SERVICE LEVEL AGREEMENT SPECIFICATION, COMPLIANCE PREDICTION AND
MONITORING WITH PERFORMANCE TREES

N.J. Dingle

W.J. Knottenbelt

L. Wang

Department of Computing, Imperial College London, South Kensington Campus, London SW7 2AZ
email: {nj d200, wj k, | w205}@loc. i c. ac. uk

ABSTRACT

Service Level Agreements (SLAS) are widely used through-
out industry but suffer from specification ambiguities and
difficulties in predicting and monitoring compliance. To
address these issues, we propose the use of the Performance
Tree formalism for the specification and monitoring of
Service Level Agreements (SLAS). Specifically, we show
how the basic Performance Tree formalism can be adapted
to provide a rigorous yet accessible and expressive means
to specify common SLA metrics. Using established per-
formance analysis tools that support Performance Trees,
this allows system designers to check SLA compliance on
formal models of their system before implementation. We
also propose an architecture for a system of measurement
agents that enables the same performance requirements to
be monitored in the context of a live implementation.

KEYWORDS
Service Level Agreements; Performance Trees; Performance
analysis; Quality of Service

INTRODUCTION

Many organisations depend heavily on the availability, relia-
bility and performance of key services delivered by internal
business units and external organisations. To ensure an ad-
equate quality of service, it is common practice to contrac-
tually define the parameters of service provision in the form
of a Service Level Agreement (SLA). SLAs specify the type
and quality of service to be provided by a supplier in return
for a fee paid by a user, as well as any compensation due to
the user in the case of sub-standard service delivery by the
supplier.

This paper addresses a number of key challenges relating to
SLA set-up, compliance prediction using a system model,
and monitoring of a live system.

Firstly, it is important to specify SLA metrics in a way that is
rigorous and unambiguous yet readily accessible to both sup-
plier and user. Natural language is an obvious and accessible
way to specify such metrics, but is neither rigorous nor unam-
biguous. Mathematical formalisms such as stochastic logics
[1, 2] are unambiguous and rigorous but are not accessible;
they are also restricted in the range of concepts they can ex-
press. Here we propose the use of Performance Trees (PTs) —
a recent formalism for the graphical specification of complex

performance queries [17, 18] — for SLA metric specification.
By extending the basic Performance Tree formalism using
its macro feature, we show how PTs are able to provide rig-
orous Yyet accessible metric specification without sacrificing
expressiveness.

Secondly, it is often the case that service suppliers need to
predict SLA compliance for systems that have not yet been
implemented. Such design-time intervention helps to avoid
the situation whereby a supplier finds that the system they
have built does not meet — and cannot feasibly be adapted to
meet — agreed SLA requirements. It is also often the case that
service suppliers need to predict the effect on SLA compli-
ance of proposed changes to currently operational systems.
In both cases, the construction and analysis of a stochastic
model provides suppliers with a low-cost means to make the
necessary predictions. Indeed, we show how, thanks to recent
support implemented in the PIPE tool [3], the compliance of
SLA requirements expressed as Performance Trees can be
directly evaluated on stochastic models.

Finally, monitoring of SLA compliance in operational sys-
tems poses additional challenges in terms of collecting and
processing measurement data in a way that ensures the ac-
curate computation of a given SLA metric. To this end, we
present an architecture for a system of monitoring agents that
can be used for the run-time evaluation of SLA requirements
expressed as Performance Trees.

A wide range of separate studies have been carried out in
each of the areas of SLA specification, compliance pre-
diction and monitoring. Regarding SLA specification, in-
vestigations about formalising SLA frameworks have been
carried out on various types of IT services, for example
databases, e-commerce systems and technical support opera-
tions [7, 10, 11, 14, 20]. Bouman [4] has pointed out the ex-
isting problems with present SLA specifications mechanisms
in terms of ambiguity, incompleteness and inefficiency, and
at the same time suggested general principles in guiding
customers and service providers in specifying SLA require-
ments. More formally, an XML language SLAnNg [9] based
on the Unified Modelling Language (UML) system model
has been introduced that provides a rigorous and unambigu-
ous approach for SLA specification. However, it is rather
syntactically complicated for non-IT professionals.

Much research has also been carried out on SLA monitoring
for a wide range of IT systems [8, 12, 13, 15, 16]. For ex-
ample, Pereira [15] describes a hierarchical architecture for
monitoring quality of service (QoS) parameters to help the

enforcement of SLAs between a provider and users. Pad-
gett [14] combines SLA specification and compliance predic-
tion by suggesting a set of service metrics and demonstrating
their use in predicting CPU usage in a mathematical model.
However, the SLA metrics are limited to only CPU usage,
and monitoring of SLA compliance is not considered.

To the best of our knowledge, therefore, the work presented
in the present paper is the first time a unified environment
been proposed for SLA specification, compliance prediction
and monitoring.

The remainder of this paper is organised as follows. In
the next section, we discuss relevant background including
SLA metrics, performance analysis techniques and the Per-
formance Tree formalism. In the following section we intro-
duce a Voting System model that is used as a running exam-
ple throughout the rest of the paper. We then show how Per-
formance Trees can be used to specify various common SLA
metrics, including availability, mean time between failures
and mean time to repair, response time percentiles, resource
utilisations, throughputs and system productivity. Finally, we
present our architecture for an online PT-based SLA monitor-
ing system before concluding and discussing opportunities
for further work.

BACKGROUND
Service Level Agreement metrics

In this paper we concentrate on metrics related to availability,
response times, resource utilisations, throughputs and sys-
tem productivity. This ensures that we are able to support a
superset of the metric-related concepts covered by the QoS
specification language QML [6].

We define these concepts as follows:

e Availability is the proportion of time during which ser-
vice is provided to users. Availability is in turn depen-
dent on two further metrics: Mean Time Between Fail-
ures (MTBF) and Mean Time To Repair (MTTR).

e Response time is the time from a user sending a request
to receiving a response or the time from job submis-
sion to job completion. SLAs are often concerned with
means, variances, and percentiles of response times. For
example it may be required of postal service that “90%
of first class post is delivered within one working day of
posting”.

e Resource utilisation is the proportion of time for which
a given resource is used by a given service. For example
it may be required that a service does not utilise more
than 10% of available network bandwidth.

e Throughput is the average rate at which a given set of
activities occurs. For example, it may be required that a
system processes a minimum of 3 000 transactions per
second.

e Productivity is a weighted sum of the throughput of
a number of activities, where the weights are user-
specified rewards associated with completion of each
activity. If the unit of the reward is financial, this mea-
sures a system’s profitability.

Performance Analysis

Performance is a vital consideration for system designers and
engineers. Indeed, a system which fails to meet its perfor-
mance requirements can be as ineffectual as one which fails
to meet its correctness requirements. Ideally, it should be
possible to determine whether or not this will be the case at
design time. This can be achieved through the construction
and analysis of a performance model of the system in ques-
tion, using formalisms such as queueing networks, stochastic
Petri nets and stochastic process algebras.

Having created a stochastic model of the system, it needs to
be decided what performance measures are of interest. It is
possible to capture such requirements in logical formulae us-
ing a language such as Continuous Stochastic Logic (CSL)
[1, 2]. These languages provide a concise and rigorous way
to pose performance questions and allow for the composi-
tion of simple queries into more complex ones. Such logics
can be somewhat daunting for non-expert users, and there
still remains the problem of correctly converting informally-
specified requirements into logical formulae.

Performance Trees

Performance Trees are an intuitive graphical formalism for
the quantification and verification of performance properties.
They were proposed to overcome the problems associated
with logical stochastic property specification highlighted in
the previous section. They combine the ability to specify
performance requirements, i.e. queries aiming to determine
whether particular properties hold on system models, with
the ability to extract performance measures, i.e. quantifiable
performance metrics of interest.

The concepts expressible in Performance Tree queries are in-
tended to be familiar to engineers and include steady-state
and passage time distribution and densities, their moments,
transition firing rates, convolutions and arithmetic opera-
tions. An important concern during the development of Per-
formance Trees was ease of use, resulting in a formalism that
can be straightforwardly visualised and manipulated as hier-
archical tree structures.

A Performance Tree query is represented as a tree structure
consisting of nodes and interconnecting arcs. Nodes can have
two kinds of roles: operation nodes represent performance-
related functions, such as the calculation of a passage time
density, while value nodes represent basic concepts such as
a set of states, an action, or simply numerical or Boolean
constants. Table 1 presents a summary of Performance Tree
nodes used in this paper.

The formalism also supports macros, which allow new con-
cepts to be created with the use of existing operators, and an

Textual Graphical Description
?

? LI The result of a performance query.
PTD @ Passage time density, calculated from a given set of start and target states.
Perctl Percentile of a passage time density or distribution.

[ty to]
ProbIninterval pre—9 Probability with which a passage takes place in a certain amount of time.

E(X"
Moment x Raw moment of a passage time density or distribution.
FR Mean occurrence of an action (mean fi ring rate of atransition).
SS:P Probability mass function yielding the steady-state probability of each possible value taken on by

a StateFunc when evaluated over a given set of states.

Macro User-defi ned performance concept composed of other operators.
> Arithmetic comparison of two numerical values.
&) ' Arithmetic operation on two numerical values.

Num
Num A real number.

- -
Actions A set of system actions.
States A set of system states.
-

StateFunc A real-valued function on a set of states.

Table 1: Selected Performance Tree nodes

abstract state-set specification mechanism to enable the user
to specify groups of states relevant to a performance measure
in terms of the corresponding high-level model.
Performance Trees have been integrated into the Platform In-
dependent Petri net Editor (PIPE), thus allowing users to de-
sign Generalised Stochastic Petri Net (GSPN) models and to
specify relevant performance queries within a unified envi-
ronment. PIPE communicates with an Analysis Server which
employs a number of (potentially parallel and distributed)
analysis tools to calculate performance measure [5]. These
include steady-state measures, passage time densities and
quantiles, and transient state distributions.

To offer greater ease for constructing performance queries,
we have recently developed an alternative query construc-
tion mechanism called the Natural Language Query Builder
(NLQB) [19]. The NLQB guides users in the construction
of performance queries in an iterative fashion, presenting at
each step a range of natural language alternatives that are ap-
propriate in the query context.

RUNNING CASE STUDY

Fig. 1 shows a GSPN model of an electronic voting system?
which will be used throughout this paper. In the model there
are several voters, CC, a limited number of polling booths,
MM, and a smaller number of central servers, NN. Voters
vote asynchronously, moving from place pg to p; as they do

lhttp://www_doc. ic.ac.uk/~njd200/voting.mod

voters

Figure 1: The Voting System model

so. Polling booths which receive their votes transit ¢; from
place p, to place py. At t3, the vote is registered with as
many servers as are currently operational in ps.

The system is considered to be in a failure mode if either all
the polling booths have failed or all the central servers have
failed. If either of these complete failures occurs, then a high
priority repair is performed that resets the failed units to a
fully operational state. If some (but not all) of the booths or
servers fail, they attempt self-recovery via transitions ¢4 and
tg respectively. The system is considered to be available and
will continue to function as long as at least one polling booth
and one server remain operational.

To facilitate the reasoning about failures and repairs, we aug-
ment the state vector of the system model with two boolean

components: just-repaired which is set to true by any tran-
sition which moves from a failed to an available state, and
just-failed which is set to true by any transition which moves
from an available to a failed state.

Note that the rate at which failures (recoveries) occur de-
pends on the number of currently operational (failed) units
and so the transitions ¢s, t4, t5 and tg are modelled with
marking-dependent rates. Also, the rate at which voters
vote depends on the current number of voters and available
polling booths, and the rate at which polling booths register
cast votes depends on the number of available servers, and so
t; and t5 are also modelled with marking-dependent rates.
The system we study features 100 voters, 10 polling booths
and 10 servers, and its underlying Continuous Time Markov
Chain (CTMC) contains 93 274 states.

SLA SPECIFICATION WITH PERFORMANCE
TREES

To demonstrate the use of Performance Trees to describe and
predict compliance with SLA requirements, we have con-
structed some common SLA metrics using parameterised
macros and evaluated them for the Voting System model.
Our methodology is not limited to those metrics described
in this section, however, as the extensible nature of Perfor-
mance Trees allows the user to construct macros for the met-
rics which are most relevant to them.

Availability

state function

state function:availability

Figure 2: Availability macro definition

Fig. 2 shows the PT macro definition for availability. This
takes as input a parameter, X, that is a state function that re-
turns 1 if the system is available in the state, and O otherwise.
Evaluating the SS:P operator yields a probability mass func-
tion (pmf), the domain of which is 0 and 1 (corresponding to
system non-availability and availability respectively) and the
range of which is the steady-state probability of each domain
value. Computing the expected value (via the first moment)
of the pmf yields the steady-state probability of finding the
system in an available state.

Suppose the SLA for the Voting System specifies that it
shall have an availability greater than 99%. The correspond-

nurm, value 1 num. valug

state function:ayailability

| StateFunc |

#(server) >0 && #{booths) =0

Figure 3: Availability example

ing Performance Tree definition of this requirement, which
makes use of the PT macro defined above, is given in Fig. 3.
According to the model description the system is considered
to be available if at least one server and one polling booth
are operating. The corresponding state function therefore
evaluates to 1 if #(servers) > 0 A #(booths) > 0, and to
0 otherwise. By evaluating this query on the model (using
PIPE’s Performance Tree Query Editor and associated eval-
uation environment) we find that the system is predicted to
achieve 99.88% (to 2 d.p.) availability and therefore to meet
its SLA requirement.

Mean Time Between Failures

states:failed

states:just-repaired

Figure 4: Mean Time Between Failures macro definition

Another important measure is the Mean Time Between Fail-
ures (MTBF), for which the corresponding Performance Tree
macro definition is shown in Fig. 4. This requires two sets
of states as input: the states where the system has just been
repaired, R, and the failure states, F. These states can be de-
fined using the evaluator’s built-in state set definition tool.
Evaluating the PTD operator yields the pdf of the first pas-
sage time from state set R to state set F. Computing the
expected value (via the first moment) of the pdf yields the
MTBF.

states:justfepaired states:failed

just-repaired failed

Figure 5: Mean Time Between Failures example

Fig. 5 shows the instantiation of this macro for an SLA re-
quirement that the MTBF of the Voting System is greater
than 1000 time units. From the model description above we
have that the system is considered to have failed if either all
servers or all booths have failed. By evaluating this query on
the model we find that the MTBF is 661.69 time units (to 2
d.p.) and we can therefore conclude that the system will not
meet its MTBF requirement.

Mean Time To Repair

states:available

states:just-failed

Figure 6: Mean Time to Repair macro definition

Mean Time To Repair (MTTR) indicates how quickly a sys-
tem recovers from a failure state. As shown in Fig. 6, it re-
quires two set of states as input: the states where the system
has just failed, F, and the states where the system is repaired,
R.

Fig. 7 shows the instantiation of this macro for an SLA re-
quirement that the MTTR of the Voting System is less than 5
time units. By evaluating this query on the model we find that
the MTTR is 0.96 time units (to 2 d.p.) and we can therefore
conclude that the system will meet its MTTR requirement.
We note that an alternative definition of availability is:

MTBF
MTBF + MTTR

num, value 1

states:just-failed stadtes:available

just-failed available

Figure 7: Mean Time to Repair example

Substituting in the above values for MTBF and MTTR, we
have that the Voting System’s availability is 99.86% (to 2
d.p.), which agrees very well with the value calculated above
from the mean of the distribution of the corresponding state
function.

Response time percentiles

num:percentile
start states

states:start states:target

Figure 8: Response time percentile macro definition

Fig. 8 shows the Performance Tree definition of a response
time percentile requirement while Fig. 9 shows the Perfor-
mance Tree corresponding to the SLA requirement that ““the
system shall be capable of processing all voters within 30
time units 95% of time”. The graph in Fig. 10 shows the
cumulative distribution function of the time taken to process
all voters with the 95% confidence interval at ¢ = 25.5 time
units marked. As the SLA requires this time to be less than
30 time units, we can conclude that the system will meet this
response time percentile requirement.

Resource utilisation
Fig. 11 shows the Performance Tree macro definition for an

SLA resource utilisation requirement. This is similar to the
Auvailability macro, save for the fact that its input state func-

=

none voted all vated 95.0

Figure 9: Response time percentile example

T T
Passage-time distribution: Voting model ———

Probability
—

Time

Figure 10: Result of evaluating the query in Fig. 9

tion describes when a particular resource is said to be busy
rather than when the system is available.

Fig. 12 poses the question for the Voting System “For what
proportion of time is at least one polling booth in use?””. By
evaluating this query on the model we find that the proportion
of time for which this is the case is 99.93% (to 2 d.p.).

Throughput

Throughput is the measure of the rate at which certain activ-
ities occur, for example the amount of data transferred over
a communications link per second. It is also a fundamental
element for evaluating the productivity of a system. In Per-
formance Tree terms, throughput is described as the mean oc-
currence rate of actions in the corresponding system model.
The corresponding macro simply consists of one Firing Rate
node.

Fig. 13 shows the Performance Tree query asking for the av-
erage number of votes being cast per time unit. By evaluating
this query we find that the Voting System achieves a through-
put of 0.075 voters per time unit (to 3 d.p.).

state function:
resource utilisation

Figure 11: Resource utilisation macro definition

[j
Resource
Utilisation

state funlction:
resource| utilization

#{wait For register) > 0

Figure 12: Resource utilisation example

Productivity/Profitability

Based on the definition of throughput, Performance Trees
can be used to provide a measurement of the productivity
of a system. As shown in Fig. 14, for an SLA productivity
can be defined as a sum of the products of the mean occur-
rence rate of certain actions and their corresponding impulse
rewards, which can be positive or negative.

Fig. 15 shows the Performance Tree of the SLA requirement
that the Voting System ““shall make a profit of more than 20
currency units per time unit, based on earning 2 currency
units from each vote successfully cast but paying 100 cur-
rency units for each high-priority server repair and 50 cur-
rency units for each high-priority polling booth repair”. In
this example, the first action/reward pair is made up of the
rate at which votes are cast and the earnings from one vote;
the second pair consists of the rate of high-priority server re-
pairs and their cost, and the third pair consists of the rate of
high-priority polling booths repairs and their cost.

Calculating the throughputs of the three relevant transitions
and multiplying by the rewards for each reveals that the to-
tal profitability of the system is -0.02 currency units per time
unit (to 2 d.p.). From this, we can conclude that the sys-
tem does not meet its SLA requirement for profitability and
indeed is predicted to cost more to run than it generates in
revenue.

vote

Figure 13: Throughput example

reward n

action 1 2.n
action n

Figure 14: Productivity macro definition

ARCHITECTURE FOR ONLINE SLA MONITORING

In this section we propose a unified architecture to enable
PTs to be used to monitor SLAS in a real system as well
as to evaluate SLA requirements on a system model. This
will provide users with an accurate and accessible approach
to evaluate actual system performance against the same SLA
specifications for which the system model has been analysed.
The general structure of the architecture is shown in Fig. 16.
To gather data on the system’s behaviour, client-side event
logging agents are installed that collect performance data rel-
evant to the metrics specified in the PT operator nodes of
the corresponding SLA definition. For example, if the SLA
contains a passage time density operator, such agents would
record the time taken for each passage of the system from
the start to target states. Once enough passages have been
observed it is possible to construct an approximation of the
density using a histogram. The data thus collected can be
then stored in an online database that is accessed through
an intuitive user interface which permits users to verify the
actual system against SLAs using the same PT’s SLA speci-
fication interface as for model analysis. This is done by con-
structing their SLA requirement query and submitting it to
the SLA monitor. The SLA monitor extracts the relevant data
from the online database according to the request received
and generates a compliance report.

This architecture can also be used to verify the system model
against the real implementation to check if it correctly re-
flects the behaviour of the live system. This will allow inves-

num, value 1

~ 20.0

b
PN L
action’ 2 action 3 %
rewarg'1 /£ reward2 \ reward 3

action 1

[Actions]/[Num

vate 2.0

e

Server repair -100.0 booth repair -50.0

Figure 15: Productivity example

Predicted compilance report

System
T

PT Model

Interface Model-based g —
SLA

Evaluator

Live System

& agents.
AN

Instrumentation

Compilance report

Figure 16: SLA prediction and monitoring architecture

tigation of new system configurations to be conducted to de-
termine their likely effectiveness. For example, users could
investigate adding an extra server or increasing the band-
width to their system to predict the likely performance im-
provement. They could then decide whether or not the im-
proved performance warranted the expense of implementing
such changes.

CONCLUSION

In this paper we have demonstrated how Performance Trees
can be used to reason about SLAs. Using macro functional-
ity, we have presented PT-based definitions for common SLA
concepts such as availability and productivity, and we have
demonstrated the analysis of such metrics using a case study
of a Voting system. We have also proposed an architecture
based on the use of monitoring agents to collect informa-
tion about the performance of the system once implemented.
This can then be used to monitor compliance with an SLA
using the same Performance Tree framework employed for
pre-implementation analysis.

In the future we intend to extend the work presented here in
a number of ways. We will add support for the expression
of SLA metrics in natural language by augmenting our ex-
isting Natural Language Query Builder; this will make the
construction of SLA-specific Performance Trees even more
intuitive. We will also implement the on-line monitoring ar-
chitecture and demonstrate its applicability to a real-world
example.

REFERENCES

(1

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Verify-
ing continuous-time Markov chains. In Lecture Notes
in Computer Science 1102: Computer-Aided Verifica-
tion, pages 269-276. Springer-Verlag, 1996.

A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Model
checking continuous-time Markov chains. ACM Trans-
actions on Computational Logic, 1(1):162-170, 2000.

P. Bonet, C.M. Llado, R. Puijaner, and W.J. Knotten-
belt. PIPE v2.5: A Petri net tool for performance mod-
elling. In Proc. 23rd Latin American Conference on
Informatics (CLEI 2007), Costa Rica, October 2007.

J. Bouman, J. Trienekens, and M. van der Zwan. Spec-
ification of service level agreements: problems, princi-
ples and practices. Software Quality Journal, 12(1):43-
57, March 2004.

D.K. Brien, N.J. Dingle, W.J. Knottenbelt, H. Ku-
latunga, and T. Suto. Performance Trees: Implemen-
tation and Distributed Evaluation. In Proc. 7th Intl.
Workshop on Parallel and Distributed Methods in Veri-
fication (PDMC’08), Budapest, Hungary, March 2008.
Elsevier.

S. Frolund and J. Koistinen. QML: A language for
Quality of Service specification. Technical Report TR-
98-10, HP Laboratories, Palo Alto, California, USA,
1998.

J-P. Garbani. Best practices for service-level manage-
ment. Technical report, Forrester Research, Inc., 2004.

D. Greenwood, G. Vitaglione, L. Keller, and M. Calisti.
Service level agreement management with adaptive co-
ordination. In Proc. International Conference on Net-
working and Services (ICNS 2006), pages 45-50, 2006.

D.D. Lamanna, J. Skene, and W. Emmerich. SLAnNg:
A language for defining service level agreements. In
Proc. 9th IEEE Workshop on Future Trends of Dis-
tributed Computing Systems (FTDCS’03), Washington,
DC, USA, 2003.

R. Leopoldi. IT services management - a description
of service level agreements. Technical report, RL Con-
sulting, 2002.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

H. Ludwig, A. Keller, A. Dan, R.P. King, and
R. Franck. Web Service Level Agreement (WSLA) lan-
guage specification. Technical report, IBM T.J. Watson
Research Center, 2003.

G. Morgan, S. Parkin, C. Molina-Jimenez, and J. Skene.
Monitoring middleware for service level agreements in
heterogeneous environments. In Proc. 5th IFIP con-
ference on e-Commerce, e-Business, and e-Government
(I13E ’05), pages 79-93, Poznan, Poland, 2005.

D. Ouelhadj, J. Garibaldi, J. MacLaren, R. Sakellariou,
K. Krishnakumar, and A. Meisels. A multi-agent in-
frastructure and a service level agreement negotiation
protocol for robust scheduling in grid computing. In
Lecture Notes in Computer Science 3470: Proc. Ad-
vances in Grid Computing (ECG ’05), pages 651-660.
Springer-Verlag, 2005.

J. Padgett, K. Djemame, and P. Dew. Grid service level
agreements combining resource reservation and predic-
tive run-time adaptation. In Proc. of the UK e-Science
All Hands Meeting, Nottingham, September 2005.

P.R. Pereira. Service level agreement enforcement for
differentiated services. In Lecture Notes in Computer
Science 3883: Proc. Second International Workshop of
the EURO-NGI Network of Excellence, pages 158-169,
Villa Vigoni, Italy, May 2006. Springer-Verlag.

A. Sahai, V. Machiraju, M. Sayal, L.-J. Jin, and
F. Casati. Automated SLA monitoring for web ser-
vices. Technical Report HPL-2002-191, HP Labora-
tories, Palo Alto, California, USA, 2002.

T. Suto, J.T. Bradley, and W.J. Knottenbelt. Perfor-
mance Trees: A New Approach to Quantitative Per-
formance Specification. In Proc. 14th IEEE/ACM
Intl. Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunications Systems (MAS-
COTS 2006), pages 303-313, Monterey, CA, USA,
September 2006.

T. Suto, J.T. Bradley, and W.J. Knottenbelt. Perfor-
mance Trees: Expressiveness and quantitative seman-
tics. In Proc. 4th International Conference on the
Quantitave Evaluation of Systems (QEST’07), pages
41-50, Edinburgh, September 2007.

L. Wang, N.J. Dingle, and W.J. Knottenbelt. Natu-
ral language specification of Performance Trees. In
Lecture Notes in Computer Science 5261: Proc. 5th
European Performance Engineering Workshop (EPEW
2008), pages 141-151, September 2008.

E. Wustenhoff. Service level agreement in the data cen-
ter. Technical Report 816-4551-10, Sun BluePrints On-
line, April 2002.

