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Abstract

High-level semi-Markov modelling paradigms such as semi-Markov stochastic Petri nets and pro-
cess algebras are used to capture realistic performance models of computer and communication
systems but often have the drawback of generating huge underlying semi-Markov processes. Ex-
traction of performance measures such as steady-state probabilities and passage-time distributions
therefore relies on sparse matrix–vector operations involving very large transition matrices. Pre-
vious studies have shown that exact state-by-state aggregation of semi-Markov processes can be
applied to reduce the number of states. This can, however, lead to a dramatic increase in matrix
density caused by the creation of additional transitions between remaining states. Our paper
addresses this issue by presenting the concept of state space partitioning for aggregation.

Aggregation of partitions can be done in one of two ways. The first is to use exact state-by-state
aggregation to aggregate each individual state within a partition. However, we discover that this
approach still causes matrix density problems, albeit on a much smaller scale compared to non-
partition aggregation. A second approach to the aggregation of partitions, and the one presented in
this paper, is atomic partition aggregation. Inspired by a technique used in passage-time analysis,
this collapses a whole partition into a small number of semi-Markov states and transitions.

Most partitionings produced by existing graph partitioners are not suitable for use with our atomic
partition aggregation techniques, and we therefore present a new deterministic partitioning method
which we term barrier partitioning. We show that barrier partitioning is capable of splitting very
large semi-Markov models into a number of partitions such that first passage-time analysis can be
performed more quickly and using up to 99% less memory than existing algorithms.
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1. Introduction

Semi-Markov processes (SMPs) are expressive tools for modelling a wide range of real-life systems.
The state space explosion problem, however, hinders the analysis of large finite SMPs as it does
of many stochastic and functional modelling disciplines. One approach to addressing this problem
is to use aggregation techniques to remove single states or groups of states and aggregate their
temporal effect into the remaining states. Many techniques exist in the Markovian domain for exact
and approximate aggregation (e.g. lumpability [17], aggregation/disaggregation [11], aggregation
of hierarchical models [10]) but to date analogous work on semi-Markov aggregation algorithms
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has been very limited. In prior work [5, 8], we presented an aggregation algorithm for semi-Markov
processes which operates on each state individually. Our analysis in [8] suggests that the primary
limitation of this technique is that the computational cost and memory requirements become very
large as increasing numbers of states are aggregated and the transition matrices representing the
SMP consequently gets less sparse.

In this paper, we present a number of novel approaches for overcoming the aggregation problem.
Central to these is the concept of partitioning the state space, and we begin by considering different
partitioning methods (initially inspired by those previously used for parallel sparse matrix–vector
multiplication) and evaluating their suitability for our state-by-state aggregation algorithm. We
demonstrate that by partitioning the state space in this way and then using the state-by-state
aggregation algorithm on the separate partitions, as opposed to applying it directly to an unpar-
titioned state-space, we can reduce the computational cost and memory requirements of our exact
aggregation approach.

However, even when applied to partitions of the semi-Markov process there is a central drawback of
exact state-by-state aggregation. Although the result of the process is an aggregated and smaller
state space, the intermediate steps can actually create more state transitions (and hence require
more storage and computational effort) than were present in the original unaggregated state space.
Inspired by our prior work on iterative passage-time analysis in SMPs [9], we therefore present
atomic partition aggregation to overcome this limitation. This does not require each state in the
partition to be aggregated in turn, but instead effectively calculates the passage-time distribution
across an entire partition and combines this with the state holding time distributions of relevant
states outside the partition. As partitioning techniques suitable for parallel sparse matrix–vector
multiplication do not produce partitions suitable for the application of atomic aggregation, we
also introduce a new barrier partitioning strategy which is better suited. We demonstrate how
this enables passage-time analysis to be conducted in less time and using up to 99% less memory
than before.

The remainder of this paper is organised as follows. Section 2 summarises background theory on
the calculation of passage times in semi-Markov processes from [9], and also summarises our state-
by-state aggregation technique [8]. Section 3 then introduces the concept of performing aggregation
on partitions of the state space, and discusses the importance of the order in which partitions are
chosen to be aggregated. Section 4 then presents our novel atomic aggregation approach where
whole partitions are aggregated by means of a passage-style analysis. Section 5 presents the
barrier partitioning technique and evaluates the improvements in the memory and time required
to analyse large semi-Markov models, that barrier partitioning offers. Finally, Section 6 concludes
and suggests directions for future work.

2. Background

2.1. Semi-Markov Processes

Semi-Markov Processes (SMPs) are an extension of Markov processes which allow for generally
distributed sojourn times [19, 20]. Although the memoryless property no longer holds for state
sojourn times, at transition instants SMPs still behave in the same way as Markov processes (that
is to say, the choice of the next state is based only on the current state) and so share some of their
analytical tractability.

Consider a Markov renewal process {(χn, Tn) : n ≥ 0} where Tn is the time of the nth transition
(T0 = 0) and χn ∈ S is the state at the nth transition. Let the kernel of this process be:

R(n, i, j, t) = IP(χn+1 = j, Tn+1 − Tn ≤ t | χn = i)
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for i, j ∈ S. The continuous time semi-Markov process, {Z(t), t ≥ 0}, defined by the kernel R, is
related to the Markov renewal process by:

Z(t) = χ
N(t)

where N(t) = max{n : Tn ≤ t}, i.e. the number of state transitions that have taken place by time
t. Thus Z(t) represents the state of the system at time t. We consider only time-homogeneous
SMPs in which R(n, i, j, t) is independent of n:

R(i, j, t) = IP(χn+1 = j, Tn+1 − Tn ≤ t | χn = i) for any n ≥ 0
= pijHij(t)

where pij = IP(χn+1 = j | χn = i) is the state transition probability between states i and j and
Hij(t) = IP(Tn+1−Tn ≤ t | χn+1 = j, χn = i), is the sojourn time distribution in state i when the
next state is j. An SMP can therefore be characterised by two matrices P and H with elements
pij and Hij respectively.

2.2. Iterative Passage-time Algorithm

In this section we define the first passage-time random variable used throughout the paper. We also
summarise from [9] an iterative algorithm for calculating first passage-time density in semi-Markov
processes.

From now on, we consider a finite, irreducible, continuous-time semi-Markov process with N states
{1, 2, . . . , N}. Recalling that Z(t) denotes the state of the SMP at time t (t ≥ 0) and that N(t)
denotes the number of transitions which have occurred by time t, the first passage time from a
source state i at time t into a non-empty set of target states ~j is defined as:

Pi~j(t) = inf{u > 0 : Z(t+ u) ∈ ~j,N(t+ u) > N(t), Z(t) = i}

For a stationary time-homogeneous SMP, Pi~j(t) is independent of t:

Pi~j = inf{u > 0 : Z(u) ∈ ~j,N(u) > 0, Z(0) = i} (1)

This formulation of the random variable Pi~j applies to an SMP with no immediate transitions. If
such transitions are present, then the passage time can be stated as:

Pi~j = inf{u > 0 : N(u) ≥Mi~j} (2)

where Mi~j = min{m ∈ ZZ+ : χm ∈ ~j | χ0 = i} is the transition marking the terminating state of
the passage.

Pi~j has an associated probability density function fi~j(t). The Laplace transform of fi~j(t), Li~j(s),
can be computed by means of a first-step analysis. That is, we consider moving from the source
state i into the set of its immediate successors ~k and must distinguish between those members of
~k which are target states and those which are not. This calculation can be achieved by solving a
set of N linear equations of the form:

Li~j(s) =
∑
k/∈~j

r∗ik(s)Lk~j(s) +
∑
k∈~j

r∗ik(s) : for 1 ≤ i ≤ N (3)

where r∗ik(s) is the Laplace–Stieltjes transform (LST) of R(i, k, t) from Section 2.1 and is defined
by:

r∗ik(s) =
∫ ∞

0

e−st dR(i, k, t) (4)
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Eq. (3) has matrix–vector form Ax = b, where the elements of A are general functions of the
complex variable s. For example, when ~j = {1}, Eq. (3) yields:

1 −r∗12(s) · · · −r∗1N (s)
0 1− r∗22(s) · · · −r∗2N (s)
0 −r∗32(s) · · · −r∗3N (s)
...

...
. . .

...
0 −r∗N2(s) · · · 1− r∗NN (s)




L1~j(s)
L2~j(s)
L3~j(s)

...
LN~j(s)

 =


r∗11(s)
r∗21(s)
r∗31(s)

...
r∗N1(s)

 (5)

We now describe an iterative algorithm for generating passage-time densities that creates succes-
sively better approximations to the SMP passage-time quantity Pi~j of Eq. (1) [9]. We approximate

Pi~j as P (r)

i~j
, for a sufficiently large value of r, which is the time for r consecutive transitions to

occur starting from state i and ending in any of the states in ~j. We calculate P (r)

i~j
by constructing

and then numerically inverting [1, 2, 3] its Laplace transform L
(r)

i~j
(s).

Recall the semi-Markov process Z(t) of Section 2.1, where N(t) is the number of state transitions
that have taken place by time t. We formally define the rth transition first passage time to be:

P
(r)

i~j
= inf{u > 0 : Z(u) ∈ ~j, 0 < N(u) ≤ r, Z(0) = i} (6)

which is the time taken to enter a state in ~j for the first time having started in state i at time 0
and having undergone up to r state transitions.

If we have immediate transitions in our SMP model (as in Eq. (2)) then the rth transition first
passage time is:

P
(r)

i~j
= inf{u > 0 : Mi~j ≤ N(u) ≤ r}

This is because as the firing of an immediate transitions results in zero time being spent in the
state in which it was enabled, it is not meaningful to talk about the SMP being in a particular
state at a particular time. Instead, we count the transitions which have happened so that we may
reason about the order in which they have occurred.

P
(r)

i~j
is a random variable with associated Laplace transform L

(r)

i~j
(s). L(r)

i~j
(s) is, in turn, the ith

component of the vector:

L(r)
~j

(s) =
(
L

(r)

1~j
(s), L(r)

2~j
(s), . . . , L(r)

N~j
(s)
)

representing the passage time for terminating in ~j for each possible start state. This vector may
be computed as:

L(r)
~j

(s) = U
(
I + U′ + U′2 + · · ·+ U′(r−1)

)
e~j (7)

where U is a matrix with elements upq = r∗pq(s) and U′ is a modified version of U with elements
u′pq = δp 6∈~j upq, where states in ~j have been made absorbing. Here, δp 6∈~j = 1 if p 6∈ ~j and 0
otherwise. The initial multiplication with U in Eq. (7) is included so as to generate cycle times
for cases such as L(r)

ii (s) which would otherwise register as 0 if U′ were used instead. The column
vector e~j has entries ek~j = δk∈~j , where δk∈~j = 1 if k is a target state (k ∈ ~j) and 0 otherwise.

From Eq. (1) and Eq. (6):

Pi~j = P
(∞)

i~j
and thus Li~j(s) = L

(∞)

i~j
(s)

This can be generalised to multiple source states ~i using, for example, a normalised steady-state
vector α calculated from π, the steady-state vector of the embedded discrete-time Markov chain
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Fig. 1. Reducing a complete 4 state graph to a complete 3 state graph.

(DTMC) with one-step transition probability matrix P = [pij , 1 ≤ i, j ≤ N ], as:

αk =
{
πk/

∑
j∈~i πj if k ∈~i

0 otherwise
(8)

The row vector with components αk is denoted by α. The formulation of L(r)
~i~j

(s) is therefore:

L
(r)
~i~j

(s) = αL(r)
~j

(s)

= (αU + αUU′ + αUU′2 + · · ·+ αUU′(r−1)) e~j

=
r−1∑
k=0

αUU′k e~j (9)

The sum of Eq. (9) can be computed efficiently using sparse matrix–vector multiplications with a
vector accumulator, µr =

∑r
k=0 αU′k. At each step, the accumulator (initialised as µ0 = αU) is

updated as µr+1 = αU + µrU
′.

In practice, convergence of the sum L
(r)
~i~j

(s) =
∑r−1

k=0 αUU′k can be said to have occurred if, for a
particular r and s-point:

|Re(L(r+1)
~i~j

(s)− L(r)
~i~j

(s))| < ε and |Im(L(r+1)
~i~j

(s)− L(r)
~i~j

(s))| < ε (10)

where ε is chosen to be a suitably small value, say ε = 10−16.

2.3. Exact State Aggregation

In order to control the state space explosion which occurs when generating the state transition
matrix for a semi-Markov process, we have previously developed an exact aggregation algorithm
that acts on the semi-Markov state space directly [5, 8]. The aim is to apply the aggregation before
performing any passage-time or transient analysis and thus reduce the calculation time required
to solve the system of linear equations shown in Eq. (5).
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(a) Sequential transitions. (b) Branching transitions.

Fig. 2. Aggregating transitions in an SMP.

The method, illustrated in graphical terms in Fig. 1, works as follows: first, a state is chosen to
be aggregated. Then, from the transition graph, all paths of length two centred on that state
are identified (step (i)) and aggregated into stochastically equivalent, single transitions (step (ii)).
The newly-created transitions (shown dashed in Fig. 1), which duplicate the route of existing
transitions, are combined with the existing transitions. Finally, cyclic transitions are eliminated
(step (iii)).

The result is to remove the chosen state and thus reduce the order of the transition matrix by one.
Repeated application of this algorithm on different states will reduce the SMP to an arbitrary size
(≥ 2 states), while still preserving the exact passage-time distributions between all pairs of the
remaining states. This style of aggregation is not possible in a Markovian context as aggregation
operations of this type do not have a closed form in the Markov domain (i.e. the convolution of
two Markovian delays is not itself Markovian).

There are three basic reduction steps for aggregating a single state of an SMP. These deal with
convolutions, branching and cycles as follows:

Sequential Reduction
In Fig. 2(a), Y = X1 + X2 is a convolution and therefore in Laplace form LY (s) =
LX1(s)LX2(s). In order to extract the path from an SMP we have to take into account
the probabilities p1 and p2 of the first transition and second transitions of the path being
selected. This gives us the overall path probability of p1p2.

Branch reduction
In Fig. 2(b), we can sum the respective probabilities to get the overall selection probability
for the aggregate path. Thus the aggregate probability for the branch is p1 + p2. Our
aggregate distribution, Y , is given by:

LY (s) =
p1

p1 + p2
LX1(s) +

p2

p1 + p2
LX2(s)

so that for both aggregate and unaggregated forms the total sojourn-time distribution has
Laplace transform p1LX1(s) + p2LX2(s).

Cycle Reduction
When there is a state with at least one out-transition and a transition to itself, as shown
in Fig. 3, we can remove the cycle by making its stochastic effect part of the out-going
transitions.

Consider a state transition system as being in the first stage of Fig. 3, with (n − 1) out-
transitions and probability pi of departure along edge i. Each out-transition has an associated
sojourn Xi; the cycle probability is pn with sojourn Xn.

The first step, (i), is to isolate the cycle and treat it separately from the branching out-
transitions. We do this by rewriting the system to include an instantaneous delay and extra
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Fig. 3. The three-step removal of a cycle from an SMP.

state immediately after the cycle, Z ∼ δ(0); the introduction of an extra state is only to aid
our visualisation of the problem and is not necessary (or indeed performed) in the actual
aggregation algorithm. Clearly the instantaneous transition will be selected with probability
(1− pn). We now have to renormalise the pi probabilities on the branching state to become
qi = pi/(1− pn).

In step (ii) of Fig. 3, we aggregate the delay of the cycle into the instantaneous transition
creating a new transition with distribution Z ′. By treating the system as a geometric sum
of the random variable Xn, we can write:

LZ′(s) =
1− pn

1− pnLXn
(s)

In stage (iii) of the process, the Z ′ delay can be sequentially convolved with the Xi sojourns
to give us our final system.

In summary, we have reduced an n-out-transition state where one of the transitions was a
cycle to an (n− 1)-out-transition state with no cycle such that:

qi =
pi

1− pn

and:
LYi

(z) =
1− pn

1− pnLXn
(z)

LXi
(z)

2.4. Case Study Semi-Markov Models

Throughout this paper we use three semi-Markov models as running examples. The Courier
model [21] represents the ISO Application, Session and Transport layers of the Courier sliding-
window communication protocol. The Voting model is a model of a distributed voting system with
voters, failure-prone voting booths and failure-prone central servers [6, 9]. The Web-server model
represents a web content authoring system, and contains a number of clients, authors web servers
and a write buffer [9]. All three models were originally represented in a high-level Semi-Markov
Stochastic Petri Net (SM-SPN) [7] form, from which semi-Markov processes of varying sizes can
easily be generated. Further detail can be found in [14].

3. Partition Aggregation

Fig. 4 shows the number of non-zeros in the transition matrix as the matrix is aggregated. The
solid line shows the progression of aggregation by the original statewise algorithm outlined in
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Fig. 4. The effect of partition aggregation compared to flat aggregation of the 4 050 state Voting model.

Section 2.3 on the whole state space. The dashed line shows the progression when partitioning of
the transition matrix has been applied prior to aggregation.

Fig. 4 illustrates the problem encountered in applying the exact state-by-state aggregation algo-
rithm sequentially across the flat state space of an SMP with 4 050 states. The transition matrix
initially contains approximately 15 000 non-zeros, but by the time that approximately 80% of the
states have been aggregated (circa 3 200 states) the number of non-zeros in the transition ma-
trix has increased to nearly 350 000 even though the dimensions of the matrix have been reduced
dramatically. This is important since it is the absolute number of non-zeros that determines the
storage requirements and run-time performance of our performance analysis algorithms.

Fig. 5. Partition aggregation.

To avoid this dramatic peak in non-zeros, we propose partition aggregation. As shown in Fig. 5,
the state space of the SMP is divided into a number of partitions and the states within each of
these are aggregated together, leaving only the transitions between the states on the boundaries of
each partition. The result of this can be seen in the lower curve in Fig. 4; the peak in the number
of non-zeros now occurs for each partition, but each peak is an order of magnitude smaller than
the peak in non-zeros which occurs when aggregating the entire state space sequentially.

3.1. Partitioning Techniques

Central to this new aggregation technique is the ability to partition the SMP’s state space effec-
tively. We divide n non-source and non-target states into k partitions, such that k|n. Inspired
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by our experiences in parallelising sparse matrix–vector multiplication, we consider the following
three partitioning techniques:

Row striping. The simplest partitioning strategy is to divide the matrix into blocks of contiguous
rows such that each block contains approximately the same number of non-zeros. For k partitions
and n matrix rows, the first partition contains the first n/k matrix rows, the second is assigned
the next n/k rows and so on. This scheme has the advantage of being very easy to compute and
also of achieving good load balance.

Graph partitioner. In a row-striped decomposition, the the n×n sparse transition matrix P of an
SMP can be represented as an undirected graph G = (V, E) where each row i (1 ≤ i ≤ n) in the
matrix corresponds to vertex vi ∈ V in the graph. The corresponding weight wi of vertex vi is the
total number of non-zeros in row i. For the edge-set E , edge eij connects vertices vi and vj with
weight wij = 1 if either one of pij > 0 or pji > 0, and with weight wij = 2 if both pij > 0 and
pji > 0 [12]. Graph partitioners try to minimise the number of edges which span two partitions
(these are said to be cut) while balancing the number of non-zero elements in each partition. We
use the METIS sequential k-way graph partitioning library [15].

Hypergraph partitioner. A hypergraph H = (V,N ) is defined by a set of vertices V and a set
of nets (or hyperedges) N , where each net is a subset of the vertex set V [4]. A hypergraph
is therefore a generalised graph data structure in which edges can connect arbitrary non-empty
subsets of vertices. In the context of a row-wise decomposition of a sparse matrix, matrix row
i (1 ≤ i ≤ n) is represented by a vertex vi ∈ V while column j (1 ≤ j ≤ n) is represented by
net Nj ∈ N [12]. The vertices contained within net Nj correspond to the row numbers of the
non-zero elements within column j, i.e. vi ∈ Nj if and only if pij 6= 0. Weights are assigned to
vertices in the same manner as to the vertices of a graph The weight of all nets is one, with an
individual net’s contribution to the hyperedge cut being defined as one less than the number of
different partitions spanned by that net. The overall objective of a hypergraph partitioning is to
minimise the hyperedge cut while maintaining a balance criterion. In this paper we use the PaToH
library [13] to perform hypergraph partitioning.

We distinguish between 1D hypergraph partitioning, where the hypernets either represent the
successor states of each state (rows) or the predecessor states of each state (columns) and the 2D
approach, where we use both successor and predecessor hypernets. Note that our definition of
2D hypergraph partitioning differs slightly from the definition commonly found in the literature,
where each non-zero matrix element becomes a vertex in the 2D hypergraph. In our case 2D
simply implies that we use information from both rows and columns of the SMP transition matrix
to construct hypernets.

We now investigate how the choice of the partitioner affects the number of non-zeros created in
the transition matrix during exact state-by-state aggregation of partitions. Recall that our idea
is to partition the state space of the SMP and run the exact state aggregation algorithm on each
partition separately, and thus avoid the dramatic increase in non-zeros observed (and hence the
amount of memory required) when aggregating the unpartitioned state space.

Fig. 6 compares the number of non-zeros in the transition matrices of the three semi-Markov
models when their state spaces are partitioned using these three techniques and then aggregated.
We conclude that PaToH, which only uses the rows of the matrix as hypernets for partitioning,
gives the worst results of all partitioners we tested as it leads to the largest number of non-zeros
being created. For the Courier model, PaToH yields the worst matrix fill-in, while for the larger
Voting and Web-server models, it either took too long to complete or exhausted the available
memory on the test machine. The näıve row striping yielded good results in the Web-server
and Courier model, but in the slightly more dense Voting model it performed much worse than
METIS and PaToH2D. In general, we conclude that is very difficult to reliably use any one of
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these techniques to produce the best partitions; the choice of best partitioner varies depending on
the model and the number of partitions required. This inspires our alternative barrier partitioning
approach discussed in Section 5 below.

3.2. Partition Ordering

Our prior work on exact state aggregation [8] has shown the importance of carefully choosing the
order in which states should be aggregated. The same also applies to selecting the order in which
partitions should be aggregated. Inspired by the state selection criteria in [8], we now compare
two potential methods for partition order selection.

Fewest-Paths-First (FPF) partition sort. Suppose a partition has m predecessor states, i.e. states
that lie outside the partition but have outgoing transitions to states in the partition, and n
successor states, i.e. states that lie outside the partition and have incoming transitions from states
in the partition. The number of transitions from the predecessor to the successor states in the
SMP transition matrix after the aggregation of the partition is mn if all m predecessor states can
reach all n successor states via paths through the partition. The FPF-value of a partition is:

mn− outgoing transitions

where outgoing transitions is the total number of outgoing transitions from states in the partition.
To choose a partition for aggregation using FPF sort we simply greedily select the one with the
lowest FPF-value.

Enhanced-Fewest-Paths-First (EFPF) partition sort. Despite a being a good estimator for the
total number of new transitions created after the aggregation of a partition, the FPF-value does not
take into account the number of incoming transitions from the predecessor states of the partition.
Further it does not count the existing transitions between the predecessor and successor states
of the partition. The total number of new transitions after the aggregation can thus be estimated
more accurately using enhanced-fewest-paths-first (EFPF) sort. The EFPF-value is:

mn− outgoing transitions − incoming transitions − existing transitions

Note that the EFPF-value of a partition is only an upper bound for the total number of new
transitions in the transition matrix after the aggregation of a partition. This is because there may
not be a path from every predecessor state to every successor state with all intermediate states
on the path being internal partition states. Even for small values of m and n this may cause
significant differences between the estimated and the actual number of transitions.

Even though it is more expensive to calculate, our experiments have shown that EFPF partition
sort usually gives better results than FPF or picking the partitions in a random order. Fig. 7
shows one situation where this is the case, specifically for a 5-way partitioning of the 10 300 state
Voting model. For this reason we confine ourselves to considering only EFPF partition sorting in
the following sections.

4. Atomic Partition Aggregation

Compared to flat state-by-state aggregation, the partition-by-partition aggregation approach re-
duces the transition matrix fill-in drastically. However, there is still the problem that the maximum
number of transitions generated during the aggregation of a partition is much higher than the final
number of transitions in the aggregated state space (see Fig. 8). Indeed, there is also the problem
that the final number of non-zeros in the aggregated state space can be higher than in the initial
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Fig. 9. Atomic aggregation.

unaggregated one. Such density peaks are undesirable because it requires a significant amount
of memory to store all temporary transitions, and the fill-in also slows down the aggregation of
states as we need to perform more sequential and branching aggregation operations to remove
states when the sub-matrix of a partition becomes dense. This observation prompted us to inves-
tigate an approach inspired by first passage-time analysis which avoids these peaks by aggregating
an entire partition in one go. We term this atomic aggregation.

The general concept is illustrated in Fig. 9. First we compute the passage time from each prede-
cessor state p to every successor state s including only paths whose intermediate states lie entirely
in the partition (denoted by the solid arcs in Fig. 9). In a second step we aggregate the passage
time and the probability of these internal transitions with the passage time and probability of
the existing one-step transition from p to s (denoted by the lower dashed arc in Fig. 9), if such a
transition exists, using the branch aggregation technique from Section 2.3. If this one-step transi-
tion from p to s does not exist then the transition we computed in the first step becomes the new
transition from p to s.

We only consider outgoing transitions from predecessor states of the partition to internal partition
states. All other outgoing transitions of the predecessor states are ignored. We do not need to
normalise the transition probabilities of outgoing transitions from the predecessor states. This can
be formally justified by the flow conservation law, as we ensure that there are no final strongly-
connected components of states within the partition.

Even though this appears to be a good strategy for aggregating an entire partition at once, it has
one major disadvantage. Assume a partition has m predecessor, n successor and i internal states.
In order to calculate the transition from every predecessor to every successor state using internal
partition paths only, we have to solve m sets of i+ n linear equations.

4.1. Modified Atomic Aggregation

The main problem with atomic aggregation is that the number of linear equations to be solved to
aggregate a partition depends on the number of predecessor and successor states of that partition,
and that it may not be possible to find a partition of an SMP’s state space that keeps the number
of such states low. To overcome this, we investigate inserting extra states into the SMP to try
to ensure that partitions have only one predecessor or successor state. Adding extra states was
inspired by the application of hidden nodes in Bayesian inference [18].

The general approach is shown in Fig. 10. Through the extra state, all four predecessor states
have become connected to all partition entry states and can thereby reach each of the successor
states of the partition. The number of linear equations required to aggregate the partition is
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(a) Transition graph before adding extra vanishing state (b) Transition graph after adding extra vanishing state

Fig. 10. Insertion of an extra vanishing state to improve atomic aggregation.

therefore lower, but we have changed the structure of the SMP and so introduced error into any
performance measures calculated upon it.
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Fig. 11. Effect on the first-passage time density and distribution of adding an extra state to the Courier model
with 29 010 states.

To illustrate the error in the first passage-time distribution introduced by adding an extra state
to the transition matrix, we compare the results from the unmodified model with results from the
same model with an extra predecessor state. Fig. 11 shows the resulting nature of the approxima-
tion to the first passage-time distribution of the original SMP when analysing the modified graph.
The Kolmogorov–Smirnov statistic for the two distributions (the maximum absolute difference
between the two) is 0.0573 (4 d.p.), but nevertheless the resulting pdf and cdf appear to be good
approximations to the real passage-time density and distribution respectively. In a second exper-
iment we tested the impact of adding an extra predecessor state in the 107 289 state Web-server
model. In this example we achieved a better approximation with a Kolmogorov–Smirnov statistic
for the two distributions of 0.0002 (4 d.p.).

Note, however, that the runtime of the passage-time analyser in both cases was twice as long
for the aggregated model with the added state as for the unaggregated SMP. It was possible,
however, sometimes to achieve a speed-up. The algorithm was tested on a Intel Duo Core 1.8Ghz
processor with 1Gbyte RAM. For the 106 540 state Voting model the total time taken to do atomic
aggregation and the subsequent passage-time analysis for 165 Laplace transform samples with con-
vergence precision 10−16 was 306 seconds. The total number of complex number multiplications
was 2 553 489 711. In contrast, it took 398 seconds and 3 709 928 347 complex number multiplica-
tions to do the same passage-time calculation on the initial SMP graph without aggregation.
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Fig. 12. A barrier partitioning, showing a set of start states ~i and target states ~j for a passage-time calculation.
The remainder of the state space is split into a source partition SP , a target partition TP which contains the
barrier, ~b. Passages from SP to TP have to pass through ~b and cannot return, except via the target set, ~j.

5. Barrier Partitioning

Atomic aggregation requires us to find partitions that have a low number of predecessor or successor
states. As partitioners such as PaToH and METIS are not guaranteed to find such partitions, we
need to investigate further partitioning methods for transition graphs of large semi-Markov models.
Modified atomic aggregation of Section 4.1 attempts to solve this problem but at the expense of
exact passage-time calculation.

In this section we introduce a new partitioning method called barrier partitioning. This technique
takes advantage of common features of the passage-time calculation to improve the partition
quality and still permit exact passage-time analysis.

To perform first passage-time analysis on an SMP with n states we need to solve n linear equations
to obtain L~i~j(s) (see Section 2.2). We observe that first passage-time analysis can be done forward,
i.e. from each source state to the set of target states, as well as in reverse, i.e. from the set of target
states to the individual source states, by transposing the SMP transition matrix and swapping
source and target states. Such reverse passage-time calculation works well in Laplace space since
complex multiplication is an associative operation. The barrier partitioning method exploits this
duality between the forward and reverse calculation of the first passage-time distribution and
allows us to split the first passage-time calculation into two separate calculations. The combined
cost of doing the two separate calculations is the same as the cost of the original first passage-
time calculation, but with the advantage that each of the two separate calculations requires only
half the amount of memory as the original and can be performed independently and thus also in
parallel.

Definition 1. Assume we have an SMP with a set of start states ~i and a set of target states
~j. If any state is a source and a target state at the same time it can be split up into a target
and source state, by adding an immediate transition from the new target to the new source state,
without changing any measures of the SMP model represented by the new graph. We divide the
state space into two partitions SP and TP . SP contains all source states and a proportion of
the intermediate states such that any outgoing transitions from SP to TP go into a set of barrier
states ~b in TP . Furthermore the only outgoing transitions from states in TP to states in SP are
from target states ~j to source states ~i. Thus once a path has entered TP it can only ever go back
to SP by going through states ~j. Note that ~b and ~j may intersect. The resulting partitioning is a
barrier partitioning. See Fig. 12 for a schematic representation.
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Proposition 1. Assume that we can divide the state space S of a connected SMP graph into two
partitions such that the resulting partitioning is a barrier partitioning. Clearly we have ~i ∩~j = ∅,
SP ∪ TP = S. We denote the set of source states as ~i, the set of barrier states as ~b and the set
of target states as ~j. The result of first passage-time calculation from a source state i to the set
of target states ~j is the same as the result obtained by doing a first passage-time calculation from
i to the set of barrier states ~b, convolved with the first passage-time calculation from the set of
barrier states ~b to the set of target states ~j. In the Laplace domain this translates to:

Li~j(s) =
∑
b∈~b

LR
ib(s)Lb~j(s) (11)

where LR
ib(s) denotes a restricted first passage-time distribution from state i to state b ∈ ~b, where

all states in ~b are made absorbing for the calculation of LR
ib(s). This ensures that we only consider

paths of the form i → k1 → · · · → km → b, with kr ∈ SP . In other words we do not consider
paths through TP for the calculation of LR

ib(s).

Proof. Restricting our set of equations to consider passage times from states i ∈ SP to the target
set ~j, by Eq. (3) we have:

Li~j(s) =
∑

k∈(SP∪TP )\~j

r∗ik(s)Lk~j(s) +
∑
k∈~j

r∗ik(s)

hence:
Li~j(s) =

∑
k∈(SP∪TP )

r∗ik(s)Lk~j(s) (12)

where Lk~j(s) is equal to 1 if k ∈ ~j ∩~b. We can rewrite k ∈ SP ∪ TP since k ∈ SP ∪~b as there is

no transition from any state in SP to any state in TP\~b by construction of the barrier.

Li~j(s) =
∑

k∈(SP∪~b)

r∗ik(s)Lk~j(s)

=
∑
b∈~b

r∗ib(s)Lb~j(s) +
∑

k∈SP

r∗ik(s)Lk~j(s) (13)

also by construction of the barrier partitioning and the fact that target states are absorbing states
we know that once we have entered TP (i.e. reached a state in ~b) we cannot find a path back to
a state in SP . Hence:

Li~j(s) =
∑
b∈~b

r∗ib(s)Lb~j(s) +
∑

k∈SP

r∗ik(s)
∑
b∈~b

LR
kb(s)Lb~j(s)

=
∑
b∈~b

[( ∑
k∈SP

r∗ik(s)LR
kb(s) + r∗ib(s)

)
Lb~j(s)

]
(14)

by definition
∑

k∈SP r
∗
ik(s)LR

kb(s)+r∗ib(s) is the restricted first-passage time from state i to barrier
state b. Therefore:

Li~j(s) =
∑
b∈~b

LR
ib(s)Lb~j(s) (15)

Corollary 1.1. The following result demonstrates the separability of the passage-time calculation,
an aspect that facilitates divide-and-conquer parallel computation. We will also need the following
result to ease the extension to the k-way partition. We define LR

i~j
(s) to be the passage time from
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i to ~j restricted by making all the states in ~j absorbing, a natural extension of LR
ij(s), defined

earlier.
LR

i~j
(s) =

∑
b∈~b

LR
ib(s)L

R
b~j

(s) (16)

Proof. We have, for all states b in the barrier set, ~b:

LR
b~j

(s) = Lb~j(s) (17)

since target states are absorbing states by assumption and because none of the outgoing transitions
of non-target barrier states go into SP . Furthermore:

LR
i~j

(s) = Li~j(s) (18)

as the restricted first passage-time distribution on the entire state space is by definition also the
standard passage-time distribution. The result follows from Eq. (15).

Corollary 1.2. We can similarly extend this separable result to cover passage-times from multiple
sources states, ~i, to multiple target states, ~j. Let LR

~i~b
(s) = {LR

~ib1
(s), . . . , LR

~ibl
(s)}, where LR

~ibm
(s) =

{α1L
R
i1bm

(s) + · · ·+ αlL
R
ilbm

(s)} and L~b~j(s) = {Lb1~j
(s), . . . , Lbl

~j(s)} then in steady-state we have:

L~i~j(s) =
∑
b∈~b

LR
~ib

(s)Lb~j(s) = LR
~i~b

(s) · L~b~j(s) (19)

Proof. Let α1, α2, . . . , αl be the normalised steady-state probabilities of the source states ~i =
(i1, i2, . . . , il) as defined in Eq. (8). By Eq. (9) we have:

L~i~j(s) = α1Li1~j
(s) + α2Li2~j

(s) + · · ·+ αlLil
~j(s)

=
∑
b∈~b

(
α1

(
LR

i1b(s)Lb~j(s)
)

+ · · ·+ αl

(
LR

ilb
(s)Lb~j(s)

))

=
∑
b∈~b

(
α1L

R
i1b(s) + · · ·+ αlL

R
ilb

(s)
)
Lb~j(s)

= LR
~i~b

(s) · L~b~j(s)

5.1. Barrier Partitioning in Practice

To compute the first passage-time distribution of a model whose state space has been split into
partitions SP and TP , we start by calculating L~i~b(s) using iterative first passage-time calculation.
For this the source states remain unmodified, but the barrier states become absorbing target states.
Also as this calculation is part of the final first passage-time calculation we need to weight the
source states by their normalised steady state probabilities. Having calculated L~i~b(s) we use it as
our µ0 (see Section 2.2) in the subsequent first passage-time calculation from the set of barrier
states ~b to the set of target states ~j.

This technique reduces the amount of memory that we need for a first passage-time calculation
as we only have to keep either the sub-matrix of the source partition or the target partition in
memory at any point in time. Another advantage of barrier partitioning is that we can easily
find barrier partitions in large models at low cost. Firstly, since we are doing first passage-time
analysis we can discard the outgoing transitions from all target states. Secondly, we explore the
entire state space using breadth-first search, with all source states being at the root level of the
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search. We store the resulting order in an array. To find a barrier partitioning we first add all
non-target states among the first m states in the array to our source partition. Note that m has
to be larger than the number of source states in the SMP. We then create a list of all predecessor
states of the resulting partition. In the next step we add all predecessor states in the list to the
source partition and recompute the list of predecessor states. We repeat this until we have found
a source partition with no predecessor states. Since we discarded all outgoing edges of the target
states, this method must give us a barrier partitioning. In the worst case this partitioning has all
source and intermediate states in SP and TP only contains the set of target states.

In both the Voting and the Web-server model it is possible to split the state space such that each
partition contains roughly 50% of the total number of transitions. Even more surprisingly, we easily
found balanced partitions (those where SP and TP contain a similar number of transitions) for
large versions of the Voting and Web-server models with several million transitions. In addition our
barrier partitioning algorithm is very fast. The computation of a balanced barrier partitioning for
the 1.1 million state Voting model takes less than 10 seconds on an Intel Duo Core machine with two
1.8GHz processors and 1Gbyte of RAM. By comparison, the computation of a 2-way partitioning
with PaToH2D takes about 60 seconds on the same machine, but the resulting partitioning is not
suitable for atomic aggregation as both partitions have large numbers of predecessor and successor
states.

5.2. k-way Barrier Partitioning

Fig. 13. A representation of k-way barrier partitioning.

The idea of barrier partitioning described in the previous section is a huge improvement to the
straightforward passage-time calculation, as it reduces the amount of memory needed for the
passage-time computation while introducing very little overhead. In this section we investigate
the idea of k-way barrier partitioning. In practice a k-way barrier partitioning is desirable since
it allows us to reduce the amount of memory needed to perform passage-time analysis on Markov
and semi-Markov models by even more than 50%.

Definition 2. In a k-way barrier partitioning, partition P0 contains the source states, partition
T the target states. There are k− 2 intermediate partitions and k− 1 barriers in total. In general
partition Pm is sandwiched between its predecessor partition Pm−1 and its successor partitions
Pm+1 and T . Note that there are no transitions from partition Pn to Pm if n > m, hence the
barrier property is satisfied in the sense that once we have reached Pm the only way to get back
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to any state in Pm−1 is to go through T . T is the only predecessor partition of P0. The barrier
states of partition Pm are the union of T and the states of Pm+1 that have incoming transitions
from states in Pm. This is shown in Fig. 13.

Note. Definition 2 generalises Definition 1. The latter definition corresponds to a 2-way barrier
partitioning. In Definition 1 we did not define the set of barrier states to be the union of states
that separate SP from TP and the set of states in T . However, this generalisation has no impact
on Proposition 1 as we assumed that B and T may intersect.

The difference between the standard 2-way barrier partitioning and the general k-way barrier
partitioning with k > 2 is the way we compute the passage time on the transition matrix of a
model that has been partitioned into k barrier partitions. The following proposition verifies the
correctness of the passage-time analysis on a k-way barrier partitioning. In the proposition below,
mi is the size of the ith barrier set and we drop the s-parameter from the Laplace transforms for
brevity.

Proposition 2. We can compute the aggregate passage-time distribution as the product of the
inter-barrier passage times as follows:

Li~j = LR
i~b1

MR
~b1~b2

· · · MR
~bk−2~bk−1

LR
~bk−1~j

(20)

where LR
i~b1

is the 1×m1 row vector containing the resulting Laplace transforms of the restricted

passage-time analysis from start state i to the states in the first barrier ~b1. LR
~bk−1~j

is a mk−1 × 1

column vector of the Laplace transforms of the passage time from the states in the (k−1)th barrier
to the set of target states ~j and:

MR
~bn−1~bn

=


LR

~bn−1,1~bn

LR
~bn−1,2~bn

...
LR

~bn−1,mn−1
~bn

 =


LR

~bn−1,1~bn,1
. . . LR

~bn−1,1~bn,mn

...
...

LR
~bn−1,mn−1

~bn,1
. . . LR

~bn−1,mn−1
~bn,mn


mn−1 × mn matrix containing the Laplace transform samples from the restricted passage-time
analysis from barrier n− 1 to barrier n for each pair of barrier states, i.e. pairs (a, b) where a lies
in barrier n− 1 and b in barrier n. Note that if state k is a target state then LR

~bn−1,k
~bn,k

= 1 and

LR
~bn−1,k

~bn,l
= 0 for all l 6= k as k must be an absorbing state.

Proof. First we show that:
LR

i~b2
= LR

i~b1
MR

~b1~b2

by Corollary 1.1 we have

LR
ib2,n

=
m1∑
l=1

LR
ib1,l

LR
b1,lb2,n

then
LR

i,~b2
=

(∑m1
l=1 L

R
ib1,l

LR
b1,lb2,1

, . . . ,
∑m1

l=1 L
R
ib1,l

LR
b1,lb2,m2

)
= LR

i~b1
MR

~b1~b2

using this argument repeatedly reduces Eq. (20) to

Li~j = LR
i~bk−1

LR
~bk−1~j

=
∑mk−1

l=1

(
LR

ibk−1,l
LR

bk−1,l
~j

)
which holds by Proposition 1 since

LR
bk−1,l

~j
= Lbk−1,l

~j

as target states are absorbing states during first passage-time analysis.
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Corollary 2.1.
L~i~j = LR

~i~b1
MR

~b1~b2
· · · MR

~bk−2~bk−1
LR

~bk−1~j

Proof. Similar argument as in Corollary 1.2

We now describe how sequential passage-time analysis can be performed on a k-way barrier par-
titioning. The basic idea is to initialise µ

(0)
0 (see Section 2.2) with the α-weighted source states,

compute LR
~i~b1

= µ
(1)
0 using µ

(0)
0 and subsequently use µ

(1)
0 as the new start vector for the calcu-

lation of LR
~i~b2

= µ
(2)
0 until we obtain L~j = µ

(k)
0 (see Section 2.2). L~i~j(s) is computed by summing

the Laplace transforms which make up this vector as in Eq. (7).

Intuitively this approach makes sense because µ
(n)
0 always contains the Laplace transform distri-

bution from the initial set of source states to the states of the nth barrier and when used as the
start vector for the next iterative restricted passage-time analysis, we obtain the Laplace transform
of the distribution from the set of source states to all states that lie in the nth partition and the
states of the (n+ 1)th barrier.

5.3. Constructing a k-way Barrier Partitioning

There are various ways of creating k-way barrier partitionings for SMPs. One way is recursive bi-
partitioning to split sub-partitions into two balanced barrier partitions at each step. Alternatively
we can modify our barrier partition algorithm to obtain the maximum number of barriers for a
given transition matrix. The modified partitioner works as follows. First we make all target states
absorbing. We then add the source states and all their predecessor states to the first partition.
Subsequently we add the predecessor states of the predecessor states of the source states to the
partition and so on. Once we have no more predecessor states we have found the first partition.
The non-target successor states, i.e. non-target barrier states, of that partition are then used
to construct the second partition in the same manner. However, we now only consider those
predecessor states of the non-target barrier states that have not been explored yet, i.e. those that
haven’t been assigned to any partition. We continue partitioning the state space until all states
have been assigned to a partition.

Proposition 3. We claim that this partitioning approach yields the maximum number of barrier
partitions for a given transition graph as we only include the minimum number of states in every
barrier partition. We call this a kmax -way barrier partitioning, but we will also refer to it as a
max-way barrier partitioning.

Proof. Suppose kmax -way partitioning does not yield the maximum number of partitions. Then
it must be possible to join N adjacent barrier partitions in the kmax -way partitioning and split
them into N + 1 barrier partitions where N ≥ 2 is minimal. Let the predecessor partition of the
joint partition of these N partitions be partition P and the successor partition be partition S.
Now if we use the successor states of partition P as the seed states to create the first of the N + 1
partitions out of the joint partition then this partition is exactly the same as it was before the
merger and hence it must be possible to split the joint partition made out of N − 1 partitions into
N partitions. But this is not possible as N was chosen to be minimal. Hence the seed states of
the successor partition R of P have to be changed so that R has a different set of seed states than
it had in the original kmax -way partitioning. For this to be true, states are added or taken away
from the seed set of R.

If we add states to the set of seed states of R then partition R must contain at least the same
amount of states which it had in the original kmax -way partitioning and R will also have at least
the same amount of successor states as it did in the kmax -way partioning. The successor partition
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of R thus covers at least the same set of states that it covered in the original kmax -way partitioning.
Similarly for all other successor partitions and hence we cannot generate more than N partitions
from the joint partition.

So in order to create N + 1 partitions we need to take away states in the set of seed states of R.
However the seed states of R in the kmax -way partitioning only contains states that are non-target
successor states of P and thus we cannot take away states from the seed set without violating the
barrier property of the partition. This argument holds all the way down to the source partition
which also contains the minimum number of seed states, namely the source states. Hence it is not
possible to split N adjacent barrier partitions into N + 1.

Note that from the max-way partitioning we can generate any k-way partitioning with k < kmax

since joining two neighbouring barrier partitions creates a new larger barrier partition. The
kmax -way barrier partitioning also minimises the maximum partition size among the barrier par-
titionings.

Another important thing to note is that the partitioner is very memory efficient as we never have
to hold the entire matrix in memory during the partitioning process. A disk-based partitioning
approach is also feasible as we only have to scan every transition twice: once when we look for
the predecessor states of a state and a second time when we look for its successor states. This is
a huge advantage compared to our 2-way barrier partitioning algorithm, for which a disk-based
solution is less feasible, since we need to scan large parts of the matrix multiple times in order to
create two balanced partitionings.

We tested the new partitioning method on the 1 100 000 state Voting model and the 1 000 000 state
Web-server model. In the Voting model we found a 349-way barrier partitioning, whose largest
partition contains only 0.6% of the total number of transitions. In the Web-server model a 332-way
barrier partitioning exists in which the largest partition contains about 0.5% of the total number
of transitions. For both models it is thus possible to compute the exact first-passage time while
saving 99% of the memory needed by the standard iterative passage-time analysis that works on
the unpartitioned transition matrix. This is because of the fact that our k-way barrier partitioning
algorithm only ever has to hold the matrix elements of one single partition in memory.

The general kmax -way barrier partitioning method is very fast. For the 1 100 000 state Voting
model the max-way barrier partitioner needs 72 seconds on an Intel P4 3GHz with 4Gbyte of RAM
to find the barrier partitioning with the maximum number of partitions. In the 1 000 000 state
Web-server model the partitioner takes 35 seconds to find the max-way barrier partitioning. The
complexity of barrier partitioning is a function of the number of state transitions, and our results
suggest that this relationship is linear as the Voting model has about twice as many transitions
as the Web-server model. Hence barrier partitioning does not only allow us to save an enormous
amount of memory during passage-time analysis but also the partitioning method itself has a much
lower complexity than, for instance, graph and hypergraph partitioners. The computation of a
2-way partitioning with PaToH2D takes about 60 seconds on the same machine for the Web-server
model, but the resulting partitioning is not even suitable for atomic aggregation.

5.4. Evaluation

The log–log plot in Fig. 14 compares the number of complex multiplications needed for our different
aggregation methods to calculate the 165 Laplace transform samples required to compute 5 t-
points that are representative of the distribution. It is interesting to observe that the Barrier
methods generally seems to require fewer complex multiplications than the NoBarrier method in
both models.

Secondly, we compare the running times of first passage-time calculations under different barrier
partitionings. Tab. 1 shows the times taken to barrier partition and analyse two specific models
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Fig. 14. Log–log comparison of the absolute number of multiplications required under different barrier aggregation
strategies in the Voting and Web-server models.

on an Intel Core2 Duo 2.66GHz. In the Voting model the kmax -way barrier partitioning was a
349-way partitioning, while in the Web-server model it was a 332-way partitioning. In both cases
165 Laplace transform samples were calculated with a convergence precision ε = 10−16. The
results show that the kmax -way barrier approach is faster than both the unpartitioned and 2-way
barrier approaches in both models investigated. In the Web-server model, the kmax -way barrier
passage-time analyser is nearly ten times faster than the unpartitioned solver, while in the Voting
model it is approximately two-and-a-half times faster. 40-way partitioning is slightly faster than
kmax -way partitioning in these models because the smaller number of barriers results in a lower
overhead in the construction of lookup tables for each barrier.

An important consideration is the effect that barrier partitioning has on the accuracy of the
final passage-time result. The final column in Tab. 1 compares the first 32 decimal places of the
samples of the first passage-time distributions produced under the various aggregations using the
Kolmogorov–Smirnov (K–S) statistic (maximum absolute difference) against the corresponding
results from the unaggregated model (the No Barrier case). We conclude that, for these examples,
there is negligible loss of accuracy, even with the largest number of partitions.

5.4.1. Very Large SMPs

We now compare the run time of the barrier-partitioned iterative passage-time analysis with that
of the parallel implementation of the iterative algorithm previously presented in [9, 14] for very
large SMPs.

The parallel scheme was implemented in the Semi-Markov Response Time Analyser (SMARTA) [14].
The SMARTA results presented here were produced on a Beowulf Linux cluster with 64 dual-
processor nodes. Each node has two Intel Xeon 2.0GHz processors and 2GB of RAM. The nodes
are connected by a Myrinet network with a peak throughput of 2Gbps. The barrier partition-
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Voting model (1 100 000 states)
Method Complex mults. Run time (s) K–S error

No Barrier 90 953 967 754 6 400 0
2-way Barrier 87 544 776 992 6 706 2.32602e-13
40-way Barrier 23 085 035 695 2 062 1.77547e-12
kmax -way Barrier 14 675 308 020 2 447 1.00372e-11

Web-server model (1 000 000 states)
Method Complex mults. Run time (s) K-S error

No Barrier 287 181 545 505 26 921 0
2-way Barrier 160 559 878 808 16 230 2.63041e-13
40-way Barrier 29 768 374 425 2 635 1.25518e-12
kmax -way Barrier 17 070 767 235 2 722 1.48844e-12

Tab. 1. Computational cost, run-times and accuracy for partitioning and subsequent first passage-time analysis
for two different models with varying number of barriers.

ing and analysis was executed on one core of a machine with a four-core AMD Opteron 1.9GHz
processor and 32GB of RAM.

For the 10 991 440 state Voting model, the passage-time distribution was calculated at 31 values
of t and this required L~i~j(s) to be evaluated at 1 023 s-points. Using SMARTA this took 15
hours and 7 minutes on 64 processors, for a total cost of just over 455 processor-hours. This
excludes the time taken to partition the state space using the ParMETIS parallel graph partitioning
library [16] prior to computation. In contrast, it took 3 hours and 12 minutes to calculate a 599-way
barrier partition of the same model and a further 4 days and 32 minutes to solve for the required
distribution t-points on a single processor, for a total cost of just over 99 processor-hours. With
barrier partitioning, therefore, the solution time was approximately 6.5 times longer than that of
SMARTA but required only one sixty-fourth of the number of processors and cost approximately
4.5 times less in processor-hours. The maximum absolute difference between calculated passage-
time distribution results was 3× 10−6.

6. Conclusion

In this paper we have presented a number of improved aggregation techniques for SMPs. We
have shown how dividing an SMP’s state space into a number of loosely-connected partitions
reduces the maximum number of transitions generated during the application of our state-by-state
exact aggregation algorithm. We have also devised two partition-ordering metrics (analogous to
the state-ordering metrics of the exact aggregation algorithm) to determine the order in which
partitions should be aggregated. Of these, we concluded that our EFPF method gave better results
than the FPF method.

Even with the partition aggregation approach with improved partitioning ordering metrics, how-
ever, we could not escape the fact that many additional temporary transitions were being created
during aggregation. This inspired us to propose a scheme, based on first passage-time analysis,
for the atomic aggregation of partitions. Provided we find a suitable partition, atomic partition
aggregation is more efficient than state-by-state aggregation of partitions. Like state-by-state ag-
gregation, it may not always yield a speed-up in computation time of the passage-time analysis,
but it can always be used to save memory as we only need to store the sub-matrix of the partition
under consideration.

The biggest problem with atomic partitioning is that we may not be able to find suitable parti-
tions using existing state-space partitioning techniques. Introducing additional vanishing states
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alleviates this somewhat, but results in errors being introduced into the final calculated first
passage-time distributions. We therefore developed barrier partitioning, which deterministically
partitions the SMP’s state space into a number partitions and allows first passage-time analysis
to be conducted saving up to 99% of the memory required for the unaggregated SMP. Our results
show that it also saves a considerable amount of time compared with the calculation of results on
the unpartitioned state space. We have demonstrated that this can be achieved on SMPs with
up to 10.9 million states. We postulate that barrier partitioning is suitable for SMPs of models
with large populations of similarly operating cooperating components; this was true of the Web-
server and Voting models and is fortunately a common feature of large SMP models, derived from
higher-level formalisms.

For the future, it would be interesting to investigate if graph and hypergraph partitioners can be
modified to produce better partitionings for atomic aggregation. This could potentially be done
by finding more suitable input parameters for the PaToH and METIS partitioner. However, it is
likely that there are also better algorithms and partitioning heuristics, and further research might
produce partitioning strategies that extend the range of semi-Markov models for which atomic
aggregation can be used.

We would also like to explore to extent to which k-way passage-time computation can be conducted
in parallel. Recall from Section 5 that passage-time calculations can be conducted in both the
forward and reverse directions. For the 2-way barrier case, this suggests a simple parallelisation
scheme where one machine calculates LR

~i~b
(s) and the other L~j~b(s), with the final result calculated

according to Corollary 1.2. We cannot simply extend this to the use of k machines in the k-way
case, however, as calculation of the Laplace transforms of passage-time distributions across the
(n+ 1)th partition (except for the source and target partitions) requires the Laplace transform of
the passage-time across the previous nth partition as its starting point. Instead we envisage the
use of two groups of machines, each performing passage-time analysis in parallel. One group does
the forward passage-time calculation starting from the start states, the other one does the reverse
passage-time calculation starting from the target states. Just as in the 2-way barrier case, the two
groups of processors will stop when they have reached the middle barrier. This would have the
advantage of being able to deal with very large partitions whose state spaces could not be held
within the memory of a single machine; such partitions could arise from the analysis of extremely
large SMPs with global state spaces of perhaps billions or even trillions of states.
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