
Distributed Solution of Large Markov

Models Using Asynchronous Iterations

and Graph Partitioning

Nicholas J. Dingle William J. Knottenbelt∗

June 15, 2002

Abstract

We present a distributed approach for the steady state solution of large

Markov models. We use asynchronous iterations to minimise processor idle

time and graph partitioning techniques to minimise inter-processor communi-

cation. We demonstrate the scalability of our approach by solving a bench-

mark model for a number of large state space sizes on both a network of

commodity PCs and a distributed memory parallel computer. The perfor-

mance of our approach is contrasted with published results for an out-of-core

solver.

1 Introduction

The steady state solution of Markov models is a challenge that often arises in per-
formance engineering. Traditionally, performance statistics for high-level models
(such as stochastic Petri nets and queueing networks) are derived by generating
and then solving a Markov chain which corresponds to the model’s behaviour at
the state-transition level. From the Markov chain’s steady state probability dis-
tribution, high-level performance measures such as throughput and mean buffer
occupancy can be derived. However, workstation memory and compute power are
often overwhelmed by the sheer number of states in the Markov chain.

For structurally unrestricted large scale models, the most effective computa-
tional approaches to date have been disk-based [DS98, KM02] and parallel [Kno00]
methods. Both offer the ability to handle very large state spaces, but both have cer-
tain drawbacks which limit their performance. Disk-based methods are out-of-core
solution techniques that read in matrix elements (and sometimes vector elements)
from disk as needed. Although limited opportunities for caching sometimes exist
through the reuse of matrix blocks, the speed of disk-based methods is essentially
limited by the speed at which data can be read from disk so CPU utilisation is typi-
cally poor. On the other hand, parallel numerical methods can exploit the memory
and processor capacity of several workstations but are constrained by the speed
with which information (e.g. vector updates) can be exchanged between processors.
High communication overhead is particularly a problem on commodity networks
of workstations linked by Ethernet, where poor speedups and even slow downs are
often observed. Parallel implementations may also suffer from load imbalance and
interprocessor synchronisation overheads.

∗Department of Computing Imperial College of Science, Technology and Medicine 180 Queen’s

Gate, London SW7 2BZ, United Kingdom. Email: {njd200,wjk}@doc.ic.ac.uk



We propose a distributed approach which seeks to improve performance by re-
ducing the amount of communication necessary between the processors involved and
removing the need for interprocessor synchronisation. Graph partitioning is used to
divide the Markov model’s generator matrix Q across the processors. This ensures
that the number of off-diagonal matrix elements on each processor (i.e. those which
require multiplication with non-local vector elements) is minimised, and therefore
reduces the amount of communication needed. Further, asynchronous iterations are
employed so that the processors are always fully utilised and are not required to
wait for data to be exchanged.

The rest of this paper is organised as follows. Section 2 discusses the parallel
solution of systems of linear equations using asynchronous iterations and shows
how this can be applied to Markov models. Section 3 introduces graph partitioning
and explains the advantages it offers in the proposed parallel computation scheme.
Section 4 details the implementation of our algorithm, numerical results from which
are given in Section 5. Finally, Section 6 concludes and discusses future work.

2 Parallel Solution of Systems of Linear Equations

with Asynchronous Iterations

For a continuous-time Markov chain with an n × n transition rate matrix Q, the
steady state probability distribution vector π can be computed by solving the equa-
tion:

πQ = 0

subject to ∑

i

πi = 1.

The equation πQ = 0 can be rearranged as QT πT = 0 which yields an expression
of the form Ax = b for which a number of well-known sequential iterative solu-
tion techniques exist (e.g. Jacobi, Gauss-Seidel, SOR, Conjugate Gradient Squared
etc.) [Ste94]. When such calculations are conducted in parallel, iterative algorithms
for solving the resulting systems of linear equations usually require an exchange of
x-values at the end of each iteration. This enforced barrier synchronisation limits
execution speed to that of the slowest processor.

Asynchronous iterative algorithms [FS99, KBS99] attempt to overcome this.
Rather than exchange vector elements at the end of every iteration, processors send
updates to each other every n iterations (in the implementation below we set n=5).
These values are then used until the next update is received, meaning that some
x-values will be out of date. This does delay the convergence of the solution, but
as it is usually the case that the computation capacities of a network of processors
exceeds that network’s communication capacity it may be advantageous to increase
the amount of computation performed while reducing communication.

We implemented a parallel block Successive Over-Relaxation (SOR) algorithm
[Ste94] in our asynchronous steady state solver. In this scheme, each processor i is
allocated ni consecutive rows of the partitioned QT matrix (see Section 3 below for
details of how these partitions are created) which are stored in local memory. The
ni elements of the vector x that correspond to the matrix rows assigned (denoted
by xi) are also stored in local memory. Fig. 1 illustrates how a sample partitioned
matrix QT and vector x are divided between 4 processors.

At the beginning of an outer iteration, each processor calculates yi =
∑

j 6=i QT
ijxj

where the notation QT
ij indicates the jth matrix block of processor i (0 ≤ i, j < p).

The yi vectors remain fixed for the rest of the outer iteration. Five inner iterations
are then performed within the outer iteration, each consisting of a single SOR



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

13 7 16 10 15 9 1 3 14 8 11 4 2 12 5 6

P1

P2

P3

P4

13

7

16

10

15

9

1

3

14

8

11

4

2

12

5

6

x

Figure 1: Original QT matrix (left) and partitioned QT matrix and x vector and
corresponding row-striped mapping onto processors (right).

iteration using a locally determined relaxation parameter ω. After the fifth inner
iteration, each processor transmits to every other processor any elements of xi which
that processor requires (from a list created when the processors were first initialised).
These updates are performed asynchronously – processors are not required to wait
for all others to reach the end of their inner iterations before sending updates but
rather can simply transmit these updates and proceed with their computation.
Also, every processor calculates the current convergence of its local xi elements at
this point and updates its ω value based on how well convergence is progressing.
Execution then proceeds to the next outer iteration.

3 Graph Partitioning

Most iterative solution techniques for Markov chains are based on successive matrix-
vector multiplications or very similar operations. In order to perform these mul-
tiplications efficiently in parallel it is necessary to map the non-zero elements of
QT onto processors in such a way that the communication between processors is
minimised and the computation load is balanced (although the latter is not such
a crucial factor when asynchronous iterations are employed). In the following, we
aim to produce an near-optimal row-striped allocation of the non-zero elements of
QT to processors by applying graph-based partitioning.

Allocating the n rows of QT to p processors is known to be equivalent to a
p-way partitioning of an undirected graph with n vertices [KK98b]. This graph is
constructed as follows: graph nodes i and j are connected by an arc of weight one
if either QT

ij 6= 0 or QT
ji 6= 0. Graph nodes i and j are connected by an arc of weight

two if both QT
ij 6= 0 and QT

ji 6= 0 [CA99].
This graph is partitioned with the goal of minimising the number of edges which

are cut (that is to say which span two partitions) whilst maintaining an acceptable
load-balance of non-zero elements across the partitions. Edges which are cut cor-
respond to elements which must be exchanged between the processors during a
parallel matrix-vector multiplication, so that minimising the edge-cut is an attempt
to minimise the amount of communication required between processors.

The problem of producing an optimal p-way partition is known to be NP-



complete [KK98b]. However, there exist a number of tools which implement heuris-
tic algorithms to calculate good decompositions, for example Chaco [HL95] and
MeTiS [KK98a]. A library of parallel MeTiS routines called ParMeTiS [KK96] is
also available. Using these routines, we implemented a parallel graph partitioner
which does not require the entire QT matrix to be stored on a single processor at
any point in its execution – the memory consumed on each of the processors in the
partitioning is inversely proportional to the number of processors employed.

Graph partitioning offers a particular advantage when employed in conjunction
with asynchronous iterations. The effect of partitioning a matrix using graph parti-
tioning is to cluster the majority of the non-zero entries (typically in excess of 90%)
along the diagonal (as can be seen in the partitioned matrix of Fig. 1). These are the
elements which will be multiplied with the portion of the x-vector which is stored
locally, whilst the off-diagonal elements are multiplied with vector elements which
are updated by other processors. This is beneficial for the convergence behaviour
of the implementation.

4 Parallel Algorithm and Implementation

The calculation of the steady state probabilities of a large Markov model begins
with a high-level model specified in the DNAmaca Markov Chain Analyser inter-
face language [Kno96, Kno00]. This permits the specification of queueing networks,
stochastic Petri nets, stochastic Process Algebra and other formalisms which can be
mapped onto Markov chains. A probabilistic hash-based state generator [KMHK98]
uses the high-level description to generate the rate matrix Q of the model’s un-
derlying Markov chain. This matrix is then transposed to produce QT and the
corresponding graph is constructed as described in Section 3. This graph is par-
titioned by a parallel graph partitioner (implemented using the ParMeTiS library
[KK96]) and the resulting mapping is applied to QT to divide its rows between the
processors.

The distributed steady state calculator is implemented in C++ and uses the Par-
allel Virtual Machine (PVM) [GBD+94] library for inter-processor communication.
This was chosen in preference to the standard Message Passing Interface (MPI)
[GLS94] because PVM permits truly asynchronous, buffered communication – i.e.
there is no requirement for a matching receive to have been posted when a message
is sent.

We hoped to adopt a multi-threaded architecture for our steady state solver
which would operate as follows. Each processor reads in the rows of the matrix QT

which correspond to its allocated partition into memory and then spawns a new
thread (implemented using the POSIX standard pthread library). This thread is
responsible for computation while the original process is responsible for handling
communication between the processors. The communication process must handle a
variety of messages: it must request and send vector updates as well as collect and
transmit convergence data. When all calculations have converged the calculation
threads must be told to stop and the final probability vectors collected on the master
machine.

However, we discovered that the overhead incurred in context switching between
the two threads degraded the performance of the solver dramatically. Instead we
implemented a non-threaded version where calculation is suspended after a fixed
number of multiplications in order to check if any messages have been received
and to handle those which have. This approach exploits the asynchronous message
handling provided by PVM.



AP3000 PC Cluster
p time (s) speedup efficiency time (s) speedup efficiency

1 1182.5 1.00 1.000 363.2 1.00 1.000
2 853.3 1.39 0.695 328.2 1.11 0.555
4 409.2 2.89 0.723 193.3 1.88 0.470
8 213.4 5.54 0.693 150.3 2.42 0.303
16 135.9 8.70 0.544 134.3 2.70 0.169
32 83.8 14.11 0.441 112.4 3.23 0.101

Table 1: Run time, speedup and efficiency for p-processor steady state solution for
the FMS model with k=7. Results are presented for an AP3000 distributed memory
parallel computer and a PC cluster.

5 Results

We demonstrate the accuracy and scalability of our implementation by performing
an analysis of the well-known Flexible Manufacturing System (FMS) Generalised
Stochastic Petri Net model [CT93]. Setting k (the number of unprocessed parts
in the system) to 7 results in the underlying Markov chain of the GSPN having
1 639 440 tangible states and produces 13 552 968 off-diagonal entries in its generator
matrix Q.

Table 1 summarises the performance of the implementation on a distributed
memory parallel computer and a cluster of workstations. The parallel computer is
a Fujitsu AP3000 which has 60 processing nodes (each with an UltraSparc 300MHz
processor and 256MB RAM) connected by a 2D wraparound mesh network. This
network uses wormhole routing and has a peak throughput of 520Mbps. The PC
cluster is comprised of 32 Athlon 1.4GHz PCs each with 512MB RAM and linked
together by a 100Mbps switched Ethernet network. The distributed run time was
measured from the beginning of the first outer iteration until the final result was
assembled on the master processor. These results can be compared with an out-
of-core solution technique which took 629.8 seconds to calculate the steady state
solution for this model on a single 1.4GHz workstation.

Corresponding graphs of the run time and of the speedup and efficiency are
presented in Figures 2 and 3 respectively. We define the speedup obtained by
executing the solver on p processors to be the run time for a sequential execution
(p=1) divided by the run time for the p-processor execution. The efficiency for p

processors is the speedup divided by the number of processors.

The speedups and efficiencies obtained from executing our implementation on
the AP3000 are good. For the 16-processor execution, the observed efficiency of 54%
is higher than the 41% previously achieved for a naively-partitioned synchronous
steady state solution of the same model on the same hardware [KH99]. We also
note that a reasonable speedup is achieved on the PC cluster, although the trend
is much shallower than that for the AP3000.

In order to compare the performance of algorithm against published out-of-core
results we also tested it on the FMS model with k=8. The underlying Markov
chain in this case contains 4 459 455 states. Using a cluster of 32 PC workstations
of the specification described above the result was calculated in 417.4 seconds.
This compares very favourably with the 18 753 seconds required to solve the same
model by an out-of-core implementation [KM02]. The terminating condition for the
convergence of our algorithm was much stricter than that of the out-of-core solver –
our calculations continued until the convergence was less than 10−10, whilst for the
out-of-core solver the threshold was 10−6. It must be noted, however, that the
processor used in the out-of-core solver (a single UltraSparc-II 360Mhz machines



0

200

400

600

800

1000

1200

5 10 15 20 25 30

di
st

rib
ut

ed
 r

un
 ti

m
e 

(s
)

processors

AP 3000
PC cluster

Figure 2: Distributed run time for the FMS model with k=7 on the AP3000 and a
PC cluster.

2

4

6

8

10

12

14

5 10 15 20 25 30

sp
ee

du
p

processors

AP 3000
PC cluster

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30

ef
fic

ie
nc

y

processors

AP 3000
PC cluster

Figure 3: Speedup (left) and efficiency (right) for the FMS model with k=7 on the
AP3000 and a PC cluster.



with 128MB RAM) was slower than the workstations used in our evaluation, but this
would probably not have been a major factor in the relative performance difference
as the out-of-core solver would have been limited by disk throughput rather than
processor speed.

6 Conclusion

The results presented in this paper are taken from an early implementation and
we are continuing to refine our approach. Nevertheless, the initial results presented
here suggest that our approach has much to commend it. It has been shown to
have good scalability and also performs better than comparable out-of-core solution
techniques. A key development will be to increase the capacity of our technique to
handle even larger state spaces – indeed, the choice of k=8 for our large example was
due to limitations in the techniques employed to prepare QT for use in our steady
state solver, rather than any limitation of the solver itself. Work on rectifying this
has already begun.

7 Acknowledgements

The authors would like to thank the Imperial College Parallel Computing Centre
for the use of the AP-3000 distributed memory parallel computer.

References

[CA99] U.V. Catalyürek and C. Aykanat. Hypergraph-partitioning-based de-
composition for parallel sparse-matrix vector multiplication. IEEE
Transactions on Parallel and Distributed Systems, 10(7):673–693, July
1999.

[CT93] G. Ciardo and K.S. Trivedi. A decomposition approach for stochastic
reward net models. Performance Evaluation, 18(1):37–59, 1993.

[DS98] D.D. Deavours and W.H. Sanders. An efficient disk-based tool for solv-
ing large Markov models. Performance Evaluation, 33(1):67–84, June
1998.

[FS99] A. Frommer and D.B. Szyld. On asynchronous iterations. Research Re-
port 99-5-31, Department of Mathematics, Temple University, Philadel-
phia, USA, May 1999. To appear in Journal of Computational and
Applied Mathematics.

[GBD+94] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sun-
deram. PVM Parallel Virtual Machine: A Users’ Guide and Tutorial
for Networked Parallel Computing. MIT Press, Cambridge, Massachus-
setts, 1994.

[GLS94] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Pro-
gramming with the Message Passing Interface. MIT Press, Cambridge,
Massachussetts, 1994.

[HL95] B. Hendrickson and R. Leland. A multilevel algorithm for partitioning
graphs. In Proceedings of the ACM/IEEE Supercomputing Conference.
ACM/IEEE, December 1995.



[KBS99] D. Szyld K. Blathras and Y. Shi. Timing models and local stopping
criteria for asynchronous iterative algorithms. Journal of Parallel and
Distributed Computing, 58(3):446–465, September 1999.

[KH99] W.J. Knottenbelt and P.G. Harrison. Distributed disk-based solution
techniques for large Markov models. In Proceedings of the 3rd Inter-
national Meeting on the Numerical Solution of Markov Chains (NSMC
’99), pages 58–75, Zaragoza, Spain, September 1999.

[KK96] G. Karypis and V. Kumar. Parallel multilevel k-way partitioning
scheme for irregular graphs. Technical Report #96–036, University
of Minnesota, 1996.

[KK98a] G. Karypis and V. Kumar. A fast and high quality multilevel scheme
for partitioning irregular graphs. Technical Report #95-035, University
of Minnesota, 1998.

[KK98b] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme
for irregular graphs. Journal of Parallel and Distributed Computing,
48(1):96–129, 1998. URL http://www.cs.unm.edu/∼karypis.

[KM02] M. Kwiatowska and R. Mehmood. Out-of-core solutions of large linear
systems of equations arising from stochastic modelling. In Proceedings
of Process Algebra and Performance Modelling, Copenhagen, July 25th–
26th 2002.

[KMHK98] W.J. Knottenbelt, M.A. Mestern, P.G. Harrison, and P.S. Kritzinger.
Probability, parallelism and the state space exploration problem. In Lec-
ture Notes in Computer Science 1469: Proceedings of the 10th Interna-
tional Conference on Modelling, Techniques and Tools (TOOLS ’98),
pages 165–179, Palma de Mallorca, Spain, September 1998. Springer
Verlag.

[Kno96] W.J. Knottenbelt. Generalised Markovian analysis of timed transition
systems. Master’s thesis, University of Cape Town, Cape Town, South
Africa, July 1996.

[Kno00] W.J. Knottenbelt. Parallel Performance Analysis of Large Markov
Models. PhD thesis, Imperial College, London, United Kingdom, Febru-
ary 2000.

[Ste94] W.J. Stewart. Introduction to the Numerical Solution of Markov
Chains. Princeton University Press, 1994.


