
April 21, 2005 17:43 WSPC/Trim Size: 9in x 6in for Review Volume ken-soj

CHAPTER 1

Quantiles of Sojourn Times

Peter G. Harrison and William J. Knottenbelt

Department of Computing, Imperial College London
South Kensington Campus, London SW7 2AZ, UK

E-mail: {pgh,wjk}@doc.ic.ac.uk

Fast response times and the satisfaction of response time quantile targets
are important performance criteria for almost all transaction processing,
computer-communication and other operational systems. However, re-
sponse time quantiles tend to be difficult to obtain in stochastic models,
even when the mean value of the response time has a relatively sim-
ple mathematical expression. Expressions have been obtained for the
Laplace transform of the probability density function of sojourn times
in many queueing models, including some complex single queues and
networks of simple queues. These can sometimes be inverted analyti-
cally, giving an explicit expression for the density as a function of time,
but more often numerical inversion is necessary. More generally, inter-
esting sojourn times can be expressed in terms of passage times between
states in continuous time Markov and semi-Markov chains. Quantiles for
these can be computed in principle but can require extensive computa-
tional resources, both in terms of processing time and memory. Conse-
quently, until recently, only trivial problems could be solved by this direct
method. With recent technological advances, including the widespread
use of clusters of workstations and limited availability of parallel super-
computers, very large Markov and semi-Markov chains can be solved
directly for passage time densities, allowing many realistic systems to be
investigated. This paper reviews the various approaches taken to com-
pute sojourn time quantiles in systems ranging from simple queues to
arbitrary semi-Markov chains, by the authors and others, over the past
twenty years and more.

Keywords: Sojourn time; Response time quantile; response time den-
sity; Markov models; semi Markov models; queueing models; Laplace trans-
form inversion
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1. Introduction

The probability distribution of many response, or sojourn, times constitutes
a vital quality of service (QoS) metric in many operational systems such as
computer networks, logistical systems and emergency services. For example
in the United Kingdom, ambulances must arrive at the scene of a life-
threatening emergency within 8 minutes at least 75% of the time. For on-line
transaction processing (OLTP) and other real-time systems, quantiles are
often specified in Service Level Agreement contracts and industry standard
benchmarks such as TPC-C, which specifies the 90th percentile of response
time 41.

The mean values of such time delays provide a good overall description
of performance and are readily obtained by conventional techniques, but
means alone are often insufficient. For example, we may wish to predict the
variability of response time in a multi-access system or various reliability
measures, such as the probability that a message transmission time exceeds
a given value. The importance of obtaining quantiles of distributions –
i.e. time intervals that are not exceeded with a specified probability – has
therefore acquired increased recognition.

This paper is a review of various techniques used to compute quantiles
numerically over the past quarter of a century and more. It is a mainly
personal viewpoint and it should be remembered that there have been many
excellent (and often mathematically more sophisticated) contributions by
other researchers in the field, for example Onno Boxma and Hans Daduna 4.

Queueing network models which compute queue length distributions in
a steady state network are well established; from the mean queue lengths,
mean passage-time along a given path can be determined directly through
Little’s result 34. Mathematically, the simplest type of network to analyse
is open, acyclic and Markovian, i.e. has external arrivals from indepen-
dent Poisson processes and exponentially distributed service times at the
queueing nodes. The arrival process at every server is then independent and
Poisson. Unfortunately, even these assumptions are too weak to allow the
distribution of the sojourn time along an arbitrary path to be obtained in
a simple form. For paths on which a task cannot be overtaken, we can con-
sider sojourn time as the sum of waiting times at independent single-server
(M/M/1) queues and obtain a simple solution. If any of these assumptions
is violated (e.g. for any closed network of servers, independence is lost) the
above approach fails. However, a more complex result can be derived for
overtake-free paths in Markovian closed networks. Some analytical solutions
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have been found for sojourn-time distributions in small networks of more
general structure, but these are complex and often numerically intractable,
see for example 36,26. To derive sojourn-time distributions in more general
networks usually requires either direct analysis of the underlying Markov
chain, where numerically feasible, or else approximate methods.

Rather than the distributions themselves, it is often easier to work with
their Laplace transforms, especially when a sojourn time is the sum of an
independent set of smaller time delays. To obtain quantiles, of course, it is
necessary to be able to invert the Laplace transform of the passage-time
probability density function so as to recover the distribution itself. In gen-
eral, inversion is by numerical methods which may be difficult to implement
accurately over the whole time domain of interest – especially at the im-
portant high quantiles, i.e. in the tail of a distribution, although this is
becoming less of a problem as increasingly sophisticated inverters become
available and as computing technology advances. Furthermore, analytical
inversion is possible in many of the solvable networks referred to above, in-
cluding some complex, Markov modulated G-queuesa with batches of cus-
tomers and open and closed, overtake-free, Markovian networks. Where an
analytical solution based on the inherent structure of the system under con-
sideration is not possible, analysis of passage times between states in the
underlying Markov chain solves the problem exactly when the state space
is not excessively large – representing significant models of over 10 million
states with the computing power available today.

In the next section we consider the sojourn-time distribution for a single-
server queue, showing the remarkable effect of different queueing disciplines,
which typically do not influence resource-oriented quantities like the queue
length at equilibrium. Surprisingly, a Markov modulated queue with batch
processing and negative customers 27 does have a tractable solution for
the sojourn-time distribution in the time domain, provided customers are
removed from the front of the queue by negative arrivals. This queue is con-
sidered in Section 3. Next, we look at sojourn-time distributions on paths in
open, overtake-free or tree-like networks of Markovian queues in Section 4.1.
The Laplace transform of the sojourn-time distribution on overtake-free
paths in closed Markovian networks, together with its analytical inversion,
is considered in Section 4.2. Section 5 reviews recent results on passage
times in Markov chains, in particular, techniques developed for the parallel
computation of quantiles. These include the application of the uniformiza-

a‘Gelenbe queues’ which have negative customers 14,15
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tion technique in very large unstructured Markov models, using hypergraph
partitioning to minimise interprocessor communication while maintaining
a good load balance. We demonstrate this approach by calculating passage
time densities and quantiles in a 10.8 million state Markov chain derived
from a closed tree-like queueing network, for which we also have an analyti-
cal solution. Section 6 considers a technique for extracting passage times for
large unstructured semi-Markov models using numerical Laplace transform
inversion. Finally, in Section 7, we conclude, sketching out some current
research in progress.

2. Time delays in the single server queue

In this section we first consider the waiting (response) and queueing times
of a customer in an M/G/1 queue with FCFS discipline and then the busy
period of the server, i.e. the interval between successive idle periods. Busy
time analysis – a special case of delay-cycle analysis 40 – leads to the wait-
ing time distribution of an M/G/1 queue with LCFS queueing discipline.
The processor sharing (PS) queueing discipline is also considered, but only
for M/M/1 queues where we can use the memoryless property at all times
to exploit an analysis of infinitesimal intervals. In fact, we will see that
this method can also be used for other queueing disciplines – even in the
MM CPP/GE/c G-queue, with batches of customers and Markov modula-
tion.

2.1. Waiting time distribution in the M/G/1 queue

The waiting time distribution for the FCFS discipline is traditionally ob-
tained from the following observation. For n ≥ 1, the queue, of length Xn,
existing on the departure of the nth customer, Cn, comprises precisely the
customers that arrived during that customer’s waiting time. The distribu-
tion of the queue length at a departure instant, which is known to be the
same as that at a random instant, is therefore equal to the distribution of
the number of arrivals in a waiting time.

Hence, if, at equilibrium, we denote the waiting time random variable
by W and the queue length random variable by X, then the generating
function of the queue length may be expressed as

Π(z) = E[E[zX | W ]] = E[e−λW (1−z)] = W ∗(λ(1− z))

where W ∗(s) is the Laplace-Stieltjes transform of W (t), the probability
distribution function of the waiting time (we use the same naming conven-
tion for all random variables). This is because X, conditional on W , has
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a Poisson distribution with parameter λW . Writing s = λ(1 − z) so that
z = (λ− s)/λ, we now have

W ∗(s) = Π((λ− s)/λ) =
(1− ρ)sB∗(s)

s− λ[1−B∗(s)]

using the Pollacek-Khintchine formula for Π, where B is the service time
random variable and the load ρ = −λB∗′(0). We can now easily demon-
strate Little’s result for the M/G/1 queue since −W ∗′(0) = −λ−1Π′(1).
Notice too that we get the required exponential distribution in the case
of an M/M/1 queue where Π is the generating function of the geometric
random variable with parameter ρ.

2.2. Busy periods

To investigate the busy period, we first observe that its distribution is the
same for all queueing disciplines that are work-conserving and for which the
server is never idle when the queue is non-empty. Suppose that, at equilib-
rium, whilst an initial customer C1 is being served, customers C2, . . . , CZ+1

arrive, where the random variable Z, conditional on service time B for
C1, is Poisson with mean λB. Without loss of generality, we assume a
LCFS queueing discipline with no preemption so that, if Z 6= 0, the sec-
ond customer to be served is CZ+1. Any other customers that arrive while
CZ+1 is being served will also be served before CZ . Now let N be the ran-
dom variable for the number of customers served during a busy period and
let Ni be the number of customers served between the instants at which
Ci+1 commences service and Ci commences service (1 ≤ i ≤ Z). Then
N1, . . . , NZ are independent and identically distributed as N . This is be-
cause the sets of customers counted by NZ , NZ−1, . . . , N1 are disjoint and
(excluding CZ+1, CZ , . . . , C2 respectively) arrive consecutively after CZ+1.
Thus,

N ∼
{

1 + NZ + NZ−1 + . . . + N1 if Z ≥ 1
1 if Z = 0

(The symbol ∼ denotes ‘equal in distribution’.) Now, denoting the busy
time random variable by H, we have

H ∼
{

B + HZ + HZ−1 + . . . + H1 if Z ≥ 1
B if Z = 0

where Hi is the length of the interval between the instants at which Ci+1

and Ci commence service, 1 ≤ i ≤ Z. Moreover, the Hi are independent
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random variables, each distributed as H, and also independent of B. This is
because the customers that arrive and complete service during the intervals
Hi are disjoint. Thus

H∗(s) = E[E[E[e−sH | Z, B] | B]]

= E[E[E[e−s(B+H1+...+HZ) | Z, B] | B]]

= E[E[e−sBE[e−sH ]Z | B]]

= E[e−sBE[H∗(s)Z | B]]

= E[e−sBe−λB(1−H∗(s))]

since Z (conditioned on B) is Poisson with mean λB. Thus we obtain

H∗(s) = B∗(s + λ(1−H∗(s)))

Although this equation cannot be solved in general for H∗(s), we can ob-
tain the moments of busy time by differentiating at s = 0. For example, the
mean busy period b is given by b = −H∗′(0) = −B∗′(0)[1 + λ(−H∗′(0))] =
(1 + λb)µ−1 since H∗(0) = 1, and so b = (µ − λ)−1, yielding the M/M/1
queue result (where µ is the reciprocal of mean service time). The above
technique, in which a time delay is defined in terms of independent, iden-
tically distributed time delays, is often called ‘delay cycle analysis’ and is
due to Takacs 40.

2.3. Waiting times in LCFS queues

Now consider waiting times under LCFS disciplines. For the preemptive-
resume variant, we note that a task’s waiting time is independent of the
queue length it faces on arrival, since the whole of the queue already there
is suspended until after this task completes service. Thus, without loss of
generality, we may assume that the task arrives at an idle server. Waiting
time then becomes identical to the busy period. We therefore conclude that
the waiting time distribution in a LCFS-PR M/G/1 queue has Laplace-
Stieltjes transform H∗(s). For LCFS without preemption we can modify
the busy period analysis. First, if a task arrives at an empty queue, its
waiting time is the same as a service time. Otherwise, its queueing time Q

is the sum of the residual service time R of the customer in service and the
service times of all other tasks that arrive before it commences service. This
definition is almost the same as that of a busy period given above. The only
differences are that the time spent in service by the initial customer C ′1 (C1

above) is not a service time but a residual service time and the random
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variable Z ′ (Z above) is the number of customers that arrive whilst C ′1 is
in residual service. Proceeding as before, we obtain

Q ∼
{

R + H ′
Z + HZ′−1 + . . . + H1 if Z ′ ≥ 1

R if Z ′ = 0

We therefore derive

Q∗(s) = R∗(s + λ(1−H∗(s)))

But since R is a forward recurrence time 24, R∗(s) = µ[1−B∗(s)]/s. Thus,

Q∗(s) =
µ(1−H∗(s))

s + λ(1−H∗(s))

Finally, since a customer arrives at an empty queue with probability 1− ρ

at equilibrium, we obtain

W ∗(s) = (1− ρ)B∗(s) + ρB∗(s)Q∗(s)

= B∗(s)
(

1− ρ +
λ(1−H∗(s))

s + λ(1−H∗(s))

)

since waiting time is the sum of the independent queueing time and service
time random variables.

To illustrate, compare the response time variability in an M/G/1 queue,
under FCFS and non-preemptive LCFS queueing disciplines. We can do this
to a great extent by comparing the first two moments, which are obtained
by differentiating the respective formulae for W ∗(s) at s = 0. We obtain
the same result for the mean waiting time, as expected from Little’s result
since the mean queue lengths are the same under each disciplineb. However,
it turns out that the second moment of waiting time for FCFS discipline is
(1− ρ) times that for LCFS. Thus, LCFS discipline suffers a much greater
variability as ρ approaches 1, i.e. as the queue begins to saturate.

bNotice that LCFS-PR gives a different mean waiting time in general. This is reasonable
because we cannot expect the mean queue length (and hence, using Little’s result, the
mean waiting time) to be the same since the preemption invalidates the argument used
to derive the queue length distribution. Intuitively, the average amount of work left to do
in the queue should be the same, but since the queue will, in general, contain partially
served customers, its expected length should be different. In fact, as we saw above, mean
waiting time is the same as for the case of an M/M/1 queue. This is a consequence of
the memoryless property of the exponential distribution: a partially served customer is
stochastically identical to one that has received no service.
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2.4. Waiting times with Processor-Sharing discipline

The problem with the PS discipline is that the rate at which a customer re-
ceives service during his sojourn at a server varies as the queue length
changes due to new arrivals and other departures. Thus, we begin by
analysing the waiting time of a customer with a given service time re-
quirement in a PS M/M/1 queue.

Proposition 1: In a PS M/M/1 queue with fixed arrival rate λ and fixed
service rate µ, the Laplace transform of the waiting time probability density
function, conditional on a customer’s service time being x, is

W ∗(s | x)
(1− ρ)(1− ρr2)e−[(1−r)λ+s]x

(1− ρr)2 − ρ(1− r)2e−[µ/r−λr]x

where r is the smaller root of the equation λr2 − (λ + µ + s)r + µ = 0 and
ρ = λ/µ.

This result, proved in 24, was first derived in 10. We can now obtain
the Laplace transform of the unconditional waiting time density as

W ∗(s) =
∫ ∞

0

W ∗(s | x)µe−µxdx

The essential technique used in the proof of Proposition 1 splits the wait-
ing time in an M/M/1 queue into an infinitesimal initial interval and the
remaining waiting time. In fact, the technique is quite general, applying
to more disciplines than PS. In particular, it can be used to find the
Laplace transform of the waiting time density in an M/M/1 queue with
‘random’ discipline, FCFS discipline with certain queue-length-dependent
service rates and in M/M/1 G-queues (with negative customers) 22,25. We
outline the method in the following section, with a more general, recent
application.

3. MM CPP/GE/c G-queues: semi-numerical Laplace
transform inversion

The infinitesimal initial interval (III) approach to finding passage time den-
sities in Markov processes is well illustrated in a recent result that deter-
mines the waiting time density in the MM CPP/GE/c G-queue, abbreviated
to MBG (modulated, batched G-queue) 21,27. The queue is Markovian, has
c servers, FCFS queueing discipline and RCH ‘killing strategy’ whereby
the customer at the head of the queue (i.e. in service), if any, is removed
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by a negative arrivalc. The queue’s parameters are modulated by an N -
phase Markov process with generator matrix Q. In phase k, the arrival
rate of positive (respectively negative) customers is λk (respectively κk)
and the parameters of their geometric batch sizes are θk (respectively ρk),
1 ≤ k ≤ N . Similarly, the service time is generalised exponential with pa-
rameter µk and batch size parameter φk in phase k. The following diagonal
matrices are defined:

• Λ : the positive arrival rate matrix, Λkk ≡ λk ;
• Θ : the positive batch size geometric distribution parameter matrix,

Θkk ≡ θk ;
• M : the service rate matrix, Mkk ≡ µk ;
• Φ : the (truncated) service completion batch size geometric distri-

bution parameter matrix, Φkk ≡ φk ;
• K : the negative arrival rate matrix, Kkk ≡ κk ;
• R : the negative batch size geometric distribution parameter ma-

trix, Rkk ≡ ρk.

The equilibrium state probability for state (j, k), representing queue length
j ≥ 0 and phase k is denoted [vj ]k, i.e. the kth component of the state
probability vector vj . The solution for {vj | j ≥ 0} is assumed to have been
determined by the method of spectral analysis 37, which yields a solution
for j ≥ c of the form:

vj =
N∑

k=1

akξj
kψk

where (ξk,ψk) is the kth eigenvalue-eigenvector pair of the method and the
ak are scalar constants – see 9.

The III method yields the following solution for the Laplace transform
of the sojourn-time density, after simplification.

Proposition 2: The sojourn-time density in the above MBG-queue has
Laplace transform:

L(s) =




c−1∑

j=0

(
j∑

q=0

vqΘ−q

)
Θj


 (I −Θ)(Λ/λ∗)L0(s)

+
N∑

k=1

akξkψk(ξkI −Θ)−1(I −Θ)(Λ/λ∗)D(ξk, s)

cOther killing strategies are also considered in 21.
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for certain vector-functions of s given in 21.

The proof idea is the following. Consider the passage of a special ‘tagged’
customer through the queue. Ultimately, this customer will either be served
or killed by a negative customer; we require the probability distribution
function of the sojourn time of customers that are not killed, i.e. the time
elapsed between the arrival instant and the completion of service. Let the
random variables I(x) and A(x) denote respectively the phase of the mod-
ulating Markov chain and the number of customers ahead of the tagged
customer at time x and let T denote the time remaining, without loss of
generality at time 0, up to the departure of the tagged customer. For j ≥ 0,
we define the probability distributions Fj(t) = (F1j(t), . . . , FNj(t)) where,
for 1 ≤ k ≤ N ,

Fkj(t) = P (T ≤ t | I(0) = k,A(0) = j)

Now, when the state is (j, k), we consider an initial small interval of length
h and derive an expression for Fj(t + h) in terms of {Fa(t) | a ≥ 0}. By
the Markov property and stationarity, we can write, for j ≥ c:

Fj(t + h) = (I + Qh−Kh− cMh)Fj(t)

+ h

j−c+1∑
s=1

K(I −R)Rs−1Fj−s(t)

+ hKRj−c+10

+ h

j−c+1∑
s=1

cM(I − Φ)Φs−1Fj−s(t)

+ hcMΦj−c+1e + o(h) (1)

where 0 and e are the zero-vector and (1, . . . , 1) of length N respectively.
The details appear in 21, but to clarify, consider the special case of the
Markov modulated M/M/1 G-queue with no batches, obtained by setting
c = 1, Θ = Φ = R = 0. This gives the much simpler equation

Fj(t + h) = (I + Qh−Kh−Mh)Fj(t)

+ hKFj−1(t) + hδj0K0 + hMFj−1(t) + hδj0Me + o(h)

Returning to the general case, taking the term IFj(t) to the left hand
side in equation 1 and dividing by h now yields the vector differential-
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difference equation:

dFj(t)
dt

= (Q−K − cM)Fj(t)

+ K(I −R)
j−c+1∑

s=1

Rs−1Fj−s(t)

+ cM(I − Φ)
j−c+1∑

s=1

Φs−1Fj−s(t)

+ cMΦj−c+1e (2)

For j < c, the tagged customer is in service and so his progress is
influenced solely by the negative arrivals and the service completion time
at his particular server. Thus, Fj(t) = F0(t) for 0 ≤ j < c and we have:

F0(t + h) = (I + Qh−Mh− (K/c)h)F0(t) + hMe + h(K/c)0 + o(h)

This yields the vector differential equation

dF0(t)
dt

= (Q−M −K/c)F0(t) + Me (3)

which has solution

F0(t) =
(
1− e−(M+K/c−Q)t

)
(M + K/c−Q)−1Me

We can now derive recurrence formulas for the Laplace transforms Lj(s)
of the Fj(t), which we solve using the generating function method – the
vector D is defined by: D(z, s) =

∑∞
j=c Lj(s)zj .

The surprising result obtained for this complex queue is that the Laplace
transform can be inverted analytically for any given numerical parameter-
isation.

Proposition 3: The Laplace transform L(s) is analytically invertible and
gives an unconditional sojourn-time density function which is a mixture of
exponential and Erlang densities as well as those of the types eat cos(bt) and
eat sin(bt), for real numbers a ≤ 0 and b > 0.

Proof The expression of Proposition 2 for L(s) is a sum of terms, each
of which depends on s through either the function L0(s) or D(z, s), for
some particular value of z which is an eigenvalue in the spectral analysis
solution. These eigenvalues are either real or occur in complex conjugate
pairs. It is shown in 27 that both of these functions are sums of rational
functions of the form u/(sv), where u and v are polynomials in s with real
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coefficients. Consequently, v has real roots, {x1, . . . , xk} say, and roots that
form complex conjugate pairs, {y1 ± iz1, . . . , yl ± izl}, where all xi, yj < 0
for 1 ≤ i ≤ k and 1 ≤ j ≤ l. The polynomial v is of higher order than u and
it is therefore possible to re-write each term using partial fractions. Further
routine analysis yields the stated result. ♠

This is a semi-numerical inversion in that the parameters of the result-
ing mixtures of exponential and Erlang densities must be computed numer-
ically, but subsequently a solution can be found directly as a function of
time. There is no need to invert the Laplace transform numerically.

4. Time delays in networks of queues

The analysis of networks of queues is entirely different to that of a sin-
gle server queue – even a stationary Markovian network. This is because,
although we may know the distribution of the queue lengths at the time
of arrival of a given (tagged) customer at the first queue in his path (by
the Random Observer Property or the Job Observer Property), we can-
not assume this stationary distribution exists upon arrival at subsequent
queues. The reason is that the arrival times at the subsequent queues are
only finitely later than the arrival time at the first queue. Hence, the state
existing at the subsequent arrival times must be conditioned on the state
that existed at the time of arrival at the first queue. Effectively, a new time
origin is set at the first arrival instant, with known initial joint queue length
probability distribution – usually a stationary distribution. Even in open
networks with no feedback, where it is easy to see that all arrival processes
are Poisson, this conditioning cannot be overlooked and we cannot assume
all queues on a path are independent and in an equilibrium state at the
arrival times of the tagged customer. This is in contrast to Jackson’s The-
orem because we are not considering the queues at the same time instant.
However, things are not quite as hopeless as they seem. First, we can prove
that the FCFS queues in an overtake-free path in a Markovian open net-
work behave as if they were independent and in equilibrium when observed
at the successive arrival times of a tagged customer. By an overtake-free
path, or a path with no overtaking, we mean that a customer following this
path will depart from its last queue before any other customer that joins
any queue in that path after the said customer. Surprisingly, a similar result
holds for overtake-free paths in closed networks, e.g. all paths in networks
with a tree-like structure – see Figure 3. In the next two subsections, we
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q1

q2 q3 q4

q5 q7q6

Fig. 1. An open tree-like network of queues

consider respectively those open and closed networks for which a solution
for the time delay density along a given path can be derived.

4.1. Open networks

The simplest open network structure we can consider is a series of tandem
queues. In this case, the distribution of the time delay of a customer passing
through them is the convolution of the stationary waiting time distributions
at each queue in the series considered in isolation. This follows from the
following stronger result.

Proposition 4: In a tandem series of stationary M/M/1 queues with fixed-
rate servers and FCFS discipline, the waiting times of a given customer in
each queue are independent.

Proof First we claim that the waiting time of a tagged customer, C say, in
a stationary M/M/1 queue is independent of the departure process before
the departure of C. This is a direct consequence of the reversibility of the
M/M/1 queue.

To complete the proof, let Ai and Ti denote C’s time of arrival and
waiting time respectively at queue i in a series of m queues (1 ≤ i ≤ m).
Certainly, by our claim, T1 is independent of the arrival process at queue
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2 before A2 and so of the queue length faced by C on arrival at queue 2.
Thus, T2 is independent of T1. Now, we can ignore customers that leave
queue 1 after C since they cannot arrive at (nor influence the rate of) any
queue in the series before C, again because all queues have single servers
and FCFS discipline. Thus, T1 is independent of the arrival process at queue
i before Ai and so of Ti for 2 ≤ i ≤ m. Similarly, Tj is independent of Tk

for 2 ≤ j < k ≤ m. ♠

Observe that if service rates varied with queue length, we could not ignore
customers behind a given tagged customer, even though they could not
overtake, because they would influence the service rate received by the
tagged customer.

From the proposition above it follows that, since the waiting time prob-
ability density at the stationary queue i with service rate µi (considered in
isolation) has Laplace transform (µi − λ)/(s + µi − λ) when the external
arrival rate is λ, the probability density of the time to pass through the
whole series of m queues is the convolution of these densities, with Laplace
transform

∏m
i=1(µi − λ)/(s + µi − λ). There is one obvious generalisation

of this result: the final queue in the series need not be M/M/1 since we are
not concerned with its output. Also, the same result holds, by the same rea-
soning, when the final queue is M/G/c for c > 1. Moreover, Proposition 4
generalises to tree-like networks which are defined as follows and illustrated
in Figure 1. A tree-like network consists of:

• a linear trunk segment containing one or more queues in tandem,
the first being called the root queue;

• a number (greater than or equal to zero) of disjoint subtrees, i.e.
tree-like subnetworks, such that customers can pass to the roots of
the subtrees from the last queue in the trunk segment or else leave
the network with specified routing probabilities.

The leaf queues (or just leaves) are those from which customers leave the
network.

The proof of Proposition 4, extended to tree-like networks, carries
through unchanged since every path in the network is overtake-free. Hence
we can ignore the customers that leave any queue on the path after the
tagged customer. Indeed, we can generalise further to overtake-free paths
in any Markovian open network for the same reason. Conditional on the
choice of path of queues numbered, without loss of generality, 1, . . . ,m, the
Laplace transform of the passage time density is the same as for the tandem
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queue of m servers considered above, but with each arrival rate λi at the
ith queue adjusted to the actual traffic rate.

To generalise the network structure further leads to serious problems
and solutions have been obtained only for special cases. The simplest case
of a network with overtaking is the network of Figure 2.

q1

q2

q3

Fig. 2. A three-node network with overtaking

In this network the path of queues numbered {q1, q3} is overtake-free
and so the passage time density can be obtained as described above. How-
ever, overtaking is possible on the path {q1, q2, q3} since when the tagged
customer C is at queue 2, any customers departing queue 1 (after C) can
reach queue 3 first. The arrival processes to every queue in this network
are independent Poisson, by Burke’s theorem together with the decomposi-
tion and superposition properties of Poisson processes. However, this is not
sufficient for the passage time distribution to be the convolution of the sta-
tionary sojourn-time distributions at each queue on a path with overtaking:
and so the proof of Proposition 4 breaks down. This particular problem has
been solved by considering the state of the system at the departure instant
of the tagged customer from server 1 and using complex variable methods
in an III analysis 36. A similar analysis is required – for similar reasons – to
analyse a tandem pair of queues with negative customers 26. In this case,
negative arrivals at the second queue allow the first queue to influence the
sojourn time of a tagged customer in the second; departures from the first
queue offer a degree of ‘protection’. Although these networks are solved
problems, their results are almost numerically intractable; more general
networks appear mathematically intractable as well.

4.2. Closed networks

As for the case of open networks, we begin with the simplest case, a cyclic
network that comprises a tandem network with departures from its last
queue fed back into the first queue. There are no external arrivals and
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p12 p13 p14

q1

q2 q3 q4

q5 q6

Fig. 3. A closed tree-like network and its routing probabilities

hence a constant population. Again, all service disciplines are FCFS and
all service rates are constant.

We solve for the Laplace transform of the cycle time probability density
function by considering a dual network, viz. the tandem, open network
consisting of the same servers 1, . . . ,m with no external arrivals. Eventually,
therefore, the dual network has no customers, i.e. its state is 0 = (0, . . . , 0),
the empty state, with probability 1. All other states with one or more
customers are transient. Now, given that the state immediately after the
arrival of the tagged customer at queue 1 is u, the ensuing cycle time in the
closed network is the same as the time interval between the dual network
entering states u and 0 – the (first) passage time from u to 0. This is so
because there is no overtaking and service rates are constant. Thus the
progress of the tagged customer in its cycle cannot be influenced by any
customer behind it. We only need consider customers ahead of the tagged
customer and can ignore those recycling after leaving the last queue. We
therefore seek the density of the passage time from state u to 0 in the dual
network, f(t | u), where i is a state of the form (i1, . . . , im) with i1 > 0,
corresponding to the tagged customer having just arrived at server 1. We
know the probability distribution of the state seen by the tagged customer
on arrival at the first queue by the Job Observer Property 24 and so can
calculate the cycle time density by deconditioning f .
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Given a cyclic network of population n, let the state space of the dual
network be Sn = {(u1, . . . , um) | 0 ≤ ui ≤ n, 1 ≤ i ≤ m;

∑m
i=1 ui ≤ n} and

define, for u ∈ Sn,

λu =
m∑

i=1

µiε(ui)

where µi is the service rate of server i, ε(n) = 1 if n > 0 and ε(0) = 0.
Thus, λu is the total service rate in state u, i.e. the total instantaneous
rate out of state u in the Markov process defining the dual network. The
holding time in state u is an exponential random variable with parameter
λu and so has a density with Laplace transform λu/(s + λu). Given that
the network next enters state v after u, the passage time from u to 0 is the
sum of the holding time in state u and the passage time from v to 0. Thus
the density of the passage time from u to 0 has Laplace transform L(s | u)
given by the equations

L(s | u) =
∑

v∈Sn

quv
λu

s + λu
L(s | v) (u 6= 0)

L(s | 0) = 1

where quv is the one-step transition probability from state u to v. Now let
µ(u, v) be the rate of the server from which a departure causes the state
transition u → v. Then quv = µ(u, v)/λu and, writing q∗uv = µ(u, v)/(s +
λu), we have the matrix-vector equation

L = Q∗L + 10

where L = (L(s | u) | u ∈ Sn), Q∗ = (q∗uv | u, v ∈ Sn) and 1w is the
unit vector with component corresponding to state w equal to 1, the rest
0. Using this equation and deconditioning on the initial state u, we obtain
a product-form for the Laplace transform of cycle time density.

This approach extends directly to cycle times in closed tree-like queueing
networks. Such networks are defined in the same way as open tree-like
networks except that customers departing from leaf-queues next visit the
root queue. Clearly such networks have the no-overtaking property and if
paths are restricted to start at one given server (here the root), they define
the most general class for which it holds. Consider a closed tree-like network
with M nodes and population N , in which node i has service rate µi and
visitation rate (proportional to) vi, 1 ≤ i ≤ M , defined by vi =

∑M
j=1 vjpji

where pji is the probability that a customer leaving node j next visits
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node i. Let G be the network’s normalising constant function for the joint
equilibrium state probabilities, i.e. at population k,

G(k) =
∑

PM
i=1 ni = k
ni ≥ 0

M∏

i=1

xni
i

where xi = vi/µi. Without loss of generality, the root node is numbered
1 and we define the cycle time random variable to be the elapsed time
between a customer’s successive arrival instants at node 1. Then we have
the following result 18,29,13.

Proposition 5: For the above closed tree-like network, the Laplace trans-
form of the cycle time density function, conditional on choice of path
z = (z1, z2, . . . , zm) (m ≤ M, z1 = 1) is

L(s|z) =
1

G(n− 1)

∑
PM

i=1 ui = n− 1
ui ≥ 0

M∏

i=1

xui
i

m∏

j=1

(
µzj

s + µzj

)uzj
+1

where z1 = 1, zm is a leaf node and pzizi+1 > 0 for 1 ≤ i ≤ m− 1.

Without loss of generality, we take zi = i for 1 ≤ i ≤ m, i.e. we consider
the path 1, . . . ,m. First, we can simplify the summation giving L(s | z)
by partitioning it over the state space according to the total number of
customers c at servers in the overtake-free path 1, 2, . . . ,m. This gives:

L(s|z) =
1

G(n− 1)

n−1∑
c=0

Gm(n− c− 1)
∑

Pm
i=1 ni = c
ni ≥ 0

m∏

i=1

xni
i

m∏

j=1

(
µj

s + µj

)nj+1

where Gm(k) is the normalising constant of the whole network with servers
1, . . . ,m removed and population k ≥ 0, i.e.

Gm(k) =
∑

PM
i=m+1 ni = k

ni ≥ 0

M∏

i=m+1

xni
i

Now, the Laplace transforms in the inner sum are products of the Laplace
transforms of Erlang densities. Moreover, their coefficients are geometric.
Such transforms can be inverted analytically. In the simplest case, all the
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servers on the overtake-free path are identical, i.e. have the same rate, and
the inversion can be done by inspection, as in Section 4.2.2 and 24. In the
case that the µi are all distinct (1 ≤ i ≤ m), the density function is given
by the following proposition, derived in 19; in 20, the question of degenerate
µi (when not all are equal) is consideredd.

Proposition 6: If the servers in an overtake-free path (1, 2, . . . , m) have
distinct service rates µ1, µ2, . . . , µm, the passage time density function, con-
ditional on the choice of path, is
∏m

i=1 µi

G(n− 1)

n−1∑
c=0

Gm(n− c− 1)
m∑

j=1

e−µjt

∏
1≤i 6=j≤m(µi − µj)

c∑

i=0

(vjt)c−i

(c− i)!
Km(j, i)

where Km(j, ·) is the normalising constant function for the subnetwork com-
prising only nodes in the set {1, . . . ,m}\{j} with the ratio xk = vk/µk

replaced by vk−vj

µk−µj
for 1 ≤ k 6= j ≤ m, i.e.

Km(j, l) =
∑

Pm
i=1 ni = l

ni ≥ 0; nj = 0

m∏

k = 1
k 6= j

(
vk − vj

µk − µj

)nk

Km(j, l) is just a normalising constant that may be computed efficiently,
along with Gm(n− c− 1) and G(n− 1), by Buzen’s algorithm 7. Thus we
define the recursive function k, for real vector y = (y1, . . . , ya) and integers
a, b (0 ≤ a ≤ M, 0 ≤ b ≤ N − 1) by:

k(y, a, b) = k(y, a− 1, b) + yak(y, a, b− 1) (a, b > 0)

k(y, a, 0) = 1 (a > 0)

k(y, 0, b) = 0 (b ≥ 0)

Then we have

Gm(l) = k(xm,M −m, l) (0 ≤ l ≤ n− 1)

G(n− 1) ≡ G0(n− 1) = k(x,M, n− 1)

Km(j, l) = k(wj , m− 1, l)

dEssentially, we start with the case of distinct rates and successively combine any two
servers with equal rates. The combination involves manipulation of the summations and
reduces the problem to two similar problems on networks with one less node in the
overtake-free path. Thus, in each step, one degenerate server is removed until all the
remaining problems are on paths with distinct rates.
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where x = (x1, . . . , xM ),xm = (xm+1, . . . , xM ) and, for 1 ≤ j ≤ m,

(wj)k =
{

(vk − vj)/(µk − µj) if 1 ≤ k < j

(vk+1 − vj)/(µk+1 − µj) if j ≤ k < m

In fact Propositions 5 and 6 hold for any overtake-free path in a closed
Jackson queueing network – recall the preceding discussion.

4.2.1. Cyclic networks

For a cyclic network of M exponential servers with distinct rates µ1, . . . , µM

and population N , cycle time distribution is
(∏M

i=1 µi

)
tN−1

(N − 1)!G(N)

M∑

j=1

e−µjt

∏
i 6=j(µi − µj)

This follows by setting v1 = . . . = vM = 1 in Proposition 6, so that all
the terms Km(j, i) are zero except when nk = 0 for all k, i.e. when i = 0.
Finally, note there is only one partition of the state space, namely the one
with all N −1 customers at the servers 1, . . . ,M . Thus we have GM (n) = 1
if n = 0 and GM (n) = 0 if n > 0, so that only terms with c = N − 1 give a
non-zero contribution.

4.2.2. Paths with service rates all equal

When all the service rates in the path are the same, equal to µ say, the
Laplace transform of passage time is a mixed sum of Erlang densities of
the form [µ/(s+µ)]c+m. Each term can therefore be inverted by inspection
and we get:

Proposition 7: If the servers in overtake-free path 1, . . . , m in the net-
work of Proposition 5 all have service rate µ, the path’s time delay density
function is

µme−µt

G(n− 1)

n−1∑
c=0

Gm(n− c− 1)Gm(c)µc tc+m−1

(c + m− 1)!

where Gm(k) is the normalising constant for the subnetwork comprising
servers 1, . . . ,m only, with population k ≥ 0.

From this result we can immediately obtain formulae for moments higher
than the mean of a customer’s transmission time.
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Corollary 1: For a path of equal rate servers, message transmission time
has kth moment equal to

1
µkG(n− 1)

n−1∑
c=0

Gm(n− c− 1)Gm(c)(c + m) . . . (c + m− k + 1)

5. Passage times in continuous time Markov chains

In this section we consider the analysis of passage times in arbitrary finite
continuous time Markov chains (CTMCs). While such chains can be speci-
fied manually, it is more usual for them to be generated automatically from
one of several high-level modelling formalisms, such as queueing networks,
stochastic Petri nets or stochastic process algebras. Since the memory and
processing power of a single workstation is easily overwhelmed by realistic
models (which may typically contain tens of millions of states or more), our
approach is a parallel uniformization-based algorithm that uses hypergraph
partitioning to minimise interprocessor communication 12.

5.1. First Passage Times in CTMCs

Consider a finite, irreducible, continuous time Markov Chain (CTMC) with
n states {1, 2, . . . , n} and n × n generator matrix Q. If X(t) denotes the
state of the CTMC at time t ≥ 0, then the first passage time from a source
state i into a non-empty set of target states ~j is:

Ti~j(t) = inf{u > 0 : X(t + u) ∈ ~j | X(t) = i} (∀t ≥ 0)

For a stationary, time-homogeneous CTMC, Ti~j(t) is independent of t, so:

Ti~j = inf{u > 0 : X(u) ∈ ~j | X(0) = i}
Ti~j is a random variable with an associated probability density function
fi~j(t). To determine fi~j(t) we must convolve the exponentially distributed
state holding times over all possible paths (including cycles) from state i

into any of the states in the set ~j. As shown in the next subsection, the
problem can also be readily extended to multiple initial states by weighting
first passage time densities.

5.2. Uniformization

Uniformization 16,39 transforms a CTMC into one in which all states have
the same mean holding time 1/q, by allowing ‘invisible’ transitions from a
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state to itself. This is equivalent to a discrete-time Markov chain (DTMC),
after normalisation of the rows, together with an associated Poisson process
of rate q. The one-step DTMC transition matrix P is given by:

P = Q/q + I

where q > maxi |qii| (to ensure that the DTMC is aperiodic). The number
of transitions in the DTMC that occur in a given time interval is given by
a Poisson process with rate q.

While uniformization is normally used for transient analysis, it can also
be employed for the calculation of response time densities 35,38. We add an
extra, absorbing state to our uniformized chain, which is the sole successor
state for all target states (thus ensuring we calculate the first passage time
density). We denote by P ′ the one-step transition matrix of the modified,
uniformized chain. Recalling that the time taken to traverse a path with n

hops in this chain will have an Erlang distribution with parameters n and
q, the density of the time taken to pass from a set of source states ~i into a
set of target states ~j is given by:

f~i~j(t) =
∞∑

n=1

qntn−1e−qt

(n− 1)!

∑

k∈~j

π
(n)
k (4)

where

π(n+1) = π(n)P ′ for n ≥ 0

with

π
(0)
k =

{
0 for k /∈~i

πk/
∑

j∈~i πj for k ∈~i
(5)

and in which π is any non-zero solution to π = πP . The corresponding
passage time cumulative distribution function is given by:

F~i~j(t) =
∞∑

n=1





(
1− e−qt

n−1∑

k=0

(qt)k

k!

)∑

k∈~j

π
(n)
k



 . (6)

Truncation is employed to approximate the infinite sums in Eq. 4 and
Eq. 6, terminating the calculation when the Erlang term drops below a
specified threshold value. Concurrently, when the convergence criterion

||π(n+1) − π(n)||∞
||π(n)||∞

< ε (7)
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is mete, for given tolerance ε, the steady state probabilities of P ′ are con-
sidered to have been obtained with sufficient accuracy and no further mul-
tiplications with P ′ are performed.

5.3. Hypergraph partitioning

The key opportunity for parallelism in the uniformization algorithm is the
sparse matrix-vector product π(n+1) = π(n)P ′ (or equivalently π(n+1)T =
P ′T π(n)T , where the superscript T denotes the transpose operator. To per-
form these operations efficiently it is necessary to map the non-zero ele-
ments of P ′ onto processors such that the computational load is balanced
and communication between processors is minimised. To achieve this, we
use hypergraph-based partitioning techniques to assign matrix rows and
corresponding vector elements to processors in a row-striped decomposi-
tion.

Hypergraphs are extensions of graph data structures that, until re-
cently, were primarily applied in VLSI circuit design. Formally, a hyper-
graph H = (V,N ) is defined by a set of vertices V and a set of nets (or hy-
peredges) N , where each net is a subset of the vertex set V 8. In the context
of a row-wise decomposition of a sparse matrix, matrix row i (1 ≤ i ≤ n) is
represented by a vertex vi ∈ V while column j (1 ≤ j ≤ n) is represented
by net Nj ∈ N . The vertices contained within net Nj correspond to the
row numbers of the non-zero elements within column j, i.e. for matrix A,
vi ∈ Nj if and only if aij 6= 0. The weight of vertex i is given by the number
of non-zero elements in row i, while the weight of a net is its contribu-
tion to the hyperedge cut, defined as one less than the number of different
partitions (in the row-wise decomposition) spanned by that net.

The overall objective of a hypergraph sparse matrix partitioning is to
minimize the total hyperedge cut while maintaining a load balancing cri-
terion. Like graph partitioning, hypergraph partitioning is NP-complete.
However, there are a small number of hypergraph partitioning tools which
implement fast heuristic algorithms, for example PaToH 8 and hMeTiS 28.

5.4. Parallel Algorithm and Tool Implementation

The process of calculating a response time density begins with a high-level
model, which we specify in an enhanced form of the DNAmaca Markov

e||π||∞ = maxi |πi|
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Chain Analyser interface language 30,31. This language supports the spec-
ification of queueing networks, stochastic Petri nets, stochastic process al-
gebras and other models that can be mapped onto Markov chains. Next,
a probabilistic, hash-based state generator 33 uses the high-level model
description to produce the generator matrix Q of the model’s underlying
Markov chain as well as a list of the initial and target states. Normalised
weights for the initial states are then determined from Eq. 5, which re-
quires us to solve πQ = 0. This is readily done using any of a variety of
steady-state solution techniques (e.g. 11,32). From Q, P ′T is constructed by
uniformizing and transposing the underlying Markov chain and by adding
the extra, terminal state that becomes the sole successor state of all target
states. Having been converted into an appropriate input format, P ′T is then
partitioned using a hypergraph or graph-based partitioning tool.

The pipeline is completed by our distributed response time density cal-
culator, which is implemented in C++ using the Message Passing Interface
(MPI) 17 standard. This means that it is portable to a wide variety of
parallel computers and workstation clusters.

Initially each processor tabulates the Erlang terms for each t-point re-
quired (cf. Eq. 4). Computation of these terms terminates when they fall
below a specified threshold value. In fact, this is safe to use as a truncation
condition for the entire passage time density expression because the Erlang
term is multiplied by a summation which is a probability. The terminating
condition also determines the maximum number of hops m used to calculate
the right-hand factor, a sum which is independent of t.

Each processor reads in the rows of the matrix P ′T that correspond to
its allocated partition into two types of sparse matrix data structure and
also computes the corresponding elements of the vector π(0). Local non-
zero elements (i.e. those elements in the diagonal matrix blocks that will
be multiplied with vector elements stored locally) are stored in a conven-
tional compressed sparse row format. Remote non-zero elements (i.e. those
elements in off-diagonal matrix blocks that must be multiplied with vector
elements received from other processors) are stored in an ultrasparse matrix
data structure – one for each remote processor – using a coordinate format.
Each processor then determines which vector elements need to be received
from and sent to every other processor on each iteration, adjusting the col-
umn indices in the ultrasparse matrices so that they index into a vector of
received elements. This ensures that a minimum amount of communication
takes place and makes multiplication of off-diagonal blocks with received
vector elements very efficient.
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The vector π(n) is then calculated for n = 1, 2, 3, . . . , m by repeated
sparse matrix-vector multiplications of form π(n+1)T = P ′T π(n)T . Actually,
fewer than m multiplications may take place since a test for steady state
convergence is made after every iteration (cf. Eq. 7); if the convergence
criterion is satisfied, the matrix-vector multiplication is not performed and
we set π(n+1)T = π(n)T in subsequent iterations.

For each matrix-vector multiplication, each processor begins by using
non-blocking communication primitives to send and receive remote vector
elements, while calculating the product of local matrix elements with locally
stored vector elements. The use of non-blocking operations allows compu-
tation and communication to proceed concurrently on parallel machines
where dedicated network hardware supports this effectively. The proces-
sor then waits for the completion of non-blocking operations (if they have
not already completed) before multiplying received remote vector elements
with the relevant ultrasparse matrices and adding their contributions to the
local matrix-vector product cumulatively.

From the resulting local matrix-vector products each processor calcu-
lates and stores its contribution to the sum

∑
k∈~j π

(n)
k . After m iterations

have completed, these sums are accumulated onto an arbitrary master pro-
cessor where they are multiplied with the tabulated Erlang terms for each
t-point required for the passage time density. The resulting points are writ-
ten to a disk file and are displayed using the GNUplot graph plotting utility.

5.5. Numerical Example

As an example we consider the cycle time in the closed tree-like queueing
network of Figure 3. This network has six servers with rates µ1, . . . , µ6 and
non-zero routing probabilities as shown. Thus the visitation rates v1, . . . , v6

for servers 1 to 6 are respectively proportional to: 1, p12, p13, p14, p12, p14.
Here we set {µ1, µ2, µ3, µ4, µ5, µ6} = {3, 5, 4, 6, 2, 1} and {p12, p13, p14} =
{0.2, 0.5, 0.3}. As described in Section 4.2, analytical results for the cycle
time density in this type of overtake-free tree-like queueing network with
M servers and population n are known, and can be rapidly computed.

To compute the cycle time density in this network in terms of its under-
lying Markov Chain using the uniformization technique described in this
paper requires the state vector to be augmented by 3 extra components so
that a “tagged” customer can be followed through the system. The extra
components are: the queue containing the tagged customer l, the position
of the tagged customer in that queue k, and the cycle sequence number
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c (an alternating bit, flipped whenever the tagged customer joins q1). For
this augmented system with n customers, the underlying Markov chain has

12
(

n + 5
6

)
states. Source states are those in which l = 1, k = n1 − 1 and

c = 0 while target states are those in which l = 1, k = n1 − 1 and c = 1.
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Fig. 4. Transposed P ′ matrix (left) and hypergraph-partitioned matrix (right) for the
tree-like queueing network with 6 customers (5 544 states).

Table 1. Communication overhead in the queueing network model with six customers
(left) and interprocessor communication matrix (right).

proc- non- local remote reused
essor zeros % % % 1 2 3 4

1 7 022 99.96 0.04 0 1 - 407 - 4
2 7 304 91.41 8.59 34.93 2 3 - 16 181
3 6 802 88.44 11.56 42.11 3 - - - 12
4 6 967 89.01 10.99 74.28 4 - 1 439 -

For a small six customer system with 5 544 states, Figure 4 shows the
resulting transposed P ′ matrix and associated hypergraph decomposition
produced by hMeTiS. Statistics about the per-iteration communication as-
sociated with this decomposition are presented in Table 1. Around 90% of
the non-zero elements allocated to each processor are local, i.e. they are
multiplied with vector elements that are stored locally. The remote non-
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zero elements are multiplied with vector elements that are sent from other
processors. However, because the hypergraph decomposition tends to align
remote non-zero elements in columns (well illustrated in the second block
belonging to processor 4), reuse of received vector elements is good (up to
74%) with correspondingly lower communication overhead. The communi-
cation matrix on the right in Table 1 shows the number of vector elements
sent between each pair of processors during each iteration (e.g. 181 vector
elements are sent from processor 2 to processor 4).

Moving to a more sizeable model, the queueing network with 27
customers has an underlying Markov Chain with 10 874 304 states and
82 883 682 transitions. This model is too large to partition using a hyper-
graph partitioner on a single machine (even one with 2GB RAM), and there
are currently no parallel hypergraph partitioning tools available. Conse-
quently a lesser quality graph-based decomposition produced by the paral-
lel graph partitioner ParMeTiS (running on the PC cluster) was chosen. It
must be noted that this decomposition still offers a great reduction in com-
munication costs over other methods available: a 16-way partition has an
average of 95.8% local non-zero elements allocated to each processor and
a reused received non-zero element average of 30.4%. Table 2 shows the
per-iteration communication overhead for randomised (i.e. random assign-
ment of rows to partitions), linear (i.e. simple in-order allocation of rows
to processors such that the number of non-zeros assigned to each proces-
sor is the same) and graph-based allocations. The graph-based method is
clearly superior, both in terms of number of messages sent and (especially)
communication volume.

Table 2. Per-iteration communication overhead for various partitioning methods for the
queueing network model with 27 customers on 16 processors.

Partitioning Communication Overhead
Method Messages Volume (MB)

randomised 240 450.2
linear 134 78.6

graph-based 110 19.7

Figure 5 compares the numerical and analytical cycle time densities
(computed by Proposition 6) for the queueing network with 27 customers.
Agreement is excellent and the results agree to an accuracy of 0.00001% over
the time range plotted. The numerical density is computed in 968 seconds
(16 minutes 8 seconds) for 875 iterations using 16 PCs. The memory used on
each PC is just 84MB. It was not possible to compute the density on a single
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Fig. 5. Numerical and analytical cycle time densities for the tree-like queueing network
of Figure 3 with 27 customers (10 874 304 states).

PC (with 512MB RAM) but the same computation on a dual-processor
server machine (with 2GB RAM) required 5580 seconds (93 minutes).

6. Passage times in continuous time semi-Markov processes

Semi-Markov processes (SMPs) are a generalisation of Markov processes
that allow for arbitrarily distributed state sojourn times, so that more real-
istic models can be described while still maintaining some of the analytical
tractability associated with Markov models. This section summarises an it-
erative technique for passage time analysis of large, structurally unrestricted
semi-Markov processes 23,5,6. Our method is based on the calculation and
subsequent numerical inversion of Laplace transforms and is amenable to
a highly scalable distributed implementation. One of the biggest problems
involved in working with semi-Markov processes is how to store the Laplace
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transform of state sojourn times in an effective way, such that accuracy is
maintained but representation explosion does not occur. We address this
issue with a constant-space representation of a general distribution func-
tion based on the evaluation demands of the numerical inversion algorithm
employed. Results for a distributed voting system model with up to 1.1
million states are presented and compared against simulation.

6.1. First Passage Times in SMPs

Consider a Markov renewal process {(Xn, Tn) : n ≥ 0} where Tn is the
time of the nth transition (T0 = 0) and Xn ∈ S is the state at (just after)
the nth transition. Let the kernel of this process be:

R(n, i, j, t) = IP(Xn+1 = j, Tn+1 − Tn ≤ t | Xn = i)

for i, j ∈ S. The continuous time semi-Markov process (SMP), {Z(t), t ≥ 0},
defined by the kernel R, is related to the Markov renewal process by:

Z(t) = XN(t)

where N(t) = max{n : Tn ≤ t}, i.e. the number of state transitions that
have taken place by time t. Thus Z(t) represents the state of the system
at time t. We consider time-homogeneous SMPs, in which R(n, i, j, t) is
independent of n:

R(i, j, t) = IP(Xn+1 = j, Tn+1 − Tn ≤ t | Xn = i)

= pijHij(t)

where pij = IP(Xn+1 = j | Xn = i) is the state transition probability
between states i and j and Hij(t) = IP(Tn+1− Tn ≤ t | Xn+1 = j,Xn = i),
is the sojourn-time distribution in state i when the next state is j.

Consider a finite, irreducible, continuous-time semi-Markov process with
N states {1, 2, . . . , N}. Recalling that Z(t) denotes the state of the SMP at
time t (t ≥ 0), the first passage time from a source state i at time t into a
non-empty set of target states ~j is:

Pi~j(t) = inf{u > 0 : Z(t + u) ∈ ~j | Z(t) = i}

For a stationary time-homogeneous SMP, Pi~j(t) is independent of t and we
have:

Pi~j = inf{u > 0 : Z(u) ∈ ~j | Z(0) = i} (8)
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Pi~j is a random variable with an associated probability density function
fi~j(t). In general, the Laplace transform of fi~j , Li~j(s), can be computed by
solving a set of N linear equations:

Li~j(s) =
∑

k/∈~j

r∗ik(s)Lk~j(s) +
∑

k∈~j

r∗ik(s) for 1 ≤ i ≤ N (9)

where r∗ik(s) is the Laplace-Stieltjes transform (LST) of R(i, k, t) and is
defined by:

r∗ik(s) =
∫ ∞

0

e−st dR(i, k, t)

Eq. (9) has a matrix-vector form, Ax̃ = b̃, where the elements of A are
arbitrary complex functions; care needs to be taken when storing such func-
tions for eventual numerical inversion (see Section 6.3). For example, when
~j = {1}, Eq. (9) yields:

0
BBBBB@

1 −r∗12(s) · · · −r∗1N (s)
0 1− r∗22(s) · · · −r∗2N (s)
0 −r∗32(s) · · · −r∗3N (s)
...

...
. . .

...
0 −r∗N2(s) · · · 1− r∗NN (s)

1
CCCCCA

x̃ =

0
BBBBB@

r∗11(s)
r∗21(s)
r∗31(s)

...
r∗N1(s)

1
CCCCCA

(10)

where x̃ = (L1~j(s), L2~j(s), . . . , LN~j(s))
T . When there are multiple source

states, denoted by the vector ~i, the Laplace transform of the passage time
distribution at steady-state is:

L~i~j(s) =
∑

k∈~i
αkLk~j(s) (11)

where the weight αk is the probability at equilibrium that the system is in
state k ∈ ~i at the starting instant of the passage. If π̃ denotes the steady-
state vector of the embedded discrete-time Markov chain (DTMC) with
one-step transition probability matrix P = [pij | 1 ≤ i, j ≤ N ], then αk is
given by:

αk =

{
πk/

∑
j∈~i πj if k ∈~i

0 otherwise
(12)

The row vector with components αk is denoted by α̃.
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6.2. Iterative passage time algorithm

Recall the semi-Markov process, Z(t), of Section 6.1, where N(t) is the
number of state transitions that have taken place by time t. We define the
rth transition first passage time to be:

P
(r)

i~j
= inf{u > 0 : Z(u) ∈ ~j | N(u) ≤ r, Z(0) = i} (13)

which is the time taken to enter a state in ~j for the first time having started
in state i at time 0 and having undergone up to r state transitions. P

(r)

i~j

is a random variable with associated probability density function, f
(r)

i~j
(t),

which has Laplace transform L
(r)

i~j
(s).

L
(r)

i~j
(s) is, in turn, the ith component of the vector

L̃
(r)
~j

(s) = (L(r)

1~j
(s), L(r)

2~j
(s), . . . , L(r)

N~j
(s))

which may be computed as:

L̃
(r)
~j

(s) = U(I + U ′ + U ′2 + · · ·+ U ′(r−1)) ẽ (14)

Here U is a matrix with elements upq = r∗pq(s) and U ′ is a modified version of
U with elements u′pq = Ip6∈~j upq, where states in~j have been made absorbing
(I is the indicator function). The column vector ẽ has entries ẽk = Ik∈~j .

We include the initial U term in Eq. (14) so as to generate cycle times
for cases such as L

(r)
ii (s) which would otherwise register as 0, if U ′ were

used instead.
From Eqs. (8) and (13):

Pi~j = P
(∞)

i~j
and thus Li~j(s) = L

(∞)

i~j
(s).

Now, L
(r)

i~j
(s) can be generalised to multiple source states ~i using the nor-

malised steady-state vector, α̃, of Eq. (12):

L
(r)
~i~j

(s) = α̃L̃
(r)
~j

(s)

= (α̃U + α̃UU ′ + α̃UU ′2 + . . .

. . . + α̃UU ′(r−2) + α̃UU ′(r−1)) ẽ

(15)

The sum of Eq. (15) can be computed efficiently using sparse matrix-vector
multiplications with a vector accumulator. At each step, the accumulator
(initialised to αU) is postmultiplied by U ′ and αU is added. The worst-case
time complexity for this sum is O(N2r) versus the O(N3) of typical matrix
inversion techniques.
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Convergence of the sum in Eq. (15) is said to have occurred at a par-
ticular r, if for a given s-point:

|Re(L(r+1)
~i~j

(s)− L
(r)
~i~j

(s))| < ε and

|Im(L(r+1)
~i~j

(s)− L
(r)
~i~j

(s))| < ε (16)

where ε is chosen to be a suitably small value (e.g. 10−8).

6.3. Laplace Transform Inversion

The key to practical analysis of semi-Markov processes lies in the efficient
representation of their generally distributed functions. Without care the
structural complexity of the SMP can be recreated within the representation
of the distribution functions.

Many techniques have been used for representing arbitrary distribu-
tions – two of the most popular being phase-type distributions and vector-
of-moments methods. These methods suffer from, respectively, exploding
representation size under composition and containing insufficient informa-
tion to produce accurate answers after large amounts of composition.

As all our distribution manipulations take place in Laplace-space, we
link our distribution representation to the Laplace inversion technique that
we ultimately use. Our implementation supports two Laplace transform
inversion algorithms: the Euler technique 2 and the Laguerre method 1

with modifications summarised in 21.
Both algorithms work on the same general principle of sampling the

transform function L(s) at n points, s1, s2, . . . , sn and generating values of
f(t) at m user-specified t-points t1, t2, . . . , tm. In the Euler inversion case
n = km, where k typically varies between 15 and 50, depending on the
accuracy of the inversion required. In the modified Laguerre case, n = 400
and, crucially, is independent of m.

The choice of inversion algorithm depends on the characteristics of the
density function f(t). If the function is continuous, and has continuous
derivatives (i.e. it is “smooth”) then the Laguerre method can be used. If,
however, the density function or its derivatives contain discontinuities – for
example if the system exclusively contains transitions with deterministic
or uniform holding-time distributions – then the Euler method must be
employed.
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6.4. Implementation

Whichever inversion algorithm is used, it is important to note that calcu-
lating si, 1 ≤ i ≤ n, and storing all the distribution transform functions,
sampled at these points, will be sufficient to provide a complete inver-
sion. Storing our distribution functions in this way has three main advan-
tages. Firstly, the function has constant storage space, independent of the
distribution-type. Secondly, each distribution has, therefore, the same con-
stant storage even after composition with other distributions. Finally, the
function has sufficient information about a distribution to determine the
required passage time or transient density (and no more).

Our implementation employs a distributed master-slave architecture
similar to that of the Markovian passage time calculation tool of 21. The
master processor computes in advance the values of s at which it will need
to know the value of L~i~j(s) in order to perform the inversion. The s-values
are then placed in a global work-queue to which the slave processors make
requests. On making a request, slave processors are assigned the next avail-
able s-value and use this to construct the matrices U and U ′. The iterative
algorithm is then applied to calculate the truncated sum of Eq. (15) for that
s-value. The result is returned to the master and cached (both in memory
and on disk so that all computation is checkpointed), and once all values
have been computed and returned, the final Laplace inversion calculations
are made by the master. The resulting t-points can then be plotted on a
graph. As inter-slave communication is not required, the algorithm exhibits
excellent scalability.

6.5. Numerical example

We demonstrate the SMP analysis techniques of the previous sections with
a semi-Markov Petri net model of a distributed voting system. Semi-Markov
stochastic Petri nets are extensions of GSPNs 3, which can handle arbitrary
state-dependent holding-time distributions and which generate an underly-
ing semi-Markov process rather than a Markov process.

The semi-Markov stochastic Petri net of a distributed voting system is
shown in Figure 6. Voting agents vote asynchronously, moving from place
p1 to p2 as they do so. A restricted number of polling units which receive
their votes transit t1 from place p3 to place p4. At t2, the vote is registered
with as many central voting units as are currently operational in p5.

The system is considered to be in a failure mode if either all the polling
units have failed and are in p7 or all the central voting units have failed
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Fig. 6. A semi-Markov stochastic Petri net of a voting system

and are in p6. If either of these complete failures occur, then a high priority
repair is performed, which resets the failed units to a fully operational
state. If some but not all the polling or voting units fail, they attempt
self-recovery. The system will continue to function as long as at least one
polling unit and one voting unit remain operational.

For the voting system described in Figure 6, Table 6.5 shows how the
size of the underlying SMP varies according to the configuration of the
variables CC, MM , and NN , which are the number of voters, polling units
and central voting units, respectively.

Table 3. Different configurations of the
voting system as used to present results

System CC MM NN States

0 18 6 3 2061
1 60 25 4 106,540
2 100 30 4 249,760
3 125 40 4 541,280
4 150 40 5 778,850
5 175 45 5 1,140,050
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Figure 7 shows the density of the time taken for the passage of 175
voters from place p1 to p2 in system 5 as computed by both our (truncated)
iterative technique and by simulation. The close agreement provides mutual
validation of the analytical method, with its numerical approximation, and
the simulation. It is interesting that, qualitatively, the density appears close
to Normal. Certainly, the passage time random variable is a (weighted)
sum of a large number of independent random variables, but these are, in
general, not identically distributed.

Figure 8 shows a cumulative distribution for the same passage as Fig-
ure 7. This is easily obtained by inverting the Laplace transform L~i~j(s)/s;
it allows us to extract response time quantiles, for instance:

IP(system 5 processes 175 voters in under 440s) = 0.9858

7. Conclusion

We have seen that finding time delay densities is a hard problem, often
with with complex and computationally expensive solutions when they can
be solved at all. Consequently, in most practical applications, the perfor-
mance engineer requires approximate methods. There is no single estab-
lished methodology for such approximation and most of the techniques
used are ad hoc.

The computation of quantiles of sojourn times in the performance en-
gineering of diverse operational systems, such as internet communication,
has been recognised for many years and is increasing with present day
benchmarks. We have presented a personal perspective on this subject, re-
vealing the increasing difficulties in computing the probability distribution
functions of times delays – and hence quantiles – as models become more
complex. From the single FCFS M/G/1 queue, through queues with more
complex queueing disciplines and negative customers, to tree-like open and
closed queueing networks of Markovian queues, it was shown how analytical
solutions for response time distributions could be found in the time domain.
More sophisticated cases, not considered here, can compute Laplace trans-
forms of response time probability densities, but these require numerical
inversion to get distribution functions, using methods such as Euler and
Laguerre as discussed, in Section 6.3.

For many years, other problems, perhaps with no particular structure,
could only be solved approximately by analytical methods, the approach of
direct analysis of the Markov chain being numerically infeasible. However, in
recent years, this direct approach has become viable for small-to-medium
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sized problems by exploiting parallel computation and the availability of
very large storage systems at all levels form cache to disk file stores. We
explained how the resulting matrix analytic problems can be structured to
take advantage of these technological advances, in particular using hyper-
graph partitioning of matrices and a fixed storage representation of proba-
bility distribution functions (or rather their Laplace-Stieltjes transforms).

Quantiles can indeed now be generated numerically, exactly or nearly
exactly, for many problems but even quite moderately sized ones are still
intractable. The future will require approximate and asymptotic methods,
e.g. for tail probabilities; this is a growing research area.
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