
Data Allocation Strategies for the Management of
Quality of Service in Virtualised Storage Systems

Felipe Franciosi and William Knottenbelt

Department of Computing, Imperial College London,

South Kensington Campus, SW7 2AZ, United Kingdom

{ozzy,wjk}@doc.ic.ac.uk

Abstract—The amount of data managed by organisations
continues to grow relentlessly. Driven by the high costs of main-
taining multiple local storage systems, there is a well established
trend towards storage consolidation using multi-tier Virtualised
Storage Systems (VSSs). At the same time, storage infrastructures
are increasingly subject to stringent Quality of Service (QoS)
demands. Within a VSS, it is challenging to match desired QoS
with delivered QoS, considering the latter can vary dramatically
both across and within tiers. Manual efforts to achieve this match
require extensive and ongoing human intervention.

This paper presents our work on the design and implementa-
tion of data allocation strategies in an enhanced version of the
popular Linux Extended 3 Filesystem. This enhanced filesystem
features support for the specification of QoS metadata while
maintaining compatibility with stock kernels. We present new
inode and datablock allocation strategies which seek to match
the QoS attributes set by users and/or applications on files
and directories with the QoS actually delivered by each of the
filesystem’s block groups.

To create realistic test filesystems we have modified the
Impressions benchmarking framework to support QoS metadata.
The effectiveness of the resulting data allocation in terms of
QoS matching is evaluated using a special kernel module that
is capable of inspecting detailed filesystem allocation data on-
the-fly. We show that our implementations of the proposed inode
and datablock allocation strategies are capable of dramatically
improving data placement with respect to QoS requirements
when compared to the default allocators.

I. INTRODUCTION

For decades, the world has witnessed a digital data explo-

sion that shows no signs of abating. This has been partially

driven by a dramatic reduction of the cost per gigabyte of

storage, which has fallen since January 1980, from the order of

US$ 200 000 per gigabyte to less than US$ 0.10 per gigabyte

today. It has also been driven by the rise of the use of digital

technologies which are now replacing their analog counterparts

in almost all environments. Only in 2009, despite the economic

slowdown, the IDC reported that the volume of electronic data

stored globally grew by 62% to 800 000 petabytes. This surge

in data volumes is anticipated to continue; indeed by 2020 it is

expected that there will be 35 zettabytes of data to manage [1].
In the face of this data explosion, classical storage in-

frastructures involving multiple local storage systems quickly

become difficult to manage, hard to scale and ineffective at

meeting rapidly-changing and evermore-stringent QoS require-

ments as dictated by business needs. These pressures have led

to a well established trend towards storage consolidation as

typified by the deployment of multi-tier VSSs.

While VSSs are effective at addressing management over-

heads and increasing scalability, the issue of ensuring QoS

remains an important concern, especially since QoS can vary

dramatically both across and within tiers of the same virtual

storage pool. Manual data placement and reorganisation are

very high overhead activities, especially in the face of rapidly

evolving requirements and data access profiles. The practical

realisation of a framework for the automation of such tasks has

at least two fundamental prerequisites. The first is the ability

for users to easily and explicitly specify the QoS requirements

of their data in terms of factors such as performance and

reliability. The second is a mechanism for mapping those

requirements onto low level data placement operations.

In the research literature, there have been many works, both

from academic and industrial perspectives, that have proposed

QoS frameworks and policies that show the theoretical benefits

of an automated approach to QoS management [2], [3], [4],

[5], [6], [7], [8]. The contribution of this work is, for the first

time, to realise a practical and usable QoS framework within

the context of a widely used commodity filesystem, namely the

Linux Extended 3 Filesystem (ext3fs). This is the default

filesystem for many Linux distributions, and consequently has

a very large installed user base.

There are several advantages to our realised enhancements

to ext3fs. Firstly, specification of QoS requirements is as

simple as modifying file and directory permissions with a

chmod-like command; this is done by adding QoS metadata

to unused inode space. Secondly, the enhanced filesystem is

completely forwards and backwards compatible with existing

ext3fs installations and vice-versa; that is, filesystems may

be mounted either way without the need for any conversion.

Thirdly, we have implemented mechanisms which allow for

the on-the-fly evaluation of the desired and delivered QoS

levels; this is supported by a suite of visualisation tools.

To maintain simplicity and elegance, we do not support

the specification of complex absolute QoS requirements such

as “95% of I/O requests to file F must be accomplished

within 10 ms”. Instead, we provide support for combinations

of simpler relative QoS goals such as “the file F should be

stored in one of the most highly performant areas of the logical

storage pool”. Similarly we allow for system administrators to

easily specify the relative levels of QoS delivered by different

range of block groups within the logical storage pool; this

process is supported by automated performance profiling tools.

High R Performance

High W Performance

High Reliability

High W Performance

Low Reliability

High R Performance Med R Performance

Low W Performance

High Reliability

RDBMS Temporary Archive

User or Application Specified

Virtualised Storage System

...... ...

Low R Performance

Low W Performance

High Reliability

Storage Administrator Specified

RAID5RAID0

High R Performance

Med W Performance

Low Reliability

Low W Performance

Med Reliability

Med R Performance

RAID1

Enhanced Linux Extended 3 Filesytem

SATA SATASSD SSD IDEIDE

Fig. 1. Overview of our proposed approach, where QoS hints are provided by a user and matched through an enhanced filesystem fabric to a virtualised
storage system profiled by a storage administrator.

Our approach, illustrated in Figure 1, also differs from

solutions that attempt to automatically deliver high levels

of performance by analysing frequency and type of data

accesses [2], [3], [4], [6], [7]. These systems not only ignore

other aspects of QoS such as reliability, space efficiency and

security, but also do not cater for the case where mission-

critical data is infrequently accessed (and therefore could be

profiled as low in performance requirements).

The focus of this paper is to show how we enhance the

ext3fs data allocator to become QoS-aware. Firstly, we

provide a mechanism to compute a score which quantifies

the degree of QoS match for any given (actual or potential)

data layout, either on a per inode or filesystem wide basis.

Secondly, this score is used in a heuristic-based placement

algorithm to locate suitable block groups for new inodes and

datablocks. Lastly, we introduce evaluation methods and show

how our new strategies provide improved data allocation.

Benchmarking of the latter is done using the Impressions [9]

filesystem generation framework, which was specifically de-

signed to create statistically accurate filesystem images and

that we have modified to support QoS metadata.

The remainder of this paper is organised as follows.

Section II reviews the ext3fs enhancements to support

QoS metadata. Section III presents our strategies towards

the evaluation of data placement in a populated filesystem.

Section IV introduces our QoS-aware allocation algorithms.

Section V presents our multi-tier storage testbed and discusses

actual measurements on test cases generated with Impressions.

Section VI concludes and presents our ideas for future work.

II. ENHANCING ext3fs WITH QOS SUPPORT

The Linux Extended 3 iPODS Filesystem (ext3ipods)

was conceived by the authors as a QoS-enhanced extension

to the Linux Extended 3 Filesystem (ext3fs). Some initial

work towards the practical realisation of this filesystem has

been described in [10]. Specifically, it has been shown how

the existing ext3fs filesystem layout and associated data

structures can be modified in such a way as to support

QoS metadata while maintaining forwards and backwards

compatibility (i.e. filesystems may be mounted in either

direction without the need for any conversion). This two-

way compatibility not only makes deployment of the QoS

enhancements into existing systems trivial but also provides

an easy way to compare filesystems with and without QoS-

related enhancements. An interface was also defined for both

users and system administrators to update these new attributes.

These features are discussed in more detail below.

A. Disk Structure

The first major design decision in considering how ext3fs

was to be modified in order to support the QoS metadata was

to chose the granularity at which QoS requirements were to be

defined. Considering that applications usually use directories

and files as their main storage units, the filesystem’s inode was

chosen for this purpose. Conveniently, inodes already possess

a field named flags. This field is 32 bits long and currently not

used in its entirety. ext3fs also supports an inode attribute

extension that could hold a greater amount of flags should it

become necessary in the future.

The extra metadata introduced into the inode flags is used to

denote desired relative levels of read and write performance as

well as reliability. Each one of them can be set to low, medium

or high. When set on directories, new child files automatically

inherit the parent directory’s attributes. It is worth mentioning

that when a file is created, the kernel first allocates an inode

and then starts allocating datablocks as the contents start to

be written. This gives no opportunity for flags to be set on

the inode, as the datablock allocator will usually start to work

immediately1. By allowing new files to inherit flags from the

parent directory, this problem is easily solved without the need

to modify existing application code.

The second major design decision was to choose how to

store the QoS delivered by the storage infrastructure. Tak-

ing into account that ext3fs is divided into block groups

(BGs) [11], and that allocation algorithms use that unit to keep

similar data grouped together [12], BGs were a natural choice

for the granularity of such metadata. A control structure,

named a block group descriptor, holds information on each

BG (such as the number of free inodes or blocks) and offers

96 bits of unused space. We use this space to store two types

of metadata. The first is the QoS delivered at the position

in the tier where that BG resides. The second is the current

allocation score for that BG. Section III describes how this

score is calculated.

Figure 2 illustrates the structure of a regular ext3fs,

showing how this filesystem is organised as an array of block

groups, and highlights the two parts of the disk structure

that have been modified in ext3ipods. Because the extra

metadata introduced in the modified parts are stored in space

that is unused in ext3fs, an ext3ipods filesystem can

easily be mounted as a regular ext3fs and vice versa.

Block group n

Super

Block

1 block

Block group 0

Datablk inodeinode

Bitmap

1 block

TableBitmap

n blocks1 block

Data blocks

n blocks n blocks

Block

Boot

Descriptors

Group

Fig. 2. Underlying structure of the ext3fs filesystem. The highlighted
components are modified in ext3ipods.

B. QoS Management Interface

As discussed, there are two types of QoS definitions that

are applied in ext3ipods. One is defined by users or

applications over datasets and the other is defined by a storage

administrator when profiling delivered QoS. In view of that,

there are two distinct QoS management interfaces.

To manage flags in the inodes, e2fsprogs [13] was

extended to support the predefined metadata. This utilities set

includes two tools named chattr and lsattr for setting

and viewing inode attributes respectively. The chattr tool

can be used to set desired QoS flags on files and directories in

1With the exception of uncommon file creation operations such as “touch-
ing” a non-existent file, i.e. allocating the inode without writing any data.

the same straightforward manner that chmod is used to ma-

nipulate read, write and execute flags. While applications may

also invoke these tools, e2fsprogs also provides libe2p,

a library that allows for the flags to be managed directly by

calls made within a software.

User updates QoS requirements

in files and directories

Sysadmin updates QoS delivered

by each of the block groups

update using

chattr

view using

lsattr

from /dev/ifm

write requests

to /dev/ifm

inode

table descr

BG
Block Group

read responses

Fig. 3. QoS Management Interfaces for Users and System Administrators.

At the other end of the storage infrastructure, system

administrators require an interface to manage the flags in the

block group descriptors describing provided QoS. For this

to be possible while the filesystem is mounted and running,

a kernel module named iPODS Filesystem Manager (ifm)

was developed. Communication with this module takes place

through a custom character device.

While Figure 3 illustrates how users and system adminis-

trators interact with the filesystem regarding the updates of

QoS attributes, ifm provides some further relevant resources:

reporting which inodes and datablocks are in use and calcu-

lating the allocation score for a given block group. As these

two functions relate directly to the evaluation of QoS match

in a filesystem, they are explained further in the next section.

III. EVALUATING QOS MATCHING

Before we consider how to enhance the inode and datablock

allocators to utilise the QoS metadata, we introduce a means

to evaluate a given data placement with respect to the desired

and delivered QoS attributes. To do this, we compute a score

for every datablock in a block group as follows:

∑

i∈{attr} p × ∆i × mi, where

∆i = (dlvi − reqi), and

p =

{

−|c1| if ∆i < 0
|c2| if ∆i ≥ 0

(1)

The closer to zero the result of Eq. 1, the better we regard

the allocation for that datablock. Here {attr} is the set of

QoS attributes used (in our case, read performance, write

performance and reliability). ∆i represents the difference, with

respect to QoS attribute i, between dlv i – that is, the level of

QoS delivered by the BG in which the datablock resides and

req
i

– that is, the level of QoS required by the inode that

owns the datablock. When working only with high, medium

and low relative QoS levels, req
i

and dlv i can be set to two,

one and zero respectively. mi represents a multiplier for a

particular attribute; this is 1 by default but may be adjusted

by an administrator to control the relative importance of QoS

attributes; for example (s)he may wish to suggest that reliabil-

ity should be prioritised ahead of read and write performance.

Finally, p represents the provisioning factor. If ∆i is greater

than zero, this means that overprovisioning is taking place (i.e.

the QoS delivered is better than the requested). The attitude

of the system administrator to under- and overprovisioning is

controlled by the values of c1 and c2 respectively. For our

purposes, since we believe underprovisioning is worst than

overprovisioning, we set c1 = 2 and c2 = 1.

The corresponding QoS match score for a BG is the sum

of the QoS match scores of its constituent datablocks. After

computing this score for every BG, ifm stores the result

in the block group descriptor. The reason why this value is

not computed by the allocator alone, during allocation and

removal of datablocks, is due to the backwards compatibility

of ext3ipods. That is, a filesystem mounted and populated

by a stock ext3fs kernel would make this score inconsistent.

Retrieving and analysing BG scores for an entire filesystem

will then provide an overall idea of the allocation quality

regarding the QoS attributes. To achieve this, ifm generates

a report of every inode in use, while also indicating their QoS

requirements and a list of every datablock in use by them.

IV. ALLOCATION STRATEGIES

We now discuss three different allocation strategies that

we made use of while conducting our study. Firstly, we will

describe the basics of the default allocator present in ext3fs.

Secondly, we will show how we modify the inode allocator

to intelligently make use of the QoS attributes. Finally, we go

further and present modifications to the datablock allocator so

it also makes use of QoS attributes.

A. Default ext3fs Allocator

Naturally, the default ext3fs inode and datablock allo-

cators are completely unaware of any QoS metadata in the

filesystem. Therefore, their algorithms are focused on keeping

directories and files that are alike close to each other on the

physical media, and reducing fragmentation.

To achieve this, the inode allocator exploits the concept

of BGs. When finding a place for a new inode, the allocator

will attempt to use the same BG for entries that reside in the

same directory. The only case where that is not true is when

creating subdirectories on the filesystem root, in which case

the allocator assume these entries do not have anything in

common and therefore it will do the opposite: that is, spread

them into different BGs that are far apart.

After allocating an inode, data is usually written to the

media, with the corresponding datablocks being associated

with the new inode. The datablock allocator is responsible

for finding where to write. Because our focus is on allocation

regarding QoS matching, our experiments will not include con-

current writing or other fragmentation-inducing experiments.

While searching where to write, the datablock allocator will

try to find space in the same BG as the inode (specially

when dealing with the first datablock for the inode). This is

relevant to our work, as in some cases the use of our intelligent

inode allocator alone already provides benefits in terms of data

placement when considering QoS requirements.
When there is no space available within the current BG

or there is a severe imbalance of inode modes in that BG,

the datablock allocator will search for space elsewhere, giving

preference to BGs close to the inode or to the last datablock

allocated. This also concerns our new datablock allocator, that

is enhanced with additional criteria as described below.

B. QoS-aware Inode Allocator

While the original ext3fs inode allocator will adopt

different strategies for directories or files in an attempt to

spread data unlikely to be related across the filesystem, our

goal is to group data that has the same QoS requirements in

the set of BGs that is capable of delivering those requirements

the best. To achieve this, we completely replaced the default

allocation algorithm with a new strategy.
Our strategy uses the QoS match score formula presented

in Section III to scan for BGs capable of providing a score of

zero (which is a perfect match between what is provided by

the inode and delivered by the BG). Naturally, for a BG to be

eligible, it must have free space in its inode table.
In case there are no block groups capable of perfectly

matching the QoS required by the inode, our allocator will

choose the one closest to zero. This search is currently been

done linearly from the first block group in the filesystem,

an overhead which we have found to be acceptable in our

experiments to date. However, in the interests of a more

elegant approach, other methods using caching and indexing

are currently under study.
In an attempt to reduce the search process (such that it is

easier for a zero match to happen), we might think to use a

QoS match score formula with c2 = 0 (i.e. so that we consider

overprovisioning as a perfect match). After experimenting with

a large range of scenarios, this proves not to be ideal due to

the rapid exhaustion of inode space in block groups capable

of offering high QoS parameters.

C. QoS-aware Datablock Allocator

As already discussed, the original ext3fs datablock allo-

cator attempts to reduce file fragmentation by keeping data-

blocks close to each other (trying to reduce seek time when

reading large chunks of data). While we do not wish to create

external fragmentation, our main concern is to keep required

and delivered QoS as closely matched as possible.
To prevent unnecessary external fragmentation, we give

preference for contiguous datablock allocation. Because the

first datablocks associated with an inode are usually allocated

in the same BG as the inode, they should already be in the best

possible location QoS-wise. In cases where it is not possible

to allocate contiguous datablocks, our new allocator generates

a priority queue of candidate BGs (those that have available

space) sorted according to QoS match score.

V. EXPERIMENTAL RESULTS

Our first step towards assembling a practical experimental

environment was to investigate the behaviour of a real multi-

tier VSS. Having at our disposal an Infortrend EonStor A16F-

G2430 enclosure connected via a dual fibre channel interface

to a Ubuntu 7.04 (kernel 2.6.20.3) Linux box with two dual-

core AMD Opteron processors and 4GB of RAM memory, we

configured three tiers and assembled them together in a single

logical volume, thereby obtaining a multi-tier VSS. Each tier

was composed of four 500 GB Seagate ST3500630NS zoned

SCSI disks, configured according to a different RAID level in

order for each tier to deliver different QoS attributes.

A. Multi-tier VSS Organisation and Profiling

The first logical addresses of our single logical volume

represent the first tier, which is a 1.5 TB RAID5. Providing

distributed striped parity, this array supports up to one disk

failure without losing data and therefore was classified as

having medium reliability. The next tier is a 1.0 TB RAID01,

that is formed by mirrored stripes, allowing for up to two

disks failure without data loss (provided they do not hold

the primary and mirror copies of the same data). This tier

was classified as having high reliability. The last tier is

merely a RAID0, providing low reliability, but 2.0 TB of

space. They were concatenated using Linux’s Logical Volume

Manager [14] version 2.02.06.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5e+11 1e+12 1.5e+12 2e+12 2.5e+12 3e+12 3.5e+12 4e+12 4.5e+12

th
ro

u
g
h
p
u
t
(M

B
/s

)

logical address (bytes)

 1 MB reads
 2 MB reads
 4 MB reads
 8 MB reads
 16 MB reads
 32 MB reads
 64 MB reads
128 MB reads

Fig. 4. Throughput of sequential reads of varying size across a VSS.

As noted earlier in this paper, QoS delivered in such

configurations can vary drastically both across and within

tiers. Apart from the reliability contrasts just noted, the read

and write performance also differs. To show this, we have

profiled our system by reading and writing different sized

buffers directly to the raw device as it is seen by the operating

system. Not only does this avoid the overhead induced by the

filesystem itself, but it also allows for us to easily control

which logical address is being profiled, giving an accurate

perspective on device performance. The results are plotted in

Figures 4 and 5.

 0

 50

 100

 150

 200

 250

 300

 0 5e+11 1e+12 1.5e+12 2e+12 2.5e+12 3e+12 3.5e+12 4e+12 4.5e+12

th
ro

u
g
h
p
u
t
(M

B
/s

)

logical address (bytes)

 1 MB writes
 2 MB writes
 4 MB writes
 8 MB writes

 16 MB writes
 32 MB writes
 64 MB writes
128 MB writes

Fig. 5. Throughput of sequential writes of varying size across a VSS.

Considering our proposal focuses on relative QoS, we have

classified the inferred reliability and the profiled read and

write performance attributes as low, medium or high. This

matching should be done on a per system basis; that is,

whilst we consider RAID5 to be of medium reliability, for

supporting some sort of disk failure without data loss, other

administrators may classify RAID5 as low (or perhaps high)

reliability depending on what the other tiers provide. Naturally,

this may be changed at a later time if other tiers are added to

the storage infrastructure. Table I shows our classification.

RAID Write Read
Reliability

Level Performance Performance

RAID5 Medium High Medium
RAID01 Low Medium High
RAID0 High High Low

TABLE I
RELATIVE QOS CLASSIFICATION OF TIERS.

B. Benchmarking with Impressions

To create realistic scenarios for our experiments, we mod-

ified Impressions [9], a benchmarking framework that gener-

ates statistically accurate filesystem images, to use our QoS

attributes. We also decided to carry out our experiments on

a more manageable filesystem size, since the overhead of

populating a 4.5TB filesystem would be in the order of weeks.

For desired QoS, we have used only the combinations of

high, medium and low attributes that could be matched by the

storage infrastructure at hand, as shown in Table I. Using all

possible combinations of attributes caused several misplaced

(under or overprovisioned) data, making it hard to determine

if such misplacement was caused by a defective algorithm or

by the impossibility to meet a particular requirement.

We have also decided to cycle through the QoS combi-

nations instead of selecting them at random. This proved to

be simpler and more performatic than using a robust random

number generator such as the Mersenne Twister [15].

C. Data Layout Analysis

The first step was to configure our test filesystem through

ifm so that every BG was set as delivering specific QoS

combinations, representing the different tiers that were iden-

tified and mapped in Table I. We could then load both the

default allocator and our QoS-aware datablock allocator as

discussed on Section IV and run Impressions for each one of

them. Because the configuration used with Impressions was

not modified during the experiments, the filesystem population

happened in the exact same manner in each run.
To quantify precisely the effectiveness of the two allocators,

we have used our analysis toolkit to compute the percentage

of data that ends up in each category of provisioning for

each QoS attribute. Table II presents these numbers with the

figures on the upper part of each cell representing the default

allocator and the ones on the bottom our QoS-aware datablock

allocator. On this table, the “Other Space” column represents

both unused space and block group metadata. We note the

gains in exact QoS matching are impressive when using the

QoS-aware datablock allocator (58% vs 28%).

Very
Under

Prov.
Perf.

Match

Over.

Prov.

Very
Other
Space

Under Over

Prov. Prov.

Write

Perf.

6.4 % 6.2 % 21.3 % 35.3 % 15.8 %
15.1 %↓ ↓ ↓ ↓ ↓

0 % 0 % 64.0 % 14.4 % 6.5 %

Read

Perf.

0 % 8.1 % 40.7 % 20.0 % 16.2 %
15.1 %↓ ↓ ↓ ↓ ↓

0 % 0 % 53.7 % 27.6 % 3.6 %

Rel.

15.8 % 19.1 % 21.3 % 22.4 % 6.4 %
15.1 %↓ ↓ ↓ ↓ ↓

2.9 % 14.4 % 55.0 % 0 % 12.6 %

Avg.

7.4 % 11.1 % 27.7 % 25.9 % 12.8 %
15.1 %↓ ↓ ↓ ↓ ↓

1.0 % 4.8 % 57.6 % 14.0 % 7.5 %

TABLE II
QOS-MATCHING ACHIEVED USING THE DEFAULT ext3fs ALLOCATOR

(UPPER FIGURE IN EACH CELL) AND OUR QOS-AWARE DATABLOCK

ALLOCATOR (LOWER FIGURE IN EACH CELL).

VI. CONCLUSIONS AND FUTURE WORK

While the growth in the amount of data managed by

organisations shows no signs of abating, the human resources

involved in the managing of storage volumes also increases.

This has driven research towards automated solutions that

attempt to analyse I/O requests (considering aspects such as

I/O frequency and distribution of read/write buffer sizes) and

adjust the infrastructure layer to improve performance.

However, existing approaches do not cater for QoS attributes

that cannot be inferred by mere workload analysis, such as

reliability. They are also ineffective for cases such as database

transactions that need to be executed as fast as possible once

invoked, but that may use tables that are not accessed very

often. On such automatic systems, these tables would likely

occupy non-performatic storage areas.
In this paper, we have presented a different approach where,

on one hand, QoS requirements of datasets are specified

by users and applications and, on the other, QoS attributes

delivered by the storage infrastructure are profiled and adjusted

by system administrators. With this information, an intelligent

filesystem fabric is capable of placing data in order to obtain

a good match between desired and delivered QoS.

We have prototyped this idea in a working environment by

enhancing the popular Linux Extended 3 Filesystem with QoS

extensions. Furthermore, we have designed and implemented

working QoS-aware allocation algorithms that show convinc-

ing improvements in terms of data placement when populated

with Impressions, a framework for filesystem benchmarking.

In view of the compatilibity of our work and stock ext3fs,

one feature to be implemented is data migration. Using similar

algorithms to the ones presented in this paper, we could

reallocate datablocks on demand or use a background process

to improve data placement during times of low utilisation. This

would be relevant not only to data previously allocated with

a non-QoS-aware kernel, but also to scenarios where the life-

cycle of data evolves resulting in dynamic QoS requirements.

REFERENCES

[1] International Data Corporation (IDC), “The Digital Universe Decate -
Are You Ready?” May 2010, http://www.emc.com/digital universe.

[2] M. Bhadkamkar, J. Guerra, L. Useche, S. Burnett, J. Liptak, R. Ran-
gaswami, and V. Hristidis, “BORG: Block-reORGanization for Self-
optimizing Storage Systems,” in FAST ’09: Proc. 7th Conference on

File and Storage Technologies, Berkeley, CA, USA, 2009, pp. 183–196.
[3] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan, “The HP AutoRAID

Hierarchical Storage System,” ACM Transactions on Computer Systems,
vol. 14, no. 1, pp. 108–136, 1996.

[4] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal, and A. Veitch,
“Hippodrome: Running Circles Around Storage Administration,” in
FAST ’02: Proc. 1st USENIX Conference on File and Storage Tech-

nologies, Berkeley, CA, USA, 2002, p. 13.
[5] E. Anderson, S. Spence, R. Swaminathan, M. Kallahalla, and Q. Wang,

“Quickly Finding Near-optimal Storage Designs,” ACM Transactions on

Computer Systems, vol. 23, no. 4, pp. 337–374, 2005.
[6] S. Akyürek and K. Salem, “Adaptive Block Rearrangement,” ACM

Transactions on Computer Systems, vol. 13, no. 2, pp. 89–121, 1995.
[7] W. W. Hsu, A. J. Smith, and H. C. Young, “The Automatic Improvement

of Locality in Storage Systems,” ACM Transactions on Computer

Systems, vol. 23, no. 4, pp. 424–473, 2005.
[8] C. R. Lumb, A. Merchant, and G. A. Alvarez, “Façade: Virtual Storage

Devices with Performance Guarantees,” in FAST ’03: Proc. 2nd USENIX

Conference on File and Storage Technologies, Berkeley, CA, USA, 2003,
pp. 131–144.

[9] N. Agrawal, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Gen-
erating Realistic Impressions for File-System Benchmarking,” in FAST

’09: Proc. 7th Conference on File and Storage Technologies, Berkeley,
CA, USA, 2009, pp. 125–138.

[10] F. Franciosi and W. J. Knottenbelt, “Towards a QoS-aware Virtualised
File System,” in UKPEW ’09: Proc. of the 25th UK Performance

Engineering Workshop, Leeds, UK, July 2009, pp. 56–67.
[11] D. P. Bovet and M. Cesati, Understanding the Linux Kernel, 3rd ed.

Sebastopol, CA, USA: O’Reilly, November 2005, ch. 18.
[12] I. Dowse and D. Malone, “Recent Filesystem Optimisations in

FreeBSD,” in Proc. of the USENIX Annual Technical Conference

(FREENIX Track), Monterey, California, USA, June 2002.
[13] T. Ts’o, “e2fsprogs: Ext2/3/4 Filesystem Utilities,” May 2010, http://

e2fsprogs.sourceforge.net/.
[14] A. J. Lewis, “LVM HOWTO,” Linux Documentation Project, November

2006, http://tldp.org/HOWTO/LVM-HOWTO/.
[15] M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-

dimensionally equidistributed uniform pseudo-random number genera-
tor,” ACM Transactions on Modeling and Computer Simulation, vol. 8,
pp. 3–30, January 1998.

