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Abstract

We present a method for estimating the number of states in the con-
tinuous time Markov chains (CTMCs) underlying high-level models using
least-squares fitting. Our work improves on existing techniques by pro-
ducing a numerical estimate of the number of states rather than classifying
the state space into on of three types. We demonstrate the practicality and
accuracy of our approach on a number of CTMCs generated from three
Generalised Stochastic Petri Net (GSPN) models with up to 11 million
states.

1 Introduction

A vital component of many correctness and performance analysis techniques is
the explicit enumeration of the state space underlying a high-level model such as
a Petri net or a process algebra specification. An early indication of likely state
space size is beneficial in a number of ways. For example, it provides the user
with a good idea of the computational resources (CPU time, number of CPUs,
memory, disk space etc.) that will be required to complete the analysis process.
If the estimate suggests that currently allocated resources are inadequate, the
process can be restarted early with increased resources The latter is particularly
useful in utility computing environments where charges are levied on a CPU hour
basis. Alternatively, a large estimate may persuade the modeller to apply an
alternative exploration or analysis strategy (e.g. using probabilistic methods [9,
11], or “on-the-fly” [2] approaches) or to revisit the level of abstraction employed
in the model.

However, with the exception of specialised models with restricted struc-
ture [12], there are few known techniques for estimating state space sizes from
high level models in the literature. An important recent work, and the inspi-
ration for our present investigation, is the paper of Pelánek and Šimeček [10]
in which various methods for estimating state-space sizes are discussed. The
methods fall into two main categories: those based on state sampling and those
based on the attributes of breadth-first state-space exploration.

The sampling-based approach works by taking two samples of the state
space, each containing s states, and comparing the states in each. Some num-
ber, x, will appear in both and the ratio x/s is then used to classify the size of
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begin
A = ∅
E = s0

F .insert(s0)
while F (not empty) do begin

F .remove(s)
foreach s′ ∈ succ(s) do begin

if s′ /∈ E do begin
F .insert(s′)
E = E ∪ s′

end
A = A ∪ id(s) → id(s′)

end
end

end

Figure 1: Breadth-first search algorithm for state-space exploration [8].

the total state space into one of three categories. The samples can be generated
by breadth-first search, depth-first search or a random walk.

The estimation from the attributes of breadth-first search also aims to clas-
sify the overall state-space size into the same three categories based the number
of states in the first k levels of the search. Estimation by human judgment, by
classification trees and by neural networks was conducted, as well as an inves-
tigation into combining these classification methods with the results from the
random-sampling approach to improve accuracy.

The major limitation of [10] is that the authors explicitly avoid estimating
the total number of states and instead confine themselves to placing the esti-
mated total state-space size into one of three categories (i.e. those models which
can be handled easily, those which may require state-space reduction or paral-
lel generation and those which are too large). In contrast, this paper presents
a method for dynamically estimating the number of states in the underlying
state-space of a high-level model. Our method uses least-squares fitting from
the number of states currently observed during the breadth-first state genera-
tion process. We demonstrate the accuracy of this technique on a number of
state spaces generated from three high-level Generalised Stochastic Petri Net
(GSPN) models.

The remainder of this paper is organised as follows: Section 2 briefly presents
the breadth-first state-space generation algorithm used the DNAmaca [7] steady-
state analysis tool, before Section 3 describes the method of least-squares fitting.
Section 4 then introduces the three GSPN models considered and demonstrates
how the fitting method can be used to predict accurately the total number
of reachable states whilst the state-generation process is underway. Finally,
Section 5 concludes and suggests directions for future work.
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Figure 2: The number of unexplored states during the state-space generation
process for three similarly-sized GSPN models.

2 Breadth-First Search

In DNAmaca [7], the breadth-first search algorithm shown in Fig. 1 is employed
to explore the model’s state-space. This starts from an initial state s0 and uses
a FIFO queue (F ) and a list of explored states (E) to generate the state graph
(A). The functions insert() and remove() add a state to and extract a state
from F respectively, while succ(s) returns the set of successor states of s. The
function id(s) returns a unique sequence number for state s. DNAmaca uses
a probabilistic hash-based scheme [7, 8, 9] to store E in a memory-efficient and
easily-searched manner. Breadth-first search is favoured over depth-first search
as it allows the continuous time Markov chain’s (CTMC’s) generator matrix Q
to be created and written to disk row-by-row without the need to maintain more
than one row in memory.

A guide to the progress of the state-space generation process can be gained
during the execution of the BFS algorithm by examining the number of states
in F . Fig. 2 shows how the length of F changes over the course of state-space
generation for three of the models described in Section 4.

3 Least-Squares Fitting Method

We observe that the shape of the graph in Fig. 2 can be approximated by a curve
with equation y = ax2 + bx, for some values of a and b. In order to find these
values we use the GNU Scientific Library (GSL) [4] to perform multiparameter
fitting using least squares. This fits a model of p parameters to n observations –
in our case, there are two parameters (a and b) and the observations are the



Model Tangible
Name k States

courier2 2 84 600
courier3 3 419 400
courier4 4 1 632 600
courier5 5 5 358 600

fms5 5 152 712
fms6 6 537 768
fms7 7 1 639 440
fms8 8 4 459 455
fms9 9 11 058 190

Table 1: Number of tangible states in the Courier and FMS models in terms of
the sliding window size/ the number of unprocessed parts (k).

Model Patients Nurses Doctors Ambulances Tangible
Name (P ) (N) (D) (A) States

hosp1 7 2 2 1 54 228
hosp2 10 2 2 1 561 704
hosp3 11 4 2 2 1 630 905
hosp4 13 4 2 2 5 728 971

Table 2: Number of tangible states in the hospital model in terms of the number
of patients (P ), nurses (N), doctors (D) and ambulances (A).

current number of unexplored states in F during the BFS process. As the total
number of states can be very large, if we were to take observations at each
iteration of the BFS process we would potentially have several million and so,
to keep the problem size small, we only observe the number of unexplored states
once for every 10 000 states generated.

The first step in the fitting process is to express the problem in matrix-vector
form y = Xc where y is the vector of n observations, X is an n-by-p matrix of
the predictor variables and c is the vector of p unknown best-fit parameters. As
we are fitting a polynomial of degree 2 we define Xij = xij for 0 ≤ i ≤ (n− 1)
and 0 ≤ j ≤ (p − 1) . We then employ the gsl_multifit_linear() routine
(which implements the modified Golub-Reinsch singular valued decomposition
algorithm [5] with column scaling) to find the values of a and b which yield the
best fit to the observations.

4 Results

To demonstrate the power of our approach, we present results using three Gen-
eralised Stochastic Petri Net (GSPN) models. GSPNs are attractive as they
typically feature a small number of parameters (tokens) which can be easily
varied to produce CTMCs of differing sizes. The GSPN in Fig. 3 models the
ISO Application, Session and Transport layers of the Courier sliding-window
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Figure 3: GSPN model of the Courier communications protocol [13].
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Figure 4: GSPN model of a Flexible Manufacturing System [1].

Figure 5: GSPN model of patient flow in a hospital environment.



Model Tangible 25% 50% 75%
Name States Estimate % Error Estimate % Error Estimate % Error

courier2 84 600 47 440 43.9% 72 617 14.2% 83 720 1.0%
courier3 419 400 180 880 56.9% 317 845 24.2% 404 244 3.6%
courier4 1 632 600 707 434 56.7% 1 153 623 29.3% 1 514 634 7.2%
courier5 5 358 600 2 458,700 54.1% 3 769 918 29.6% 4 824 976 10.0%

fms5 152 712 116 370 23.8% 149 793 1.9% 163 166 6.8%
fms6 537 768 375 743 30.1% 517 008 3.9% 570 206 6.0%
fms7 1 639 440 1 113 737 32.1% 1 548 048 5.6% 1 721 391 5.0%
fms8 4 459 455 2 982 118 33.1% 4 181 830 6.2% 4 671 613 4.8%
fms9 11 058 190 7 435 833 32.8% 10 304 305 6.8% 11 532 975 4.3%
hosp1 54 228 53 630 1.1% 61 825 14.0% 63 015 16.2%
hosp2 561 704 414 694 26.2% 582 222 3.7% 633 916 12.9%
hosp3 1 630 905 1 193 169 26.8% 1 666 353 2.2% 1 809 587 11.0%
hosp4 5 728 971 4 053 685 29.2% 5 784 496 1.0% 6 303 895 10.0%

Average error 34.4% 11.0% 7.6%

Table 3: Difference between the number of states predicted by least-squares
fitting and the actual number generated. Results are presented at three points
in the state generation process for each of the three GSPN models.

communication protocol [13]. Data flows from a sender (p1 to p26) to a receiver
(p27 to p46) via a network. The sender’s transport layer fragments outgoing
data packets; this is modelled as two paths between p13 and p35. The transport
layer is characterised by two important parameters: the sliding window size n
(p14) and the transport space m (p17). In our investigations we will be varying
n to produce varying sizes of state spaces.

Fig. 4 shows a 22-place GSPN model of a flexible manufacturing system [1].
The model describes an assembly line with three types of machines (M1, M2
and M3) which assemble four types of parts (P1, P2, P3 and P12). Initially,
there are k unprocessed parts of each type P1, P2 and P3 in the system. There
are no parts of type P12 at start-up since these are assembled from processed
parts of type P1 and P2 by the machines of type M3. When parts of any type
are finished, they are stored for shipping on places P1s, P2s, P3s and P12s.

Fig. 5 shows a GSPN model of a hospital’s Accident and Emergency depart-
ment. The key parameters in this model are the numbers of patients (P ), nurses
(N), doctors (D) and ambulances (A).

Table 1 shows the number of states in the underlying CTMCs for the Courier
and FMS models in terms of the parameters in the GSPN models. Note that
the first column gives a short name for each of the configurations by which we
will refer to it for the remainder of this paper. Likewise, Table 2 contains the
number of tangible states in the hospital model for various values of P , N , D
and A, along with an associated short name in the first column.

The results of the estimation process using least-squares fitting are shown
graphically in Figs. 6, 7 and 8 for each of the three GSPN models. The estima-
tion was performed at three points in the state generation process where 25%.
50% and 75% of the total number of states had been generated. The number
of states predicted at each of these points for the three models, along with the
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Figure 6: Least-squares fitting estimation of the number of states in the Courier
model at 25%, 50% and 75% of the state generation process.
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Figure 7: Least-squares fitting estimation of the number of states in the FMS
model at 25%, 50% and 75% of the state generation process.
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Figure 8: Least-squares fitting estimation of the number of states in the Hospital
model at 25%, 50% and 75% of the state generation process.



percentage error compared with the actual final amount, is given in Table 3.
We observe that early on in the state generation process the estimation of

the total number of states varies greatly from the actual number in all but the
smallest Hospital model (hosp1 ), with an average percentage error of 34.4%.
By the half-way stage, however, the estimate is usually much more accurate
(all within 7% in the case of the FMS model) and the average error falls to
11.0%. When three-quarters of the state space has been generated the esti-
mation further improves (with an average overall error of 7.6%), although the
accuracy does decrease compared with the half-way point estimate in the Hos-
pital model. Nevertheless, we believe that the ability to estimate to within
approximately 10% of the actual total number of states by the half-way point
in the generation process demonstrates the applicability of our technique.

5 Conclusion

We have demonstrated how least-squares fitting can be used to accurately esti-
mate the total number of states in the underlying CTMCs of high-level models
during the state generation process. Results from our experiments suggest that
estimates produced in this way do provide a good guide to the likely eventual
number of states. On average, an error of 11.0% in the predicted total was
observed at the half-way point in the state generation process.

With the accuracy of our technique demonstrated we will now investigate
incorporating it into DNAmaca and derived tools such as HYDRA [3]. In par-
ticular, it would be interesting to employ the dynamic process management
features of the MPI-2 parallel programming library [6], in conjunction with our
estimation method and a parallel state-space generator [8], to automatically
spawn extra processors when analysing large models.
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