PIPE2: A Tool for the Performance Evaluation of
Generalised Stochastic Petri Nets

Nicholas J. Dingle

William J. Knottenbelt

Tamas Suto

Department of Computing, Imperial College London,
180 Queen’s Gate, London SW7 2BZ, United Kingdom
{njd200,wjk,sutoy@doc.ic.ac.uk

ABSTRACT

This paper presents an overview of Platform-Independent
Petri Net Editor 2 (PIPE2), an open-source tool that sup-
ports the design and analysis of Generalised Stochastic Petri
Net (GSPN) models. PIPE2’s extensible design enables de-
velopers to add functionality via pluggable analysis modules.
It also acts as a front-end for a parallel and distributed per-
formance evaluation environment. With PIPE2, users are
able to design and evaluate performance queries expressed
in the Performance Tree formalism.

Keywords

PIPE2, Performance Trees, GSPNs, Stochastic Modelling,
Parallel and Distributed Computing

1. INTRODUCTION

Platform-Independent Petri Net Editor 2 (PIPE2) [1] is
a Java-based tool for the construction and analysis of Gen-
eralised Stochastic Petri Net (GSPN) [2] models. PIPE2
began life in 2002/3 as a postgraduate team programming
project in the Department of Computing at Imperial College
London and has been steadily improved through a number
of successive successive versions, implemented by students
at Imperial College London and with input from industry
(particularly Intelligent Automation, Inc.) In addition, a
branched version with significant improvements to different
aspects of functionality (e.g. the addition of inhibitor arcs
and fixed-capacity places, and an experimental framework)
has also been implemented at the Universitat de les Illes
Balears [3,4]. It is planned to merge this functionality into
the main branch in due course.

Besides standard Petri net model creation, manipulation
and animation facilities, PIPE2 provides a mechanism for
the run-time integration of new functionality via pluggable
analysis modules. This is a feature that sets PIPE2 apart
from many other Petri net tools, whose analysis functional-
ity is usually fixed and cannot be augmented by the user.
This consequently provides a springboard for experimenta-
tion with new analysis techniques without the need to reim-
plement basic functionality.

The focus of the present paper is on the recent develop-
ment effort undertaken at Imperial College London related
to the Performance Query Editor module, which allows users
to create and evaluate performance queries using the Perfor-
mance Tree (PT) formalism [5-7]. This module links with
an evaluation environment comprising an Analysis Server, a

set of parallel and distributed analysis tools, and a hardware
cluster that enables large-scale computations.

In terms of impact, PIPE2 has been used in a number
of studies into research topics as varied as the modelling of
mobile communication [8] and biological systems [9], and
the visualisation of Business Process Execution Language
(BPEL) specifications as Petri nets [10]. In addition, a num-
ber of other researchers have either implemented their own
modules for use with PIPE2 (e.g. to translate Petri nets into
the simulation language SIMAN [11]), or have used PIPE2
as the basis for the implementation of their own domain-
specific versions (e.g. UIB [4] and Exhost-PIPE [12]). Fi-
nally, PIPE2 has been used as a teaching aid at a num-
ber of universities, including the Université de Geneve, Swe-
den’s Royal Technical Institute (KTH), the University of Le-
icester, Friedrich-Alexander-Universitat Erlangen-Niirnberg
and Universitdt Duisberg-Essen.

The remainder of this paper is organised as follows: Sec-
tion 2 presents PIPE2’s model design and analysis func-
tionality. Section 3 presents background material on perfor-
mance query specification with Performance Trees (PTs),
before Section 4 describes the architecture of the parallel
and distributed PT query evaluation environment. Section 5
describes the process of using PIPE2 to evaluate a PT per-
formance query, and Section 6 demonstrates a case study
analysis of a query on a model of a hospital’s Accident and
Emergency department. Section 7 concludes and discusses
future work.

2. SYSTEM MODELLING WITH PIPE2

Figure 1 shows PIPE2’s graphical user interface for the
creation and editing of GSPN models. Models are drawn on
a canvas using components from a drawing toolbar including
places, transitions, arcs and tokens. Nets of arbitrary com-
plexity can be drawn and annotated with additional user
information. Besides basic model design functionality, the
designer interface provides features such as zoom, export,
tabbed editing and animation. The animation mode is par-
ticularly useful for aiding users in the intuitive verification
of the behaviour of their models. PIPE2 uses the Petri
Net Markup Language (PNML) [13] as its file format, which
permits interoperability with other Petri net tools including
P3 [14], WoPeD [15] and Woflan [16]

Central to the architecture of PIPFE2 is its support for
modules, which allow its functionality to be extended at run-
time with user-implemented code. PIPE2 comes equipped
with a number of specialised analysis modules that perform
structural and performance-related analyses on GSPN mod-

" PIPE2: Platform Independent Petri Net Editor 2.6: Accident & Emergency Unit (case studyl).xml

Eile View Draw Animate Help

[0/ (=@ [&] Bo[n]0[x[¢]%[«| @] <

e[sfor [o[5 @] e

[Analysis Moclule Manager { New Petri net 1| | Accident & Emergency Unit (case studybxml |

¢ [Available Modules
[} State Space Analysis
[) Response Time Analysis
[Reachability Graph
[G3PH Analysis
[Clock Watcher Simutation (Nt reachy
[Flace Watcher Simulation (Mot reach)
[Firing Counter Sirulation (Nat reach)
[Classification
[Tagged Met Converter
[Invariant Anatysis
[Diamaca (Not reack)
[} Passage Time Anatysis For Tagged Met
[Incidence & Marking
[Passage Time Anatsis
[simulation (Mot readhy
[DAmaca for tagged net
[comparison
[Performance Query Editar
[steacty State Analysis

[Find Module

elect Mode: Click/drag to select objects; drag to move them

Figure 1: PIPE2’s GSPN design interface.

els. A panel to the left of the canvas enables users access
to these modules. Users are encouraged, however, to im-
plement their own modules to tailor the tool’s functionality
to their requirements. The modules discussed below are all
included in the current PIPE2 release.

Structural Analysis Modules

Model Classification Module: Classifies GSPN models based
on their structure into the following categories: state ma-
chine, marked graph, free choice net, extended free choice
net, simple net and extended simple net.

Model Comparison Module: Compares two GSPN mod-
els based on attributes determined by users as comparison
criteria.

State Space Module: Determine properties of GSPN mod-
els such as liveness, boundedness and existence of deadlocks.

Incidence & Marking Module: Determines and displays
the forward and backward incidence matrices and the initial
marking.

Reachability Graph Module: Provides a visual representa-
tion of a GSPN model’s underlying reachability graph.

Performance Analysis Modules

Simulation Module: Studies the performance of models by
investigating the average number of tokens per place and
mean transition throughputs, using Monte Carlo simulation.

Steady-State Analysis Module: Calculates state and count
measures from the steady-state distribution via an interface
to the DNAmaca [17] steady state analyser.

Passage Time Analysis Module: Calculates probability
density and cumulative distribution functions for the time

taken for a model to complete a user-defined passage via an
interface to the SMARTA [18] passage time analyser.

GSPN Analysis Module: Calculates analytically the dis-
tribution of tokens on places, and the mean throughput of
timed transitions.

Additionally, recent work on specifying customer-centric
performance queries using the concept of “tagged tokens”
[19] is currently being integrated in PIPE2, in the form of
modules for the steady-state and passage time analysis of
GSPNs with tagged tokens.

3. PERFORMANCE TREES

Performance Trees are a formalism for the graphical spec-
ification of performance queries. A Performance Tree query
is represented as a tree structure that consists of nodes and
connecting arcs. Nodes can be of two kinds: operation nodes
represent performance-related functions, such as the calcu-
lation of passage time densities, while value nodes are in-
stances of basic types such as sets of states, actions, and
numerical/boolean constants. Complex queries can be con-
structed by connecting nodes together. Figure 2 shows an
example Performance Tree query that asks: “Is it true that
the passage between the set of states ‘start’ and the set of
states ‘target’ takes less than 5 time units with a probability
of at least 0.987”

Table 1 shows the currently available Performance Tree
operation and value nodes. Performance Trees also support
macros, which allow custom performance concepts to be de-
fined by users using existing nodes.

Textual Graphical Description
f?
? I_] The result of a performance query.
Mult Concurrent evaluation of multiple independent queries.
PTD @ Passage time density, calculated from a given set of start and target states.
Dist Passage time distribution obtained from a passage time density.
Perctl Percentile of a passage time density or distribution.
Conv™* Convolution of two passage time densities.
[t1 vtg]
ProbInlnterval Fre—o Probability with which a passage takes place in a certain amount of time.
@t
ProbInStates™ pré-~e-) Transient probability of a system being in a given set of states at a given
point in time.
Moment Raw moment of a passage time density or distribution.
FR Mean occurrence of an action (mean firing rate of a transition).
SS:P Probability mass function yielding the steady-state probability of each possi-
ble value taken on by a StateFunc when evaluated over a given set of states.
SS:S* Set of states that have a certain steady-state probability.
at
e @
StatesAtTime" Set of states that the system can occupy at a given time.
Xe[X,X,]
InInterval Boolean operator that determines whether a numerical value is within an
interval.
|
Macro User-defined performance concept composed of other operators.
c
- Boolean operator that determines whether a set is included in or corresponds
to another set.
VIN
V/A Boolean disjunction or conjunction of two logical expressions.
=
- Boolean negation of a logical expression.
< = >
> Arithmetic comparison of two numerical values.
A
® Arithmetic operation on two numerical values.
Num
Num A real number.
Range A range of real numbers, defined by a lower and an upper bound.
Bool
Bool A Boolean value.
Acti
Actions A system action.
Stat
States A set of system states.
StateF
StateFunc A real-valued function on a set of states.

Table 1: Performance Tree nodes (“denotes feature currently under development in PIPE2)

Fle Eat yiew Tools Anaysis Help
GIEIEELIE ,D,‘* oo [+] [@] [evatuae query

s sampled from the pas. dentified by label ‘start’ and the set |||
in the range of O

New Query Lxmi | queryxml

Figure 2: An example Performance Tree, shown in
PIPE2’s Performance Query Editor.

4. PARALLEL AND DISTRIBUTED PER-
FORMANCE ANALYSIS WITH PIPE2

PIPE2
/ GSPN Editor

% Analysis Modules "
User
\ Query Tree Tree Result Presentation
Editor Module Editor Evaluator Interface

Client
Side

Analysis Server

I

Query Analysis
[7 Thread ‘—‘
Dependency. Creation of Subtree Translation of Subtrees into Result Data
Analysis Analysis Threads Analysis Tool Languages Processing

]
a)

Server
Side

T
D\skobasechohdee\ & {_. File System

o) () (=) (=)
Cee) &)

Analysis
Cluster
64 Processor
Cores

=)

PROBI
Analysis
Tools

Figure 3: Performance Analysis Environment Ar-
chitecture.

Figure 3 shows the integrated performance analysis envi-
ronment that provides users with the ability to design sys-
tem models and to specify and evaluate performance queries.
The environment consists of four components: the Analysis
Client (PIPE2), the Analysis Server, a set of Analysis Tools
and the Analysis Cluster.

Users interact directly with the client side implemented
in PIPE2, which allows them to create GSPN models and
corresponding Performance Tree queries. The PIPE2 client
communicates with the Analysis Server, which in turn in-
teracts with a range of analysis tools hosted on a computing
cluster to calculate the answer to the user’s query.

Analysis Client

PIPE2 has the role of the client within the analysis envi-
ronment, and is its only user-facing component. It is the
gateway to the functionality provided by the analysis en-
vironment’s other components, and allows users to create
system models and Performance Tree queries. When the
user initiates query evaluation, it communicates model and
query data to the Analysis Server for further processing.
As soon as the Analysis Server returns evaluation results,
PIPE2 receives these and presents them visually to users.

Analysis Server

The Analysis Server is responsible for handling evaluation
requests issued by PIPFE2, and the coordination of the subse-
quent performance query evaluation process. It is deployed
on the Analysis Cluster’s primary host, and is continuously
available to accept incoming analysis requests. The Analy-
sis Server decomposes performance queries into subtrees and
sends these to specialised Analysis Tools for evaluation.

Analysis Tools

The evaluation of quantitative measures defined in Perfor-
mance Tree queries is ultimately carried out by a set of Anal-
ysis Tools that are invoked by the Analysis Server. Tools
that form part of the analysis environment are:

DNAmaca [17) — a Markov chain steady-state analyser
that can solve models with up to O(10%) states. Tt performs
functional and steady-state analyses, and computes perfor-
mance statistics, such as the mean, variance and standard
deviation of expressions computed on system states. In ad-
dition, it also calculates mean rates of occurrence of actions.
The raw distribution from which these performance statis-
tics are calculated can also be obtained. DNAmaca is used
for the evaluation of the SS:P and FR Performance Tree
operators.

SMARTA [18] — a distributed MPI-based semi-Markov re-
sponse time analyser that performs iterative numerical anal-
yses of passage times in very large semi-Markov models (in-
cluding GSPNs), using hypergraph partitioning and numer-
ical Laplace transform inversion. SMARTA is suitable for
the analysis of the PTD and Dist operators on GSPN models
where start and target states are vanishing.

HYDRA [18] — a distributed Markovian passage time anal-
yser that uses hypergraph partitioning and uniformisation
techniques. HYDRA is suitable for the evaluation of the
PTD and Dist Performance Tree operators, and also fea-
tures transient analysis capabilities that are useful for the
evaluation of the ProbInStates and StatesAtTime operators.

MOMA [20] — an n'*™® order passage-time raw moment cal-
culator for GSPN models that uses a Laplace transform-

based method. MOMA is used for the evaluation of the
Moment operator when applied to a passage time density.

CONE [20] — a performance analyser that, together with
SMARTA, evaluates the convolution of two passage time
densities using a Laplace transform-based approach. CONE
is used for the evaluation of the Conv operator.

PERC [20] — a performance analyser that calculates per-
centiles of passage time distributions and densities. It works
in conjunction with SMARTA and is used for the evaluation
of the Perctl operator.

PROBI [20] — a performance analyser that calculates the
probability with which a value sampled from a passage time
density lies within a certain interval. PROBI is used for the
evaluation of the ProbInInterval operator.

Analysis Cluster

Camelot, the computational cluster forming the backbone
of the analysis environment, consists of 16 dual-processor
dual-core nodes, each of which is a Sun Fire x4100 with two
64-bit Opteron 275 processors and 8GB of RAM. Nodes are
connected with both Gigabit Ethernet and Infiniband inter-
faces. The Infiniband fabric runs at 2.5Gbit/s, and is man-
aged by a Silverstorm 9024 switch. Job submission is han-
dled by Sun GridEngine (SGE), a Grid management mid-
dleware that configures and exposes Camelot as a computa-
tional Grid resource. Clients submit sequential and parallel
(MPI) jobs to SGE via the Distributed Resource Manage-
ment Application API (DRMAA).

5. PERFORMANCE QUERY EVALUATION

Users interact with PIPE2 to design system models and
performance queries. The tool also enables them to initiate
the automatic evaluation of performance queries through
a single button click, and provides them with an evalua-
tion progress tracking and visual result feedback mechanism.
When a user requests a query’s evaluation, PIPE2 estab-
lishes a connection with the Analysis Server in the back-
ground, which in turn delegates the processing of individual
queries to dedicated analysis threads.

Analysis threads process serialised versions of system mod-
els and performance queries and construct an internal rep-
resentation of the data. They decompose queries into a set
of subtrees, and subsequently create helper threads for each
subtree. Omnce a helper thread has been created, it sub-
mits its subtree for evaluation in the form of an analysis
job to SGE. Analysis jobs consist of analysis tool invoca-
tion requests, based on the types of subtree nodes. Threads
communicate with SGE via a DRMAA interface. SGE has
built-in scheduling algorithms that are used to distribute
jobs onto available processors on the analysis cluster.

In the case where the evaluation of a subtree is condi-
tional on results to be obtained from the evaluation of other
subtrees, the job is suspended until all required inputs are
available. Note that parallelism takes place on two levels
during evaluation. Firstly, certain tools are able to carry
out the evaluation of individual computation-intensive Per-
formance Tree nodes in a parallelised manner. Secondly, if
nodes within the query tree are independent of each other,
they can be evaluated concurrently.

To avoid redundant work, the Analysis Server incorpo-
rates a disk-based caching mechanism that stores perfor-
mance query evaluation results. In order to differentiate be-
tween multiple queries on the same model, MD5 hashes of

Figure 4: The result of evaluating the Performance
Tree in Figure 2 using PIPE2.

the model description and the performance query specifica-
tion are calculated for each query. These are used to create a
two-level structure in which the computed performance mea-
sures can be stored. Before any computation takes place, a
cache look-up for the hash of the given model is performed.
If a match is found, the hash of the current query is com-
pared to all hashes of queries in the cache that have been
evaluated on that particular model. A match indicates that
the query results can be retrieved from the cache. No match
means that the query needs to be evaluated.

Users can configure the analysis with regards to the num-
ber of processors that are to be used during evaluation and
also whether or not caching should be enabled. Users can
also specify the time ranges of interest for measures such as
passage time densities, or request that these are automati-
cally computed to show the main region of probability mass.
For more details of these mechanisms, see [7,20].

As soon as each subtree evaluation completes, the Anal-
ysis Server forwards its result to PIPE2 to be displayed to
the user. This enables the user to inspect partial results
before overall evaluation completes.

6. CASE STUDY

Figure 1 shows a GSPN model of a hospital’s Accident
and Emergency (A&E) department after it has been input
into PIPE2. The model describes a system with the follow-
ing behaviour. An initial number of healthy individuals (on
Py1) fall ill at a certain rate and either go to the hospital
themselves (via T14), in which case they are categorised as
walk-in patients, or place an emergency call to request an
ambulance (via T15). Once they have reached A&E, walk-in
patients wait until they can be seen by a nurse for initial as-
sessment, while ambulance patients are loaded onto a trolley
on which they wait until a nurse becomes available. Nurses
assess ambulance patients with priority. After initial assess-
ment, patients (now on Ps) proceed to either be seen by a
doctor (via T1g), be taken for emergency surgery (via T1s),
or be sent for laboratory tests (via Tp). Once a patient is
discharged (via Ty or Ti2), they are assumed to be healthy
again.

The model is parameterised with P, N, D and A, which
denote the number of patients (on Pi1), nurses (on Ps), doc-
tors (on Pg) and ambulances (on Pis), respectively. Here,

weset P=5 N =2,D=2and A=1. We wish to know
whether or not the hospital is capable of processing all pa-
tients within 5 hours with 98% certainty, and therefore use
a Performance Tree query of the form shown in Figure 2.
We define our start states as those where all five patients
are on place P11 and our target states as those where all five
patients are on place Pig.

Figure 4 shows PIPE2’s evaluator window when this query
has successfully completed analysis (shown by traffic light
indicators against all nodes that require computation). The
overall result (“false”) can be found by clicking on the top-
most (“?”) node. The user can also click on other nodes to
view sub-results — for example, clicking on the PTD node
will display the full probability density function of the com-
puted passage time.

7. CONCLUSIONS AND FUTURE WORK

In this paper we have presented an overview of PIPE2, a
GSPN-based modelling and performance analysis tool. We
have described its functionality, including its model design
facilities, and have introduced the distributed analysis en-
vironment that provides extensive performance evaluation
features. We have described the components of this analysis
environment, and have demonstrated how PIPE2 has been
extended to support the graphical creation of Performance
Tree queries, and how these queries are evaluated on a paral-
lel and distributed analysis cluster. Future development will
include the integration of a PEPA-based stochastic process
algebra model specification module and natural language-
based performance query specification. We will also be de-
veloping methods for the optimisation and efficient schedul-
ing of computations in order to achieve improved analysis
cluster response times.

8. REFERENCES

[1] PIPE2: Platform-Independent Petri net
Editor — http://pipe2.sourceforge.net.

[2] M. Ajmone Marsan, G. Conte, and G. Balbo, “A class
of generalized stochastic Petri nets for the
performance evaluation of multiprocessor systems,”
ACM Transactions on Computer Systems, vol. 2,
no. 2, pp. 93-122, May 1984.

[3] P. Bonet, C. Lladd, R. Puigjaner, and
W. Knottenbelt, “PIPE v2.5: A Petri net tool for
performance modelling,” in Proc. 23"% Latin
American Conference on Informatics (CLEI’07), San
Jose, Costa Rica, October 2007.

[4] M. Melia, C. Lladé, R. Puigjaner, and C. Smith, “An
experimental framework for PIPE2,” in Proc. 5th
International Conference on the Quantitative
Evaluation of Systems (QEST’08), St. Malo, France,
2008, pp. 239-240.

[5] T. Suto, J. T. Bradley, and W. J. Knottenbelt,
“Performance trees: A new approach to quantitative
performance specification,” in Proc. 14*" Intl. Symp.
on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems (MASCOTS 06),
Monterey, CA, September 2006, pp. 303-313.

[6] ——, “Performance trees: Expressiveness and
quantitative semantics,” in Proc. 4" Intl. Conf. on
the Quantitative Evaluation of Systems (QEST’07),
Edinburgh, UK, September 2007, pp. 41-50.

[7] D. K. Brien, N. J. Dingle, W. J. Knottenbelt,

H. Kulatunga, and T. Suto, “Performance trees:
Implementation and distributed evaluation,” in Proc.
7t Intl. Workshop on Parallel and Distributed
Methods in Verification (PDMC’08), Budapest,
Hungary, March 2008, Work in Progress Report.

[8] J. Guillen-Scholten, F. Arbab, F. de Boer, and
M. Bonsangue, “Modeling the exogenous coordination
of mobile channel-based systems with Petri nets,”
Electronic Notes in Theoretical Computer Science, vol.
154, no. 1, pp. 121-138, 2006, Proc. 4th International
Workshop on the Foundations of Coordination
Languages and Software Architectures
(FOCLASA’05).

[9] F. Bernardini, M. Gheorghe, F. Romero-Campero,
and N. Walkinshaw, “A hybrid approach to modelling
biological systems,” in Proc. 8th Workshop on
Membrane Computing, vol. LNCS 4860. Springer,
2007, pp. 138-159.

[10] R. Chitrakar, “BPEL (Business Process Execution
Language) — Specification, modelling and analysis,”
Master’s thesis, Univeristy of Illinois at Chicago, 2006.

[11] A. Penarroya, F. Casado, and J. Rosell, “A
performance analysis tool of discrete-event systems,”
Institute of Industrial and Control Engineering,
Technical University of Catalonia, Tech. Rep.
I0C-DT-P-2007-1, 2007.

[12] O. Bonnet-Torrés, P. Domenech, C. Lesire, and
C. Tessier, “Exhost-PIPE: PIPE extended for two
classes of monitoring Petri nets,” in Proc. 27th
International Conference on Application and Theory
of Petri Nets (ICATPN’06), vol. LNCS 4024.
Springer, 2006, pp. 391-400.

[13] The Petri Net Markup Language —
http://www2.informatik.hu-berlin.de/top/pnml/.

[14] D. Gasevi¢, V. Devedzié, and N. Veselinovi¢, “P3 —
Petri net educational software tool for hardware
teaching,” in Proc. 10th Workshop Algorithms and
Tools for Petri Nets, FEichstatt, Germany, 2003, pp.
111-120.

[15] WoPeD: Workflow Petri Net
Designer — http://www.woped.org/.

[16] H. Verbeek and W. van der Aalst, “Woflan 2.0: A
Petri-net-based workflow diagnosis tool,” in Proc. 21st
International Conference on Application and Theory
of Petri Nets (ICATPN’00), vol. LNCS 1825.
Springer, 2000, pp. 475-484.

[17] W. J. Knottenbelt, “Generalised Markovian analysis
of timed transitions systems,” M.Sc. Thesis,
University of Cape Town, South Africa, July 1996.

[18] N. Dingle, “Parallel computation of response time
densities and quantiles in large Markov and
semi-Markov models,” Ph.D. dissertation, Imperial
College London, United Kingdom, 2004.

[19] N. Dingle and W. Knottenbelt, “Automated
customer-centric performance analysis of Generalised
Stochastic Petri nets using tagged tokens,” in Proc.
Practical Application of Stochastic Models (PASM’08),
Majorca, Spain, September 2008.

[20] D. K. Brien, “Performance trees: Implementation and
distributed evaluation,” M.Sc. Thesis, Imperial
College London, United Kingdom, June 2008.

