDEX

Table 3.2: Member functions provided by our framework and involved Operation Descriptors

72 Chapter 3. A Novel Self-Adaptive Container Framework

Data type Representative descriptor Involved operation descriptors

List OP_LIST
OP_INSERT | OP_ERASE | OP_SEARCH |
OP_ITERATOR | OP_BACK | OP_FRONT

Vector OP_VECTOR
OP_INSERT | OP_ERASE | OP_SEARCH |
OP_ITERATOR | OP_BACK | OP_INDEX

Set OP_SET
OP_INSERT | OP_ERASE | OP_SEARCH |

OP_ITERATOR

MultiSet OP_MULTISET
OP_INSERT | OP_ERASE | OP_SEARCH |

OP_ITERATOR | OP_MULTI

Unordered Set OP_UORDERSET
OP_INSERT | OP_ERASE | OP_SEARCH |

OP_ITERATOR | OP_UORDER

Unordered MultiSet OP_UORDERMULTISET
OP_INSERT | OP_ERASE | OP_SEARCH |

OP_ITERATOR | OP_UORDER | OP_MULTI
Stack OP_STACK OP_INSERT_FRONT | OP_ERASE_FRONT
Queue OP_QUEUE OP_INSERT_BACK | OP_ERASE_FRONT

Priority Queue OP_PQUEUE
OP_INSERT | OP_ERASE_FRONT |

OP_PRIORITY

Map OP_MAP
OP_INSERT | OP_ERASE | OP_SEARCH |

OP_ITERATOR | OP_INDEX

MultiMap OP_MULTIMAP
OP_INSERT | OP_ERASE | OP_SEARCH |
OP_ITERATOR | OP_INDEX | OP_MULTI

Unordered Map OP_UORDERMAP
OP_INSERT | OP_ERASE | OP_SEARCH |

OP_ITERATOR | OP_INDEX | OP_UORDER

Unordered MultiMap OP_UORDERMULTIMAP
OP_INSERT | OP_ERASE | OP_SEARCH

| OP_ITERATOR | OP_INDEX | OP_UORDER |
OP_MULTI

Table 3.3: Combined Operation Descriptors for frequently used functionality

QoS Metric Definition
RAM Primary memory consumption
ResponseTime The response time of a certain operation
Reliability The container’s reliability

Table 3.4: Currently supported QoS metrics

3.2. The Design of the Novel Self-Adaptive Container Framework 73

3.2.2 Self-Adaptive Unit

The Self-Adaptive Unit is the core of the framework, which carries out operations given through the

API and activates the self-adaptive mechanism to perform adaptations. It consists of an SLO store,

an Execution unit, an Observer, an Analyser, and an Adaptor. The SLO store holds all Service Level

Objectives retrieved from the XML file specified via the configuration interfaces. The Execution

unit carries out operations laid down through the operation interfaces. If an operation is compatible

with the functionalities that the target container should provide (as declared via the configuration

interfaces), it is applied to the currently-selected data structure. Otherwise the operation is rejected

and an appropriate exception is thrown. The Observer monitors the Execution unit to measure per

operation response time, compute primary memory consumption, and reliability (when the underlying

data structure is a probabilistic data structure). The Analyser is a decision maker which is periodically

activated to determine if the underlying data structure needs to be adjusted. The frequency of the

activation can be subsequently updated through the setAdaptationFrequency configuration

interface. The Adaptor performs adaptation actions that are expected to improve container compliance

with its SLOs. The Observer, Analyser, and Adaptor form the self-adaptive cycle, which will be

described in detail in Section 3.3.2.

3.2.3 Third-Party Libraries

Third-Party Libraries are a set of libraries which provide a low-cost and robust way of implementing

the techniques of hashing, parallelism, out-of-core storage, and cloud storage. In our prototype, we

make use of CityHash (Pike & Alakuijala, 2013) for hashing, Intel Threading Building Blocks (TBB)

(Intel, 2014) for parallelism, STXXL (Dementiev, Kettner, & Sanders, 2005) and MCSTL (Singler,

Sanders, & Putze, 2007) for out-of-core storage, and WebStor (OblakSoft, 2014) for cloud storage.

The use of CityHash will be described in Section 3.4 and that of the other libraries will be described

in Chapter 5.

74 Chapter 3. A Novel Self-Adaptive Container Framework

3.3 Self-Adaptive Mechanism

This section will describe the operation of the self-adaptive mechanism. First, SLO metrics are de-

fined to specify QoS parameters with respect to response time, primary memory use, and reliability.

Second, a self-adaptive cycle is developed to dynamically manage specified QoS parameters via adap-

tations. Finally, the effects of adopted adaptations are analysed.

3.3.1 SLO Metric

The SLO metrics involve per operation response times (insertion time, search time, and deletion time),

maximum primary memory usage, and reliability, which for probabilistic data structures is defined as

the probability that every inserted element is mapped to a unique key (Knottenbelt & Harrison, 1999).

For response times, soft requirements based on percentiles can be indicated, which means a certain

percentage of response times can be above a response time target without violating the SLO.

3.3.2 Self-Adaptive Cycle

The framework adopts the classical self-adaptive cycle (Rohr et al., 2006), which consists of the Ob-

server, the Analyser, and the Adaptor. The cycle starts from the Observer, which records per operation

response time, computes primary memory use, and where appropriate reliability. The Analyser is then

activated to compare the Observer’s profile data with SLOs and to decide if an adaptation is required.

The decision-making process depends on which adaptation strategy is adopted. If the goal of adap-

tations is to find the maximum sum of multiple objectives’s importances, the weighted sum method

should be adopted. If the goal of adaptations is to find the maximum product of multiple objectives’s

importances, the weighted product method should be deployed. In our prototype implementation,

the decision-making process adopts the strategy of strict ordering, which ensures that objectives with

higher importance are addressed first and not affected by less important objectives. We adopt this

strategy for two reasons. First of all, we observe that many execution environments naturally impose

a priority ordering on the SLOs. Second the decision-making process should expend as little time as

3.3. Self-Adaptive Mechanism 75

possible. Strict ordering enables our framework to decide if an adaptation is required in a short time.

To satisfy this strategy, the following two rules are applied repeatedly in priority ordering once for

each SLO:

A. The adaptation action will result in either the satisfaction of the SLO or a reduction in the degree

to which the SLOs are violated.

B. The adaptation action is not expected to result in the violation of a currently-satisfied SLO of

higher priority.

The purpose of the first rule aims to solve the situation where some subset (or any) of the SLOs cannot

be met within resource constraints. Our framework, therefore, does not guarantee that all SLOs will

be satisfied. The purpose of the second rule is to prevent adaptation actions taken to address violated

SLOs from violating another SLO (for example the deployment of out-of-core storage may result in

unacceptably large response times). As a result, each SLO is assigned a distinct priority according to

the SLO’s declaration sequence in the configuration file. The priority ordering decides the sequence

where the Analyser addresses SLOs. If the SLO being addressed is satisfied, no adaptation action is

necessary. If the SLO is violated, the Adaptor is called in for an adaptation.

3.3.3 Adaptation Actions

The Adaptor may perform three kinds of adaptation actions in accordance with the nature of the

violated SLO and its priority. If it is performance-related (e.g. an SLO related to insertion, search,

or deletion response time), then gains may be had from subdividing the underlying data structures.

This may result in two side effects. The first side effect is the increase in memory consumption. For

example, if tree data structures are adopted, the underlying trees are subdivided into shorter trees

via rearrangement of elements in the original trees. This subdivision can reduce time to locate an

element. However, primary memory consumption is also increased because the framework needs to

store a greater number of trees compared to the tree number before the adaptation. The second side

effect is the improvement in reliability when a probabilistic data structure is used. The reason why

76 Chapter 3. A Novel Self-Adaptive Container Framework

the reliability is increased will be explained in Section 3.4. If the violated SLO is memory-related,

then gains may be had from utilising out-of-core storage (with the side effect of hurting performance

and where appropriate reliability), or, should reliability and functionality requirements allow, moving

to a probabilistic data structure (If iterator-based functionality is required, out-of-core storage should

be utilised). Finally, if the violated SLO is reliability-related (e.g. the number of elements inserted

into our container with only “insert” and “search” functionality has increased to such an extent that

the underlying probabilistic data structure no longer meets its reliability SLO), then the data structure

should be subdivided. This will cause the side effects of improving performance and increasing

memory use.

3.4 The Utilisation of Probabilistic Data Structures

Our framework makes use of an improved sparse Bloom filter, whose structure is depicted in Fig-

ure 3.2, as one of the many adopted data structures. Such a data structure comprises a forest of AVL

trees and utilises two hash functions. To generate uniformly distributed hash keys, CityHash (Pike

& Alakuijala, 2013) function library is utilised. CityHash is capable of generating 32, 64, 128 and

256 bit hash keys from arbitrary data according to reliability requirements and supplying independent

hash functions by giving different seeds. This is adequate to provide search, insertion and deletion

functionality on containers. For containers where multiplicity of items is important (e.g. in multi-

sets or multimaps) sparse counting Bloom filters (Bonomi et al., 2006; Rottenstreich et al., 2014) are

used to provide the necessary functionality. Compared to original sparse Bloom filters, we enable the

improved sparse Bloom filter to dynamically change its number of AVL trees. As can be seen in in

Figure 3.2, the number of AVL trees is 2𝑘 where 𝑘 is the number of AVL trees. When an element 𝑖

is inserted, it is first input to the primary hash function to determine which AVL tree (target tree) it

should be inserted into. The secondary hash function is then utilised to generate the second hash key.

Both hash keys will be stored in a tree node of the target tree. The primary hash key should be stored

because it will be reused to determine the new position of this node when adaptations are performed.

When an element 𝑗 is searched, it is first input to the primary and the secondary hash function to

get hash keys, i.e. 𝑃𝐻𝐹 (𝑗) and 𝑆𝐻𝐹 (𝑗). 𝑃𝐻𝐹 (𝑗) is then utilised to obtain the tree where this ele-

3.4. The Utilisation of Probabilistic Data Structures 77

ment might be stored. The tree is searched to see if a node whose stored secondary hash key equals

𝑆𝐻𝐹 (𝑗). If the sparse Bloom filter is adopted by ICollection, only hash keys are stored. On

the other hand, if it is adopted by IKeyValue, each node in AVL trees stores both hash keys and

corresponding values.

0 1 2 ……. 2k

Primary hash key

Value

Secondary hash key

Left

subtree

Right

subtree

Primary hash key

Value

Secondary hash key

Left

subtree

Right

subtree

Primary hash key

Value

Secondary hash key

Left

subtree

Right

subtree

Primary hash key

Value

Secondary hash key

Left

subtree

Right

subtree

Figure 3.2: The structure of the improved sparse Bloom filter

The improved sparse Bloom filter can be applied to a container according to the following scenarios

First, the reliability requirement is less than 100%. Second, if iterator-based operation descriptors are

specified, memory-related SLOs should have higher priority over performance-related SLOs. That is

because this scenario requires support of out-of-core storage. To compute the current reliability (every

inserted element is mapped to a unique key), the following formula (Knottenbelt, 2000) is utilised:

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1−
𝑛2

𝑁AVL2𝑏+1
(3.1)

where 𝑛 is the number of inserted elements, 𝑁𝐴𝑉 𝐿 is the number of utilised AVL trees, and 𝑏 is the

number of bits used to represent a hash key. For example, if the number of currently-stored elements

is 10 000, the number of AVL trees is 1 024, the size of each hash key is 32 bits, the reliability will

be 0.99999999. Additionally, this formula indicates that the increase of AVL trees can also improve

reliability.

78 Chapter 3. A Novel Self-Adaptive Container Framework

3.5 A Prototype Implementation of the Self-Adaptive Container

Framework

In this section, we will describe a prototype of the self-adaptive container framework which is imple-

mented in C++. The prototype includes a template class (i.e. ICollection) with member functions

of insert, search, push, pop, and empty, a self-adaptive unit (i.e. an Observer, an Analyser, an Adap-

tor, and an SLO store), an improved sparse Bloom filter, and a FIFO queue. To utilise this prototype,

a header file (i.e. ICollection.h) should be included, and an instance of ICollection should be

declared. After the instance is declared, our framework will choose an initial data structure based on

assigned SLOs and operation descriptors. Hence, if OP_INSERT and OP_SEARCH are specified,

either a tree data structure (the reliability requirement is 100%) or a modified sparse Bloom filter (the

reliability requirement is less than 100%) will be selected. If OP_QUEUE (i.e.OP_PUSH_BACK

and OP_POP_FRONT) is specified, an array will be exploited. The size of the array depends on the

assigned memory constraints.

After the initial data structure is chosen, the framework begins to accept operations laid down via

ICollection’s operation interfaces. Once an SLO is violated, a corresponding adaptation action

is initiated. As can be seen in Figure 3.2, if the currently-used data structure is a sparse Bloom filter, it

will be adjusted according to the violated SLO. The violation of performance-related and reliability-

related SLOs will cause the increase in the number of AVL trees. The violation of memory-related

SLOs may lead to one of the following two adaptations. If the reduction of AVL trees’ number

can satisfy memory-related SLOs, the number of AVL trees will be reduced. Otherwise, out-of-core

storage will be activated. This activation converts all AVL trees into a sorted array before it is moved

to out-of-core memory, which enables external binary search. Furthermore, some index nodes are

kept to reduce the number of I/Os.

Our implementation of FIFO queues only focuses on memory-related SLOs because the supported

operations cannot be further improved and contents of elements should be stored. Hence, the design

of our FIFO queue is shown in Figure 3.3. Our implementation contains a head block and a tail

block, both of which are stored in primary memory, and numbers of body blocks, which are stored

3.6. Case Study 79

in out-of-core memory. When a push operation is invoked, the tail block will be checked. If it has

enough memory space to store the element, this element will be pushed into either the head block or

the tail block. If the tail block is full, elements stored in the tail block will be moved to out-of-core

storage and the element is pushed into the tail block. When a pop operation is invoked, the head

block is checked to see if it is empty. If the head block is not empty, the first element will be removed.

Otherwise, the first body block will be moved to the head block, and the first element is then removed.

elem
e

n
t

elem
e

n
t

elem
e

n
t

elem
e

n
t

··········

Head block (in primary memory) Tail block (in primary memory)
Body (in out-of-core memory)

Queue

elem
e

n
t

elem
e

n
t

elem
e

n
t

elem
e

n
t

··········

elem
e

n
t

elem
e

n
t

elem
e

n
t

elem
e

n
t

··········

elem
e

n
t

elem
e

n
t

elem
e

n
t

elem
e

n
t

····················

···

Figure 3.3: The structure of our FIFO queue

3.6 Case Study

In this section, we investigate an application centred on explicit state-space exploration, exploiting

a breadth-first search (BFS) algorithm to explore approximately 240 million states, to illustrate the

framework’s viability, scalability, and capability. This application is commonly employed in numer-

ous domains including model checking (Clarke, Grumberg, & Peled, 1999) and performance analysis

of concurrent systems (Knottenbelt & Harrison, 1999). A naïve implementation of the BFS algo-

rithm and the same algorithm adopting our framework are shown in Figure 3.4. As can be seen, the

only difference of the two programs is the container declarations (one for the queue of unexplored

states, unexplored, and one for the table of explored states, explored). To evaluate the framework’s

behaviour and ability, the following SLOs are assigned in ExploredSLOs.xml, whose path is indicated

in explored’s second parameter (i.e. SLO_file):

1. 90% of insertion times should be less than 1000 ns, and 85% of search times should be less

than 1200 ns.

80 Chapter 3. A Novel Self-Adaptive Container Framework

void bfs (Graph G, State s)

{

queue<State> unexplored;

set<State> explored;

unexplored.push(s);

explored.insert(s);

while (!unexplored.empty()) {

State next = unexplored.front();

unexplored.pop();

for (State *w = G.first_edge(next) ; w ; w = G.next_edge(next)) {

if (!explored.search(*w)) {

unexplored.push(*w);

explored.insert(*w);

}

}

}

}

void bfs (Graph G, State s)

{

ICollection<State> unexplored(OP_QUEUE, “UnexploredSLOs.xml”);

ICollection<State> explored (OP_INSERT|OP_SEARCH, “ExploredSLOs.xml”, 100);

unexplored.push(s);

explored.insert(s);

while (!unexplored.empty()) {

State next = unexplored.front();

unexplored.pop();

for (State *w = G.first_edge(next) ; w ; w = G.next_edge(next)) {

if (!explored.search(*w)) {

unexplored.push(*w);

explored.insert(*w);

}

}

}

}

Figure 3.4: The naïve BFS (left) and the BFS adopting our framework (right)

2. Reliability should be higher than 0.99.

3. Memory consumption should be no more than 7.5 GB.

The full content of the XML file is shown in Appendix A. As can be seen, the XML file contains four

targets with respect to insertion time, search time, reliability, and primary memory consumption. Each

objective is specified by an SLAParameter and corresponding metrics. For response times (insertion

time and search time), the percentages of response times which are less than the desired response times

should be measured. Take insertion time for example. Its final Metric specifies the measurement

of insertion time (see Line 23 –30). After the insertion time is measured, its value will then be

compared with 1 000 to obtain the percentage of insertion time which is less than 1 000 ns (Line 16 –

22). For memory and reliability, soft requirements are not provided. As a result, their metrics only

define where to retrieve values. All values obtained in the ServiceDefinition section are compared

with the objectives defined in the ServiceLevelObjective section (Line 86 –154). Take reliability for

example. Its SLO specifies that the value of the SLAParameter, CurrentReliability, should be greater

than (i.e. GreaterEqual) 0.99. Through this file, our framework can acquire all information related

to SLOs, including their metrics, objectives, and priorities. Similarly, the SLO for the unexplored

state queue, which requires the primary memory consumption lower than 40 MB, is specified in

UnexploredSLOs.xml. Figure 3.4 also illustrates that the value of AdaptationFrequency is 100, which

3.6. Case Study 81

means that the Analyser is activated every 100 operations. The influence of different frequencies is

shown in Table 3.5. As can be seen, increasing the values of AdaptationFrequency can reduce both

insertion time and search time, but when its value reaches 1 000, insertion time and search time rise

owing to the delay of adaptation actions.

AdaptationFrequency
1 10 100 1000

Cumulative insertion time (ns) 3.26591 * 1011 1.53390 * 1011 1.02284 * 1011 1.40904 * 1011
Cumulative search time (ns) 1.62012 * 1012 1.51335 * 1012 1.50460 * 1012 1.63597 * 1012

Table 3.5: The influence of various values of AdaptationFrequency on cumulative response time

3.6.1 Comparison with Conventional Containers

Figures 3.5 and 3.6 depict the average insertion and search time consumed by an STL set, an AVL

tree, a standard Bloom filter, and our framework under the priority ordering of performance, relia-

bility, and memory in one run. The x-axes in the two figures represent the cumulative numbers of

operations, and the y-axes refer to average response time required for one operation. As can be seen,

our framework yields better performance than conventional data structures. Specifically, it reduces

cumulative insertion time by 74.9% and cumulative search time by 86.2% compared to the STL set.

The two figures also show that the framework has occasional sharp rises in insertion time and search

time, which represent that self-adaptations are conducted in order to protect QoS. In addition, when

the x-values are small, our framework consumes less insertion time but more search time compared

to the STL set. That is because when x-value is small, the STL set needs more time to be initialised

but expends less time on comparing a small number of stored elements. By contrast, our frame-

work expends less initialisation time but consumes more time for generating hash keys (because the

currently-used data structure is a sparse Bloom filter).

The memory consumption of the STL set, the AVL tree, the Bloom filter, and our framework is

displayed in Figure 3.7. Our framework consumes merely 10% of memory space required by the STL

set and the AVL tree. Although its memory consumption is not as efficient as the Bloom filter, its

reliability is considerably higher. In addition, because the assigned SLOs specify that performance

82 Chapter 3. A Novel Self-Adaptive Container Framework

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

A
v
e
ra

g
e
 i
n
se

rt
io

n
 t

im
e
 (

n
s)

Number of inserted states

AVL tree
Standard Bloom filter

STL set
Our framework

Insertion time SLO

Figure 3.5: The average insertion time of explored adopting conventional containers and our frame-
work

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

A
v
e
ra

g
e
 s

e
a
rc

h
 t

im
e
 (

n
s)

Number of invoked search operations

AVL tree
Standard Bloom filter

STL set
Our framework

Search time SLO

Figure 3.6: The average search time of explored adopting conventional containers and our framework

3.6. Case Study 83

and reliability has higher priority than memory, our framework violates the memory-related SLO to

protect performance or reliability.

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

M
e
m

o
ry

 c
o
n
su

m
p

ti
o
n
 (

b
y
te

)

Number of inserted states

AVL tree & STL set
Standard Bloom filter

Our framework
Memory SLO

Figure 3.7: The memory consumption of explored adopting conventional containers and our frame-
work

3.6.2 Influence of SLO Priority Ordering

The self-adaptive mechanism equipped in the framework addresses SLOs according to the specified

priority ordering, which may lead to different behaviour. Figures 3.8 and 3.9 depict the average

insertion time and average search time under the six priority orderings (i.e. PerMemRel, PerRelMem,

MemPerRel, MemRelPer, RelPerMem, and RelMemPer), where Per represents performance-related

SLOs, Mem represents memory-related SLOs, and Rel represents reliability-related SLOs. As can be

seen, the framework expends less insertion time and search time when the given SLOs specify that

performance has higher priority over memory consumption. By contrast, if memory consumption is

the highest in order of priority (i.e. MemPerRel or MemRelPer), the insertion time and search time

will significantly rise. That is because out-of-core memory is frequently accessed.

84 Chapter 3. A Novel Self-Adaptive Container Framework

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

A
v
e
ra

g
e
 i
n
se

rt
io

n
 t

im
e
 (

n
s)

Number of inserted states

MemPerRel
MemRelPer
PerMemRel
PerRelMem
RelMemPer
RelPerMem

Insertion time SLO

Figure 3.8: The average insertion time under the six priority orderings

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

A
v
e
ra

g
e
 s

e
a
rc

h
 t

im
e
 (

n
s)

Number of searches

MemPerRel
MemRelPer
PerMemRel
PerRelMem
RelMemPer
RelPerMem

search time SLO

Figure 3.9: The average search time under the six priority orderings

3.6. Case Study 85

Figure 3.10 exhibits memory consumption under the six priority orderings. It illustrates that when

memory has the highest priority, the consumed memory space is the least. By contrast, when memory

consumption is the lowest in order of priority, the framework occupies more memory space so as to

boost performance or reliability. This figure also indicates that when the memory limit is reached,

MemPerRel and MemRelPer attempt to reduce the size of the currently-used sparse Bloom filter in

an effort to save memory. The reduction is achieved through diminishing the number of AVL trees.

Once the number of AVL trees cannot be reduced, out-of-core storage is activated.

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

 4e+10

 4.5e+10

 0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08

M
e
m

o
ry

 c
o
n
su

m
p
ti

o
n
 (

b
y
te

)

Number of inserted states

MemPerRel
MemRelPer
PerMemRel
PerRelMem
RelMemPer
RelPerMem

memory SLO

Figure 3.10: The memory consumption under the six priority orderings

Figure 3.11 depicts reliability variation among the six priority orderings. As can be seen, when relia-

bility has higher priority over performance and memory consumption (RelPerMem and RelMemPer),

the framework adapts its underlying data structure to maintain desirable reliability – over 0.99. How-

ever, when the priority of reliability is the lowest, the reliability may decline as the number of stored

states increases. In addition, notice that PerRelMem boosts the reliability when the number of stored

states is approximately 100 million while PerMemRel does not. That is because in the latter case

memory consumption has higher priority than reliability. Hence, when the actual reliability is lower

than the desired reliability, PerMemRel will not enhance reliability to protect the memory quota.

86 Chapter 3. A Novel Self-Adaptive Container Framework

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08

R
e
lia

b
ili

ty

Number of inserted states

MemPerRel
MemRelPer
PerMemRel
PerRelMem
RelMemPer
RelPerMem

reliability SLO

Figure 3.11: The reliability under the six priority orderings

3.6.3 Exploiting Out-of-core Storage

As can be seen in Figure 3.4, the variable unexplored adopting our framework is assigned a memory

constraint, 40 MB. The memory consumption of this variable adopting an STL queue and our frame-

work is depicted in Figure 3.12. It illustrates that adopting out framework keeps memory consumption

under 40 MB. That is because our framework only allocates 40-MB memory space. When this space

is full, the body of the queue is moved to out-of-core memory.

3.7 Conclusion

This chapter has discussed the design and implementation of a self-adaptive container framework with

an embedded self-adaptive mechanism. This mechanism monitors managed resources, periodically

analyses operation profiles, plans adaptation actions, and executes them. During the analysis phase,

the assigned SLOs are retrieved to compare with the operation profiles reported from the monitoring

phase, and various adaptation actions are evaluated to choose a proper action capable of satisfying

3.7. Conclusion 87

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07 1.6e+07

N
u

m
b

e
r

o
f

s
ta

te
s
 i
n

 t
h

e
 p

ri
m

a
ry

 m
e

m
o

ry

Number of generated states

’Naive Queue’
’Intelligent Queue’

Figure 3.12: The memory consumption of unexplored adopting STL’s queue (naïve queue) and our
framework (intelligent queue)

88 Chapter 3. A Novel Self-Adaptive Container Framework

violated SLOs. This mechanism enables software to achieve a variety of QoS without reimplementa-

tion. In addition, compared with conventional containers, our framework yields better performance,

consumes less primary memory, and provides higher reliability. By adjusting the SLO priority or-

dering, our framework exhibits different behaviour. If memory has the highest priority, out-of-core

storage is activated to save primary memory. If performance is the highest in order of priority, the

underlying data structure is subdivided to boost performance. If reliability is the highest in order of

priority, the underlying data structure is also subdivided to increase reliability.

To show our framework’s viability and capability, a prototype has been implemented and applied

to a case study centred on explicit-space exploration. The experimental results reveal that cumula-

tive insertion time is reduced by 74.9%, cumulative search time is reduced by 89.2%, and memory

consumption is reduced by 90% compared to an STL set. Furthermore, by means of deployment of

out-of-core storage, the memory consumption of FIFO queues supported by our framework is merely

1% of memory space consumed by an STL queue. At the same time, programmer overhead is kept

low in terms of the degree to which code is modified.

The framework has been implemented and proved as a concept. However, the limited functionality

restricts its applications. In the next chapter, we will extend its functionality through the implemen-

tation of two important functionalities: key-value stores and priority queues. In addition, a new case

study will be investigated to show that our framework can be deployed in different application areas.

Chapter 4

Functionality Extension and Further Case

Study

‘To improve is to change; to be perfect is to change often.’

Winston Churchill, English Statesman (1874-1965)

4.1 Introduction

In the previous chapter, we presented a self-adaptive container framework for preventing frequent

code refactoring and implemented a prototype with limited functionalities. This prototype was applied

to a fundamental algorithm so as to prove the framework’s feasibility and to show its applicability.

This chapter will extend our framework’s functionality through the implementation of a key-value

store container and priority queues in the previously-developed container. Key-value stores are a

form of data storage. They are supported in many programming languages such as C++, Java, and

Python. In recent years, due to the explosion of data capacity, key-value stores are adopted to solve the

issues resulting from relational databases. Traditionally, database systems make use of a structured

way to store data, which works well when the number of stored data is thousands. However, this

data storage method restricts the system to a single server. Current database systems are required to

89

90 Chapter 4. Functionality Extension and Further Case Study

store terabytes of data, which causes relational databases serious problems. Compared to relational

databases, key-value store databases only store unique keys and collections of values, which enables

stored data to be easily distributed to different servers.

The other data structure now supported in our framework, priority queue, is a queue which always

processes the element with the highest priority. It is widely adopted in network management. For

example, in many network devices such as routers, some applications (e.g. VoIP or IPTV) can be

specified priorities to ensure QoS. The specified priority is recorded in each outgoing packet, which

is then sent to a priority queue. Through the utilisation of the priority queue, packets are transmitted

according to their priorities.

Since our framework acts according to specified Service Level Objectives, the instance adopting the

newly-supported functionalities of ICollection or IKeyValue is associated with a configura-

tion file following the format of WSLA. In addition, an enhanced prototype supporting out-of-core

storage and probabilistic data structures in both container classes is implemented. This prototype

is applied to a case study centred on route planning, adopting a Dijkstra’s shortest path algorithm.

To evaluate these new functionalities from the perspectives of applicability and scalability, we first

input a graph representing the USA road network and then compare our framework with conven-

tional containers. Next, different SLO priority orderings are assigned so as to observe the behaviour

of our framework when the new functionalities are exploited. Finally, a memory limit is assigned

to a priority queue adopting our framework in an effort to illustrate the dynamic activation of out-

of-core storage. The experimental results show that our framework delivers better performance and

expends less memory than conventional containers do. Furthermore, the framework automatically

adopts different adaptation actions based on assigned priority orderings, and the implementation of

priority queues can transfer data from/to out-of-core memory at run time in order to meet memory

constraints.

The remainder of this chapter is organised as follows. While Section 4.2 gives a full introduction of

key value stores and how we implement them, Section 4.3 describes applications of priority queues

and detailed implementation. A case study is investigated in Section 4.4. Section 4.5 concludes this

chapter.

4.2. Key-Value Stores Design and Implementation 91

4.2 Key-Value Stores Design and Implementation

Key-value stores represent data stored in pairs of keys and values. In the 1990s, STL began to support

the functionality of key-value stores via map. After that, Java and Python also implemented key-

value stores (e.g. Map in Java and dict in Python) as well. In the early 2009, the concept of key-

value stores commenced being adopted in the field of databases in order to deal with large-scale

data. Traditionally, database developers make use of relational databases to store data, which can

be managed via SQL. This mechanism works well when all data can be stored and manipulated in a

single server. However, as workload increases, stored data has to be distributed to multiple servers,

which may violate the properties of Atomicity, Consistency, Isolation, and Durability (ACID) in

relational database systems. As a result, key-value store databases are proposed to provide a flexible

mechanism for dealing with large-scale data. Many industries managing large-scale data e.g. Amazon

(DeCandia et al., 2007), Facebook (Atikoglu, Xu, Frachtenberg, Jiang, & Paleczny, 2012), Twitter

(Fitzpatrick, 2004; Petrovic, 2008) have adopted key-value stores in the form of NoSQL databases

e.g. Cassandra (Apache, 2014), Riak (Basho, 2014), Tokyo Cabinet (FAL Labs, 2012), Aerospike

(Aerospike, 2014). In addition, many libraries e.g. sparkey (Bruggmann, 2014), LevelDB (Google,

2013), YDB (Majkowski, 2010) can be used to implement in-memory key-value store databases.

Our framework implements the functionality of key-value stores in IKeyValue, which chooses ei-

ther a tree data structure (e.g. AVL tree or red black tree) or a modified sparse Bloom filter depending

on specified operation descriptors and Service Level Objectives. If iterator-based operations are re-

quired and the reliability requirement is 100%, a tree data structure is selected. Otherwise, a modified

sparse Bloom filter is chosen.

As operations are performed through IKeyValue, the self-adaptive mechanism keeps measuring per

operation response time, computing memory use, and where appropriate calculating reliability. If any

of them violates assigned SLOs, an adaptation action discussed in Section 3.3.3 may be performed

to satisfy the violated SLO. The subdivision of the underlying data structure can improve either per-

formance or reliability. However, when out-of-core storage is activated to meet a memory limit, the

functionality of the direct access operator (i.e. operator[]) will fail. The direct access operator may

be used either as a lvalue, which appears on the left-hand side of an assignment expression, or as a

92 Chapter 4. Functionality Extension and Further Case Study

rvalue, which appears on the right-hand side of an assignment expression. Hence, the return type of

the direct access operator should be the reference of the stored object. When elements are stored in

primary memory, operator[] can directly return the stored object. When elements are stored in out-

of-core memory, operator[] cannot return the reference. To solve this problem, we design a proxy

class which overloads the assignment operator (i.e. operator=) and the cast operator (i.e. operator()),

whose code is shown as follows:

template<class K,class V>
class ProxyClass
{

ProxyClass<K, V>& operator= (const V& rhs) {
{

// for lvalue
}
operator V() {
{

// for rvalue
}

};

When operator[] is used as a rvalue, it invokes the overloaded operator() of the proxy class, which

retrieves the mapped value from out-of-core memory. When operator[] is used as a lvalue, it calls

the overloaded operator=, which writes the new value to the mapped value in external memory. In

addition, the return type of operator[] is converted from the reference of the mapped value to the

reference of a proxy instance.

4.3 Priority Queue

Priority queues are a data structure which is frequently adopted in operating systems, discrete event

simulation, pathfinding algorithms, and data compression. A commonly-seen application of prior-

ity queues is the process management of an operating system. Through priority queues, operating

systems can execute processes according to priorities of processes. This ensures that processes with

higher priorities do not need to wait for processes with lower priorities. Additionally, the same tech-

nique can also be used in the interrupt handling, which permits operating systems to deal with interrupt

4.3. Priority Queue 93

requests according to their priorities. The propose of discrete event simulation is to simulate a series

of events such as traffic. These events are assigned time specifying when they should be activated

and then are pushed into a priority queue, which enables the simulation to easily obtain the next event

that has to be triggered. Pathfinding algorithms (e.g. Dijkstra’s shortest path algorithm and A* search

algorithm) make use of priority queues to store unexplored routes. One popular technique of data

compression is called Huffman coding. This exploits priority queues to construct a tree transform-

ing characters into bits. The above-mentioned applications have shown that priority queues are an

important data structure, especially when events/tasks have to be processed in accordance with their

importances.

The functionality of priority queues is implemented in ICollection using heap as the underlying

data structure. Heaps provide push operations, pop operations, and top operations, which always

return the element with the highest priority. In order to compare priorities of different elements,

ICollection accepts a custom comparison operator as an optional template parameter, whose

default value is the less-than operator (less). As can be seen in Figure 4.1, our implementation of

priority queues is composed of a data heap and an index heap. Before out-of-core storage is activated,

push, pop, and top operations are performed in the data heap. Hence, the index heap is empty. When

memory limits are met, out-of-core storage is activated. After this, push operations still manipulate

the data heap. When primary memory limits are reached, the data heap is transformed into an array

sorted according to priorities. This allows fast retrieval of the element with the next higher priority.

The first element in the array is inserted into the index heap. The sorted array is then moved to out-

of-core memory. After this, the data heap becomes empty. The above-mentioned actions may be

performed several times to maintain primary memory use at a desirable level. Pop and top operations

manipulate either the data heap or the index heap according to the priorities of the two heaps’ roots.

For top operations, the priorities of the two roots are compared to decide which element should be

returned. For pop operations, if the data heap’s root has higher priority, it will be removed. If the

index heap’s root has higher priority, it will be removed and the next element, which is stored in the

file where the original root is stored, is inserted into the index heap. For example, if element 𝑙 is

removed, element 𝑚 will be inserted into the index heap.

Our implementation does not consider performance-related and reliability-related adaptations for two

94 Chapter 4. Functionality Extension and Further Case Study

 Primary Memory

Data Heap Index Heap

a

b c

d e f g

l

o r

u w y

·················

·

Out-of-core Memory

l o u w y r

m p

q

Figure 4.1: The underlying data structures of the priority queue

reasons. First, when priority queues are adopted, contents of stored elements need to be retrieved,

which implies that stored elements cannot be converted into hash keys. Hence, the reliability require-

ment has to be 100%. Second, top operations, push operations, and pop operations have reached their

optimal time complexity. This means that subdividing the underlying data structure does not improve

performance. As a result, our implementation only focuses on memory-related SLOs.

4.4 Case Study

This section illustrates the capability of key-value stores (via IKeyValue) and priority queues (via

ICollection) through a route-planning case study adopting a Dijkstra’s shortest path algorithm.

The programs adopting the STL and our framework are shown in Figure 4.2. As can be seen, the

algorithm makes use of two container variables. One is for a table which stores the shortest distances

from a given random node to all the other nodes (Distance) and the other one is for a priority queue

whose first element is always the node with the shortest distance (PQ). The only difference between

the two programs is container declarations. To evaluate the framework’s effectiveness and scalability,

a graph depicting the USA road network (DIMACS, 2006), which consists of 23 million nodes and

58 million edges, and the following SLOs are input .

For Distance:

4.4. Case Study 95

1. 80% of insertion times should be less than 1350 ns, and 90% of search times should be less

than 500 ns.

2. Reliability should be higher than 0.995.

3. Memory consumption should be no more than 500 MB.

and for PQ, its primary memory use should be less than 300 KB.

The performance and memory consumption are then compared, using the STL’s containers and our

framework. Next, Distance’s SLOs are assigned in different sequences so as to observe the impact

of priority orderings. Finally, an STL’s priority_queue and our framework are utilised to compare

memory variation of PQ.

void Dijkstra_algorithm(Graph G, Node s)

{

 priority_queue< pair<Node, double>, compare > PQ;

 map<Node, double> Distance;

 Node u, v ;

 double cost;

 for (Node *w = G.start_node() ; w != G.end_node() ; w = G.next_node()) {

 Distance.insert(pair<Node, double>(*w, numeric_limits<double>::infinity()));

 }

 Distance[s] = 0;

 PQ.push(pair<Node, double>(s, Distance[s]));

 while (!PQ.empty()) {

 u = PQ.top().first;

 PQ.pop();

 pair<Node, double> *z = G.first_edge(u);

 for (; z ; z = G.next_edge(u)) {

 v = (*z).first ;

 cost = (*z).second;

 if (Distance[v] > Distance[u]+cost) {

 Distance[v] = Distance[u] + cost ;

 PQ.push(pair<Node, double>(v, Distance[v]));

 }

 }

 }

}

void Dijkstra_algorithm(Graph G, Node s)

{

ICollection< pair<Node, double>, compare > PQ(OP_P QUEUE, “PQSLO.xml”);

 IKeyValue<Node, double> Distance(OP_INSERT|OP_INDE X, “DistanceSLO.xml”, 100);

 Node u, v ;

 double cost;

 for (Node *w = G.start_node() ; w != G.end_node() ; w = G.next_node()) {

 Distance.insert(pair<Node, double>(*w, numeric_limits<double>::infinity()));

 }

 Distance[s] = 0;

 PQ.push(pair<Node, double>(s, Distance[s]));

 while (!PQ.empty()) {

 u = PQ.top().first;

 PQ.pop();

 pair<Node, double> *z = G.first_edge(u);

 for (; z ; z = G.next_edge(u)) {

 v = (*z).first ;

 cost = (*z).second;

 if (Distance[v] > Distance[u]+cost) {

 Distance[v] = Distance[u] + cost ;

 PQ.push(pair<Node, double>(v, Distance[v]));

 }

 }

 }

}

Figure 4.2: The naïve Dijkstra’s shortest path algorithm (left) and the same algorithm adopting our
framework (right)

96 Chapter 4. Functionality Extension and Further Case Study

4.4.1 Comparison with Conventional Containers

The average insertion time and average update time expended by an STL map and our framework

under the priority ordering of performance, reliability, and primary memory use are displayed in

Figures 4.3 and 4.4. As can be seen in Figure 4.3, the average insertion time consumed by our

framework is slightly higher than that of the map. That is because the framework performs adaptation

actions, which can be observed in sudden rises of insertion time, in order to boost performance or

reliability. Although the adaptation actions add time to insertion operations, they successfully enable

our framework to achieve the insertion-time SLO and the update-time SLO. In addition, Figure 4.3

shows that when x-value (cumulative number of invoked insertion operations) is small our framework

expends more insertion time. That is because our framework requires more time to initialise its first

stored element. By contrast, Figure 4.4 indicates that when x-value (cumulative number of invoked

update operations) is small our framework yields better performance. That is because all data has

been stored in the STL map and our framework when updated operations are invoked. As a result, the

STL map needs more time to locate target elements.

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

A
v
e
ra

g
e
 i
n
se

rt
io

n
 t

im
e
 (

n
s)

Number of stored nodes

STL map
Our framework

Insertion time SLO

Figure 4.3: The average insertion time of Distance adopting the STL map and our framework

4.4. Case Study 97

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

A
v
e
ra

g
e
 u

p
d

a
te

 t
im

e
 (

n
s)

Number of updates

STL map
Our framework

Update time SLO

Figure 4.4: The average update time of Distance adopting the STL map and our framework

Figure 4.5 depicts the memory consumption of the STL map and our framework. It obviously shows

that our framework uses considerably less memory space than the map. Furthermore, the memory

limit is violated because performance and reliability have higher priority than primary memory use.

4.4.2 Influence of SLO Priority

Figures 4.6 and 4.7 display the average insertion time and update time under different priority order-

ings. The two figures illustrate that when the performance-related SLOs have higher priority than the

memory-related SLO, the framework expends less insertion time and update time. This phenomenon

can be seen in the following priority orderings: PerMemRel, PerRelMem, and RelPerMem, which

force the framework to boost performance even if the memory-related SLO is violated. By contrast,

if the memory-related SLO is the highest in order of priority (i.e. MemPerRel and MemRelPer), the

insertion time and update time will dramatically increase, which is caused by the access of slow

out-of-core memory.

98 Chapter 4. Functionality Extension and Further Case Study

 0

 1e+09

 2e+09

 3e+09

 4e+09

 5e+09

 6e+09

 7e+09

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07

M
e
m

o
ry

 c
o
n
su

m
p

ti
o
n
 (

b
y
te

)

Number of stored nodes

STL map
Our framework

Memory SLO

Figure 4.5: The memory consumption of Distance adopting the STL map and our framework

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

A
v
e
ra

g
e
 i
n
se

rt
io

n
 t

im
e
 (

n
s)

Number of stored nodes

PerRelMem
RelMemPer
MemPerRel
PerMemRel
MemRelPer
RelPerMem

Insertion Time SLO

Figure 4.6: The average insertion time of our framework under the six priority orderings

4.4. Case Study 99

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

A
v
e
ra

g
e
 u

p
d

a
te

 t
im

e
 (

n
s)

Number of updates

PerRelMem
RelMemPer
MemPerRel
PerMemRel
MemRelPer
RelPerMem

Update Time SLO

Figure 4.7: The average update time of our framework under the six priority orderings

The memory use of the six priority orderings is displayed in Figure 4.8, which shows two types of

behaviour based on the priority of the memory-related SLO. First, when the priority of the memory-

related SLO is lower than that of the other SLOs (i.e. PerRelMem, PerMemRel, RelPerMem, and

RelMemPer), the framework consumes more memory space to boost performance or reliability. Sec-

ond, when the memory-related SLO has the highest priority, the consumed memory space is the least.

This figure also indicates that when MemPerRel and MemRelPer reach the memory limit, our frame-

work, whose currently-used data structure is an improved sparse Bloom filter, begins to reduce the

number of AVL trees to save memory space until its number is 1. After that, out-of-core storage is

activated. Furthermore, PerMemRel and PerRelMem behave differently when the number of inserted

nodes is approximately 10 million. PerRelMem has a sudden rise in memory consumption, but Per-

MemRel does not. For PerRelMem, its reliability has higher priority than memory. Hence, when

reliability is lower than the desired level (i.e. 0.995), the framework will enhance it without consid-

eration of memory use. But, for PerMemRel, its memory has higher priority than reliability. As a

result, reliability can only be enhanced when memory use is lower than the memory constraint (i.e.

500 MB).

100 Chapter 4. Functionality Extension and Further Case Study

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07

M
e
m

o
ry

 c
o
n
su

m
p

ti
o
n
 (

b
y
te

)

Number of stored nodes

PerRelMem
RelMemPer
MemPerRel
PerMemRel
MemRelPer
RelPerMem

Memory SLO

Figure 4.8: The memory consumption of our framework under the six priority orderings

The dynamic behaviour of our framework with respect to reliability when assigned the six priority

sequences is shown in Figure 4.9. This shows that RelPerMem and RelMemPer rebound several

times to keep the reliability at a desirable level (i.e. over 0.995). This figure also shows that when the

reliability-related SLO is lower than the other SLOs, the framework’s reliability may descend as the

number of inserted nodes increases (i.e. MemRelPer, MemPerRel, PerMemRel). Take MemRelPer

for example. Memory consumption has higher priority than reliability, which implies that reliability

cannot be improved once the memory limit is reached. Furthermore, the reliability of MemRelPer

sharply deteriorates after adaptation actions, which reduce the number of AVL trees, are taken.

4.4.3 Exploiting Out-of-core Storage

The memory limit of the variable, PQ seen in Figure 4.2, is 300 KB. The primary memory consump-

tion using our framework and an STL’s priority_queue are shown in Figure 4.10. It indicates that

when the memory limit is met, out-of-core storage is activated to reduce primary memory consump-

tion. In addition, adaptation actions are performed many times to protect the memory limit. Hence,

4.5. Conclusion 101

 0.993

 0.994

 0.995

 0.996

 0.997

 0.998

 0.999

 1

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07

R
e
lia

b
ili

ty

Number of stored nodes

PerRelMem
RelMemPer
MemPerRel
PerMemRel
MemRelPer
RelPerMem

Reliability SLO

Figure 4.9: The reliability variation of our framework under the six priority orderings

our framework only consumes 300 KB, which is a mere 22% of the memory space consumed by the

STL priority_queue.

4.5 Conclusion

The chapter has broadened the previously-developed prototype by means of the implementation

of key-value stores and priority queues. The functionality of key-value stores is implemented in

IKeyValue and that of priority queues is supported by ICollection. Both of them can dynam-

ically exploit out-of-core storage and probabilistic data structures to satisfy specified SLOs. We also

have presented how to support out-of-core storage in the new functionalities. For key-value stores,

a proxy class overloading the cast operator and the assignment operator has been implemented so as

to provide the direct access operator. For priority queues, to supply efficient out-of-core storage, the

underlying data structures are divided into two heaps. One is for storing data in primary memory, and

the other is for reducing the number of disk I/Os.

102 Chapter 4. Functionality Extension and Further Case Study

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

N
u
m

b
e
r

o
f

n
o
d

e
s

in
 p

ri
m

a
ry

 m
e
m

o
ry

Number of explored nodes

Naive Queue
Intelligent Queue

Figure 4.10: The memory consumption of PQ using the STL priority_queue (naïve queue) and our
framework (intelligent queue)

The enhanced prototype has been evaluated by means of a case study centred on route planning,

adopting a Dijkstra’s shortest path algorithm with the input of a graph representing the USA road

network. The experimental results suggest that our implementation provides better performance in

terms of insertion time and update time and consumes less memory compared to an STL map and pri-

ority_queue. Furthermore, the framework exhibits different behaviour when Service Level Objectives

are assigned in different priority orderings. The results also show that our framework implementation

dynamically exploits out-of-core storage to reduce primary memory use.

Chapter 5

Interoperability Extensions and Cloud

Integration

‘Nature is a mutable cloud which is always and never the same.’

Ralph Waldo Emerson, American Essayist, Lecturer, and Poet (1803 –1882)

5.1 Introduction

This chapter will describe the cooperation between the framework and third-party container libraries.

Through them, the framework can provide a wider class of Service Level Objectives and prevent

the implementation of complex techniques (e.g. parallelism and out-of-core storage) from scratch.

Furthermore, the integration of cloud storage is presented as well. By means of cloud storage, the

framework is capable of providing alternative out-of-core memory and taking charge of the responsi-

bility of moving data from and to cloud storage.

As described in Section 2.7, many research teams have proposed their container frameworks, which

are efficient and well-developed. Although these libraries are designed as close to the standard li-

braries as possible, programmers still need to learn how to configure them. Take STXXL’s map for

103

104 Chapter 5. Interoperability Extensions and Cloud Integration

example. Before its instance is declared, programmers have to configure the following definitions.

#define DATA_NODE_BLOCK_SIZE (4096)
#define DATA_LEAF_BLOCK_SIZE (4096)
template<class T>
struct Compare
{

bool operator () (const T& a, const T& b) const ;
static T max_value() ;

};

where the first two lines of code specify the sizes of nodes and Compare notifies STXXL of how to

compare keys. This increases the complexity of exploiting STXXL. Hence, this chapter will show

how our framework cooperates with these third-party containers in order to transfer the effort of

configuring these containers from programmers to our self-adaptive mechanism, which decides when

to trigger them and how to configure them on-the-fly. The third-party container libraries we choose

to integrate are STXXL (Dementiev et al., 2005), which provides efficient out-of-core containers and

algorithms, and Intel Threading Building Block (Intel, 2014), which supplies parallel containers and

algorithms. The two container libraries allow our framework not only to support out-of-core storage

and parallelism at low cost but to provide a wider class of Service Level Objectives, especially those

related to performance and memory efficiency.

This chapter will also show that the framework is capable of exploiting cloud storage at run time. To

the best of our knowledge, no library has the ability to do this. This ability implies that alternative

out-of-core memory can be provided when local memory (i.e. RAM and disk) is not available, and

data transfer from and to cloud storage is managed by our framework. As a result, programmers do

not need to reimplement their software when cloud storage services change.

Similarly, the framework will be evaluated through two case studies centred on explicit state-space

exploration and route planning. Through utilising STXXL, our framework can provide various out-

of-core data manipulation in a low-cost way. Through deploying Intel TBB, performance in terms

of insertion, search, update, push, and pop time is considerably boosted. By means of integrating

cloud storage, our framework dynamically moves data from/to cloud storage so as to reduce primary

memory use.

5.2. The Integration of Out-of-core Container Frameworks 105

The remainder of this chapter is organised as follows. Section 5.2 and 5.3 introduce the cooperation

of STXXL and Intel TBB, respectively. The integration of cloud storage is described in Section 5.4.

Two case studies, explicit state-space exploration and route planning, are investigated in Section 5.5.

Section 5.6 concludes this chapter.

5.2 The Integration of Out-of-core Container Frameworks

Our framework integrates STXXL (Dementiev et al., 2005) and MCSTL (Singler et al., 2007) to illus-

trate the ability of dynamically deploying third-party out-of-core containers. STXXL is a C++-based

library which aims to deal with extra large data sets in out-of-core memory. Compared with other out-

of-core libraries e.g. TPIE (Vengroff, 1994), LEDA-SM (Crauser & Mehlhorn, 1999), Persistent STL

(Gschwind, 2001), STXXL supports parallel algorithms, which enable data to be simultaneously pro-

cessed in different disks. Furthermore, the techniques of “pipelining” and “overlapping” are utilised

to improve performance and resource utilisation, respectively. The containers supported by STXXL

are described below.

• vector is an external data structure, which is divided into equal-sized blocks. Some blocks are

kept in internal memory as cache, the storage requirement for which relies on the number of

pages in cache (CachePages), the number of blocks in a page (PageSize), and the size of a block

in bytes (BlockSize). Hence, the internal memory consumption is 𝐶𝑎𝑐ℎ𝑒𝑃𝑎𝑔𝑒𝑠×𝑃𝑎𝑔𝑒𝑆𝑖𝑧𝑒×

𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒.

• stack contains four types of stacks (e.g. normal_stack, grow_shrink_stack, grow_shrink_stack2,

and migrating_stack). normal_stack is a general-purpose stack which keeps two pages as

buffers. When one page is empty, a new page will be loaded from external memory. Simi-

larly, when two pages are full, one page is written into external memory. As a result, its internal

memory consumption is 2 × 𝑃𝑎𝑔𝑒𝑆𝑖𝑧𝑒 × 𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒. grow_shrink_stack is an external stack

which is utilised by a series of push operations followed by a series of pop operations. This

kind of stack grows to is maximum capacity and then shrinks. Due to this access pattern,

grow_shrink_stack allows prefetching and buffered writing to boost performance. Because the

106 Chapter 5. Interoperability Extensions and Cloud Integration

mechanism of data transfer from/to external memory is not changed, it consumes the same

internal memory as normal_stack does. grow_shrink_stack2 also aims to deal with the same

access pattern as grow_shrink_stack but its buffers can be shared with other stacks. Its internal

memory use, therefore, is BlockSize plus shared buffers. migrating_stack enables programmers

to specify memory constraints over which data will be moved to external memory. Its internal

memory consumption depends on where data is stored. Before data is transferred, its maximum

memory use is equal to the memory constraint. After data is migrated, it only exploits some

pointers to maintain status.

• queue makes use of two blocks of internal memory to hold head and tail blocks. Thus, the

internal memory consumption is 2 × 𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒. Our prototype also adopts the same way

to implement out-of-core FIFO queues. Furthermore, STXXL’s out-of-core queue supports

prefetching and buffered writing, which enhances I/O performance.

• deque is an adaptor on top of vector. Hence, its maximum memory consumption is estimated

to be 𝐶𝑎𝑐ℎ𝑒𝑃𝑎𝑔𝑒𝑠× 𝑃𝑎𝑔𝑒𝑆𝑖𝑧𝑒×𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒.

• map is an associative container which stores pairs of unique keys and values. Its underlying data

structure is a B+-tree, which enables pre-retrieval of neighbour leaves because all leaf nodes are

linked together. To boost performance, the root node as well as the most frequently used internal

and leaf nodes are kept in primary memory. An important contribution of STXXL’s map is that

it is the first C++ library that provides I/O-efficient iterator-based search operations.

• unordered_map is a hash map. The main issue of an external hash map is its performance,

which is seriously affected by the number of I/Os. This can be solved through the increase

in buffered memory. Larger buffered memory results in better performance but leads to more

internal memory consumption as well. As a result, the size of buffered memory should be

assigned according to primary memory constraints.

• priority_queue is constructed by a sequence heap composed of 𝑅 merge groups (𝐺1, 𝐺2, . . . ,

𝐺𝑅) where 𝐺𝑖 contains up to 𝑘 sorted sequences. To boost performance, it utilises three types of

buffers. The first type of buffer is the group buffer, which stores the first 𝑚 smallest (or largest)

5.2. The Integration of Out-of-core Container Frameworks 107

elements. The second type of buffer is the deletion buffer, which holds the smallest elements of

the group buffers. The final type of buffer is the insertion priority queue, which keeps the newly

inserted elements. These three types of buffers occupy primary memory, whose consumption

is limited by a constructor parameter.

• matrix is an external container supporting matrix operations (e.g. addition, subtraction, multi-

plication, and transposition). It splits stored data into a variety of square submatrices, whose

size equals the specified block size.

• sorter is a container which keeps inserted elements in a programmer-specified order. It features

two phases of operations. In the first phase, elements are presorted when they are inserted (via

push). Once the limit of primary memory is reached, they will be written into external memory.

The second phase is activated when sort is invoked. In this phase, push is disabled, and iterator-

based operations (e.g. operator++, operator*) can be used (i.e. they cannot be utilised in the

first phase). The memory limit of sorter relies on the specified block size.

• sequence is similar to STXXL’s deque but does not support random access. It adopts the same

implementation as STXXL’s queue, which implies that its maximum primary memory con-

sumption is also 2×𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒.

MCSTL (Singler et al., 2007), which can cooperate with STXXL for the purpose of internal com-

putation improvement, is an OpenMP-based (Dagum & Menon, 1998) algorithm library exploiting

multiprocessors or multi-cores of a processor. Software adopting MCSTL is able to achieve perfor-

mance improvement without any changes due to the common algorithm names shared by MCSTL

and STL. In other words, all of the algorithms supported by MCSTL (e.g. sort, random_shuffle, par-

tition, merge, find, nth_element, partial_sum, and for_each) can be found in STL. In spite of these

advantages, MCSTL currently restricts adopted compilers (i.e. gcc and g++) to lower versions (lower

than version 4.2).

Through experimentation with STXXL, it can be found that properly configuring STXXL is difficult.

A correct configuration highly depends on its memory constraints. Furthermore, when to activate

STXXL is important as well. If sufficient primary memory is available, the deployment of STXXL

108 Chapter 5. Interoperability Extensions and Cloud Integration

will cause serious performance decline. These issues are addressed by our framework, which activates

STXXL only when primary memory limits are reached. Simultaneously, proper configuration, which

is computed according to memory constraints, is assigned to STXXL. The automatic deployment

allows programmers to skip the time of learning how to utilise STXXL and that of reimplementing

software for different memory constraints.

5.3 Parallelism Integration

Parallelism is a commonly-used technique for boosting performance. However, its complexity (e.g.

synchronisation) leads to high programmer effort and high levels of expertise. To reduce this, our

framework cooperates with Intel Threading Building Blocks (TBB) (Intel, 2014) to provide parallel

manipulation of stored data.

Intel TBB is a concurrent STL-like library which supplies parallel containers and algorithms in order

to reduce the complexity of developing multi-threaded software. Furthermore, it has the ability to de-

tect the number of CPU cores, which prevents reconfiguration when software runs on different execu-

tion environments; it adopts the technique of task stealing (Singh, Holt, Totsuka, Gupta, & Hennessy,

1995), which enables tasks to be dynamically reassigned to different CPU cores, so as to enhance core

utilisation. The containers supplied by TBB include concurrent_hash_map, concurrent_vector, con-

current_queue, concurrent_bounded_queue, concurrent_priority_queue, concurrent_unordered_set,

concurrent_unordered_multiset, concurrent_unordered_map, and concurrent_unordered_multimap.

We will introduce these containers as follows:

• concurrent_hash_map is a hash map that stores pairs of keys and values. Each key in the map

is unique and not sorted. When a custom hash function is required, it has to be encapsulated in

a class with a copy constructor, a destructor, an equal function, which compares the equality of

two keys, and a hash function, which should return the data type, size_t. As a result, depending

on the execution environments where TBB is deployed, hash keys may contain 32 bits or 64

bits.

5.3. Parallelism Integration 109

• concurrent_vector is a concurrent vector, which does not support pop_back. To concurrently

and safely insert data, insertion operations are transformed into push_back, grow_by, and

grow_to_at_least. Furthermore, when size is invoked, it may count the number of elements

which are appended by the insertion functions.

• concurrent_queue is a concurrent queue without memory limits, and concurrent_bounded_queue

is a concurrent queue with the limit of maximum capacity. Due to the limit of maximum mem-

ory use, push operations in concurrent_bounded_queue wait until the queue is not full. Simi-

larly, pop operations in an empty queue wait until elements can be popped. Both containers do

not provide front and back operations and transforms pop operations into try_pop operations for

safety reasons. Compared to the STL’s pop, try_pop returns a value representing if an element

is successfully popped and requires a parameter for storing the popped element.

• concurrent_priority_queue is a priority queue allowing multiple threads to push and pop ele-

ments. Compared to the STL’s priority_queue, top operations are not supported, and pop oper-

ations are converted into try_pop, whose behaviour is similar to concurrent_queue’s try_pop.

• concurrent_unordered_set and concurrent_unordered_multiset are similar to unordered_set and

unordered_multiset of the STL, respectively but support thread-safe insertion and traversal op-

erations. Because erasure operations are not concurrency safe, erase is converted into un-

safe_erase to address this characteristic.

• concurrent_unordered_map, and concurrent_unordered_multimap are akin to unordered_map

and unordered_multimap of the STL, respectively. As previously, erasure operations begin with

unsafe to indicate that they are not concurrency safe.

Although TBB provides STL-like interfaces, some of their usage is changed (e.g. pop operations,

erase operations), and some are removed (e.g. top operations, front operations). Furthermore, pro-

grammers have to change their code to meet memory constraints when execution environments change.

The above-mentioned problems are solved by our framework, which automatically assigns memory

limits to TBB according to specified memory-related SLO and supports the same interface names.

For example, when the functionality of a FIFO queue is specified, programmers can still utilise pop

110 Chapter 5. Interoperability Extensions and Cloud Integration

operations, which are transformed into try_pop by our framework. In addition, the popped element

which is protected by a semaphore is kept for supporting top operations.

5.4 Cloud Storage Integration

As described in Section 2.6, there are three types of cloud storage. Our framework adopts one public

cloud storage service, Amazon Storage Service. Accessing this type of cloud storage involves estab-

lishing connections to cloud storage providers and transferring data via the Internet. These actions can

be implemented though the use of third-party software APIs, e.g. WebStor (OblakSoft, 2014), Elasto

(Disseldorp, 2014), JetS3t (Murty, 2014), lits3 (Farina, 2009), Dropbox-C (Python, 2014)). Our

framework utilises WebStor to establish connections and transfer data from and to storage providers.

WebStor is designed for the cloud storage services supporting Cloud Storage Engine for MySQL

(ClouSE), e.g. Google Cloud Storage or Amazon S3. Additionally, it supports parallel operations

(e.g. put, get, delete), which can improve throughput to a large extent.

To provide containers which employ cloud storage, three implementation challenges have to be con-

sidered. First, most cloud service providers offer free but limited post and get operations as well as

capacity (e.g. Amazon S3 Free Tier provides 20 000 get requests, 2 000 put requests, and 5 GB of

standard storage). The second challenge is the lack of search operation. Some cloud storage ser-

vice providers do not support search operations, which causes malfunctions of some operations (e.g.

search, operator[]). Consequently, the performance of searching for an element can involve down-

loading of the file that may contain the element and searching of the element on the file, which highly

depends on the size of the downloaded file. The third challenge occurs when the value of an element

kept in cloud storage should be updated. In the worst case, this involves downloading, updating, and

uploading. The performance of the whole process also depends on the size of the file. To efficiently re-

solve these challenges, the number of put and get operations and cloud memory consumption should

be reduced. Hence, when cloud storage is activated, data is split into different cloud space by our

framework. This division cuts occupied memory in each space and reduces the numbers of push and

pop operations since the file in each space is smaller.

5.5. Case Study 111

5.5 Case Study

This section will apply the framework integrating STXXL, MCSTL, Intel TBB, and Amazon S3 to

explicit state-space exploration adopting a breadth-first search algorithm and route planning adopting

a Dijkstra’s shortest path algorithm in order to observe the impact when these third-party containers

and cloud storage are deployed. The two algorithms are shown in Figure 3.4 and 4.2, respectively.

As can be seen, adopting our framework only needs to modify container declaration. In addition, to

evaluate capability of the framework exploiting STXXL and Intel TBB, the BFS algorithm is assigned

approximately 240 million states, and the Dijkstra’s shortest path algorithm is given the USA road

network, which contains 23 million nodes and 58 million edges. The framework uses 1 Gigabit

Ethernet for connecting cloud storage.

5.5.1 The Automatic Deployment of an Out-of-core Container Library

This subsection will exhibit the influence of STXXL in terms of insertion time and search time. To

trigger STXXL, the SLOs specified in Section 3.6 are assigned in the order of MemPerRel. Fig-

ures 5.1 and 5.2 show explored’s (as can be seen in Figure 3.4) average insertion time and average

search time taken by an STXXL’s map, our framework using baseline implementation (the method

described in Section 3.5), and our framework utilizing STXXL and MCSTL. The two figures indicate

that when STXXL is utilised alone, performance is the lowest, the reason for which is all the data

stored in out-of-core memory. They also illustrate that through the self-adaptive mechanism, STXXL

is deployed when memory limits are reached, which prevents performance decline when primary

memory is sufficient.

5.5.2 The Automatic Deployment of Parallelism

This subsection first applies our framework with the functionality of parallelism to the BFS algorithm

and then to the Dijkstra’s shortest path algorithm. Figures 5.3 and 5.4 exhibit the average insertion

time and average search time expended by an STL set and our framework using TBB for the table of

112 Chapter 5. Interoperability Extensions and Cloud Integration

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

A
v
e
ra

g
e
 i
n
se

rt
io

n
 t

im
e
 (

n
s)

Number of inserted states

STXXL
Our framework using baseline implementation
Our framework using STXXL

Figure 5.1: The average insertion time of explored adopting STXXL, our framework using baseline
implementation, and our framework using STXXL

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

A
v
e
ra

g
e
 s

e
a
rc

h
 t

im
e
 (

n
s)

Number of invoked search operations

STXXL
Our framework using baseline implementation
Our framework using STXXL

Figure 5.2: The average search time of explored adopting STXXL, our framework using baseline
implementation, and our framework using STXXL

5.5. Case Study 113

explored states. As can be seen, when our framework utilises TBB’s concurrent_hash_map to store

explored states, performance is improved. Specifically, cumulative insertion time is reduced by 76%,

while cumulative search time is reduced by 86%.

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

A
v
e
ra

g
e
 i
n
se

rt
io

n
 t

im
e
 (

n
s)

Number of inserted states

STL set
Our framework using TBB

Figure 5.3: The average insertion time of the STL set and our framework using TBB

Figures 5.5 and 5.6 depict the average push and pop times of an STL queue and our framework for

the queue of unexplored states. Similarly, our framework adopting TBB’s concurrent_queue is faster

than the STL queue (i.e. 54% reduction in cumulative push time and 77% reduction in cumulative

pop time). In addition, the average push time considerably rises when the number of invoked states

increases. This phenomenon results from the implementation of the STL queue. The STL queue is

a container adaptor, whose default underlying container is deque. It utilises an array, each of whose

positions points to a block for storing elements. When all blocks are full, the array will be resized

to store more blocks. As a result, the average push time may rise as the number of stored elements

increases.

In the second case study, route planning, our framework adopts TBB’s concurrent_unordered_map

for Distance and concurrent_priority_queue for PQ in Figure 4.2. The response times (insertion and

114 Chapter 5. Interoperability Extensions and Cloud Integration

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

A
v
e
ra

g
e
 s

e
a
rc

h
 t

im
e
 (

n
s)

Number of searches

STL set
Our framework using TBB

Figure 5.4: The average search time of the STL set and our framework using TBB

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

A
v
e
ra

g
e
 p

u
sh

 t
im

e
 (

n
s)

Number of invoked push operations

STL queue
Our framework using TBB

Figure 5.5: The average push time of the STL queue and our framework using TBB

5.5. Case Study 115

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

A
v
e
ra

g
e
 p

o
p

 t
im

e
 (

n
s)

Number of invoked pop operations

STL queue
Our framework using TBB

Figure 5.6: The average pop time of the STL queue and our framework using TBB

update) of Distance are displayed in Figures 5.7 and 5.8. As can be seen, our framework using TBB

expends more insertion time than the map does, but it expends less update time. As a result, the

overall response time (in terms of the sum of cumulative insertion time and cumulative update time)

of our framework is reduced by 30.8% compared to the STL map.

Figures 5.9 and 5.10 depict the average push time and pop time of an STL priority_queue and our

framework adopting TBB. As can be seen, cumulative push time is reduced by 9.7% and cumulative

pop time is reduced by 24.8%.

5.5.3 The Automatic Deployment of Cloud Storage

This subsection will discuss the performance and memory impacts when cloud storage is deployed.

It will also illustrate dynamic data transfer to and from the cloud storage. For the first case study, we

modify the assigned SLOs due to the performance limitations of cloud storage. The new SLOs are

assigned in the following order (MemPerRel):

116 Chapter 5. Interoperability Extensions and Cloud Integration

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

A
v
e
ra

g
e
 i
n
se

rt
io

n
 t

im
e
 (

n
s)

Number of stored nodes

STL map
Our framework utilising TBB

Figure 5.7: The average insertion time of STL map and our framework adopting TBB

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

A
v
e
ra

g
e
 u

p
d
a
te

 t
im

e
 (

n
s)

Number of updates

STL map
Our framework utilising TBB

Figure 5.8: The average update time of STL map and our framework adopting TBB

5.5. Case Study 117

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

A
v
e
ra

g
e
 p

u
sh

 t
im

e
 (

n
s)

Number of invoked push operations

STL priority_queue
Our framework utilising TBB

Figure 5.9: The average push time of STL priority_queue and our framework adopting TBB

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

A
v
e
ra

g
e
 p

o
p

 t
im

e
 (

n
s)

Number of invoked pop operations

STL priority_queue
Our framework utilising TBB

Figure 5.10: The average pop time of STL priority_queue and our framework adopting TBB

118 Chapter 5. Interoperability Extensions and Cloud Integration

1. Memory consumption should be no more than 1 MB.

2. 90% of insertion times should be less than 400 ns, and 85% of search times should be less than

400 ns.

3. Reliability should be higher than 0.99.

Figures 5.11 and 5.12 display the average insertion time and search time expended by our framework

exploiting out-of-core storage and cloud storage (i.e. Amazon S3). As can be seen, the performance

of Amazon S3 is lower than that of out-of-core storage, which is in keeping with the typical situation

where disk I/O performance is faster than network performance.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

A
v
e
ra

g
e
 i
n
se

rt
io

n
 t

im
e
 (

n
s)

Number of inserted states

Our framework using baseline out-of-core storage
Our framework using Amazon S3

Figure 5.11: The average insertion time of our framework using out-of-core storage and Amazon S3

Figure 5.13 represents primary memory consumed by our framework adopting out-of-core storage and

Amazon S3. It shows that when the number of stored states is approximately 31 000 our framework

activates cloud storage in order to protect the memory-related SLO.

In the second case study, cloud storage is deployed by IKeyValue. For the same reason (perfor-

mance limitation), the SLOs are modified and assigned in the following priority order (MemPerRel):

5.5. Case Study 119

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000 1e+06

A
v
e
ra

g
e
 s

e
a
rc

h
 t

im
e
 (

n
s)

Number of searches

Our framework using baseline out-of-core storage
Our framework using Amazon S3

Figure 5.12: The average search time of our framework using out-of-core storage and Amazon S3

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

M
e
m

o
ry

 c
o
n
su

m
p
ti

o
n
 (

b
y
te

)

Number of inserted states

Our framework using Amazon S3
Memory SLO

Figure 5.13: The memory consumption of our framework using Amazon S3

120 Chapter 5. Interoperability Extensions and Cloud Integration

1. Memory consumption should be no more than 350 KB.

2. 95% of insertion times should be less than 100 ns, and 95% of update times should be less than

200 ns.

3. Reliability should be higher than 0.995.

Furthermore, the input data set is changed to a graph representing the road network of Washington

DC, which contains approximately 10 000 nodes and 15 000 edges. The memory change of our frame-

work utilising Amazon S3 is displayed in Figure 5.14, which exhibits that before the memory limit

is met, the framework increase memory space to boost performance or reliability (i.e. the sudden

rises in memory consumption). When the limit of Distance’s memory consumption (i.e. 350 KB)

is reached, our framework will try to reduce memory use by shrinking the underlying data structures

(i.e. reducing the number of AVL trees). Once the number of AVL trees is 1, cloud storage is activated

(which occurs when the number of inserted nodes is approximately 8 800).

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
e
m

o
ry

 c
o
n
su

m
p

ti
o
n
 (

b
y
te

)

Number of inserted vertexes

our library using Amazon S3
memory SLO

Figure 5.14: The memory consumption of our framework using Amazon S3 for route planning

5.6. Conclusion 121

5.6 Conclusion

This chapter has shown the interoperability with third-party container frameworks through the integra-

tion of STXXL and Intel TBB. The former supplies well-developed and efficient out-of-core contain-

ers, and the latter affords parallel containers. The adoption of both libraries enables our framework to

satisfy a wider class of Service Level Objectives at low cost, especially those related to performance

and memory consumption.

This chapter has also exhibited the ability of dynamically exploiting cloud storage. As a result, when

local memory is not available, alternative memory can be utilised. In addition, the implementation

detail of data transfer from and to cloud storage is hidden by our framework, which means that

programmers do not need to modify their code for supporting various cloud storage.

We have adopted explicit state-space exploration and route planning to evaluate the framework’s in-

teroperability and capability. The results suggest that the interoperability is extended in terms of the

automatic employment of third-party containers. Through these libraries, our framework consider-

ably boosts performance, cuts primary memory consumption, and exploits out-of-core storage and

parallelism at low cost. Furthermore, the implementation for accessing cloud storage is significantly

simplified.

Chapter 6

Conclusion

‘The world is changing very fast. Big will not beat small anymore. It will be the fast beating the slow.’

Rupert Murdoch, Chairman and CEO, News Corp

6.1 Summary of Achievements

This dissertation has presented a novel self-adaptive container framework which aims to prevent fre-

quent software reimplementation when execution environments, application contexts, QoS require-

ments, or scalability requirements change.

Traditionally, programmers make use of software engineering methodologies such as design patterns

or standardised libraries to develop software in order to reduce implementation effort and levels of

expertise. As the number of execution environments increases dramatically, these techniques can-

not catch up with the speed of the increase in the diversity of execution environments, application

contexts, QoS requirements, and scalability requirements, which leads to repeated code refactoring.

To meet this challenge, software should have the ability to accept high-level objectives, monitor its

resource usage, and automatically adjust it to satisfy assigned Service Level Objectives. Compared

to our framework, the studies for building self-adaptive systems presented in Section 2.8 can dynami-

122

6.1. Summary of Achievements 123

cally manage resources but do not provide a mechanism for specifying Service Level Objectives based

on a standard format. In addition, even if the third-party container libraries described in Section 2.7

are helpful in reducing resource consumption, they are incapable of finding a suitable configuration

for the current environment. Our framework proposed in Chapter 3 is capable of identifying Service

Level Objectives through the utilisation of WSLA, monitoring and analysing resource changes, and

executing adaptation actions to satisfy assigned SLOs. Furthermore, it supplies tighter functionality

specification compared to standard libraries. This enables the deployment of probabilistic data struc-

tures, out-of-core storage, parallelism, and cloud storage. A prototype for this framework with these

techniques has been implemented and utilised in explicit state-space exploration to validate the fea-

sibility and evaluate the capability and scalability. The results have shown that when approximately

240 million states are explored, the prototype delivers better performance and consumes less memory

compared to conventional containers. In addition, the implementation exhibits different behaviour in

response to the priority ordering of assigned SLOs.

The prototype of the self-adaptive container framework presented in Chapter 3 has been extended by

means of the implementation of key-value stores and priority queues in an effort to provide widely-

used functionality. Key-value store containers hold inserted elements formed by pairs of keys and

mapped values. They were originally supported by programming languages (in-memory). In the

recent decade, key-value stores have become a frequently-used technique in the field of databases

so as to deal with large-scale data. Our framework supplies not only in-memory but persistent key-

value stores through the exploitation of out-of-core storage. Furthermore, it can choose tree data

structures or probabilistic data structures as the underlying data structure according to specified SLOs

and desired functionalities. In addition to the support of key-value stores, the enhanced prototype

has implemented another widely-adopted data structure, priority queues. Their applications may also

need to process large amount of data. As a result, our implementation for priority queues supplies

the automatic deployment of out-of-core storage that is triggered by memory-related SLOs. The

prototype has been assessed via a case study centred on route planning, adopting a Dijkstra’s shortest

path algorithm. The results indicate that our framework provide faster key-value stores compared with

STL’s map. It can also dynamically perform adaptations in order to achieve various priority orderings

of Service Level Objectives.

124 Chapter 6. Conclusion

To satisfy a wider class of Service Level Objectives, the framework has integrated third-party con-

tainer frameworks and cloud storage. As we have mentioned in Chapter 2.7, many research teams

have developed libraries improving a certain capability (e.g. memory efficiency, performance, or re-

liability). However, to use them correctly, a suitable configuration should be given and an accurate

activation time of these libraries should be determined. Hence, we extend the framework’s inter-

operability in terms of the configuration and exploitation of these libraries on-the-fly. In addition,

cloud storage has been integrated into our framework, which shifts the responsibility of transferring

data from and to cloud storage from programmers to our framework and supplies alternative memory

when local memory space (primary memory and out-of-core memory) is not available.

All of the above-mentioned contributions are achieved with low programmer overhead. Compared

to our approach, other self-adaptive approaches need to modify the overall architecture and much of

code. This increases the complexity of adopting self-adaptive techniques in existing systems. Util-

ising the framework to build self-adaptive software minimises the degree to which code is modified.

Indeed, only two lines of code are changed in the two case studies.

6.2 Applications

This section will discuss the potential applications where our framework can be utilised.

Our framework intends to cover the functionality supported by the STL, which implies that applica-

tions implemented through the STL can also adopt our framework. Furthermore, as we have men-

tioned in Section 1.1, five application domains, explicit state-space exploration, route planning, DNA

sequence assembly, visualisation, and similarity search, suffer from primary memory shortage and

performance decline owing to large-scale data. Due to the exploitation of probabilistic data structure,

out-of-core storage, and parallelism, our framework is particularly suitable for applications with large

input data.

Other applications the framework can be applied to are those which are executed on multiple plat-

forms (e.g. games, browsers, messaging software, antivirus, etc). The QoS requirements of these

applications are highly affected by their execution environments and application contexts. Using our

6.2. Applications 125

framework can prevent reimplementation when the same application is executed on different plat-

forms. Furthermore, the satisfaction of different QoS requirements is simplified to the respecification

of Service Level Objectives.

The framework is also suitable for applications that frequently access multiple cloud storage services.

Take Rainbow Drive (Compal, 2014) for example. Rainbow Drive is an app which allows users

to manage multiple accounts (i.e. it can access different cloud storage services). Although it can

show information of each account, management still depends on manual operations. Furthermore, its

developers need to implement access methods for all cloud storage services. All of these limitations

can be solved by our framework, which monitors usage of each cloud storage, calculates its cost, and

compares it with Service Level Objectives. If a certain cloud storage reaches its limit, an alternative

cloud storage can be activated. Additionally, our framework can easily integrate other utility library

supporting specific service providers, which removes the need for implementing explicit data transfer

methods for new service providers.

Although our framework can be deployed in most applications, programmers cannot gain benefits

from it in some particular situations, which are displayed in Table 6.1. First, our framework cannot

improve performance when it is utilised by inefficient algorithms. Our framework can provide ef-

ficient way to manipulate data, but the overall performance highly depends on applied algorithms.

Second, performance improvement and memory reduction supported by our framework result from

the adopted techniques, which rely on desired functionalities. Hence, the more functionalities are

specified, the less performance and memory efficiency are improved. Third, the framework intends to

satisfy assigned SLOs via self-adaptations, which may result in useless adaptations when unrealistic

SLOs are specified. Fourth, when the framework has adequate memory space, it can subdivide its

underlying data structures to boost performance. By contrast, if memory space is limited, the above-

mentioned actions cannot be taken. Fifth, the framework cannot exploit parallelism when software

utilising it runs on a single-threaded CPU. Sixth, if 100% reliability is required, probabilistic data

structures cannot be deployed. As a result, with the allowance of performance-related SLOs, the

alternative way to reduce primary memory use is exploitation of out-of-core storage. Seventh, our

framework can improve QoS of naïve algorithms but may not enhance that of algorithms which have

been optimised. For example, if an algorithm has made use of out-of-core storage to reduce primary

126 Chapter 6. Conclusion

memory use, the adoption of our framework cannot save more primary memory. Finally, when appli-

cations run on environments incapable of connecting the internet, cloud storage cannot be exploited

and treated as alternative out-of-core memory.

Ideal Scenario Non-ideal Scenario
Fundamentally efficient algorithm Fundamentally inefficient algorithm
Limited functionality specification Full functionality specification

Realistic SLOs Unrealistic SLOs
Adequate memory space Limited memory space

Multi-threaded CPU Single-threaded CPU
Sub-100% reliability requirement 100% reliability requirement

Naïve algorithms Optimised algorithms
High-bandwidth Internet connection No Internet connection

Table 6.1: The discussion of scenarios where programmers can or cannot benefit from our framework

6.3 Future Work

This section will indicate future research directions which can simplify the usage of the framework,

enrich the self-adaptive mechanism, and extend the framework’s capability.

Currently, the functionality provided by our framework is based on operation descriptors. When

a self-adaptive container is declared, programmers have to know which operations are invoked in

advance. This may cause the difficulty in maintaining software. For example, when the container

needs to perform a new operation, the corresponding operation descriptor may not be added into its

constructor. This kind of problem appears at run time but not compile time. To prevent this, our

framework can provide a member function which automatically scans the scope of the container to

decide which operation descriptors are required. The automatic assignment of operation descriptors

not only avoids the maintenance issue but simplifies the usage of the framework.

The existing self-adaptive mechanism follows a strict order of priority, which can be broadened

through the utilisation of other multi-objective optimisation methods. For example, the strict order

of priority can be changed to a weighted product or a weighted sum of multiple Service Level Ob-

jects. This extension requires two modifications of the current methodology. First, the format of SLO

6.3. Future Work 127

specification has to accept the assignment of the optimisation method. Second, it also needs to be

laid down more information related to assigned SLOs. For instance, if a weighted sum optimisation

method is adopted, the weight of each SLO should be given to the framework.

Driven by energy price, the energy concern has become more and more important for computing

systems. Energy-efficient software not only reduces the operation cost of systems but extends the

uptime of some devices (e.g. mobile devices). However, it is not a trivial job to build such software.

The challenges may include how to measure energy consumption of different applications, how to

identify applications which result in energy waste, and how to improve energy efficiency. Manually

overcoming these challenges is possible but restricts the benefits to small systems. As a result, self-

adaptive software may be one workable solution. These challenges can be tackled by a self-adaptive

mechanism with the ability to monitor resources (i.e. energy), analyse resource usage (i.e. find energy

waste), and perform adaptations (i.e. improve energy efficiency).

Our framework has improved low-level complexity and resource usage of many applications. How-

ever, many performance bottlenecks result from inefficient higher-level algorithms. In other words,

detection and modification of inefficient algorithms can considerably boost performance (Smaalders,

2006). The mechanism to self-detect and self-correct inefficient algorithm has not been addressed in

the current work. One promising approach that might help relates to the automated detection and cor-

rection of performance anti-patterns. Compared to software design patterns (Gamma, Helm, Johnson,

& Vlissides, 1995), which provide good solutions for software design problems, anti-patterns (W. J.

Brown, Malveau, McCormick, & Mowbray, 1998) are templates for bad practices which are virtually

guaranteed to lead to undesirable nonfunctional behaviour. If automated correction of performance

anti-patterns were to become feasible in the future it would further push the frontiers of intelligent

self-adaptive software.

Since our framework shows great interoperability with other third-party frameworks, it can benefit

from the algorithms provided by other frameworks. Take STXXL and Intel TBB for example. Both of

them do not only supply containers but also support out-of-core and parallel algorithms, respectively.

This enables our framework to provide programmers with the corresponding algorithms whose data

structures have been dynamically selected by the self-adaptive mechanism.

128 Chapter 6. Conclusion

Finally, the integration of cloud storage allows our framework to deliver diverse combinations of

cloud storage services. The features and prices of a cloud storage service relies on its service provider.

Currently, there are at least ten companies supplying cloud storage services, which makes the choice

difficult for both end-users and programmers. For end-users, they may make considerable effort

select or transfer to a suitable service. For programmers, they may need to develop software for

different service providers and platforms. These burdens can be relieved by our framework when it

has sufficient knowledge to analyse end-users’ requirements and the ability to monitor cloud storage

usage and dynamically change it. To achieve this, a mechanism should be developed to specify

cloud-related Service Level Objectives (e.g. maximum capacity, maximum expected cost, maximum

number of push and pop operations, connectivity). Furthermore, those parameters related to these

objectives should be measured by the self-adaptive mechanism. After the information is specified, the

self-adaptive mechanism can dynamically exploit different cloud storage services.

6.4 Final Thoughts

Nowadays new execution environments are constantly emerging, e.g. smart watches arise wide atten-

tion in 2015. The varying QoS requirements of these environments cause software to be frequently

refactored. As a result, we design the self-adaptive container framework for helping programmers

reduce their effort of reimplementing software when execution environments change. Since the

framework is implemented in C++ in this thesis (it can also be implemented in other programming

languages), it should be able to replace the STL by the following steps. First, related header files

(e.g. ICollection.h or IKeyValue.h) should be included. Second, container variables are changed to

ICollection or IKeyValue according to their nature, i.e. use ICollection for single-value

containers and IKeyValue for key-value store containers. Third, desired functionalities, Service

Level Objectives, and adaptation frequency (optional) should be specified.

To build self-adaptive software, one critical issue is the time expended on adaptation (Floch et al.,

2006). Our framework also takes this issue into consideration. When the underlying data structures

need to be changed, the techniques of multi-threading are adopted to boost the performance of execut-

6.4. Final Thoughts 129

ing adaptation actions. Although we have considerably reduced the time of changing the underlying

data structures, software still needs to suspend its current jobs to perform adaptations. This can be

improved by utilising incremental adaptations. When adaptations are triggered, only part of stored

data is changed to new data structures by threads. In addition, a semaphore is configured to protect

the new data structures. After this, operations related to data modification are performed on the new

data structures. The original data structures are kept for retrieval and will be destroyed when all data

is moved to the new data structures.

Appendix A

An Expression of Service Level Objectives in

WSLA format

Listing A.1: The SLO configuration file of explored
1
2 <?xml version=’1.0’ ?>
3 <SLA xmlns="http://www.ibm.com/wsla" xmlns:xsi=
4 "http://www.w3.org/2001/XMLSchema-instance">
5
6 <Parties>
7 <ServiceProvider />
8 <ServiceConsumer />
9 </Parties>

10
11 <ServiceDefinition name=’SampleService’>
12
13 <Operation name=’insert’>
14 <SLAParameter name="InsertTimeRatio" unit="Percent">
15 <Metric> InsertTimeRatio_Metric </Metric>
16 </SLAParameter>
17 <Metric name="InsertTimeRatio_Metric" unit="Percent">
18 <Source>ServiceProvider</Source>
19 <Function xsi:type="PercentageLessThanThreshold">
20 <Metric> InsertTime_Metric </Metric>
21 <Value> <LongScalar> 1000 </LongScalar> </Value>
22 </Function>
23 </Metric>
24 <Metric name="InsertTime_Metric" unit="ns">
25 <Source>ServiceProvider</Source>
26 <MeasurementDirective xsi:type="ResponseTime">
27 <MeasurementURI>
28 urn:ICollection.ResponseTime.OP_INSERT

130

131

29 </MeasurementURI>
30 </MeasurementDirective>
31 </Metric>
32 </Operation>
33
34 <Operation name=’search’>
35 <SLAParameter name="SearchTimeRatio" unit="Percent">
36 <Metric> SearchTimeRatio_Metric </Metric>
37 </SLAParameter>
38 <Metric name="SearchTimeRatio_Metric" unit="Percent">
39 <Source>ServiceProvider</Source>
40 <Function xsi:type="PercentageLessThanThreshold">
41 <Metric> SearchTime_Metric </Metric>
42 <Value> <LongScalar> 1200 </LongScalar> </Value>
43 </Function>
44 </Metric>
45 <Metric name="SearchTime_Metric" unit="ns">
46 <Source>ServiceProvider</Source>
47 <MeasurementDirective xsi:type="ResponseTime">
48 <MeasurementURI>
49 urn:ICollection.ResponseTime.OP_SEARCH
50 </MeasurementURI>
51 </MeasurementDirective>
52 </Metric>
53 </Operation>
54
55 <Operation name=’Reliability’>
56 <SLAParameter name="CurrentReliability" unit="">
57 <Metric> CurrentReliability_Metric </Metric>
58 </SLAParameter>
59 <Metric name="CurrentReliability_Metric" unit="">
60 <Source>ServiceProvider</Source>
61 <MeasurementDirective xsi:type="wsla:Gauge">
62 <MeasurementURI>
63 urn:ICollection.Reliability.OP_Reliability
64 </MeasurementURI>
65 </MeasurementDirective>
66 </Metric>
67 </Operation>
68
69 <Operation name=’RAM’>
70 <SLAParameter name="RAMSIZE" unit="GB">
71 <Metric> RAMSIZE_Metric </Metric>
72 </SLAParameter>
73 <Metric name="RAMSIZE_Metric" unit="GB">
74 <Source>ServiceProvider</Source>
75 <MeasurementDirective xsi:type="wsla:Gauge">
76 <MeasurementURI>
77 urn:ICollection.RAM.OP_RAM
78 </MeasurementURI>
79 </MeasurementDirective>

132 Chapter A. An Expression of Service Level Objectives in WSLA format

80 </Metric>
81 </Operation>
82
83 </ServiceDefinition>
84
85 <Obligations>
86
87 <ServiceLevelObjective name="InsertTimeSLO">
88 <Obliged>service_provider</Obliged>
89 <Validity>
90 <Start>2013-01-01T14:00:00</Start>
91 <End>2014-01-01T14:00:00</End>
92 </Validity>
93 <Expression>
94 <Predicate xsi:type="GreaterEqual">
95 <SLAParameter>
96 InsertTimeRatio
97 </SLAParameter>
98 <Value> 0.9 </Value>
99 </Predicate>

100 </Expression>
101 <EvaluationEvent>NewValue</EvaluationEvent>
102 </ServiceLevelObjective>
103
104 <ServiceLevelObjective name="SearchTimeSLO">
105 <Obliged>service_provider</Obliged>
106 <Validity>
107 <Start>2013-01-01T14:00:00</Start>
108 <End>2014-01-01T14:00:00</End>
109 </Validity>
110 <Expression>
111 <Predicate xsi:type="GreaterEqual">
112 <SLAParameter>
113 SearchTimeRatio
114 </SLAParameter>
115 <Value> 0.85 </Value>
116 </Predicate>
117 </Expression>
118 <EvaluationEvent>NewValue</EvaluationEvent>
119 </ServiceLevelObjective>
120
121 <ServiceLevelObjective name="ReliabilitySLO">
122 <Obliged>service_provider</Obliged>
123 <Validity>
124 <Start>2013-01-01T14:00:00</Start>
125 <End>2014-01-01T14:00:00</End>
126 </Validity>
127 <Expression>
128 <Predicate xsi:type="GreaterEqual">
129 <SLAParameter>
130 CurrentReliability

133

131 </SLAParameter>
132 <Value> 0.99 </Value>
133 </Predicate>
134 </Expression>
135 <EvaluationEvent>NewValue</EvaluationEvent>
136 </ServiceLevelObjective>
137
138 <ServiceLevelObjective name="RAMSIZESLO">
139 <Obliged>service_provider</Obliged>
140 <Validity>
141 <Start>2013-01-01T14:00:00</Start>
142 <End>2014-01-01T14:00:00</End>
143 </Validity>
144 <Expression>
145 <Predicate xsi:type="LessEqual">
146 <SLAParameter>
147 RAMSIZE
148 </SLAParameter>
149 <Value> 7.5 </Value>
150 </Predicate>
151 </Expression>
152 <EvaluationEvent>NewValue</EvaluationEvent>
153 </ServiceLevelObjective>
154
155 </Obligations>
156 </SLA>

Bibliography

Abbasi, H., Wolf, M., Schwan, K., Eisenhauer, G., & Hilton, A. (2004, September). Xchange: cou-

pling parallel applications in a dynamic environment. In Proceedings of 2004 IEEE Interna-

tional Conference on Cluster Computing (pp. 471–480). San Diego, USA.

Abrahams, D. & Gurtovoy, A. (2004). C++ template metaprogramming: concepts, tools, and tech-

niques from boost and beyond (C++ in depth series). Addison-Wesley Professional.

Abram, G. & Treinish, L. (1995, November). An extended data-flow architecture for data analysis and

visualization. In Proceedings of the 6th Conference on Visualization (pp. 263–270). Atlanta,

USA.

Adler, M., Chakrabarti, S., Mitzenmacher, M., & Rasmussen, L. (1995). Parallel randomized load bal-

ancing. In Proceedings of the 27th Annual ACM Symposium on Theory of Computing (pp. 238–

247). Las Vegas, USA.

Aerospike. (2014, February). Aerospike. Retrieved from http://www.aerospike.com/

Aidarov, K., Ezhilchelvan, P., & Mitrani, I. (2013). Energy-aware management of customer streams.

Electronic Notes in Theoretical Computer Science, 296, 199–210.

Alabduljalil, M. A., Tang, X., & Yang, T. (2013, February). Optimizing parallel algorithms for all pairs

similarity search. In Proceedings of the 6th ACM International Conference on Web Search and

Data Mining (pp. 203–212). Rome, Italy.

Allmaier, S. C. & Horton, G. (1997, June). Parallel shared-memory state-space exploration in stochas-

tic modeling. In Proceedings of the 4th International Symposium on Solving Irregularly Struc-

tured Problems in Parallel (pp. 207–218). Paderborn, Germany.

Almeida, P. S., Baquero, C., Preguiça, N., & Hutchison, D. (2007). Scalable Bloom filters. Informa-

tion Processing Letters, 101(6), 255–261.

134

BIBLIOGRAPHY 135

Andreou, D. & Bourrillion, K. (2014). Guava: Google core libraries for Java 1.6+. Retrieved from

https://code.google.com/p/guava-libraries/

Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T., . . . Xu, M. (2005,

September). Web Services Agreement Specification (WS-Agreement). Global Grid Forum, Grid

Resource Allocation Agreement Protocol (GRAAP) WG. Retrieved from http://www.ggf.org/

Public_Comment_Docs/Documents/Oct-2005/WS-AgreementSpecificationDraft050920.pdf

Apache. (2014, February). Apache Cassandra. Retrieved from http://cassandra.apache.org/

Appcelerator. (2014). Titanium sdk. Retrieved from http://www.appcelerator.com/titanium/titanium-

sdk/

Atikoglu, B., Xu, Y., Frachtenberg, E., Jiang, S., & Paleczny, M. (2012, June). Workload analysis of

a large-scale key-value store. In Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE

Joint International Conference on Measurement and Modeling of Computer Systems (pp. 53–

64). London, UK.

Basho. (2014, February). Riak. Retrieved from http://basho.com/riak

Berchtold, S., Böhm, C., Braunmüller, B., Keim, D. A., & Kriegel, H.-P. (1997, May). Fast parallel

similarity search in multimedia databases. In Proceedings of the 1997 ACM SIGMOD Interna-

tional Conference on Management of Data (pp. 1–12). Tucson, USA.

Bigus, J. P., Schlosnagle, D. A., Pilgrim, J. R., Mills, W. N., & Diao, Y. (2002, July). ABLE: a toolkit

for building multiagent autonomic systems. IBM System Journal, 41(3), 350–371.

Bingham, B., Bingham, J., de Paula, F. M., Erickson, J., Singh, G., & Reitblatt, M. (2010, October).

Industrial strength distributed explicit state model checking. In Proceedings of the 9th Inter-

national Workshop on Parallel and Distributed Methods in Verification (pp. 28–36). Enschede,

Netherlands.

Bloom, B. H. (1970, July). Space/time trade-offs in hash coding with allowable errors. Communica-

tions of the ACM, 13(7), 422–426.

Bonomi, F., Mitzenmacher, M., Panigrahy, R., Singh, S., & Varghese, G. (2006, September). An

improved construction for counting Bloom filters. In Proceedings of the 14th Conference on

Annual European Symposium - Volume 14 (pp. 684–695). Zurich, Switzerland.

136 BIBLIOGRAPHY

Brown, W. J., Malveau, R. C., McCormick, H. W., III, & Mowbray, T. J. (1998). AntiPatterns: refac-

toring software, architectures, and projects in crisis. New York, NY, USA: John Wiley & Sons,

Inc.

Bruggmann, M. (2014, March). Sparkey. Retrieved from https://github.com/spotify/sparkey-java

Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., & Stefani, J.-B. (2006, September). The FRAC-

TAL component model and its support in Java: experiences with auto-adaptive and reconfig-

urable systems. Software Practice & Experience, 36(11-12), 1257–1284.

Buss, A., Harshvardhan, Papadopoulos, I., Pearce, O., Smith, T., Tanase, G., . . . Rauchwerger, L.

(2010, May). STAPL: standard template adaptive parallel library. In Proceedings of the 3rd

Annual Haifa Experimental Systems Conference (14:1–14:10). Haifa, Israel.

Butler, J., MacCallum, I., Kleber, M., Shlyakhter, I. A., Belmonte, M. K., Lander, E. S., . . . Jaffe,

D. B. (2008). ALLPATHS: de novo assembly of whole-genome shotgun microreads. Genome

Research, 18(5), 810–820.

Caselli, S., Conte, G., & Marenzoni, P. (1995, June). Parallel state space exploration for GSPN mod-

els. In Proceedings of the 16th International Conference on Application and Theory of Petri

Nets (pp. 181–200). Turin, Italy.

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., . . . Gruber, R. E.

(2008, June). Bigtable: a distributed storage system for structured data. ACM Transactions on

Computer Systems, 26(2), 4:1–4:26.

Chi, J., Ning, Z., Lang, L., & Yuan, F. (2009, May). Research and application on Bloom filter in

routing planning for indoor robot navigation system. In Proceedings of the 2009 Pacific-Asia

Conference on Circuits, Communications and Systems (pp. 244–247). Chengdu, China.

Chiang, Y.-J. & Silva, C. T. (1999). External memory algorithms. In J. M. Abello & J. S. Vitter

(Eds.), (Chap. External Memory Techniques for Isosurface Extraction in Scientific Visualiza-

tion, pp. 247–277). American Mathematical Society.

Chikhi, R. & Rizk, G. (2012, September). Space-efficient and exact de Bruijn graph representation

based on a Bloom filter. In Proceedings of the 12th International Conference on Algorithms in

Bioinformatics (pp. 236–248). Ljubljana, Slovenia.

BIBLIOGRAPHY 137

Ciardo, G., Gluckman, J., & Nicol, D. M. (1998). Distributed state space generation of discrete-state

stochastic models. INFORMS Journal on Computing, 10(1), 82–93.

Cignoni, P., Montani, C., Rocchini, C., & Scopigno, R. (2003, October). External memory manage-

ment and simplification of huge meshes. IEEE Transactions on Visualization and Computer

Graphics, 9(4), 525–537.

Clarke, E. M., Jr., Grumberg, O., & Peled, D. A. (1999). Model checking. Cambridge, MA, USA:

MIT Press.

Compal. (2014). Rainbow drive. Retrieved from http://www.compal.com/apps/rainbowdrive/

Cook, J. J. & Zilles, C. B. (2009, April). Characterizing and optimizing the memory footprint of de

novo short read DNA sequence assembly. In IEEE International Symposium on Performance

Analysis of Systems and Software (pp. 143–152). Boston, USA.

Costanza, P. & Hirschfeld, R. (2005). Language constructs for context-oriented programming: an

overview of ContextL. In Proceedings of the 2005 Symposium on Dynamic Languages (pp. 1–

10). DLS ’05. San Diego, USA.

Crauser, A. & Mehlhorn, K. (1999, July). LEDA-SM extending LEDA to secondary memory. In Pro-

ceedings of the 3rd International Workshop on Algorithm Engineering (pp. 228–242). London,

UK.

Czarnecki, K. & Eisenecker, U. W. (2000). Generative programming: methods, tools, and applica-

tions. New York, NY, USA: ACM Press/Addison-Wesley Publishing Co.

Dagum, L. & Menon, R. (1998, January). OpenMP: an industry-standard API for shared-memory

programming. IEEE Computational Science & Engineering, 5(1), 46–55.

Deavours, D. D. & Sanders, W. H. (1998, June). An efficient disk-based tool for solving large Markov

models. Perform. Evaluation, 33(1), 67–84.

DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., . . . Vogels,

W. (2007, October). Dynamo: Amazon’s highly available key-value store. In Proceedings of

the 21st ACM SIGOPS Symposium on Operating Systems Principles (pp. 205–220). Stevenson,

USA.

Delling, D., Katz, B., & Pajor, T. (2012, October). Parallel computation of best connections in public

transportation networks. Journal of Experimental Algorithmics, 17, 4.4:4.1–4.4:4.26.

138 BIBLIOGRAPHY

Dementiev, R., Kettner, L., & Sanders, P. (2005, October). STXXL: standard template library for xxl

data sets. In Proceedings of the 13th Annual European Conference on Algorithms (pp. 640–

651). Palma de Mallorca, Spain.

DIMACS. (2006). 9th DIMACS implementation challenge - shortest paths. Retrieved from http: / /

www.dis.uniroma1.it/challenge9/index.shtml

Dingle, N. J., Knottenbelt, W. J., & Suto, T. (2009, March). PIPE2: a tool for the performance evalu-

ation of generalised stochastic Petri nets. ACM SIGMETRICS Performance Evaluation Review,

36(4), 34–39.

Disseldorp, D. (2014). Elasto. Retrieved from https://code.google.com/p/elasto/

Dowling, J., Schäfer, T., Cahill, V., Haraszti, P., & Redmond, B. (1999, November). Using reflection to

support dynamic adaptation of system software: a case study driven evaluation. In Proceedings

of the 1st OOPSLA Workshop on Reflection and Software Engineering (pp. 169–188). Denver,

USA.

Eastep, J., Wingate, D., & Agarwal, A. (2011, June). Smart data structures: an online machine learning

approach to multicore data structures. In Proceedings of the 8th acm international conference

on autonomic computing (pp. 11–20). Karlsruhe, Germany.

Edelkamp, S. & Schrödl, S. (2000, July). Localizing A*. In Proceedings of the 7th National Con-

ference on Artificial Intelligence and 12th Conference on Innovative Applications of Artificial

Intelligence (pp. 885–890). Austin, USA.

Edelkamp, S. & Sulewski, D. (2010, September). Efficient explicit-state model checking on general

purpose graphics processors. In Proceedings of the 17th International SPIN Conference on

Model Checking Software (pp. 106–123). Enschede, The Netherlands.

FAL Labs. (2012, August). Tokyo Cabinet. Retrieved from http://fallabs.com/tokyocabinet/

Fan, L., Cao, P., Almeida, J., & Broder, A. Z. (2000, June). Summary cache: a scalable wide-area web

cache sharing protocol. IEEE/ACM Trans. Netw. 8(3), 281–293.

Farina, N. (2009). Lits3. Retrieved from https://code.google.com/p/lits3/

Fitzpatrick, B. (2004, August). Distributed caching with memcached. Linux J. (124), 5.

Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K., & Gjorven, E. (2006, March). Using archi-

tecture models for runtime adaptability. IEEE Software, 23(2), 62–70.

BIBLIOGRAPHY 139

Fogaras, D. & Rácz, B. (2005, May). Scaling link-based similarity search. In Proceedings of the 14th

International Conference on World Wide Web (pp. 641–650). Chiba, Japan.

Fowler, M. (2005, June). Language workbenches: the killer-app for domain- specific languages. Re-

trieved from http://www.martinfowler.com/articles/%20languageWorkbench.html

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns: elements of reusable

object-oriented software. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.

Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B., & Steenkiste, P. (2004, October). Rainbow:

architecture-based self-adaptation with reusable infrastructure. Computer, 37(10), 46–54.

Garlan, D., Siewiorek, D., Smailagic, A., & Steenkiste, P. (2002, April). Project Aura: toward distraction-

free pervasive computing. IEEE Pervasive Computing, 1(2), 22–31.

Geravanda, S. & Ahmadib, M. (2013). Bloom filter applications in network security: a state-of-the-art

survey. Computer Networks, 57(18), 4047–4064.

Gionis, A., Indyk, P., & Motwani, R. (1999, September). Similarity search in high dimensions via

hashing. In Proceedings of the 25th International Conference on Very Large Data Bases (pp. 518–

529). Edinburgh, UK.

Goldberg, A. V. & Werneck, R. F. F. (2005a, January). Computing point-to-point shortest paths from

external memory. In Proceedings of the 7th Workshop on Algorithm Engineering and Experi-

ments and the 2nd Workshop on Analytic Algorithmics and Combinatorics (pp. 26–40). Van-

couver, Canada.

Goldberg, A. V. & Werneck, R. F. F. (2005b, January). Computing point-to-point shortest paths from

external memory. In Proceedings of the 7th Workshop on Algorithm Engineering and Experi-

ments and the 2nd Workshop on Analytic Algorithmics and Combinatorics (pp. 26–40). Van-

couver, Canada.

Google. (2013, December). LevelDB. Retrieved from http://code.google.com/p/leveldb/

Gouda, M. & Herman, T. (1991). Adaptive programming. IEEE Transactions on Software Engineer-

ing, 17, 911–921.

Gschwind, T. (2001, January). PSTL: a C++ persistent standard template library. In Proceedings of

the 6th Conference on USENIX Conference on Object-Oriented Technologies and Systems -

Volume 6 (pp. 11–11). San Antonio, USA.

140 BIBLIOGRAPHY

Gudaitis, M. S., Lamont, G. B., & Terzuoli, A. J. (1995, February). Multicriteria vehicle route-

planning using parallel A* search. In Proceedings of the 1995 ACM Symposium on Applied

Computing (pp. 171–176). Nashville, USA.

Guo, D., Liu, Y., Li, X., & Yang, P. (2010, May). False negative problem of counting Bloom filter.

IEEE Transactions on Knowledge and Data Engineering, 22(5), 651–664.

Haverkort, B., Bell, A., & Bohnenkamp, H. (1999, September). On the efficient sequential and dis-

tributed generation of very large Markov chains from stochastic Petri nets. In Proceedings of

the 8th International Workshop on Petri Nets and Performance Models (pp. 12–21). Zaragoza,

Spain.

Heineman, G. T. & Councill, W. T. (2001). Component-based software engineering. Putting the

Pieces Together, Addison-Westley.

Hines, J. (2013). Dablooms - an open source, scalable, counting bloom filter library. Retrieved from

https://github.com/bitly/dablooms

Hirschfeld, R., Costanza, P., & Nierstrasz, O. (2008). Context-oriented programming. Journal of Ob-

ject Technology, 7(3), 125–151.

Holzmann, G. J. (1988, February). An improved protocol reachability analysis technique. Software

Practice & Experience, 18(2), 137–161.

Horn, P. (2001). Autonomic computing: IBM’s perspective on the state of information technology.

Presented at AGENDA 2001, Socttsdale, Available via http://www.research.ibm.com/autonomic.

Huang, W.-C. & Knottenbelt, W. J. (2013, May). Self-adaptive containers: building resource-efficient

applications with low programmer overhead. In Proceedings of the 8th International Sympo-

sium on Software Engineering for Adaptive and Self-Managing Systems (pp. 123–132). San

Francisco, USA.

Huang, W.-C. & Knottenbelt, W. J. (2014a). Low-overhead development of scalable resource-efficient

software systems. In W. K. I. Ghani & M. Ahmad (Eds.), Handbook of research on emerging

advancements and technologies in software engineering. IGI Global.

Huang, W.-C. & Knottenbelt, W. J. (2014b, May). Self-adaptive containers: functionality extensions

and further case study. In Proceedings of the 6th International Conference on Adaptive and

Self-Adaptive Systems and Applications (pp. 92–98). Venice, Italy.

BIBLIOGRAPHY 141

Huang, W.-C. & Knottenbelt, W. J. (2014c, December). Self-adaptive containers: interoperability

extensions and cloud integration. In Proceedings of the 11th IEEE International Conference on

Autonomic and Trusted Computing. Bali, Indonesia.

Huebscher, M. C. & McCann, J. A. (2008, August). A survey of autonomic computing—degrees,

models, and applications. ACM Computing Surveys, 40(3), 7:1–7:28.

IBM. (2003). An architectural blueprint for autonomic computing. IBM.

IBM. (2005). Autonomic computing toolkit. Retrieved from http://www.ibm.com/developerworks/

autonomic/r3/overview.html

Idury, R. M. & Waterman, M. S. (1995). A new algorithm for DNA sequence assembly. Journal of

Computational Biology, 2, 291–306.

Intel. (2014). Threading building blocks. Retrieved from https://www.threadingbuildingblocks.org/

Isensee, P. (2014). C++ optimization strategies and techniques. Retrieved from http://www.tantalon.

com/pete/cppopt/main.htm

Jackson, B. G., Regennitter, M., Yang, X., Schnable, P. S., & Aluru, S. (2010, April). Parallel de novo

assembly of large genomes from high-throughput short reads. In Proceedings of the 24th IEEE

International Symposium on Parallel and Distributed Processing (pp. 1–10). Atlanta, USA.

Jackson, D. (2002, April). Alloy: a lightweight object modelling notation. ACM Transactions on Soft-

ware Engineering Methodology, 11(2), 256–290.

Jiang, P., Ji, Y., Wang, X., Zhu, J., & Cheng, Y. (2014). Design of a multiple Bloom filter for dis-

tributed navigation routing. Systems, Man, and Cybernetics: Systems, IEEE Transactions on,

44(2), 254–260.

Johnson, E. & Gannon, D. (1997, July). HPC++: experiments with the parallel standard template

library. In Proceedings of the 11th International Conference on Supercomputing (pp. 124–131).

Vienna, Austria.

Josuttis, N. M. (2012). The C++ Standard Library: a tutorial and reference (2nd). Addison-Wesley

Professional.

Kaiser, G. E., Parekh, J. J., Gross, P., & Valetto, G. (2003, June). Kinesthetics eXtreme: an external in-

frastructure for monitoring distributed legacy systems. In Active Middleware Services (pp. 22–

31).

142 BIBLIOGRAPHY

Kaminsky, A. (2014). BIG CPU, BIG DATA: solving the world’s toughest computational problems

with parallel computing. Creative Commons.

Keller, A. & Ludwig, H. (2003, March). The WSLA framework: specifying and monitoring service

level agreements for web services. Journal of Network and Systems Management, 11(1), 57–81.

Kephart, J. O. & Chess, D. M. (2003, January). The vision of autonomic computing. Computer, 36(1),

41–50.

Khalid, A., Haye, M., Khan, M., & Shamail, S. (2009, April). Survey of frameworks, architectures

and techniques in autonomic computing. In Proceedings of the 5th International Conference on

Autonomic and Autonomous Systems (pp. 220–225). Valencia, Spain.

Kiczales, G., Lamping, J., A. Mendhekar, C. M., Lopes, C. V., Loingtier, J.-M., & Irwin, J. (1997,

June). Aspect-oriented programming. In Proceedings of the 11th European Conference on

Object-Oriented Programming (pp. 220–242). Jyväskylä, Finland.

Kleftogiannis, D., Kalnis, P., & Bajic, V. B. (2013). Comparing memory-efficient genome assemblers

on stand-alone and cloud infrastructures. PloS ONE, 8(9), 1–11.

Knottenbelt, W. J. (2000). Parallel performance analysis of large Markov models. (Doctoral disserta-

tion, Imperial College London (University of London)).

Knottenbelt, W. J. & Harrison, P. G. (1999). Distributed disk-based solution techniques for large

Markov models. Proceedings of the 3rd International Meeting on the Numerical Solution of

Markov Chains, 99, 58–75.

Kon, F., Román, M., Liu, P., Mao, J., Yamane, T., Magalhã, C., & Campbell, R. H. (2000, April). Mon-

itoring, security, and dynamic configuration with the dynamictao reflective orb. In IFIP/ACM

International Conference on Distributed Systems Platforms (pp. 121–143). New York, USA.

Kramer, J. & Magee, J. (2007, May). Self-managed systems: an architectural challenge. In Proceed-

ings of 2007 Future of Software Engineering (pp. 259–268). Minneapolis, USA.

Krishnamurthy, P., Buhler, J., Chamberlain, R., Franklin, M., Gyang, K., Jacob, A., & Lancaster, J.

(2007). Biosequence similarity search on the Mercury system. Journal of VLSI Signal Process-

ing, 49, 101–121.

Krupitzer, C., Roth, F. M., VanSyckel, S., Schiele, G., & Becker, C. (2014). A survey on engineering

approaches for self-adaptive systems. Pervasive and Mobile Computing, 33–42.

BIBLIOGRAPHY 143

Kundeti, V., Rajasekaran, S., Dinh, H., Vaughn, M., & Thapar, V. (2010). Efficient parallel and out of

core algorithms for constructing large bi-directed de Bruijn graphs. BMC Bioinformatics, 11,

560.

Kusum, A., Neamtiu, I., & Gupta, R. (2015, January). Adapting graph application performance via

alternate data structure representations. In Proceedings of the 5th International Workshop on

Adaptive Self-tuning Computing Systems. Amsterdam, The Netherlands.

Kwiatkowska, M. Z. & Mehmood, R. (2002, July). Out-of-core solution of large linear systems of

equations arising from stochastic modelling. In Proceedings of the 2nd Joint International

Workshop on Process Algebra and Probabilistic Methods, Performance Modeling and Verifi-

cation (pp. 135–151). Copenhagen, Denmark.

Lalanda, P., McCann, J. A., & Diaconescu, A. (2013). Autonomic computing - principles, design and

implementation. Undergraduate Topics in Computer Science. Springer.

Lamanna, D. D., Skene, J., & Emmerich, W. (2003, May). SLAng: a language for defining service

level agreements. In Proceedings of the 9th IEEE Workshop on Future Trends of Distributed

Computing Systems (pp. 100–106). San Juan, Puerto Rico.

Levoy, M. (2013). The Stanford 3D scanning repository. Retrieved from http : / / www - graphics .

stanford.edu/data/3Dscanrep/

Li, T., Yang, D., & Lian, X. (2012). Road crosses high locality sorting for navigation route planning.

In Recent advances in computer science and information engineering (pp. 497–502). Springer.

Li, Y., Kamousi, P., Han, F., Yang, S., Yan, X., & Suri, S. (2012). Memory efficient de Bruijn graph

construction. CoRR, abs/1207.3532.

Lim, H., Fan, B., Andersen, D. G., & Kaminsky, M. (2011, October). SILT: a memory-efficient,

high-performance key-value store. In Proceedings of the 23rd ACM Symposium on Operating

Systems Principles (pp. 1–13). Cascais, Portugal.

Liu, Y., Schmidt, B., & Maskell, D. L. (2011). Parallelized short read assembly of large genomes

using de Bruijn graphs. BMC Bioinformatics, 12, 354.

Ludwig, H., Keller, A., Dan, A., King, R. P., & Franck, R. (2003). Web service level agreement

(WSLA) language specification. IBM Corporation, 815–824.

144 BIBLIOGRAPHY

Macías-Escrivá, F. D., Haber, R., del Toro, R., & Hernandez, V. (2013). Self-adaptive systems: a

survey of current approaches, research challenges and applications. Expert Systems with Appli-

cations, 40(18), 7267–7279.

Majkowski, M. (2010, October). Ydb. Retrieved from http://code.google.com/p/ydb

Mamei, M. & Zambonelli, F. (2009). Programming pervasive and mobile computing applications:

the TOTA approach. ACM Transactions on Software Engineering and Methodology (TOSEM),

18(4), 1–56.

Marmalade. (2014). Marmalade SDK. Retrieved from https://www.madewithmarmalade.com/

Mehlhorn, K. & Näher, S. (1995, January). LEDA: a platform for combinatorial and geometric com-

puting. Communications of the ACM, 38(1), 96–102.

Melsted, P. & Pritchard, J. K. (2011). Efficient counting of k-mers in DNA sequences using a Bloom

filter. BMC Bioinformatics, 12, 333.

Meredith, J. S., Ahern, S., Pugmire, D., & Sisneros, R. (2012, May). EAVL: the extreme-scale analysis

and visualization library. In Proceedings of the Eurographics Symposium on Parallel Graphics

and Visualization (pp. 21–30). Cagliari, Italy.

Mitzenmacher, M. (2001). Compressed Bloom filters. In Proceedings of the 12th Annual ACM Sym-

posium on Principles of Distributed Computing (pp. 144–150). PODC ’01. Newport, USA.

Murch, R. (2004). Autonomic computing. IBM Press.

Murty, J. (2014). Jets3t. Retrieved from http://www.jets3t.org/index.html

Nie, Z., Hua, Y., Feng, D., Li, Q., & Sun, Y. (2014, August). Efficient storage support for real-time

near-duplicate video retrieval. In Proceedings of the 14th International Conference on Algo-

rithms and Architectures for Parallel Processing (pp. 312–324). Dalian, China.

Nierstrasz, O., Denker, M., & Renggli, L. (2009). Model-centric, context-aware software adaptation.

Software Engineering for Self-Adaptive Systems, 5525, 128–145.

OblakSoft. (2014). WebStor: high-performancee API for cloud storage. Retrieved from http://www.

oblaksoft.com/downloads/

Oracle. (2014). Oracle Berkeley DB Java edition. Retrieved from http://www.oracle.com/technetwork/

database/berkeleydb/overview/index-093405.html

Partow, A. (2000). C++ Bloom filter library. Retrieved from https://libbloom.codeplex.com/

BIBLIOGRAPHY 145

Pell, J., Hintze, A., Canino-Koning, R., Howe, A., Tiedje, J. M., & Brown, C. T. (2012). Scaling

metagenome sequence assembly with probabilistic de Bruijn graphs. Proceedings of the Na-

tional Academy of Sciences, 109(33), 13272–13277.

Petrovic, J. (2008, April), In Proceedings of the 3rd International Conference on Systems (pp. 368–

372). Cancun, Mexico.

Peuvrier, L. (2012). Joafip. Retrieved from http://joafip.sourceforge.net/

Pevzner, P. A., Tang, H., & Waterman, M. S. (2001, August). An Eulerian path approach to DNA

fragment assembly. Proceedings of the National Academy of Sciences of the United States of

the America, 98(17), 9748–53.

Pike, G. & Alakuijala, J. (2013). The CityHash family of hash functions. Retrieved from https://code.

google.com/p/cityhash/

Python, A. (2014). Dropbox-c. Retrieved from https://github.com/Dwii/Dropbox-C

Rohr, M., Giesecke, S., Hasselbring, W., Hiel, M., van den Heuvel, W.-J., & Weigand, H. (2006,

September). A classification scheme for self-adaptation research. In Proceedings of the Inter-

national Conference on Self-Organization and Autonomous Systems in Computing and Com-

munications (SOAS’2006) (p. 5). Erfurt, Germany.

Rottenstreich, O., Kanizo, Y., & Keslassy, I. (2014). The variable-increment counting Bloom filter.

IEEE/ACM Trans. Netw. 22(4), 1092–1105.

Saad, R. T., Zilio, S. D., & Berthomieu, B. (2010, October). A general lock-free algorithm for paral-

lel state space construction. In Proceedings of the 2010 9th International Workshop on Parallel

and Distributed Methods in Verification, and 2nd International Workshop on High Performance

Computational Systems Biology (pp. 8–16). Enschede, Netherlands.

Salehie, M. & Tahvildari, L. (2009, May). Self-adaptive software: landscape and research challenges.

ACM Transactions on Autonomic and Adaptive Systems, 4(2), 14:1–14:42.

Salvaneschi, G., Ghezzi, C., & Pradella, M. (2012, March). ContextErlang: introducing context-

oriented programming in the actor model. In Proceedings of the 11th Annual International

Conference on Aspect-Oriented Software Development (pp. 191–202). AOSD ’12. Potsdam,

Germany.

146 BIBLIOGRAPHY

Sanders, P., Schultes, D., & Vetter, C. (2008, September). Mobile route planning. In Proceedings of

the 16th Annual European Symposium on Algorithms (pp. 732–743). Karlsruhe, Germany.

Schaeffer-Filho, A., Lupu, E., Sloman, M., & Eisenbach, S. (2009, July). Verification of policy-based

self-managed cell interactions using Alloy. In Proceedings of 2009 IEEE International Sympo-

sium on Policies for Distributed Systems and Networks (pp. 37–40). London, UK.

Simpkins, C., Bhat, S., Isbell, C., Jr., & Mateas, M. (2008, October). Towards adaptive programming:

integrating reinforcement learning into a programming language. In Proceedings of the 23rd

ACM SIGPLAN Conference on Object-Oriented Programming Systems Languages and Appli-

cations (pp. 603–614). OOPSLA ’08. Nashville, USA.

Singh, J. P., Holt, C., Totsuka, T., Gupta, A., & Hennessy, J. (1995, June). Load balancing and data

locality in adaptive hierarchical n-body methods: barnes-hut, fast multipole, and radiosity. Jour-

nal of Parallel and Distributed Computing, 27(2), 118–141.

Singler, J., Sanders, P., & Putze, F. (2007, August). MCSTL: the multi-core standard template library.

In Proceedings of the 13th International Euro-Par Conference on Parallel Processing (pp. 682–

694). Rennes, France.

Smaalders, B. (2006, February). Performance anti-patterns. Queue, 4(1), 44–50.

Souza, V. E. S. (2012, June). Requirements-based software system adaptation (Doctoral dissertation,

University of Trento).

Stern, U. & Dill, D. L. (1995, October). Improved probabilistic verification by hash compaction. In

Proceedings of the IFIP WG 10.5 Advanced Research Working Conference on Correct Hard-

ware Design and Verification Methods (pp. 206–224). Frankfurt, Germany.

Stevens, R., Parsons, B., & King, T. M. (2007). A self-testing autonomic container. In Proceedings of

the 45th Annual Southeast Regional Conference (pp. 1–6). Winston-Salem, USA.

Suto, T., Bradley, J. T., & Knottenbelt, W. J. (2006, September). Performance Trees: a new approach

to quantitative performance specification. In Proceedings of the 14th IEEE/ACM International

Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Sys-

tems (pp. 303–313). Monterey, USA.

Sutton, R. S. & Barto, A. G. (1998). Introduction to reinforcement learning. MIT Press.

BIBLIOGRAPHY 147

Suvée, D., Vanderperren, W., & Jonckers, V. (2003, March). JAsCo: an aspect-oriented approach

tailored for component based software development. In Proceedings of the 2nd International

Conference on Aspect-Oriented Software Development (pp. 21–29). Boston, USA.

Teodoro, G., Valle, E., Mariano, N., Torres, R., & Meira, W., Jr. (2011, October). Adaptive parallel

approximate similarity search for responsive multimedia retrieval. In Proceedings of the 20th

ACM International Conference on Information and Knowledge Management (pp. 495–504).

Glasgow, UK.

Tesauro, G., Chess, D. M., Walsh, W. E., Das, R., Segal, A., Whalley, I., . . . White, S. R. (2004). A

multi-agent systems approach to autonomic computing. In Proceedings of the 3rd International

Joint Conference on Autonomous Agents and Multiagent Systems - Volume 1 (pp. 464–471).

New York, USA.

Tosic, V., Patel, K., & Pagurek, B. (2002). WSOL - web service offerings language. In Revised papers

from the international workshop on web services, e-business, and the semantic web (pp. 57–67).

Unity Technologies. (2015). Unity. Retrieved from http://unity3d.com/unity/multiplatform

Upson, C., Faulhaber, T., Jr., Kamins, D., Laidlaw, D. H., Schlegel, D., Vroom, J., . . . van Dam, A.

(1989, July). The application visualization system: a computational environment for scientific

visualization. IEEE Computer Graphics and Applications, 9(4), 30–42.

Vengroff, D. E. (1994, July). A transparent parallel I/O environment. In Proceedings of the 3rd DAGS

Symposium on Parallel Computation (pp. 117–134). Hanover, USA.

Vo, H. T., Silva, C. T., Scheidegger, L. F., & Pascucci, V. (2012). Simple and efficient mesh layout

with space-filling curves. Journal of Graphics, GPU, & Game Tools, 16(1), 25–39.

Vuduc, R., Demmel, J. W., & Yelick, K. A. (2005, June). OSKI: a library of automatically tuned

sparse matrix kernels. In Proceedings of SciDac 2005, Journal of Physics: Conference Series

(Vol. 16, pp. 521–530).

Wang, H. & Liu, K. (2012, August). User oriented trajectory similarity search. In Proceedings of the

ACM SIGKDD International Workshop on Urban Computing (pp. 103–110). Beijing, China.

Watt, D. A. & Brown, D. (2001). Java Collections: an introduction to abstract data types, data struc-

tures and algorithms (1st). New York, NY, USA: John Wiley & Sons, Inc.

148 BIBLIOGRAPHY

Welsh, M. & Culler, D. (2000). Jaguar: enabling efficient communication and I/O in Java. Concur-

rency and Computation: Practice and Experience, Special Issue on Java for High-Performance

Applications, 12(7), 519–538.

Wewetzer, C., Scheuermann, B., Lübke, A., & Mauve, M. (2009, October). Content registration in

VANETs - saving bandwidth through node cooperation. In Proceedings of the 3rd IEEE LCN

Workshop on User MObility and VEhicular Networks (pp. 661–668). Zurich, Switzerland.

Witkowski, C. M. (1983, August). A parallel processor algorithm for robot route planning. In Pro-

ceedings of the 8th International Joint Conference on Artificial Intelligence - Volume 2 (pp. 827–

829). Karlsruhe, West Germany.

Wolper, P. & Leroy, D. (1993). Reliable hashing without collision detection. In Proceedings of the 5th

International Conference on Computer Aided Verification (pp. 59–70). Elounda, Greece.

Zerbino, D. R. & Birney, E. (2008). Velvet: algorithms for de novo short read assembly using de

Bruijn graphs. Genome research, 18(5), 821–829.

Zhao, Y., Tang, H., & Ye, Y. (2012). RAPSearch2: a fast and memory-efficient protein similarity

search tool for next-generation sequencing data. Bioinformatics, 28(1), 125–126.

