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Abstract—Generalised Stochastic Petri nets (GSPNs) are markings. The analysis makes use of a method based on
widely used in the performance analysis of computer and numerical Laplace transform inversion, whereby we convolve
communications systems. Response time densities and quantllesthe state sojourn times along all paths from the set of start

are often key outputs of such analysis. These can be extracted . . o .
from a GSPN's underlying semi-Markov process using a method markings to the target markings [6]. This involves the solution

based on numerical Laplace transform inversion. This method Of many systems of complex linear equations, each of rank
typically requires the solution of thousands of systems of complex n, wheren is the size of the GSPN’s state space. For large
linear equations, each of rankn, where n is the number of states ,, the calculations require a great deal of processing power.
in the model. For large models substantial processing power is Consequently, we distribute the processing over a cluster of

needed and the computation must therefore be distributed. t by interfacing PIPE2 with Had
This paper describes the implementation of a Response Time computers Dy Interfacing wi adoop, an open source

Analysis module for the Platform Independent Petri net Editor implementation of Google's MapReduce distributed program-
(PIPE2) which interfaces with Hadoop, an open source implemen- ming environment. This paradigm offers excellent scalability
tation of Google’'s MapReduce distributed programming environ- and robust fault tolerance.

ment, to provide distributed calculation of response time densities The remainder of this paper is organised as follows. Sec-

in GSPN models. The software is validated with analytically tion Il t | t back d terial relating to G
calculated results as well as simulated ones for larger models. lon 1l presents relevant background material relating 1o en-

Excellent scalability is shown. eralised Stochastic Petri nets and their response time analysis.
Section Il describes Hadoop, an open source implementation
|. INTRODUCTION of the MapReduce distributed programming model. Section IV

The complexity of computer systems continues to riséescribes the design and integration of an Hadoop-based
rapidly. It is therefore increasingly important to model systenfdesponse Time Analysis module into the PIPE2 Petri net
prior to their implementation to ensure they behave correctgditor. Finally, Section V validates the module using small
In this context, Generalised Stochastic Petri nets (GSPNIEZde'S with known analytical results, as well as larger models
are a popular graphical modelling formalism which are botfhere results had been produced by simulation. The software
intuitive and flexible. GSPNs have an underlying semi-Markd$ shown to work with model sizes with in excess of two
process which can be analysed for many qualitative aAdllion states, and to scale well with increasing analysis cluster
quantitative factors. size. Section VI concludes.

The focus of the present paper is on techniques for extract- I
ing response time densities and quantiles from GSPN models. ) ] .
Given their increasing use in Service Level Agreements, these elri nets are a graphical formalism for describing con-
are important performance measures for many computer grency and synchronisation in distributed systems. In their
communication systems, such as web servers, communicaf$fiPlest form, they are also known as Place-Transition nets.
networks and stock market trading systems. In particuldfese consist of a number of places, which may contain
we describe the creation of a new Response Time Ana|y§pg<ens, connected by transitions. A transitioreizgabledand
module for the Platform Independent Petri net Editor (p|pE§§mﬁre if the input places of the transition contain at least the
[3]. PIPEZ is an open source Petri net editor and analys@Hmber of tokens specified by a backward incidence matrix. In
developed by several generations of students at |mpe,§gfiring,anumber of tokens are removed from the transi';i.on’s
College London as well as several external contributors. THEPUt places and a number of tokens added to the transition’s
module accepts a set of start and target markings (defirfPut places according to the backward and forward incidence
by logical expressions which describe the number of tokeftrices respectively.
that should be present on selected places) and outputs grapts marking (or state) is a vector of integers representing
of the corresponding response time density and (optionalj)® number of tokens on each place of the model. The
the cumulative distribution function of the time taken for théeachability setor state spacef a Place-Transition net is the

system to pass from the start markings into any of the targiét Of all possible markings that can be reached from a given
Initial marking. Thereachability graphshows the connections

1Available from http://pipe2.sourceforge.net ) between these markings.
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Generalised Stochastic Petri nets (see e.g. Figures 4 afdarget statesj. Vanishing markings have a sojourn time
5) extend Place-Transition nets by incorporating timing infodensity of 0, with probability 1, which results in their Laplace
mation. A timed transitiort; has an exponentially distributedtransform equalling 1 for all values of. If £ij~.(s) is the
firing rate \;. Immediate transitions have priority over timed.aplace transform of the density functigf;}e(t) of the passage
transitions and fire in zero time. Markings that enable timeime variableT ;, then we can expressS,-(s) as:
transitions only are known amngible while markings that

enable any immediate transition are callednishing The Z( ik >£k3(5)+z <q“<) ifieT
sojourn time in a tangible marking/; is exponentially dis- Lij(s) =9 ke S+ p o S+ i
tributed with parametep; = >, ..,y Aw Where en(2;) S rg7 Pl (s) + Xpes Pik ifiey
is the set of transitions enabled by markifg. The sojourn ) ) ) .
time in vanishing markings is zero. whe_re_T is the set of tangible markings and is the set of

Formally, [2]: vanishing markings.

Definition 2.1: A Generalised Stochastic Petri net is an This system of linear equations can also be expressed in
8-tuple GSPN = (p7 T, I‘,I*,MO,TLTQ,W). P = matnx—ve(_:tor form. If, for example, we lmsh to find the
{p1,..,pip|} is a finite and non-empty set of placgs = Passage time from stateto the set of stateg = {My, M3},
{t1,...tr|} is a finite and non-empty set of transitionsWhere7 = {My, M, ..., M.} andV = {M:}, then:

PNT =0.I",It : PxT — Ny are the backward and s—qu1 —qi2 0 o —qin q13
forward incidence functions, respectivelyl, : P — Ny is 8 B R P21 + p23
the initial marking.7: C T is the set of timed transitions. doz s T L= 1

T, C T is the set of immediate transitiongy N7, = 0 0 . 0 . .

andT = Ty UT,. W = (w1,...,w|) is an array whose 0 “n2 0 T Tnn dn1 + dn3 )

entry w; € RT is either a rate of a negative exponentialparet, — (c

L2 o . R s),...,Lnj(s)). If we wish to calculate the
distribution specifying the firing delay, when transitionis a

1”'( )
passage time f]rom multiple source states, denoted by the vector

timed transition,or a firing weight, when transition; is an  ; the | aplace transform of the passage time density is given
immediate transition. by:

We further definep;; to be the probability that)/; is Lo(s) — C-

the next marking entered after markiid; and, for tangible (%) Zak k()
markingM;, ¢;; = pipij, 1.€.¢;; is the instantaneous transition
rate into marking)/; from marking M;. where oy, is the steady-state probability that the GSPN is in

i i ) , statek at the starting instant of the passagg.is given by:
A. Response Time Analysis using Numerical Laplace Trans-

form Inversion an — { Th/Spei™n ifk€d @
If we first consider a GSPN whose state space does not 0 otherwise
contain any vanishing states, the definition of the first passaghere 7, is the kth element of the steady-state probability
time from a S|rlg_le source markingto a non-empty set of vectors of the GSPN’s underlying embedded Markov Chain.
target markings is given by: Now that we have the Laplace transform of the passage
. - . time, we must invert it to get the density of interest in the real
T~ =inf 0: M N 0,M(0) = " . . . .
g = {u> (u) €, N(u) > 0, M(0) = i} domain. To do this we can use Euler inversion [1]. This works
where M (u) is the marking of the GSPN at timeand N (u) by evaluating the Laplace transforfii(s) at variouss-values

kei

is the number of transitions which have fired by time determined by the value(s) ofat which we wish to evaluate
When studying GSPNs whose state spaces include vanishjf{g). From these results it approximates the inverse Laplace
states we define the passage time as: transform of f*(s), i.e. f(¢). Formally:
Tif =inf{u >0: N(u) > MZ;} f(t) ~ %Re Iz 2% . 32:2 i(—l)kRe #* A+2§k7ri
- k=1
where M- = min{m € Z* : X,,, € j | Xo = i}; hereX,, is (3
the state of the system after theth transition firing [4]. where A = 19.1 is a constant that controls the discretisation

To find this passage time we must convolve the state sojo@fior. This equation describes the summation of an alternat-
time densities for all paths from to j € j. This is best ing series, the convergence of which can be accelerated by
done in the Laplace domain as we can take advantage of éeploying Euler summation.
convolution property which states that the convolution of two
functions is equal to the product of their Laplace transforms.
We perform a first-step analysis to find the Laplace transformMapReduce was devised by Google researchers Dean and
of the relevant density. This process can be thought of @hemawat as a programming model, with an associated im-
first finding the probability density of moving from state plementation, to facilitate the generation and processing of
to its set of direct successor statesand then convolving large data sets on clusters of commodity machines [5]. It was
it with the probability density of moving fronk to the set intended to allow reliable and efficient distributed programs to

Ill. THE MAPREDUCE ENVIRONMENT



be written by developers with little prior experience of writingvhich then splits the work between various machines in the

distributed applications. cluster. A TaskTracker process runs on each machine in the
The framework presented to the developer is inspireduster. It communicates with the JobTracker and is assigned

by primitive functions of the Lisp programming languagelMap or Reduce tasks when it is available.

whereby computations are split into a Map task and a Reduce ) .

task, both of which the developer is responsible for writing>: MapReduce Job Execution Overview

The Map function takes a series of input key/value pairs andIn order to give a clear picture of how Hadoop works we

produces a set of intermediate key/value pairs. The MapR#all now describe the execution of a typical MapReduce

duce framework then collects together all intermediate paiab on the Hadoop platform. When the user submits their

with the same key and passes the collection to the RedidapReduce program to the JobTracker the first step is to split

function. This then takes one such pair consisting of a singlee input data (often consisting of many files) intb splits of

key and a list of values and processes the values in suclheiween 16 and 128 MB in size. There dreMap tasks and

way that it will produce zero or one output value(s). This i& Reduce tasks per job; both values can be specified by the

the output along with the intermediate key as a key/value paiser. When a TaskTracker receives an instruction to run a Map

We can summarise this as: task from the JobTracker it spawns a TaskTrackerChild process
Map (k1,v1) — list(k2,v2) to carry out the work. It then continues to listen for further
Reduce(k2,list(v2)) — (k2,v2) instructions, thereby allowing multiple tasks to be run on

It should be noted that the typing of the keys and values raultiprocessor or multicore machines. The TaskTrackerChild’s
important. The input keys and values can be from a differefifSt Step is to read a copy of the task's associated input
domain to the intermediate keys and values kleandk2 can split from the HDFS. It parses this for key/value pairs before

be different types). However, the intermediate keys and value&ling the Map function for each pair. After performing some
must be of the same type as the output keys and values. US€r defined calculations, the Map function writes intermediate

key/value pairs to the local disk. There are typically many of
A. Hadoop Implementation these per Map. These pairs are partitioned iRtaregions,
There are a number of implementations of Google’s MapReach region containing key/value pairs for a subset of the
duce programming model, including Google’s own, written ikeys. At the end of the Map task the TaskTracker informs
C++ and discussed in [5]. Different implementations can kdbe JobTracker it has completed its task and gives the location
tailored for the systems they are intended to run on, suohthe intermediate pairs it has created.
as large networks of commodity PCs or powerful, multi- A TaskTracker that has been assigned a Reduce task will
processor, shared-memory machines. In this section we witipy all the intermediate pairs from a single partition region to
introduce Hadoop, an open-source Java implementation of ttselocal disk. These pairs will be distributed amongst the local
MapReduce model. disks of all workers that have run a Map task. Once copied,
Hadoop consists of both the MapReduce framework aitdsorts the pairs on their keys. A call to the Reduce function
the Hadoop Distributed File System (HDFS), reminiscent ¢ made for each unique key and the list of associated values
the Google File System (GFS). A distributed filesystem usé&spassed in. The output of the reduce function is appended to
the local drives of networked computers to store data whilgh output file associated with the Reduce tagkoutput files
making it available to all machines connected to the netwonkill be produced per job.
Hadoop is designed to be run on large, extensible clusters oft is often the case that a single Map task will produce
commodity PCs and has been demonstrated to run on clusteeny key/value pairs with the same key. Ordinarily, these
of up to 2000 machines. will all need to be individually copied to the machine running
HDFS consists of three main processes: the Namenotlege corresponding Reduce task. However, to reduce network
the Secondary Namenode and a number of Datanodes. Daedwidth the MapReduce framework allows a Combiner
Namenode runs on a single master machine in the clustenction to be run on the same machine that ran the Map
and stores details of which machines make up the cluster andk, which partially merges intermediate data before it is
where each block is stored on which machines. It also handteansferred. Network bandwidth is further reduced by taking
replication. The Secondary Namenode is an optional back-agvantage of replication within the HDFS, whereby each block
process for the Namenode. Datanode processes run on all otfetata is stored on a number of local disks for fault tolerance
machines in the cluster (slaves). They communicate with theasons. When a machine requires some data the Namenode
Namenode and handle requests to store blocks of data onghwes it the location on the machine storing the data which
machine’s local hard disk. They also update the Namenodeigaslosest on the network path. The MapReduce framework
to the location of blocks and their current status. further takes advantage of this property by attempting to run
The MapReduce framework is comprised of a single Jobap tasks on machines that are already storing a copy of the
Tracker and a number of TaskTrackers. The JobTracker pomtresponding file split on their local disk.
cess runs on a single, master machine (often the same as thiEhe key mechanism for handling failure of nodes in the
Namenode) and can be thought of as the controller of tMapReduce cluster is re-execution. While the JobTracker is
cluster. Users submit their MapReduce jobs to the JobTrackaryery important part of the system and is a single point



|- Respons
“SoUrce net-

X breakdown of the steps which the module takes in order to
' calculate response time densities for a GSPN model. The

| e oo R _ module can be seen to take the representation of the Petri
~Input Fields net as a PIPE2 PNMLData object and use this to generate the
Staitstates:  [(#(PO) = 0) & (#(P1) == 1) various matrices required for the calculation of the response
Target States: [#(P2) > 0 time density. The user is allowed to input logical expressions to
T Start: [1.0 T Stap: [10.0 Step size: 0.1 identify sets of start and target markings. Next, the reachability
[v Calculate Response Time PDF Buffer Size (MB): 100 graph (described as the generator ma’(Qxin the case of
[V Calculate Response Time COF an SPN and as an EMC with probability transition matrix
[¥ Run as Map Reduce job NumberoFMaps:H-ZE_; P in the case of a GSPN) is generated and the Steady-
| Ertor Messages — state probability distribution vector is calculated (recall this

is required to weight start states appropriately). The Laplace
transform inverter can be run either locally or in distributed
format using the Hadoop MapReduce platform. Distributing
the LT inverter allows for large models to be analysed in a
i-aleulate Response Time scalable manner in reasonable time.

The first step in the Laplace transform inverter is to generate
Figure 1. User-facing input window of the PIPE2 Response Time Analysif€ complex linear systems that must be solved to yield the
module Laplace transform of the convolution of all state sojourn times
along all paths from the set of start markings to any of the

. . . set of target markings. These are calculated as described in
of failure, the chances of that one machine failing are IO‘%ection II-A and are dependent on the target states recognised

Hadaop therefore currently does not have any fault toIeranB the start/target state identifier. The number of linear systems

lprocedlurets forf |t|and t?ﬁ enr?re job ”;USt bg r?—ﬁal?(ecuted. Ir1ohbe solved depends on the number of time points specified
arge cluster of siaves the chances of a node failing are Mysdyne ser; these systems are then solved either locally or as

higher. To counter this, the JobTracker periodically pings eagh jistributed MapReduce job on Hadoop. Finally, the resuilts

TaskTracker. If it does not receive a response within a cert : .
time it marks the node as failed and re-schedules all Map ta Pegés\?l%éed as a graph whose underlying data can be saved

carried out by that node since the job started. This is necessary

as the intermediate results for those tasks will be stored on tat Reachability Graph Generator
node’s local hard-disk, which is now inaccessible. This allows
a job to continue with minimal re-execution.

The reachability graph genenerator used in the Response
Time Analysis module is based on an existing one already
IV. PIPE2 RESPONSETIME ANALYSIS implemented in PIPE2 by [7]. Its concept is to perform a

The Platform Independent Petri net Editor (PIPE) wa¥eadth-first search of the states of the GSPN's underlying
created in 2002 at Imperial College London as a group proje%MP' It starts with a single state and finds all the states that
for MSc (Computing Science) students. The motivation wd&" be reached from it in a single transition. This process

to produce an intuitive Petri net editor compliant with thés then repeated for each of those successor states until all

latest XML Petri net standard, the Petri Net Mark-up Langua {ates have been explored. In order to detect cycles a record

(PNML). Subsequent projects and contributions from extern us_;t b_e_ kept in memory of each _state _identified; this presents
developers have extended the program to version 2.5, addfhgdnificant problem when dealing with large state spaces.
support for GSPNS, further analysis features and improvaiC'ind an array representing the marking of each state’s places
GUI performance [3]. An important feature of PIPE2 is thé/ould consume far too much memory. A better approach is to
facility for pluggable analysis modules. That is, an external%rIpIOy a probabilistic, dynamic hashing technlque, as devised
compiled analysis class can be dropped into a Module fold [8]- Here, only_ a hash of the_ state’s marking array 1s stored
and the ModuleLoader class then uses Java reflection fPn€ of many linked lists which are in turn stored in a hash
integrate it into the application at run-time. All module classdg?/€- BY using a second hash function to determine which
must implement a predefined Module interface: list to store each state in the risk of collisions is dramatically

public void run(PNMLData petrinet) (o ) reduced. A full representation is also stored on disk as it is

public String getName() { . 1} necessary when identifying start and target states. The new 1/O
Existing modules support tasks such as steady-state analy@@sses introduced in Java J2SE 5 were used to dramatically
reachability graph visualisation and invariant analysis. A nurinprove performance when writing to disk.

ber of other modules are also currently being developed. C. Dynamic Start/Target State Identifier

A. Overview of Module A passage time of interest can be specified by defining

Figure 1 shows the user-facing input window of the PIPER set of start states and a set of target states. For example,
Response Time Analysis module, while Figure 2 shows aauser might wish to calculate the passage time from any
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Figure 2. Overview of Response Time Analysis module

state where a buffer contains three items, to any state whetatesj sampled at a point for 1 < i < n. If multiple

it contains none. In Petri net modelling the buffer wouldtart markings are identified, a vectaris calculated from
correspond to a place while the items would be tokens. the normalised steady-state probability vector and the quantity
convenient way for the user to be able to specify sets of starl, found. This gives us the Laplace transform of the response
and target states is by giving conditions on the number tifne density from a set of initial states to a set of target states.
tokens on places. Finding the corresponding states is a nonThe solution process is driven by the time-range over which
trivial problem as the entire state space must be searchedH@ user wishes to plot the probability density function of the
identify such states. A very fast algorithm is required as staigsponse time. Eadhpoint of the final response time distribu-
spaces can be huge. We accomplish this by allowing the usefiém requires 6%-point function calls (in this implementation)
enter a logical expression, whose terms compare the markiggshe Laplace transform of the response time density. Each
of places with constants or the markings of other places. Thisioint sample of the Laplace transform is given by a single
is then translated into a Java expression which is inserted igi§lution of Equation 1. The precise set sfalues required

a template that is compiled and invoked at run-time to chegke calculated from the Euler Laplace inversion algorithm as
whether each state matches the user’s conditions. a function of the desired time range of the final plot. Thus a
time range of 100 points may require as many as 6500 distinct

D. Steady-State Solver X b , :
_ ) solutions of Equation 1, provided by a standard Gauss-Seidel
The steady-state solver uses the Gauss-Seidel iteratiye- e method

method to find the steady-state distribution vector of a Markov . . .
For models with large state spaces solving the sets of linear

chain represented by@ (or ) matrix by solving the equation equations is too processor intensive to do locally. We therefore

7Q = 0 (or #P = =). To obtain standard linear system form .
Ax = b requires the transpose of ti@ or P matrix, which integrate the module with the Hadoop MapReduce framework.

: ; : An overview of this process is shown in Figure 3.
we generate with an appropriate transpose function. )
_ _ _ In order to storeC(s), we set up a Hashmap indexed on the
E. Linear Solution and Numerical Laplace Transform Invers-value of the Laplace transform. This has the advantage that
sion any repeated-values need only be calculated once.

The next step is to set up the linear system of EquationThe list of s-values is then copied to a number of sequence
1 of the form AL = b with the aim of solving to find the files, a special file format containing key/value pairs which
response time vectol,. Recall that each element of the vectois used by Hadoop as an input to a MapReduce job. By
L; = £i;(s) represents the Laplace transform of the responadditionally storing the quantity’(s)/s and inverting, we
time distribution between an initial staieand a set of target can easily retrieve the CDF of the passage time, for very
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Figure 3. An overview of the MapReduce distributed linear equation solver used in the RTA module

little extra computation. Each sequence file corresponds tdviandrake Linux and nodes are connected by gigabit ethernet

Map task and the-values are split evenly between them. land an Infiniband interface managed by a Silverstorm 9024

was necessary to do this explicitly as Hadoop’s automatic févitch with a throughput of 2.5Gbit/s. One of the nodes was

splitting functionality is aimed at much larger data files.  designated the master machine and ran the Hadoop Namenode
The set ofA-matrices corresponding to a set of the requireand JobTracker processes, as well as PIPE2.

s-values are serialised and the resulting binary file is copied

into the cluster's HDFS. When a node receives a Map taskAit Validation

will run the Map function a number of times; once for eaeh o yalidation process began with the Branching Erlang
value in its associated sequence file. For the first Map funcﬂ%deL taken from [9] and shown in Figure 4, which consists
run on a node, theA-matrices are copied out of the HDFSy¢ 1o pranches with known response times. In particular,
to local storage and deserialised. Subsequent calls to the Mgqp upper branch has afrlang(12,2) distribution, while
function (even as part of different Map tasks) then use thige |ower has arfrriang(3,1) distribution. There is an equal
local copy, thereby greatly reducing network traffic. probability of either branch being taken, as the weights of
Whilst theL(s) values are being calculated, a single Redugfe immediate transitions are identical. As Erlang distributions
task is started. We use the Reduce task simply to collggh trivial to calculate analytically we can therefore compare
all the L(s) values from across the cluster and copy thefe results form our numerical Laplace transform inversion
to a single output sequence file. With the distributed joRethod with their true values.
complete, thg response time calculator copies the results intcpigures 6 and 7 compare the results produced by PIPE2 and
a HashMap indexed os-values for fast access and runs thgygse calculated analytically for the cycle time density and its
Euler algorithm. corresponding CDF function of the Branching Erlang model.
Excellent agreement can be seen between the two. These
results demonstrate the Response Time Analysis module’s
All results presented in this section were produced by PIPBRility to handle cases where the set of source and target
running in conjunction with the latest development version states overlap (i.e. to calculate cycle times), as well as bimodal
Hadoop (0.13.1) on a cluster of 15 Sun Fire x4100 machinekgnsity curves.
each with two dual-core, 64-bit Opteron 275 processors andlo validate the module for larger models with multiple
8GB of RAM. The operating system is a 64-bit version aftart and target states we used the Courier Protocol model,

V. NUMERICAL RESULTS



the Hadoop cluster. The second column indicates the number
of Map tasks assigned to each node. Hadoop allows multiple
Map tasks to be run concurrently on a single node which is
of particular benefit with multicore machines as it allows full
use to be made of all cores. Where only one Map task was
assigned to a node only one core was in use. This was scaled
up to 8 and 15 machine clusters until all cores were in use at
once. The third column shows the total number of cores being
used simultaneously. The optimum map granularity for each
cluster size was found through experimentation and is listed
in the fourth column.

Cluster | No. Maps| Total | Total Time
Size | Per Node| Cores| Maps | (seconds)
1 1 1 10 | 3112.167
2 1 2 20 1596.322
4 1 4 40 809.653
8 1 8 80 433.173
8 2 16 80 256.694
8 4 32 80 192.982
15 1 15 80 252.515
15 2 30 80 165.561
15 4 60 100 | 131.754
Table |

LAPLACE TRANSFORM INVERSION TIMES FOR THECOURIER PROTOCOL
(WINDOW SIZE 1) ON VARIOUS CLUSTER SIZES

first presented in [10] and shown in Figure 5. It models the
ISO Application, Session and Transport layers of the Courier
sliding-window communication protocol. By increasing the
number of tokens oml4, the sliding-window size, we can
dramatically increase the state space of the model. We begin
our validation with this set to one, which results in a state
space of 29 010. The module completed this exploration in less
than 8 seconds on a single machine. Results for the passage
time from the set of markings wher®/(p11) > 0 to those
where M (p20) > 0 are shown in Figure 8, where 7320
source markings and 1860 target markings were identified.
They closely match simulation results for this same model that
were produced in [6]. It should be noted that our model uses a
scaled set of rates that are equal to the original benchmarked
rates divided by 5000. This is necessary as the range in
magnitude of the original rates causes problems with the
numerical methods used to invert the Laplace transform. The
results presented here are the raw results from the PIPE2
module and so must be re-scaled to give the correct timings.

In order to ascertain how the Response Time Analysis
module performs with models with larger state spaces we
again used the Courier Protocol model, increasing its window
size to 3. This results in a state space of 2162610 states
(including vanishing states) with 5469 150 transitions between
them. Again, analysing from markings wheké(p11) > 0 to
markings wherel/ (p20) > 0, we find there are 439 320 start
markings and 273 260 target markings. Results were produced
for 50 t-points ranging from 1 to 99 in increments of 2,
resulting in a work queue of over 1800 systems of linear
equations, each of rank 2.2 million. State space exploration
took 20 minutes, while the Laplace transform inversion took
8 hours 9 minutes on a single node. Generation times for the
various other matrices totalled less than 20 seconds.

=2
=1

Upper Branch Transition Rates
Lower Branch Transition Rates

t17

Figure 4. The Branching Erlang model

It is clear from Table | that the distributed response time

B. Processing Times

calculator offers excellent scalability. With small clusters there

Table | shows the time taken to perform the Laplacis an approximate halving of calculation time as the cluster
transform inversion for the Courier Protocol model (windowize is doubled. As the cluster sizes (and hence the number of
size 1) for 50¢t-points on various cluster sizes. The cluster sizdap tasks) grow this improvement drops slightly to a factor
column refers to the number of compute nodes assignedatfoapproximately 1.8. This is to be expected as there is some
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overhead in setting up Map tasks. V1. CONCLUSIONS

When the number of cores used on each node is increasetlVe have described the implementation of a Response Time
we again see a good reduction in processing times. Howewv&nalysis module for a popular Petri net editor and anal-
we no longer see the calculation time halve as the availalyiger, PIPE2. This module integrates with Hadoop, an open
cores double. It is likely that this is due to contention fosource Java implementation of the MapReduce distributed
shared resources within each node, such as the system busgramming environment to allow the response time analysis
Further weight can be added to this argument by comparinfj large models using a cluster of commodity computers.
the results for jobs run on 8 nodes with jobs run on 15 nodé&hile the developers of MapReduce originally intended it to
A job run on 32 cores spread over 8 nodes takes over p&rform relatively simple calculations on massive data sets,
seconds longer than a job run on only 30 cores, but spreaid have successfully applied it to a different problem, that of
over 15 nodes. performing complex, computationally intensive calculations on

The number of Map tasks for a particular Hadoop job C(,J{I;;Iatively smaller data sets. In doing this we have overcome
have a dramatic effect on the time taken to complete the j@onumber of difficulties related to the architecture of Hadoop,
While having one Map task per core in the cluster results in tHd1i!St retaining the benefits of using a popular open-source
least overhead it can actually result in poor performance. TREP/ECt to handle the distribution of processing, such as
main reason for this is that Map tasks take different amourfigcellent rellablllty, good fault tolerance and much improved
of time to complete, even when each one contains the saffyélopment time. .
number of £(s) values to calculate. When running jobs it is Models of up to at least 2.2 million states were shown
not uncommon to see the slowest jobs take over three tin}8sP€ €asily accommodated using in-core processing. Re-
as long to complete as the faster ones. It is thought that tHigPlementing the linear equation solving algorithms as disk-
is largely due to certairC(s) values converging faster thanPased, rather than in-core, would allow for much larger model
others. Reducing the granularity, or increasing the number 9£&S:

Map tasks, reduces the length of time each Map task takesR€Sults produced by the Response Time Analysis module

and so reduces the time spent where most of the cluster is inigre validated for smaller models with analytically calculated
waiting for the last few Map tasks to complete. results and for larger models with simulations. Excellent

scalability was shown, with an almost linear improvement in
calculation times with increased cluster sizes.

No. Map .Calc. Fastest| Slowest REFERENCES
Tasks | Time (s) | Map (s) | Map (s)
[1] J. Abate and W. Whitt. The Fourier-series method for inverting
56 583.061 267 551 transforms of probability distributionsQueueing System40(1):5-88,
128 525.106 93 282 1992.
2] F. Bause and P.S. Kritzinge6tochastic Petri Nets: An Introduction to
256 497.495 o2 156 2 the Theory Vieweg Verlagg,] Wiesbaden, Germany, 2nd edition, 2002.
384 516.948 40 107 [3] P. Bonet, C.M. Llado, R. Puijaner, and W.J. Knottenbelt. PIPE v2.5: A
Petri net tool for performance modelling. Rroc. 23rd Latin American
Table Il Conference on Informatics (CLEI 200@3an Jose, Costa Rica, October
LAPLACE TRANSFORM INVERSION TIMES FOR THECOURIER PROTOCOL 2007.
(WINDOW SIZE 1) FOR VARIOUS GRANULARITIES [4] J.T. Bradley, N.J. Dingle, W.J. Knottenbelt, and H.J. Wilson.

Hypergraph-based parallel computation of passage time desnsities in
large semi-Markov models. Ihinear Algebra and its Applications:
Volume 386 pages 311-334. Elsevier, July 2004.
[5] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on
Table Il shows the time taken to perform the Laplace large clusters. IfProceedings of the OSDI'04: Sixth Symposium on Op-

; ; o ; erating System Design and Implementati®an Francisco, California,
transform inversion for 20@-points on the Courier Protocol U.S.A. December 2004,

model on a cluster of eight nodes, each running 4 Map Task§ N.J. Dingle, P.G. Harrison, and W.J. Knottenbelt. Response time
with different numbers of Map Tasks specified. We can see that densities in Generalised Stochastic Petri net modelsProteedings

: : - ; of the 3rd ACM Workshop on Software and Performance (WOSP 2002)
the optimum granularity for this job is for 256 Map tasks. At pages 46-54, Rome, ltaly, 2002.

this granularity the maximum time to complete a Map task i$7] T. Kimber, B. Kirby, T. Master, and M. Worthington. Petri nets group
approximately 150 seconds. This is the maximum time the job project final report. Technical report, Imperial College, London, United

; i ; Kingdom, March 2007.
will spend waiting for a single Map task to complete when aII[8] W.J. Knottenbelt. Generalised Markovian analysis of timed transition

others have finished. While this time is lower for the 384 Map = systems. Master's thesis, University of Cape Town, Cape Town, South
task job, the benefit is outweighed by the additional overhead Africa, July 1996.

: - : ] W.J. Knottenbelt and P.G. Harrison. Passage time distributions in large
of scheduling and configuring an extra 128 Map tasks. Markov chains. InProceedings of ACM SIGMETRICBages 77-85,

Granularity becomes even more important on heterogenous Marina Del Rey, California, U.S.A., June 2002. _ _
] C.M. Woodside and Y. Li. Performance Petri net analysis of communi-

_clu_sters. T_he undesirable situation where much of the Clusgaq cation protocol software by delay-equivalent aggregatiorProceeding
is idle while the last few Map tasks are executed can be of the 4th International Workshop on Petri nets and Performance Models

exacerbated by the scheduler picking slower machines to run (PNPM'91) pages 64-73, Melbourne, Australia, December 1991. IEEE
these tasks Computer Society Press.



