Distributed Response Time Analysis of GSPN Models with MapReduce

Oliver J. Haggarty William J. Knottenbelt Jeremy T. Bradley
Department of Computing, Imperial College London,
180 Queen’s Gate, London, SW7 2BZ, United Kingdom
{0jh06, wik, jb }@doc.ic.ac.uk

Abstract London as well as several external contributors. The module
Generalised Stochastic Petri nets (GSPNSs) are widely usestcepts a set of start and target markings (defined by logical
in the performance analysis of computer and communicaexpressions which describe the number of tokens that should
tions systems. Response time densities and quantiles-are dfe present on selected places) and outputs graphs of the cor-
ten key outputs of such analysis. These can be extracted fromsponding response time density and (optionally) the eumu
a GSPN's underlying semi-Markov process using a methodative distribution function of the time taken for the syste
based on numerical Laplace transform inversion. This ntethoto pass from the start markings into any of the target mark-
typically requires the solution of thousands of systems ofings. The analysis makes use of a method based on numerical
complex linear equations, each of ramkvherenis the num- Laplace transform inversion, whereby we convolve the state
ber of states in the model. For large models substantial prasojourn times along all paths from the set of start markings
cessing power is needed and the computation must therefote the target markings [8]. This involves the solution of man
be distributed. systems of complex linear equations, each of nankheren

This paper describes the implementation of a Responsi the size of the GSPN's state space. For largjee calcula-
Time Analysis module for the Platform Independent Petritions require a great deal of processing power. Conseguent!
net Editor (PIPE2) which interfaces with Hadoop, an openwe distribute the processing over a cluster of computers by
source implementation of Google’s MapReduce distributednterfacing PIPE2 with Hadoop, an open source implemen-
programming environment, to provide distributed caldalat tation of Google’s MapReduce distributed programming en-
of response time densities in GSPN models. The software igironment. This paradigm offers excellent scalability aod
validated with analytically calculated results as well ms-s bust fault tolerance.

ulated ones for larger models. Excellent scalability isnatho The remainder of this paper is organised as follows. Sec-
Keywords: Generalised Stochastic Petri nets, MapReducetion 2 presents relevant background material relating to-Ge
Response Time Analysis eralised Stochastic Petri nets and their response timgsisal

Section 3 describes Hadoop, an open source implementation
of the MapReduce distributed programming model. Section 4
1 INTRODUCTION describes the design and integration of an Hadoop-based Re-
The complexity of modern distributed systems continuessponse Time Analysis module into the PIPE2 Petri net edi-
to rise rapidly. Itis therefore increasingly important todel tor. Finally, Section 5 validates the module using small mod
these systems prior to their implementation to ensure they b g|s with known analytical results, as well as larger models
have correctly. In this context, Generalised Stochastiti Pe where results had been produced by simulation. The software

nets (GSPNs) are a popular graphical modelling formalisms shown to work with model sizes with in excess of two mil-
which are both intuitive and flexible. GSPNs have an Underﬁon states, and to scale well with increasing ana|ysiste|’us

lying semi-Markov process which can be analysed for manyijze. Section 6 concludes.
gualitative and quantitative factors.

The focus of the present paper is on techniques for extract:
ing response time densities and quantiles from GSPN model?. BACKGROUND THEORY
Given their increasing use in Service Level Agreementsghe ~ Petri nets are a graphical formalism for describing con-
are important performance measures for many computer arfd/frency and synchronisation in distributed systems. éir th
communication systems, such as web servers, communic8implest form, they are also known as Place-Transition nets
tion networks and stock market trading systems. In pagicul These consist of a number of places, which may contain to-
we describe the creation of a new Response Time Analysi§ens, connected by transitions. A transitioreisabledand
module for the Platform Independent Petri net Editor (PlPE2 can fire if the input places of the transition contain a cer-
[3]. PIPEZ is an open source Petri net editor and analyser detain number of tokens. These numbers are defined in a back-
veloped by several generations of students at ImperiaéGell Wards incidence matrix whose rows correspond to places and
columns to transitions. In so firing, the specified number of
1Available fromht t p: / / pi pe2. sour cef or ge. net . tokens are then removed from each place. A forward inci-

dence matrix similarly defines the number of tokens to add tdarget markingg'is given by:
each place following the transition.) .)
A marking(or state) is a vector of integers representing the Ty =inf{u>0:M(u) € j;N(u) > 0,M(0) =i}

number of tokens on each place of the model. Tdacha- . . .
bility setor state spacef a Place-Transition net is the set of yvhereM(u) Is the mar_k_lng of the GSPN _at t|mea_ndN(u)
is the number of transitions which have fired by time

all possible markings that can be reached from a given ini- . : .
tial marking. Thereachability graphshows the connections . When studymg GSPNs whose s_tate spaces include vanish-
ing states we define the passage time as:

between these markings.
Generalised Stochastic Petri nets (see e.g. Figures 5 and 6) T-=inf{u>0:N(u) > M-

extend Place-Transition nets by incorporating timing info " -y

mation. A timed transitioty has an exponentially distributed \ynereMm - — min{me Z+ : Xm € | | Xo = i}; hereXn is the

firing rateA;. Immediate transitions have priority over timed gate of {he system after theth transition firing [4].

transit?ons and fire in zero time. !\/Iarkings that e_nable timed There are two main methods for computing first passage

transitions only are known &angible while markings that ime (and hence response time) densities in Markov models:

enable any immediate transition are calleghishing The 456 hased on Laplace transforms and their inversion [1, 13

sojourn time in a tangible markin; is exponentially dis- 5 those based on uniformisation [15, 14]. The latter, as im

tributed with parametas = 3 cenw) Ak Whereen(Mi) isthe yiemented in the HYDRA [9, 5] tool, are more efficient but

set pf transmon; engbled by markiMy. The sojourntime in = pove difficulty in supporting vanishing states, especialien

vanishing markings is zero. these are specified as the source or target states of a passage
Formally, [2]: In this paper we therefore chose the former approach, as im-

o) _)) plemented in the SMARTA tool [4, 7].

Definition 2.1 A Generalised Stochastic Petri net is an 8- 14 find this passage time we must convolve the state so-

tuple GSPN= (P T,17,1", Mo, Ty, T2,W). P={p1,....Pp|} journ time densities for all paths fronto j € J. In the Laplace

is a finite and non-empty set of places=T{ts,....t;r|} IS@ gomain as we can take advantage of the convolution property

finite and non-empty set of transitionsFA = 0. 1,17 © hich states that the convolution of two functions is eqoal t

PxT — No are the backward and forward incidence func- the product of their Laplace transforms. We perform a first-

tions, respectively. M: P — No is the initial marking. TC T gtep analysis to find the Laplace transform of the relevant

is the set of timed transitions; T T is the set of immediate gensity. This process can be thought of as first finding the

transitions; §NT; =0and T=TiUTo. W= (W1,...W|) probability density of moving from staieto its set of direct

is an array whose entry we R is eithera rate of a nega- gccessor statésand then convolving it with the probability

tive exponential distribution specifying the firing delefyen density of moving fronk to the set of target statgs Van-

trans?t?on t_is a fcimed t_ransition,p_r a firing weight, when ishing markings have a sojourn time density of 0, with prob-

transition { is an immediate transition. ability 1, which results in their Laplace transform equadli

1 for all values ofs. If ;;(s) is the Laplace transform of the

density functionf; T(t) of the passage time variangaj», then

we can express;(s) as:

We further definepj; to be the probability thaM; is
the next marking entered after markih and, for tangi-
ble markingM;, dij = 1 pij, i.€.q;j is the instantaneous tran-
sition rate into markingM; from marking M;. These can

be represented as a generator ma@ixvhose rows corre-)3 < Clik >ka(s)+)3 < Clk) ificT
spond toM; and columns tdVlj. A GSPN is therefore iso- L7(S) = k& St H key \STH
morphic to a Semi Markov Process. As such, it has an em- zk¢fpikﬁkr(3) +zkefpik ifi e vV

bedded discrete-time Markov Chain (EMC) which can be de-
scribed by a square matrix whose elememisare given by ~ where7 is the set of tangible markings arid is the set of

pij = lim_e Hij (T) whereHij(t) is the sojourn time distri- vanishing markings.
bution in state when the next state isandt is the sojourn This system of linear equations can also be expressed in
time. matrix—vector form. If, for example, we wish to find the pas-

sage time from statieto the set of statef= {M1, M3}, where

i i i i T ={M1,M3z,...,Mp} and¥ = {M}, then:
2.1 Response Time Analysis using Numerical {M2,M; n} M2}

i S—Oi —Ou2 0 o —0in 013
Laplace Transform Inversion 0 1 o - —pm o1+ P2
If we first consider a GSPN whose state space does not 0 —G S—Gsz - O [_ 031)

contain any vanishing states, the definition of the first pgss 0 0 _ ; ;
time from a single source markirigto a non-empty set of 0 ,dnz 0 ,dnn qnljrqm

whereL = (L;+(S),..., Lnj(s)). If we wish to calculate the defined processing to produce a list of intermediate keyéval
passage time Hrom multiple source states, denoted by the vepairs of typek2 andv2. The MapReduce framework then
tor i, the Laplace transform of the passage time density i€ollects together all values associated with the same key to

given by: produce a number of key/list pairsk2, | i st (v2) . Each
Li(s) = Z“kﬁkr@) of these are passed into a Reduce function and the values
kel processed in some way such that a new list of values are
whereay is the steady-state probability that the GSPN is inProduced. Typically this list contains zero or one elements
statek at the starting instant of the passaggis given by: though. Depending on the implementation this is outputglon
with the intermediate key as a key/value pair.
— { /Y pTh ifk el 2) It should be noted that the typing of the keys and values is
k= otherwise important. The input keys and values can be from a different

_ ~ domain to the intermediate keys and values {®.andk2
whereTy is the kth element of the steady-state probability can be different types). However, the intermediate keys and

vectorrtof the GSPN's underlying embedded Markov Chain.values must be of the same type as the output keys and values.
Now that we have the Laplace transform of the passage

time, we must invert it to get the density of interest in the .
real domain. To do this we can use Euler inversion [1] WhiCh3'1 Hadoop Implementation
allows us to perform the inversion numerically, without hav ~ There are a number of implementations of Google’s
ing to perform the integration of a complex number. It works MapReduce programming model, including Google’s own,
by evaluating the Laplace transforfi(s) at variouss-values ~ Written in C++ and discussed in [6]. Different implementa-
determined by the value(s) bfat which we wish to evaluate tions can be tailored for the systems they are intended to run
f(t). From these results it approximates the inverse Laplac€n. such as large networks of commodity PCs or powerful,
transform off*(s), i.e. f(t). Formally: multi-processor, shared-memory machines. In this sect®n

A2 A A2 o At 2k will introduce Hadoop, an open-source Java implementation

f(t)~ 7R6<f* (5» +7k2(—1)kR9(f* (T)) (3 of the MapReduce model.
= Hadoop consists of both the MapReduce framework and

whereA = 19.1 is a constant that controls the discretisatione Hadoop Distributed File System (HDFS), reminiscent of
error. T_his equation describes the _summation of an alternape Google File System (GFS). A distributed filesystem uses
ing series, the convergence of which can be accelerated Qye |ocal drives of networked computers to store data whilst

employing Euler summation. making it available to all machines connected to the network
Hadoop is designed to be run on large, extensible clusters of
3 THE MAPREDUCE ENVIRONMENT commodity PCs and has been demonstrated to run on clusters

MapReduce was devised by Google researchers Dean a®dup to 2000 machines.
Ghemawat as a programming model, with an associated im- HDFS consists of three main processes: the Namenode,
plementation, to facilitate the generation and processing the Secondary Namenode and a number of Datanodes. The
large data sets on clusters of commodity machines [6]. WhilsNamenode runs on a single master machine in the cluster
traditionally applied to text processing applicationids be- and stores details of which machines make up the cluster
come an increasingly popular tool for scientific data preces and where each block is stored on which machines. It also
ing [10]. handles replication. The Secondary Namenode is an optional
MapReduce was intended to allow reliable and efficientback-up process for the Namenode. Datanode processes run
distributed programs to be written by developers with lit-on all other machines in the cluster (slaves). They communi-
tle prior experience of writing distributed applicatiorhe cate with the Namenode and handle requests to store blocks
framework presented to the developer is inspired by primmiti of data on the machine’s local hard disk. They also update
functions of the Lisp programming language, whereby comthe Namenode as to the location of blocks and their current
putations are split into a Map task and a Reduce task, both aftatus.
which the developer is responsible for writing. We can sum- The MapReduce framework is comprised of a single Job-
marise the paradigm as: Tracker and a number of TaskTrackers. The JobTracker pro-
i cess runs on a single, master machine (often the same as the
Map(k1,v1l) — list(k2,v2) Namenode) and can be thought of as the controller of the clus-
Reduce k2, | i st(v2)) — list(v2) ter. Users submit their MapReduce jobs to the JobTracker,
which then splits the work between various machines in the
The Map function is called multiple times, taking an input cluster. A TaskTracker process runs on each machine in the
key/value pair of typ&k1 andv1 and performing some user cluster. It communicates with the JobTracker and is asdigne

Map or Reduce tasks when it is available. The key mechanism for handling failure of nodes in the
MapReduce cluster is re-execution. While the JobTracker is
. . a very important part of the system and is a single point
3.2 MapRQduce Job Executlon Overview of failure, the chances of that one machine failing are low.
In order to give a clear picture of how Hadoop works We yaqoop therefore currently does not have any fault toleranc
shall now describe the execution of a typical MapReduce jobyocedures for it and the entire job must be re-executed. In a
on the Hadoop platform. When the user submits their MapReryrge cluster of slaves the chances of a node failing are much
duce program to the JobTracker the first step is to split th@higher. To counter this, the JobTracker periodically pings
input data (often consisting of many files) intbsplits of be- each TaskTracker. If it does not receive a response within a
tween 16 and 128 MB in size. There aveMap tasks and certain time it marks the node as failed and re-schedules all
R Reduce tasks per job; both values can be specified by thgiap tasks carried out by that node since the job started. This
user. When a TaskTracker receives an instruction to run a Mag necessary as the intermediate results for those taskisawil
task from the JobTracker it spawns a TaskTrackerChild prostored on that node’s local hard-disk, which is now inadeess
cess to carry out the work. It then continues to listen fof fur pje This allows a job to continue with minimal re-execution
ther instructions, thereby allowing multiple tasks to be ru Hadoop offers a comprehensive HTML based monitoring
on multiprocessor or multicore machines. The TaskTrackerzqnsole giving details of the health of nodes in the cluster a
Child's first step is to read a copy of the task's associateqhe progress of jobs which are running. Detailed timings of

input split from the HDFS. It parses this for key/value pairsiscks and the nodes they have run on are reported allowing
before calling the Map function for each pair. After perferm ¢, early detection of problematic nodes.

ing some user defined calculations, the Map function writes
intermediate key/value pairs to the local disk. There apé ty
cally many of these per Map. These pairs are partitioned int¢d PIPE2 RESPONSE TIME ANALYSIS
Rregions, each region containing key/value pairs for a gubse The Platform Independent Petri net Editor (PIPE) was cre-
of the keys. At the end of the Map task the TaskTracker in-ated in 2002 at Imperial College London as a group project
forms the JobTracker it has completed its task and gives thter MSc (Computing Science) students. The motivation was
location of the intermediate pairs it has created. to produce an intuitive Petri net editor compliant with the
A TaskTracker that has been assigned a Reduce task wittest XML Petri net standard, the Petri Net Mark-up Lan-
copy all the intermediate pairs from a single partition oggi guage (PNML). Subsequent projects and contributions from
to its local disk. These pairs will be distributed amongst th external developers have extended the program to version 2.
local disks of all workers that have run a Map task. Onceadding support for GSPNs, further analysis features and im-
copied, it sorts the pairs on their keys. A call to the Reduceproved GUI performance including an animation mode [3].
function is made for each unique key and the list of associAn important feature of PIPE2 is the facility for pluggable
ated values is passed in. The output of the reduce function ignalysis modules. That is, an externally compiled analysis
appended to an output file associated with the ReduceRask.class can be dropped into a Module folder and the Mod-
output files will be produced per job. uleLoader class then uses Java reflection to integrateoit int
Itis often the case that a single Map task will produce manythe application at run-time. All module classes must imple-
key/value pairs with the same key. Ordinarily, these will al ment a predefined Module interface:
need to be individually copied to the machine running the cor public void run(PNML.Data petrinet) { ... }
responding Reduce task. However, to reduce network band- public String getName() { ... }

\t,ivcl)itrt‘otlee I\r/luiplc?)r? q[ﬁgesgrerl:zer\;vgéﬁiigorrr:\taraiotmh:':f; futg(;'Existing modules support tasks such as steady-state analy-
P I(s:is, reachability graph visualisation and invariant asiglyA

which partially merges intermediate data before it is trans :
ferred. Network bandwidth is further reduced by taking ad_number of other modules are also currently being developed.

vantage of replication within the HDFS, whereby each block

of data is stored on a number of local disks for fault toleeanc 4.1 Overview of Module

reasons. When a machine requires some data the Namenoderigure 1 shows the user-facing input window of the PIPE2
gives it the location on the machine storing the data whichResponse Time Analysis module. The upper panel allows the
is closest on the network path. The MapReduce frameworkiser to specify details of the analysis they wish to perfoym b
further takes advantage of this property by attempting o ru entering logical expressions to identify sets of start anget

Map tasks on machines that are already storing a copy of thearkings and the range ¢fpoints to calculate over. There
corresponding file split on their local disk. This concept ofare also options to calculate the PDF and/or the CDF and
“bringing the computation to the data” can have great perforwhether the processing should be done locally or distribute
mance benefits in a distributed environment. using MapReduce. The bottom panel provides comprehensive

Steady
State
Solver

Laplace
Transform
Inverter

Graph
Display

Laplace

Run as Local Job Transform 1

Figure 2.

Source net

Generator

Sparse
P
GS N> PT Matrix — —
Generator
n
p_)
S
2]
k= Sparse
PN
SLSPNy o Matrix
@ Generator
2
3
=
PNMLData Reachability Sparse
Representation » Graph » Q Matrix
of Petri net Generator Generator
Dynamic
User Start/Target
Input g State
Identifier
i Laplace
; Transform » SValue
| Generator

Serialise
Matrices

x|

[+ Use current net Filename:

Input Fields

Erawse |

Skart states:

(#(PO) = O) B (#(P1) == 1)

Targek States: |#(P2) =0
T Skark: 1.0 T Stop! IID.D Step size: (001

[¥ Calculate Response Time POF Buffer Size (MB): 100

[# Calculate Response Time COF

[¥ Run as Map Redurce job MNumber of Maps: |128—

Error Messages

Calculate Response Time |

Overview of Response Time Analysis module

Inverter
(Calculate L(s)) !

Laplace

Distributed Hadoop TaskTracker
Transform |
Inverter

B Gauss-Seidel B
—» Linear Eqn
Solver (Lookup L(s)) :
=i Reconstruct i
[iﬁgb Matrices ‘

error reporting. Further screens keep the user updatedgiuri
the processing and graphically display the results. Tteaa |
option to cancel processing at any time.

Figure 2 shows a breakdown of the steps which the module
takes in order to calculate response time densities for 2NGSP
model. The module can be seen to take the representation of
the Petrinet as a PIPE2 PNMLData object and use this to gen-
erate the various sparse matrices required for the caicnlat
of the response time density. Next, the reachability graeh (
scribed as the generator matg)n the case of an SPN and as
an EMC with probability transition matrif in the case of a
GSPN) is generated and the steady-state probability lalistri
tion vector is calculated (recall this is required to weigtairt
states appropriately). The Laplace transform inverterkman
run either locally or in distributed format using the Hadoop
MapReduce platform. Distributing the LT inverter allows fo
large models to be analysed in a scalable manner in reason-
able time.

The first step in the Laplace transform inverter is to gen-
erate the complex linear systems that must be solved to yield

Figure 1. User-facing input window of the PIPE2 Responsethe Laplace transform of the convolution of all state sajour

Time Analysis module

times along all paths from the set of start markings to any of
the set of target markings. These are calculated as dedcribe
in Section 2.1 and are dependent on the target states recog-
nised by the start/target state identifier. The number eflin
systems to be solved depends on the number of time points

specified by the user; these systems are then solved either 1.4 Matrix Generation

cally or as a distributed MapReduce job on Hadoop. Finally, The spars& matrix generator takes the states and transi-

the results are displayed as a graph whose underlying data céons stored in the output file of the reachability graph gane

be saved as a CSV file. tor and constructs a square matrix describing the relatipas
between states. These matrices have few non-zero values and
S0 a sparse matrix format was used to conserve memory us-

4.2 Reachability Graph Generator age based on that deviseq in [1_2] and shown in _Figure 3.1t
can be seen that the two-dimensional array contains nolactua

The reachability graph genenerator used in the Responsglues, rather column number and index values into another

Time Analysis module is based on an existing one alreadrray where the actual values are stored. It is also negessar

implemented in PIPE2 by [11]. Its concept is to perform ato record whether a state is tangible or vanishing, as tHls wi

breadth-first search of the states of the GSPN’s underlyingnhfluence how theQ matrix is transformed into the Laplace

SMP. It starts with a single state and finds all the states thatansform inversion of the passage time, as described inEqu

can be reached from it in a single transition. This process igion 1. Storing the diagonal element at the end of each row

then repeated for each of those successor states untat@ést helps in the efficiency of both generating fenatrix and its

have been explored. In order to detect cycles a record must kgnversion.

kept in memory of each state identified; this presents a sig-

nificant problem when dealing with large state spaces. Stor4_5 Steady-State Solver

ing an array representing the marking of each state’s places

would consume far too much memorv. A better aporoach is The steady-state solver uses the Gauss-Seidel iterative
Y- pp method to find the steady-state distribution vector of a

e e e oy ety chain epreented b or) mati by s
X » OnYy 9 Yihe equatiomQ = 0 (or TP =). To obtain standard linear

is stored in one of many linked lists which are in turn storeds stem formAx = b requires the transpose of teor P ma-
in a hash table. By using a second hash function to determiney - 9 P

which list to store each state in the risk of collisions is-dra t.”X' which we generat_e with an apprqprlate tra_nspose func-
; S . tion. The sparse matrix format described previously allows
matically reduced. A full representation is also storedisk d

as it is necessary when identifying start and target states. for a very efficient Gauss-Seidel algorithm.

MappedByteBuffer from the new I/O classes introduced in

Java J2SE 5 were used to dramatically improve performanc&-6 ~ Linear Solution and Numerical Laplace
when writing to disk. Transform Inversion

The next step is to set up the linear system of Equation 1 of
the formAL = b with the aim of solving to find the response
. . time vector,L. The data necessary for this is extracted from
4.3 Dynamic Start/Target State Identifier the Q matrix and the set of target states. Recall that each el-
A passage time of interest can be specified by defining &ment of the vectok = £;(s) represents the Laplace trans-
set of start states and a set of target states. For example ferm of the response time distribution between an initiatest
user might wish to calculate the passage time from any stateand a set of target stat¢sampled at a poirgfor 1 <i <n.
where a buffer contains three items, to any state where it corlf multiple start markings are identified, a vectiis calcu-
tains none. In Petri net modelling the buffer would correspo lated from the normalised steady-state probability veatat
to a place while the items would be tokens. A convenient waythe quantitya - L found. This gives us the Laplace transform
for the user to be able to specify sets of start and targedsstat of the response time density from a set of initial states &ta s
is by giving conditions on the number of tokens on placesof target states.
Finding the corresponding states is a non-trivial problem a The solution process is driven by the time-range over
the entire state space must be searched to identify sues statwhich the user wishes to plot the probability density fumicti
A very fast algorithm is required as state spaces can be hugef the response time. Eattpoint of the final response time
We accomplish this by allowing the user to enter a logical ex-distribution requires 65-point function calls of the Laplace
pression, whose terms compare the markings of places wittiansform of the response time densitachs-point sam-
constants or the markings of other places. This is then-trangle of the Laplace transform is given by a single solution of
lated into a Java expression which is inserted into a templatEquation 1. The precise set sfvalues required are calcu-
class file that is dynamically compiled and loaded at ruretim lated from an Euler Laplace inversion algorithm derivearfro
to prowde a method containing a S|mple IOglcaI expression 2The number o&-points required is implementation dependent and varies
which can check whether each state matches the user’s CORkcording to the configuration of the Laplace Transformiisiom algorithm
ditions. employed

0
x 1
©
£
£
[s}
2
e
L
3
0:)_/\
s T— |
[5}
[h's
n

Figure 3. Sparse Matrix format module

Figure 4.

num ol |ndfex N |nd‘ex i R s 0
entries num ° ; hd Voo tate
value * value ~
State 1 -
num §
entries 2z
o
c
©
e
Non-zero Non-zero . é’
non-diagonal non-diagonal — fls
element element %
— 2
o
b}
e &
State n
i ©
num col / |ndfex ©
entries num M [a]
:value p
Diagonal
element
€
[
£
2
oL
53
o
j=}
o
a
PIPE2 RTA Key:
Module
—> Control

assign map tasks

Serialised
Laplace Transform
Matrices in HDFS

s-value set 1

|

:

s-value set 2

s-value set 3

assigned

s-value set 4

s-value set 5

pending

s-value set 6

Input
Sequence
Files
in HDFS

3

TaskTracker C----

:

» TaskTracker D ----

Cluster performing
map phase

rb TaskTracker Bf------------ r @

JobTracker

» TaskTracker Af----i------ r 7>@ -

local disk A

assign reduce tasks

local disk B

——————— —

local disk C

——————— —

local disk D

Intermediate
files on
node’s local
disks

TaskTracker A

! Cluster performing
i reduce phase

—» Network read/write
----» Local read/write

o/p file 0

Output File
in HDFS

An overview of the MapReduce distributed linear equatidmesaused in the RTA module

Equation 3 as a function of the desired time range of the finah single output sequence file. There is no additional precess
plot. Thus a time range of 100 points may require as many amg required during the Reduce phase. With the distributed
6 500 distinct solutions of Equation 1, provided by a staddar job complete, the response time calculator copies thetsesul
Gauss-Seidel iterative method. into a HashMap indexed agvalues for fast access and runs

For models with large state spaces solving the sets of linthe Euler algorithm to perform the Laplace Transorm inver-
ear equations is too processor intensive to do locally. W&ion. This is run twice, once for each set of results to give
therefore integrate the module with the Hadoop MapReducée Response Time Distribution and the Cumulative Density
framework. An overview of this process is shown in Figure 4.Function.

In order to store.(s), we set up a Hashmap indexed on the
s-value of the Laplace transform. This has the advantage thdi NUMERICAL RESULTS
any repeated-values need only be calculated once. All results presented in this section were produced by
The list ofs-values is copied to a number of sequence filesPIPE2 running in conjunction with the latest development
a special file format containing key/value pairs which iscuse version of Hadoop (0.13.1) on a cluster of 15 Sun Fire x4100
by Hadoop as an input to a MapReduce job. We setsthe machines, each with two dual-core, 64-bit Opteron 275 pro-
values as the keys while at this stage the values are just-placcessors and 8GB of RAM. The operating system is a 64-bit
holders for the results. Each sequence file corresponds towersion of Mandrake Linux and nodes are connected by giga-
Map task and the-values are split evenly between them. It bit ethernet and an Infiniband interface managed by a Silver-
was necessary to do this explicitly as Hadoop’s automaséic fil storm 9024 switch with a throughput of 2.5Gbit/s. One of the
splitting functionality is aimed at much larger data filegy nodes was designated the master machine and ran the Hadoop
and values in a sequence file are required by Hadoop to bdamenode and JobTracker processes, as well as PIPE2.
wrapped in a class which implements a custom comparable
interface. While Hadoop has built-in support for certainaJav 5.1 \/alidation
primitives, it was necessary to create wrappers for Doubles ;¢ validation process began with the Branching Erlang
and the open-source complex number library we used. model, taken from [13] and shown in Figure 5, which con-
TheA-matrix andb vector, as well as details of start states sjsts of two branches with known response times. In particu-
and their alpha weights are serialised and the resultirgrpin |ar, the upper branch has &mlang(12,2) distribution, while
file is copied into the cluster's HDFS. Each TaskTracker musthe lower has afErlang(3,1) distribution. There is an equal
have access to these in order to solve the system of linegjrobability of either branch being taken, as the weightéief t
equations. At this point the MapReduce job can be started anghmediate transitions are identical. As Erlang distribn
the directory containing the sequence files is given to Hpdoogre trivial to calculate analytically we can therefore camep
as the input source for the job. Hadoop assigns each slave oftge results form our numerical Laplace transform inversion
or more Map tasks and sends it the associated sequence filgethod with their true values.
When a node receives a Map task it will run the Map func- Figures 7 and 8 compare the results produced by PIPE2 and
tion a number of times; once for easivalue in its associated those calculated analytically for the cycle time densitgt #s
sequence file. For the first Map function run on a node, theorresponding CDF function of the Branching Erlang model.
A-matrices are copied out of the HDFS to local storage angexcellent agreement can be seen between the two. These re-
deserialised. Subsequent calls to the Map function (even asults demonstrate the Response Time Analysis module’s abil
part of a different Map task) then use this local copy, thgreb ity to handle cases where the set of source and target states
greatly reducing network traffic. Each Map function solvesoverlap (i.e. to calculate cycle times), as well as bimoeal-d
the set of complex linear equations for &s/alue using a sty curves.
complex version of Gauss-Siedel iterative algorithm samil To validate the module for larger models with multiple
to that used in the steady-state solver. It outputs a keyéval start and target states we used the Courier Protocol model,
pair whose key isand value is an object which contains both first presented in [16] and shown in Figure 6. It models the
the L(s) value and.(s)/s. If multiple initial states have been SO Application, Session and Transport layers of the Courie
specified theZ(s) values are weighted appropriately. Calcu- s|iding-window communication protocatl to p26 represent
lating L(s)/svalue now and later inverting means we can easthe sender whilg@27 to p46 represent the receiver. Data flows
ily retrieve the CDF of the passage time, for very little extr from sender to receiver over a network which is modelled
computation. by the two paths fronpl3 to p35. This split path models
Whilst the L(s) values are being calculated, a single Re-the sender’s transport layer fragmenting outgoing dat&-pac
duce task is started. We use the Reduce task simply to colleets. All packets traverse the network via the path that lsegin
all the L(s) values from across the cluster where they havewith t8, except for the final packet which travels over tBe
been stored locally by each Map function and copy them tgath. When a packet is received, and acknowledgement is setn

back to the sender which arrives @20. No received data Cluster | No. Maps| Total | Total | Time
is sent to higher levels of the protocol until the final frag- Size | PerNode| Cores| Maps | (seconds)
ment is received. At this point a data token is passed up via 1 1 1 10 | 3112.167
p27. The ration of the weights of transitiot&andt9 control 2 1 2 20 | 1596.322
the number of fragments produced per message. This ratio is 4 1 4 40 809.653
known as the fragmentation ratio and for our model is set to 8 1 8 80 433.173
1. By increasing the number of tokens pf4, the sliding-) 2 16 30 256.694
window size, we can dramatically increase the state space of 3 4 32 30 192.982
the model. 15 1 15 | 80 | 252515
We begin our validation with the sliding-window size set 15 2 30 30 165.561
to one, which results in a state space of 29010. The mod- 15 4 60 100 | 131.754

ule completed this exploration in less than 8 seconds on a
single machine. Results for the passage time from the set di@ble 1. Laplace transform inversion times for the Courier
shown in Figure 9, where 7 320 source markings and 1 860

target markings were identified. They closely match simula- .
tion results for this same model that were produced in [8 (se column refers to the number of computer nodes assigned to

Figure 10. It should be noted that a direct and general comthe Hadoop cluster. The second column indicates the number

parison of the time complexity of the numerical and simula—Of Map tasks assigned to each node. Hadoop allows multiple

tion approaches is difficult: in the former case the complex—Map tasks to be run concurrently on a single node which is

ity depends on the rank and stiffness of the equations splve&)f particular benefit with multicore machines as it allowh fu
in the latter it depends on the rate at which passages fro>€ to be made of all cores. Where only one Map task was

source to target markings are observed while walking at ran@smgned to a node o_nly one core was In use. This was scaled
to 8 and 15 machine clusters until all cores were in use at

dom through the state space. It should also be noted that OHPce. The third column shows the total number of cores being

model uses a scaled set of rates that are equal to the origin d simult . Th i larity f h
benchmarked rates divided by 5000. This is necessary as t ed simuftaneously. The oplimum map granuiarity for €ac
cluster size was found through experimentation and isdiste

range in magnitude of the original rates causes problents wit. the fourth col
the numerical methods used to invert the Laplace transform” _e ourth column. L)
The results presented here are the raw results from the PIPE2t 1S clear from Table 1 that the distributed response time

module and so must be re-scaled to give the correct timingscalculator offers excellent scalability. With small clest

In order to ascertain how the Response Time Analysiéhere is an approximate halving of calculation time as the

module performs with models with larger state spaces ngustsr S'ZfeM'S dtouli')(led. As tt};]e c;luster S|zest(gnd he?cEﬂthe
again used the Courier Protocol model, increasing its windo number of Map tasks) grow this improvement drops slightly

size to 3. This results in a state space of 2162610 states (irtﬁ a factor of approximately 1.8. This is to be expected as

cluding vanishing states) with 5469 150 transitions betweet ere is some overhead in setting up Map tasks. .

them. Again, analysing from markings wheké(pl1) > 0 When the number of cores used on each node is increased
to markings wheré(p20) > 0, we find there are 439320 We again see a good reduction in processing times. However,
start markings and 273 260 target markings. Results were prdV€ N0 longer see the calculation time halve as the available
duced for 5(-points ranging from 1 to 99 in increments of cores double. It is likely that this is due to contention for

2, resulting in a work queue of over 1800 systems of lineaShared resources within each node, such as the system bus
equations, each of rank 2.2 million. State space explaratio@"d memory. Further weight can be added to this argument

took 20 minutes, while the Laplace transform inversion tookPY comparing the results for jobs run on 8 nodes with jobs

8 hours 9 minutes when run on all 15 nodes (3 Map task&Un On 15 nodes. A job run on 32 cores spread over 8 nodes

per node). Generation times for the various other matrwes t takes over 27 seconds longer than a job run on only 30 cores,

talled less than 20 seconds. but spread over 15 nodes.]]
The number of Map tasks for a particular Hadoop job can

) _ have a dramatic effect on the time taken to complete the job.
5.2 Processing Times While having one Map task per core in the cluster results in
Table 1 shows the time taken to perform the Laplace transthe least overhead it can actually result in poor perforraanc
form inversion for the Courier Protocol model (window size The main reason for this is that Map tasks take different
1) for 50t-points on various cluster sizes. It should be notedamounts of time to complete, even when each one contains
that while timings shown are for single runs, when multiplethe same number of(s) values to calculate. When running
runs were performed times were consistent. The cluster siZebs it is not uncommon to see the slowest jobs take over three

134 (110 C——2)

ssssssss

=2
=1

receiver
transport

Upper Branch Transition Rates
Lower Branch Transition Rates

wransport p1:
task

b —| b
B Figure 6. The Courier Protocol model

PIPE2 results

T
T Analytical results
0.14 - / —

01f / \]

oo | \ 1

Probability density

Figure 5. The Branching Erlang model

0.02 | 4

0 / L L L L L e
0 2 4 6 8 10 12 14

Time (seconds)
Figure 7. Cycle time distribution from markings where
M(pl) > 0 to markings wher&(pl) > 0 in the Branching
Erlang model

0.035 T
numerical f(t)
1 T T m——
PIPE2 results _— 0.03 |- 7N b
Analytical results P AHIN
09 4 / \
08 B \\
0.025 k -
07} 1 N
z \
3 osp 1 f
g 002 | \ B
e 05 i “‘ \\
2 / = “ \
g 04| | = “‘ \\
© 0.015 | A 4
osr] | N
021 1 “ \\
it/] 0.01 || |
) / “‘ \\
0 - L L L L L L “‘ \\\
0 2 4 6 8 10 12 14 “w‘ N
Time (seconds) 0.005 ,‘g \\ .
Figure 8. CDF of cycle time from markings wheiM(pl) >
0 to markings whereM(pl) > 0 in the Branching Erlang ‘ Mmss
0 S
model 0 0.005 0.01 0.015 0.02
t
Figure 10. (Re-scaled) Numerical and simulated passage
time density from markings whetd(p11) > 0 to markings
whereM(p20) > 0 in the Courier Protocol model (window
size 1)
0.035 T T
PIPE2 results
0.03 | /H\ —H 0.06 s .
0025 - / \\ 1 005 | 1
/ \ ’
£ / ~
S 0.02 / b / \
z \ oot |\ |
3 \ g [\
8 0.015 ~ S | \
& g 0.03 f‘\“ \ 4
001 | 1 g “ \
g ‘ \
| 0.02 J‘ \]
0.005 , - 4 |
/) |
0 P 0.01 f]
0 10 20 30 40 50 60 70 80 90 100
Time (seconds) T~ _

Figure 9. (Unscaled) Passage time density from markings 1w wm W w % e ® @ % w
whereM(pll) > 0 to markings wheréM(p20) > 0 in the Time (seconds)

Courier Protocol model (window size 1) Figure 11. (Unscaled) Passage time density from markings

whereM(pl1) > O to markings wherév(p20) > 0O in the
Courier Protocol model (window size 3)

times as long to complete as the faster ones. It is thought thaets. There were also some unforeseen benefits, such as al-
this is largely due to certairL(s) values converging faster lowing us to take advantage of the automatic replicatioft bui
than others. Reducing the granularity, or increasing the-nu into Hadoop’s distributed file system to send the serialised
ber of Map tasks, reduces the length of time each Map tasknatrices to each node in the cluster. Overall the framework
takes, and so reduces the time spent where most of the clusterovided excellent support for our solution and met most of

is idle waiting for the last few Map tasks to complete. our requirements.

Table 2 shows the time taken to perform the Laplace trans- We have also demonstrated techniques for conserving
form inversion for 20@-points on the Courier Protocol model memory usage and improving performance which allow Java
on a cluster of eight nodes, each running 4 Map Tasks witlio become a viable language for this application, despite la
different numbers of Map Tasks specified. We can see that thiag explicit memory management facilities. Our solution fo
optimum granularity for this job is for 256 Map tasks. At this storing sparse matrices efficiently was key to this, by min-
granularity the maximum time to complete a Map task is apimising memory required while simultaneously allowing for
proximately 150 seconds. This is the maximum time the joban optimised Gauss-Seidel algorithm. Utilising a dynamic,
will spend waiting for a single Map task to complete when all probabilistic hash based technique within our state space e
others have finished. While this time is lower for the 384 Mapploration algorithm was also essential. We also utilisadeo
task job, the benefit is outweighed by the additional ovettheaof the latest improvements in the Java language to increase
of scheduling and configuring an extra 128 Map tasks. performance. Models of up to at least 2.2 million states were

Granularity becomes even more important on heterogenowgown to be easily accommodated using in-core processing.
clusters. The undesirable situation where much of thealust Re-implementing the linear equation solving algorithms as
is idle while the last few Map tasks are executed can be exadlisk-based, rather than in-core, would allow for much large
erbated by the scheduler picking slower machines to rumthegnodel sizes.
tasks. Results produced by the Response Time Analysis module

were validated for smaller models with analytically calcu-
lated results and for larger models with simulations. Brcgl
6 CONCLUSIONS scalability was shown, with an almost linear improvement in
We have described the implementation of a Response Timgalculation times with increased cluster sizes. Expertaren

Analysis module for an open-source Petri net editor and-anation was performed to identify optimum granularity of Map
yser, PIPE2. This module integrates with Hadoop, an opentasks for certain model sizes.

source Java implementation of the MapReduce distributed
programming environment to allow the response time anaIREFERENCES

ysis of large models using a cluster of commodity computers. [1] J. Abate and W. Whitt. The Fourier-series method for

EZ??g?owajrg:?;nﬂgtﬂz\felgﬁ dlgogw;t;zg?]ixgnng ﬁsrzojztsé inverting transforms of probability distributionQueue-
b y pie op g ing Systemsl0(1):5-88, 1992.

sets. We have shown that it can be successfully applied to a
radically different type of problem, that of performing com [2] F. Bause and P.S. KritzingeBtochastic Petri Nets: An

plex, computationally intensive calculations on much s$enal Introduction to the TheoryVieweg Verlag, Wiesbaden,
data sets. We have seen that the MapReduce framework pro- Germany, 2nd edition, 2002.

vided by Hadoop has been well suited to our problem of .
using the Euler algorithm for Laplace transform inversion. [3] P.Bonet, C.M. Llado, R. Puijaner, and W.J. Knottenbelt.
By identifying that the solution of many systems of com- PIPE v2.5: A Petri net tool for performance modelling.
plex linear equations, the computationally intensive [t In Proc. 23rd Latin American Conference on Informat-
the algorithm, are independent of one another we saw that i¢S (CLEI 2007) San Jose, Costa Rica, October 2007.

this part of_th_e algorithm could be dist_ributed z_and would fit 4] J.T. Bradley, N.J. Dingle, W.J. Knottenbelt, and H.J.
perfectly within the MapReduce paradigm. Using a popular

open-source project to handle the distribution of processi sage time desnsities in large semi-Markov models. In

allowed us to focus our development time on writing fast and Linear Algebra and its Applications: Volume 3gfages
efficient algorithms with the resulting product retaining e 311-334. Elsevier, July 2004 '

cellent reliability with good fault tolerance for failingodes

and efficient scheduling of tasks among the cluster. There[5] J.T. Bradley and W.J. Knottenbelt. The ipc/HYDRA
were some difficulties we had to overcome related to the ar- tool chain for the analysis of PEPA models. Pnoc.
chitecture of Hadoop including the assumption that inpasfil 1st International Conference on the Quantitative Evalu-
will contain large amounts of data and that there was no-built ation of Systems (QEST 2008ages 334-335, Septem-
in support for high-precision floating point or complex data ber 2004.

Wilson. Hypergraph-based parallel computation of pas-

| No. Map Tasks| Calculation Time (s)] Fastest Map (s] Slowest Map (s)|

56 583.061 267 551
128 525.106 93 282
256 497.495 52 156
384 516.948 40 107

Table 2. Laplace transform inversion times for the Courier Protdaohdow size 1) for various granularities

[6] J. Dean and S. Ghemawat. MapReduce: Simplified15] J.K. Muppala and K.S. Trivedi. Numerical transient

[7]

(9]

[10]

[11]

[12]

[13]

[14]

data processing on large clusters. Rroceedings of
the OSDI'04: Sixth Symposium on Operating System
Design and Implementatioian Francisco, California,
U.S.A., December 2004.

analysis of finite Markovian queueing systen@ueue-
ing and Related Models, Bhat, U.N.; Basawa, I.V. (eds.)
pages 262-284, 1992.

[16] C.M. Woodside and Y. Li. Performance Petri net
analysis of communication protocol software by delay-
equivalent aggregation. IRAroceeding of the 4th Inter-
national Workshop on Petri nets and Performance Mod-
els (PNPM'91) pages 64—73, Melbourne, Australia,
December 1991. IEEE Computer Society Press.

N.J. Dingle. Parallel Computation of Response Time
Densities and Quantiles in Large Markov and Semi-
Markov Models PhD thesis, Imperial College, London,

United Kingdom, October 2004.

N.J. Dingle, P.G. Harrison, and W.J. Knottenbelt. Re-
sponse time densities in Generalised Stochastic Petrinet AUTHOR BIOGRAPHIES

models. InProceedings of the 3rd ACM Workshop on Oliver Haggarty obtained a BMus (Hons) from the Uni-

goftwarlf fl;mdzg(e);formance (WOSP 200#)ges 46-54, versity of Surrey in 2001. After working in the audio elec-
ome, ftaly, : tronics industry he returned to university to study Comput-

N.J. Dingle, P.G. Harrison, and W.J. Knottenbelt. Uni- ing Scienge atllm_per.ial College Llo.ndon in 2007, com.pleting
formisation and hypergraph partitioning for the dis- his MSC_Wlth distinction f_;md receiving the Trayport prize fo
tributed computation of response time densities in Veryacademlc excellence. Since then he has been working as a
large Markov models. Journal of Parallel and Dis- Soft\(vr_:lre Developer at the Royal Ba_nk of Scotland.
tributed Computing64(8):908—920, August 2004 William Knottenbelt completed his BSc (Hons) and MSc
degrees in Computer Science at the University of Cape Town
J. Ekanayake, S. Pallickara, and G. Fox. Mapreducén South Africa before moving to London in 1996. He ob-
for data intensive scientific analyses.Rroc. 4th IEEE tained his PhD in Computing from Imperial College London

International Conference on eSciengages 277-284, in February 2000, and was subsequently appointed as a Lec-
2008. turer in the Department of Computing in October 2000. Now

a Senior Lecturer, his research interests include pahal-
T. Kimber, B. Kirby, T. Master, and M. Worthing- puting and stochastic performance modelling.
ton. Petri nets group project final report. Techni- Jeremy Bradley is a Senior Lecturer in the Department
cal report, Imperial College, London, United Kingdom, of Computing at Imperial College London. His research in-
March 2007. volves modelling systems with high-level formalisms sush a
stochastic Petri nets and stochastic process algebraglias w
W.J. Knottenbelt. Generalised Markovian analysis Ofas novel a|gorithms for the performance ana]ysis of semi-
timed transition systems. Master’s thesis, University OfMarkov processes. He has designed the 0n|y semi-Markov
Cape Town, Cape Town, South Africa, July 1996. stochastic process algebra and has written and maintains th

. ... Imperial PEPA compiler.
W.J. Knottenbelt and P.G. Harrison. Passage timeidistr

butions in large Markov chains. Proceedings of ACM
SIGMETRICSpages 77-85, Marina Del Rey, Califor-
nia, U.S.A., June 2002.

B. Melamed and M. Yadin. Randomization procedures
in the computation of cumulative-time distributions over
discrete state Markov processé&3perations Research
32(4):926-944, July—August 1984.

