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Abstract—Generalised Stochastic Petri nets (GSPNs) are
widely used in the performance analysis of computer and
communications systems. Response time densities and quantiles
are often key outputs of such analysis. These can be extracted
from a GSPN’s underlying semi-Markov process using a method
based on numerical Laplace transform inversion. This method
typically requires the solution of thousands of systems of complex
linear equations, each of rankn, wheren is the number of states
in the model. For large models substantial processing power is
needed and the computation must therefore be distributed.

This paper describes the implementation of a Response Time
Analysis module for the Platform Independent Petri net Editor
(PIPE2) which interfaces with Hadoop, an open source implemen-
tation of Google’s MapReduce distributed programming environ-
ment, to provide distributed calculation of response time densities
in GSPN models. The software is validated with analytically
calculated results as well as simulated ones for larger models.
Excellent scalability is shown.

I. I NTRODUCTION

The complexity of computer systems continues to rise
rapidly. It is therefore increasingly important to model systems
prior to their implementation to ensure they behave correctly.
In this context, Generalised Stochastic Petri nets (GSPNs)
are a popular graphical modelling formalism which are both
intuitive and flexible. GSPNs have an underlying semi-Markov
process which can be analysed for many qualitative and
quantitative factors.

The focus of the present paper is on techniques for extract-
ing response time densities and quantiles from GSPN models.
Given their increasing use in Service Level Agreements, these
are important performance measures for many computer and
communication systems, such as web servers, communication
networks and stock market trading systems. In particular,
we describe the creation of a new Response Time Analysis
module for the Platform Independent Petri net Editor (PIPE2)
[3]. PIPE21 is an open source Petri net editor and analyser
developed by several generations of students at Imperial
College London as well as several external contributors. The
module accepts a set of start and target markings (defined
by logical expressions which describe the number of tokens
that should be present on selected places) and outputs graphs
of the corresponding response time density and (optionally)
the cumulative distribution function of the time taken for the
system to pass from the start markings into any of the target

1Available fromhttp://pipe2.sourceforge.net .

markings. The analysis makes use of a method based on
numerical Laplace transform inversion, whereby we convolve
the state sojourn times along all paths from the set of start
markings to the target markings [6]. This involves the solution
of many systems of complex linear equations, each of rank
n, wheren is the size of the GSPN’s state space. For large
n the calculations require a great deal of processing power.
Consequently, we distribute the processing over a cluster of
computers by interfacing PIPE2 with Hadoop, an open source
implementation of Google’s MapReduce distributed program-
ming environment. This paradigm offers excellent scalability
and robust fault tolerance.

The remainder of this paper is organised as follows. Sec-
tion II presents relevant background material relating to Gen-
eralised Stochastic Petri nets and their response time analysis.
Section III describes Hadoop, an open source implementation
of the MapReduce distributed programming model. Section IV
describes the design and integration of an Hadoop-based
Response Time Analysis module into the PIPE2 Petri net
editor. Finally, Section V validates the module using small
models with known analytical results, as well as larger models
where results had been produced by simulation. The software
is shown to work with model sizes with in excess of two
million states, and to scale well with increasing analysis cluster
size. Section VI concludes.

II. BACKGROUND THEORY

Petri nets are a graphical formalism for describing con-
currency and synchronisation in distributed systems. In their
simplest form, they are also known as Place-Transition nets.
These consist of a number of places, which may contain
tokens, connected by transitions. A transition isenabledand
canfire if the input places of the transition contain at least the
number of tokens specified by a backward incidence matrix. In
so firing, a number of tokens are removed from the transition’s
input places and a number of tokens added to the transition’s
output places according to the backward and forward incidence
matrices respectively.

A marking (or state) is a vector of integers representing
the number of tokens on each place of the model. The
reachability setor state spaceof a Place-Transition net is the
set of all possible markings that can be reached from a given
initial marking. Thereachability graphshows the connections
between these markings.



Generalised Stochastic Petri nets (see e.g. Figures 4 and
5) extend Place-Transition nets by incorporating timing infor-
mation. A timed transitionti has an exponentially distributed
firing rateλi. Immediate transitions have priority over timed
transitions and fire in zero time. Markings that enable timed
transitions only are known astangible, while markings that
enable any immediate transition are calledvanishing. The
sojourn time in a tangible markingMi is exponentially dis-
tributed with parameterµi =

∑
k∈en(Mi)

λk where en(Mi)
is the set of transitions enabled by markingMi. The sojourn
time in vanishing markings is zero.

Formally, [2]:
Definition 2.1: A Generalised Stochastic Petri net is an

8-tuple GSPN =
(
P, T, I−, I+,M0, T1, T2,W

)
. P =

{p1, ..., p|P |} is a finite and non-empty set of placesT =
{t1, ..., t|T |} is a finite and non-empty set of transitions.
P ∩ T = ∅. I−, I+ : P × T → N0 are the backward and
forward incidence functions, respectively.M0 : P → N0 is
the initial marking.T1 ⊆ T is the set of timed transitions.
T2 ⊂ T is the set of immediate transitions;T1 ∩ T2 = ∅
and T = T1 ∪ T2. W =

(
w1, ..., w|T |

)
is an array whose

entry wi ∈ R+ is either a rate of a negative exponential
distribution specifying the firing delay, when transitionti is a
timed transition,or a firing weight, when transitionti is an
immediate transition.

We further definepij to be the probability thatMj is
the next marking entered after markingMi and, for tangible
markingMi, qij = µipij , i.e.qij is the instantaneous transition
rate into markingMj from markingMi.

A. Response Time Analysis using Numerical Laplace Trans-
form Inversion

If we first consider a GSPN whose state space does not
contain any vanishing states, the definition of the first passage
time from a single source markingi to a non-empty set of
target markings~j is given by:

Ti~j = inf{u > 0 : M(u) ∈ ~j,N(u) > 0,M(0) = i}
whereM(u) is the marking of the GSPN at timeu andN(u)
is the number of transitions which have fired by timeu.

When studying GSPNs whose state spaces include vanishing
states we define the passage time as:

Ti~j = inf{u > 0 : N(u) ≥Mi~j}
whereMi~j = min{m ∈ Z+ : Xm ∈ ~j | X0 = i}; hereXm is
the state of the system after themth transition firing [4].

To find this passage time we must convolve the state sojourn
time densities for all paths fromi to j ∈ ~j. This is best
done in the Laplace domain as we can take advantage of the
convolution property which states that the convolution of two
functions is equal to the product of their Laplace transforms.
We perform a first-step analysis to find the Laplace transform
of the relevant density. This process can be thought of as
first finding the probability density of moving from statei
to its set of direct successor states~k and then convolving
it with the probability density of moving from~k to the set

of target states~j. Vanishing markings have a sojourn time
density of 0, with probability 1, which results in their Laplace
transform equalling 1 for all values ofs. If Li~j(s) is the
Laplace transform of the density functionfi~j(t) of the passage
time variableTi~j , then we can expressLi~j(s) as:

Li~j(s) =





∑

k/∈~j

(
qik

s+ µi

)
Lk~j(s) +

∑

k∈~j

(
qik

s+ µi

)
if i ∈ T

∑
k/∈~j pikLk~j(s) +

∑
k∈~j pik if i ∈ V

whereT is the set of tangible markings andV is the set of
vanishing markings.

This system of linear equations can also be expressed in
matrix–vector form. If, for example, we wish to find the
passage time from statei to the set of states~j = {M1,M3},
whereT = {M1,M3, . . . ,Mn} andV = {M2}, then:
0
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s− q11 −q12 0 · · · −q1n
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0

... 0
. . .

...
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0
BBBBB@

q13

p21 + p23

q31

...
qn1 + qn3

1
CCCCCA

(1)

whereL = (L1~j(s), . . . ,Lnj(s)). If we wish to calculate the
passage time from multiple source states, denoted by the vector
~i, the Laplace transform of the passage time density is given
by:

L~i~j(s) =
∑

k∈~i
αkLk~j(s)

whereαk is the steady-state probability that the GSPN is in
statek at the starting instant of the passage.αk is given by:

αk =
{
πk/

∑
n∈~i πn if k ∈~i

0 otherwise
(2)

where πk is the kth element of the steady-state probability
vectorπ of the GSPN’s underlying embedded Markov Chain.

Now that we have the Laplace transform of the passage
time, we must invert it to get the density of interest in the real
domain. To do this we can use Euler inversion [1]. This works
by evaluating the Laplace transformf∗(s) at variouss-values
determined by the value(s) oft at which we wish to evaluate
f(t). From these results it approximates the inverse Laplace
transform off∗(s), i.e. f(t). Formally:

f(t) ≈ eA/2
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(3)

whereA = 19.1 is a constant that controls the discretisation
error. This equation describes the summation of an alternat-
ing series, the convergence of which can be accelerated by
employing Euler summation.

III. T HE MAPREDUCE ENVIRONMENT

MapReduce was devised by Google researchers Dean and
Ghemawat as a programming model, with an associated im-
plementation, to facilitate the generation and processing of
large data sets on clusters of commodity machines [5]. It was
intended to allow reliable and efficient distributed programs to



be written by developers with little prior experience of writing
distributed applications.

The framework presented to the developer is inspired
by primitive functions of the Lisp programming language,
whereby computations are split into a Map task and a Reduce
task, both of which the developer is responsible for writing.
The Map function takes a series of input key/value pairs and
produces a set of intermediate key/value pairs. The MapRe-
duce framework then collects together all intermediate pairs
with the same key and passes the collection to the Reduce
function. This then takes one such pair consisting of a single
key and a list of values and processes the values in such a
way that it will produce zero or one output value(s). This is
the output along with the intermediate key as a key/value pair.
We can summarise this as:

Map (k1,v1) → list(k2,v2)
Reduce(k2,list(v2)) → (k2,v2)

It should be noted that the typing of the keys and values is
important. The input keys and values can be from a different
domain to the intermediate keys and values (i.e.k1 andk2 can
be different types). However, the intermediate keys and values
must be of the same type as the output keys and values.

A. Hadoop Implementation

There are a number of implementations of Google’s MapRe-
duce programming model, including Google’s own, written in
C++ and discussed in [5]. Different implementations can be
tailored for the systems they are intended to run on, such
as large networks of commodity PCs or powerful, multi-
processor, shared-memory machines. In this section we will
introduce Hadoop, an open-source Java implementation of the
MapReduce model.

Hadoop consists of both the MapReduce framework and
the Hadoop Distributed File System (HDFS), reminiscent of
the Google File System (GFS). A distributed filesystem uses
the local drives of networked computers to store data whilst
making it available to all machines connected to the network.
Hadoop is designed to be run on large, extensible clusters of
commodity PCs and has been demonstrated to run on clusters
of up to 2000 machines.

HDFS consists of three main processes: the Namenode,
the Secondary Namenode and a number of Datanodes. The
Namenode runs on a single master machine in the cluster
and stores details of which machines make up the cluster and
where each block is stored on which machines. It also handles
replication. The Secondary Namenode is an optional back-up
process for the Namenode. Datanode processes run on all other
machines in the cluster (slaves). They communicate with the
Namenode and handle requests to store blocks of data on the
machine’s local hard disk. They also update the Namenode as
to the location of blocks and their current status.

The MapReduce framework is comprised of a single Job-
Tracker and a number of TaskTrackers. The JobTracker pro-
cess runs on a single, master machine (often the same as the
Namenode) and can be thought of as the controller of the
cluster. Users submit their MapReduce jobs to the JobTracker,

which then splits the work between various machines in the
cluster. A TaskTracker process runs on each machine in the
cluster. It communicates with the JobTracker and is assigned
Map or Reduce tasks when it is available.

B. MapReduce Job Execution Overview

In order to give a clear picture of how Hadoop works we
shall now describe the execution of a typical MapReduce
job on the Hadoop platform. When the user submits their
MapReduce program to the JobTracker the first step is to split
the input data (often consisting of many files) intoM splits of
between 16 and 128 MB in size. There areM Map tasks and
R Reduce tasks per job; both values can be specified by the
user. When a TaskTracker receives an instruction to run a Map
task from the JobTracker it spawns a TaskTrackerChild process
to carry out the work. It then continues to listen for further
instructions, thereby allowing multiple tasks to be run on
multiprocessor or multicore machines. The TaskTrackerChild’s
first step is to read a copy of the task’s associated input
split from the HDFS. It parses this for key/value pairs before
calling the Map function for each pair. After performing some
user defined calculations, the Map function writes intermediate
key/value pairs to the local disk. There are typically many of
these per Map. These pairs are partitioned intoR regions,
each region containing key/value pairs for a subset of the
keys. At the end of the Map task the TaskTracker informs
the JobTracker it has completed its task and gives the location
of the intermediate pairs it has created.

A TaskTracker that has been assigned a Reduce task will
copy all the intermediate pairs from a single partition region to
its local disk. These pairs will be distributed amongst the local
disks of all workers that have run a Map task. Once copied,
it sorts the pairs on their keys. A call to the Reduce function
is made for each unique key and the list of associated values
is passed in. The output of the reduce function is appended to
an output file associated with the Reduce task.R output files
will be produced per job.

It is often the case that a single Map task will produce
many key/value pairs with the same key. Ordinarily, these
will all need to be individually copied to the machine running
the corresponding Reduce task. However, to reduce network
bandwidth the MapReduce framework allows a Combiner
function to be run on the same machine that ran the Map
task, which partially merges intermediate data before it is
transferred. Network bandwidth is further reduced by taking
advantage of replication within the HDFS, whereby each block
of data is stored on a number of local disks for fault tolerance
reasons. When a machine requires some data the Namenode
gives it the location on the machine storing the data which
is closest on the network path. The MapReduce framework
further takes advantage of this property by attempting to run
Map tasks on machines that are already storing a copy of the
corresponding file split on their local disk.

The key mechanism for handling failure of nodes in the
MapReduce cluster is re-execution. While the JobTracker is
a very important part of the system and is a single point



Figure 1. User-facing input window of the PIPE2 Response Time Analysis
module

of failure, the chances of that one machine failing are low.
Hadoop therefore currently does not have any fault tolerance
procedures for it and the entire job must be re-executed. In a
large cluster of slaves the chances of a node failing are much
higher. To counter this, the JobTracker periodically pings each
TaskTracker. If it does not receive a response within a certain
time it marks the node as failed and re-schedules all Map tasks
carried out by that node since the job started. This is necessary
as the intermediate results for those tasks will be stored on that
node’s local hard-disk, which is now inaccessible. This allows
a job to continue with minimal re-execution.

IV. PIPE2 RESPONSETIME ANALYSIS

The Platform Independent Petri net Editor (PIPE) was
created in 2002 at Imperial College London as a group project
for MSc (Computing Science) students. The motivation was
to produce an intuitive Petri net editor compliant with the
latest XML Petri net standard, the Petri Net Mark-up Language
(PNML). Subsequent projects and contributions from external
developers have extended the program to version 2.5, adding
support for GSPNs, further analysis features and improved
GUI performance [3]. An important feature of PIPE2 is the
facility for pluggable analysis modules. That is, an externally
compiled analysis class can be dropped into a Module folder
and the ModuleLoader class then uses Java reflection to
integrate it into the application at run-time. All module classes
must implement a predefined Module interface:

public void run(PNMLData petrinet) { ... }
public String getName() { ... }

Existing modules support tasks such as steady-state analysis,
reachability graph visualisation and invariant analysis. A num-
ber of other modules are also currently being developed.

A. Overview of Module

Figure 1 shows the user-facing input window of the PIPE2
Response Time Analysis module, while Figure 2 shows a

breakdown of the steps which the module takes in order to
calculate response time densities for a GSPN model. The
module can be seen to take the representation of the Petri
net as a PIPE2 PNMLData object and use this to generate the
various matrices required for the calculation of the response
time density. The user is allowed to input logical expressions to
identify sets of start and target markings. Next, the reachability
graph (described as the generator matrixQ in the case of
an SPN and as an EMC with probability transition matrix
P in the case of a GSPN) is generated and the steady-
state probability distribution vector is calculated (recall this
is required to weight start states appropriately). The Laplace
transform inverter can be run either locally or in distributed
format using the Hadoop MapReduce platform. Distributing
the LT inverter allows for large models to be analysed in a
scalable manner in reasonable time.

The first step in the Laplace transform inverter is to generate
the complex linear systems that must be solved to yield the
Laplace transform of the convolution of all state sojourn times
along all paths from the set of start markings to any of the
set of target markings. These are calculated as described in
Section II-A and are dependent on the target states recognised
by the start/target state identifier. The number of linear systems
to be solved depends on the number of time points specified
by the user; these systems are then solved either locally or as
a distributed MapReduce job on Hadoop. Finally, the results
are displayed as a graph whose underlying data can be saved
as CSV file.

B. Reachability Graph Generator

The reachability graph genenerator used in the Response
Time Analysis module is based on an existing one already
implemented in PIPE2 by [7]. Its concept is to perform a
breadth-first search of the states of the GSPN’s underlying
SMP. It starts with a single state and finds all the states that
can be reached from it in a single transition. This process
is then repeated for each of those successor states until all
states have been explored. In order to detect cycles a record
must be kept in memory of each state identified; this presents
a significant problem when dealing with large state spaces.
Storing an array representing the marking of each state’s places
would consume far too much memory. A better approach is to
employ a probabilistic, dynamic hashing technique, as devised
in [8]. Here, only a hash of the state’s marking array is stored
in one of many linked lists which are in turn stored in a hash
table. By using a second hash function to determine which
list to store each state in the risk of collisions is dramatically
reduced. A full representation is also stored on disk as it is
necessary when identifying start and target states. The new I/O
classes introduced in Java J2SE 5 were used to dramatically
improve performance when writing to disk.

C. Dynamic Start/Target State Identifier

A passage time of interest can be specified by defining
a set of start states and a set of target states. For example,
a user might wish to calculate the passage time from any



Figure 2. Overview of Response Time Analysis module

state where a buffer contains three items, to any state where
it contains none. In Petri net modelling the buffer would
correspond to a place while the items would be tokens. A
convenient way for the user to be able to specify sets of start
and target states is by giving conditions on the number of
tokens on places. Finding the corresponding states is a non-
trivial problem as the entire state space must be searched to
identify such states. A very fast algorithm is required as state
spaces can be huge. We accomplish this by allowing the user to
enter a logical expression, whose terms compare the markings
of places with constants or the markings of other places. This
is then translated into a Java expression which is inserted into
a template that is compiled and invoked at run-time to check
whether each state matches the user’s conditions.

D. Steady-State Solver

The steady-state solver uses the Gauss-Seidel iterative
method to find the steady-state distribution vector of a Markov
chain represented by aQ (or P) matrix by solving the equation
πQ = 0 (or πP = π). To obtain standard linear system form
Ax = b requires the transpose of theQ or P matrix, which
we generate with an appropriate transpose function.

E. Linear Solution and Numerical Laplace Transform Inver-
sion

The next step is to set up the linear system of Equation
1 of the formAL = b with the aim of solving to find the
response time vector,L. Recall that each element of the vector
Li = Li~j(s) represents the Laplace transform of the response
time distribution between an initial statei and a set of target

states~j sampled at a points for 1 ≤ i ≤ n. If multiple
start markings are identified, a vectorα is calculated from
the normalised steady-state probability vector and the quantity
α·L found. This gives us the Laplace transform of the response
time density from a set of initial states to a set of target states.

The solution process is driven by the time-range over which
the user wishes to plot the probability density function of the
response time. Eacht-point of the final response time distribu-
tion requires 65s-point function calls (in this implementation)
of the Laplace transform of the response time density. Each
s-point sample of the Laplace transform is given by a single
solution of Equation 1. The precise set ofs-values required
are calculated from the Euler Laplace inversion algorithm as
a function of the desired time range of the final plot. Thus a
time range of 100 points may require as many as 6500 distinct
solutions of Equation 1, provided by a standard Gauss-Seidel
iterative method

For models with large state spaces solving the sets of linear
equations is too processor intensive to do locally. We therefore
integrate the module with the Hadoop MapReduce framework.
An overview of this process is shown in Figure 3.

In order to storeL(s), we set up a Hashmap indexed on the
s-value of the Laplace transform. This has the advantage that
any repeateds-values need only be calculated once.

The list of s-values is then copied to a number of sequence
files, a special file format containing key/value pairs which
is used by Hadoop as an input to a MapReduce job. By
additionally storing the quantityL(s)/s and inverting, we
can easily retrieve the CDF of the passage time, for very



Figure 3. An overview of the MapReduce distributed linear equation solver used in the RTA module

little extra computation. Each sequence file corresponds to a
Map task and thes-values are split evenly between them. It
was necessary to do this explicitly as Hadoop’s automatic file
splitting functionality is aimed at much larger data files.

The set ofA-matrices corresponding to a set of the required
s-values are serialised and the resulting binary file is copied
into the cluster’s HDFS. When a node receives a Map task it
will run the Map function a number of times; once for eachs-
value in its associated sequence file. For the first Map function
run on a node, theA-matrices are copied out of the HDFS
to local storage and deserialised. Subsequent calls to the Map
function (even as part of different Map tasks) then use this
local copy, thereby greatly reducing network traffic.

Whilst theL(s) values are being calculated, a single Reduce
task is started. We use the Reduce task simply to collect
all the L(s) values from across the cluster and copy them
to a single output sequence file. With the distributed job
complete, the response time calculator copies the results into
a HashMap indexed ons-values for fast access and runs the
Euler algorithm.

V. NUMERICAL RESULTS

All results presented in this section were produced by PIPE2
running in conjunction with the latest development version of
Hadoop (0.13.1) on a cluster of 15 Sun Fire x4100 machines,
each with two dual-core, 64-bit Opteron 275 processors and
8GB of RAM. The operating system is a 64-bit version of

Mandrake Linux and nodes are connected by gigabit ethernet
and an Infiniband interface managed by a Silverstorm 9024
switch with a throughput of 2.5Gbit/s. One of the nodes was
designated the master machine and ran the Hadoop Namenode
and JobTracker processes, as well as PIPE2.

A. Validation

Our validation process began with the Branching Erlang
model, taken from [9] and shown in Figure 4, which consists
of two branches with known response times. In particular,
the upper branch has anErlang(12, 2) distribution, while
the lower has anErlang(3, 1) distribution. There is an equal
probability of either branch being taken, as the weights of
the immediate transitions are identical. As Erlang distributions
are trivial to calculate analytically we can therefore compare
the results form our numerical Laplace transform inversion
method with their true values.

Figures 6 and 7 compare the results produced by PIPE2 and
those calculated analytically for the cycle time density and its
corresponding CDF function of the Branching Erlang model.
Excellent agreement can be seen between the two. These
results demonstrate the Response Time Analysis module’s
ability to handle cases where the set of source and target
states overlap (i.e. to calculate cycle times), as well as bimodal
density curves.

To validate the module for larger models with multiple
start and target states we used the Courier Protocol model,



Cluster No. Maps Total Total Time
Size Per Node Cores Maps (seconds)

1 1 1 10 3112.167
2 1 2 20 1596.322
4 1 4 40 809.653
8 1 8 80 433.173
8 2 16 80 256.694
8 4 32 80 192.982
15 1 15 80 252.515
15 2 30 80 165.561
15 4 60 100 131.754

Table I
LAPLACE TRANSFORM INVERSION TIMES FOR THECOURIER PROTOCOL

(WINDOW SIZE 1) ON VARIOUS CLUSTER SIZES

first presented in [10] and shown in Figure 5. It models the
ISO Application, Session and Transport layers of the Courier
sliding-window communication protocol. By increasing the
number of tokens onp14, the sliding-window size, we can
dramatically increase the state space of the model. We begin
our validation with this set to one, which results in a state
space of 29 010. The module completed this exploration in less
than 8 seconds on a single machine. Results for the passage
time from the set of markings whereM(p11) > 0 to those
where M(p20) > 0 are shown in Figure 8, where 7 320
source markings and 1 860 target markings were identified.
They closely match simulation results for this same model that
were produced in [6]. It should be noted that our model uses a
scaled set of rates that are equal to the original benchmarked
rates divided by 5 000. This is necessary as the range in
magnitude of the original rates causes problems with the
numerical methods used to invert the Laplace transform. The
results presented here are the raw results from the PIPE2
module and so must be re-scaled to give the correct timings.

In order to ascertain how the Response Time Analysis
module performs with models with larger state spaces we
again used the Courier Protocol model, increasing its window
size to 3. This results in a state space of 2 162 610 states
(including vanishing states) with 5 469 150 transitions between
them. Again, analysing from markings whereM(p11) > 0 to
markings whereM(p20) > 0, we find there are 439 320 start
markings and 273 260 target markings. Results were produced
for 50 t-points ranging from 1 to 99 in increments of 2,
resulting in a work queue of over 1 800 systems of linear
equations, each of rank 2.2 million. State space exploration
took 20 minutes, while the Laplace transform inversion took
8 hours 9 minutes on a single node. Generation times for the
various other matrices totalled less than 20 seconds.

B. Processing Times

Table I shows the time taken to perform the Laplace
transform inversion for the Courier Protocol model (window
size 1) for 50t-points on various cluster sizes. The cluster size
column refers to the number of compute nodes assigned to

the Hadoop cluster. The second column indicates the number
of Map tasks assigned to each node. Hadoop allows multiple
Map tasks to be run concurrently on a single node which is
of particular benefit with multicore machines as it allows full
use to be made of all cores. Where only one Map task was
assigned to a node only one core was in use. This was scaled
up to 8 and 15 machine clusters until all cores were in use at
once. The third column shows the total number of cores being
used simultaneously. The optimum map granularity for each
cluster size was found through experimentation and is listed
in the fourth column.

Figure 4. The Branching Erlang model

It is clear from Table I that the distributed response time
calculator offers excellent scalability. With small clusters there
is an approximate halving of calculation time as the cluster
size is doubled. As the cluster sizes (and hence the number of
Map tasks) grow this improvement drops slightly to a factor
of approximately 1.8. This is to be expected as there is some
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Figure 5. The Courier Protocol model
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Figure 6. Cycle time distribution from markings whereM(p1) > 0 to
markings whereM(p1) > 0 in the Branching Erlang model
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Figure 7. CDF of cycle time from markings whereM(p1) > 0 to markings
whereM(p1) > 0 in the Branching Erlang model
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Figure 8. Passage time density for markings whereM(p11) > 0 to markings
whereM(p20) > 0 in the Courier Protocol model (window size 1)
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Figure 9. Passage time density for markings whereM(p11) > 0 to markings
whereM(p20) > 0 in the Courier Protocol model (window size 3)



overhead in setting up Map tasks.

When the number of cores used on each node is increased
we again see a good reduction in processing times. However,
we no longer see the calculation time halve as the available
cores double. It is likely that this is due to contention for
shared resources within each node, such as the system bus.
Further weight can be added to this argument by comparing
the results for jobs run on 8 nodes with jobs run on 15 nodes.
A job run on 32 cores spread over 8 nodes takes over 27
seconds longer than a job run on only 30 cores, but spread
over 15 nodes.

The number of Map tasks for a particular Hadoop job can
have a dramatic effect on the time taken to complete the job.
While having one Map task per core in the cluster results in the
least overhead it can actually result in poor performance. The
main reason for this is that Map tasks take different amounts
of time to complete, even when each one contains the same
number ofL(s) values to calculate. When running jobs it is
not uncommon to see the slowest jobs take over three times
as long to complete as the faster ones. It is thought that this
is largely due to certainL(s) values converging faster than
others. Reducing the granularity, or increasing the number of
Map tasks, reduces the length of time each Map task takes,
and so reduces the time spent where most of the cluster is idle
waiting for the last few Map tasks to complete.

No. Map Calc. Fastest Slowest
Tasks Time (s) Map (s) Map (s)

56 583.061 267 551
128 525.106 93 282
256 497.495 52 156
384 516.948 40 107

Table II
LAPLACE TRANSFORM INVERSION TIMES FOR THECOURIER PROTOCOL

(WINDOW SIZE 1) FOR VARIOUS GRANULARITIES

Table II shows the time taken to perform the Laplace
transform inversion for 200t-points on the Courier Protocol
model on a cluster of eight nodes, each running 4 Map Tasks
with different numbers of Map Tasks specified. We can see that
the optimum granularity for this job is for 256 Map tasks. At
this granularity the maximum time to complete a Map task is
approximately 150 seconds. This is the maximum time the job
will spend waiting for a single Map task to complete when all
others have finished. While this time is lower for the 384 Map
task job, the benefit is outweighed by the additional overhead
of scheduling and configuring an extra 128 Map tasks.

Granularity becomes even more important on heterogenous
clusters. The undesirable situation where much of the cluster
is idle while the last few Map tasks are executed can be
exacerbated by the scheduler picking slower machines to run
these tasks.

VI. CONCLUSIONS

We have described the implementation of a Response Time
Analysis module for a popular Petri net editor and anal-
yser, PIPE2. This module integrates with Hadoop, an open
source Java implementation of the MapReduce distributed
programming environment to allow the response time analysis
of large models using a cluster of commodity computers.
While the developers of MapReduce originally intended it to
perform relatively simple calculations on massive data sets,
we have successfully applied it to a different problem, that of
performing complex, computationally intensive calculations on
relatively smaller data sets. In doing this we have overcome
a number of difficulties related to the architecture of Hadoop,
whilst retaining the benefits of using a popular open-source
project to handle the distribution of processing, such as
excellent reliability, good fault tolerance and much improved
development time.

Models of up to at least 2.2 million states were shown
to be easily accommodated using in-core processing. Re-
implementing the linear equation solving algorithms as disk-
based, rather than in-core, would allow for much larger model
sizes.

Results produced by the Response Time Analysis module
were validated for smaller models with analytically calculated
results and for larger models with simulations. Excellent
scalability was shown, with an almost linear improvement in
calculation times with increased cluster sizes.
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