
HYDRA : HYpergraph-basedDistributedResponse-time
Analyser

Nicholas J. Dingle∗ Peter G. Harrison William J. Knottenbelt

Department of Computing
Imperial College of Science, Technology and Medicine
180 Queen’s Gate, London SW7 2BZ, United Kingdom.

Email: {njd200,pgh,wjk }@doc.ic.ac.uk

March 5, 2003

Abstract

It is important for almost all transaction processing and computer-communication systems to satisfy
response time quantile targets. This paper describes HYDRA, a scalable parallel tool for the analytical
determination of response time densities in large, structurally-unrestricted Markov models derived from
high-level specifications. The tool exploits an efficient distributed uniformization-based algorithm, com-
bined with hypergraph partitioning to balance computational load across processors while minimising
communication. We demonstrate our tool on a 1.6 million state Generalized Stochastic Petri Net model
of a flexible manufacturing system, comparing the accuracy of our results with simulation and contrast-
ing the run-time performance of our technique with an approach based on numerical Laplace transform
inversion.

1 Introduction

Stochastic performance models (such as Petri nets or queueing networks) provide a formal way to capture
and analyse the dynamic behaviour of computer and communication systems. Traditionally, performance
statistics for these models are derived by solving a Markov chain corresponding to the model’s behaviour
at the state transition level. From the chain’s equilibrium probability distribution, standard performance
measures (such as utilization and throughput) andexpectedvalues of various sojourn times can be obtained.

This paper addresses the harder problem of calculating full response time densities in structurally unre-
stricted Markov models. This has important practical applications since response time quantiles are often
specified as quality of service metrics in Service Level Agreement contracts and industry standard bench-
marks such as TPC. In the past, numerical computation of analytical response time densities has proved
prohibitively expensive except in some Markovian systems with restricted structure such as overtake-
free queueing networks [1]. However, with the advent of high-performance parallel computing and the
widespread availability of PC clusters, direct numerical analysis on Markov chains has now become a
practical proposition.

Our contribution is a parallel algorithm implemented in the HYDRA tool for computing passage time den-
sities in Markov chains with large state spaces. By using state-of-the-art hypergraph partitioning techniques

∗Corresponding author. Telephone: +44 (0)20 7594 8253 Fax: +44 (0)20 7581 8024

1

we achieve a scalable algorithm that yields excellent performance on a distributed memory parallel com-
puter and that effectively utilizes the compute power and RAM provided by a network of workstations. To
the best of our knowledge, this is the first application of hypergraph partitioning in the domain of perfor-
mance analysis (and one of the few application areas of hypergraphs outside VLSI circuit design). Further,
we are not aware of any other distributed uniformization-based tools for computing response time densi-
ties, and our implementation improves substantially on both the solution time and capacity of contemporary
distributed response time density analysers based on numerical Laplace transform inversion [2].

2 Response time densities in Markov models

2.1 First Passage Times

Consider a finite, irreducible, continuous time Markov Chain (CTMC) withn states{1, 2, . . . , n} andn×n
generator matrixQ. If X(t) denotes the state of the CTMC at timet ≥ 0, then the first passage time from
a source statei into a non-empty set of target states~j is:

Ti~j(t) = inf{u > 0 : X(t + u) ∈ ~j | X(t) = i} (∀t ≥ 0)

For a stationary, time-homogeneous CTMC,Ti~j(t) is independent oft, so:

Ti~j = inf{u > 0 : X(u) ∈ ~j | X(0) = i}

Ti~j is a random variable with an associated probability density functionfi~j(t). To determinefi~j(t) we
must convolve the exponentially distributed state holding times over all possible paths (including cycles)
from statei into any of the states in the set~j. As shown in the next section, the problem can be readily
extended to multiple initial states by weighting first passage time densities.

2.2 Uniformization

Uniformization [3, 4] transforms a CTMC into one in which all states have the same mean holding time
1/q, by allowing ‘invisible’ transitions from a state to itself. This is equivalent to a discrete-time Markov
chain (DTMC), after normalization of the rows, together with an associated Poisson process of rateq. The
one-step DTMC transition matrixP is given by:

P = Q/q + I (1)

whereq > maxi |qii| (to ensure that the DTMC is aperiodic). The number of transitions in the DTMC that
occur in a given time interval is given by a Poisson process with rateq.

While uniformization is normally used for transient analysis, it can also be employed for the calculation of
response time densities [5, 6]. We add an extra, absorbing state to our uniformized chain, which is the sole
successor state for all target states (thus ensuring we calculate thefirst passage time density). We denote
by P′ the one-step transition matrix of the modified, uniformized chain. Remembering that the time taken
to traverse a path withn hops in this chain will have an Erlang distribution with parametersn andq, the
density of the time taken to pass from a set of source states~i into a set of target states~j is given by:

f~i~j(t) =
∞∑

n=1

qntn−1e−qt

(n− 1)!

∑

k∈~j

π
(n)
k (2)

where
π(n+1) = π(n)P′ for n ≥ 0

2

with

π
(0)
k =

{
0 for k /∈~i

πk/
∑

j∈~i πj for k ∈~i
(3)

and in whichπ is any non-zero solution toπ = πP.

Truncation is employed to approximate the infinite sum in Eq. 2, terminating the calculation when the
Erlang term drops below a specified threshold value. Concurrently, when the convergence criterion

||π(n+1) − π(n)||∞
||π(n)||∞

< ε (4)

is met, for given toleranceε, the steady state probabilities ofP′ are considered to have been obtained with
sufficient accuracy and no further multiplications withP′ are performed.

3 Hypergraph Partitioning

The key opportunity for parallelism in the uniformization algorithm is the sparse matrix-vector product
π(n+1) = π(n)P′ (or equivalentlyπ(n+1)T = P′T π(n)T , where the superscriptT denotes the transpose
operator). To perform these operations efficiently it is necessary to map the non-zero elements ofP′

onto processors such that the computational load is balanced and communication between processors is
minimized. To achieve this, we use hypergraph-based partitioning techniques to assign matrix rows and
corresponding vector elements to processors in a row-striped partitioning.

Hypergraphs are extensions of graph data structures that, until recently, were primarily applied in VLSI
circuit design. Formally, a hypergraphH = (V,N) is defined by a set of verticesV and a set of nets
(or hyperedges)N , where each net is a subset of the vertex setV [7]. In the context of a row-wise
decomposition of a sparse matrix, matrix rowi (1 ≤ i ≤ n) is represented by a vertexvi ∈ V while
columnj (1 ≤ j ≤ n) is represented by netNj ∈ N . The vertices contained within netNj correspond
to the row numbers of the non-zero elements within columnj, i.e. for matrixA, vi ∈ Nj if and only if
aij 6= 0. The weight of vertexi is given by the number of non-zero elements in rowi, while the weight
of a net is its contribution to the hyperedge cut, defined as one less than the number of different partitions
spanned by that net.

The overall objective of a hypergraph sparse matrix partitioning is to minimize the total hyperedge cut
while maintaining a balance criterion. The key advantages of the hypergraph approach over traditional
graph partitioning are that hyperedge cut quantifies the communication cost exactly and that off-diagonal
non-zeros tend to be positioned within rows so as to minimize the number of remote vector elements
required. In graph partitioning, the sole objective is to minimize the number of off-diagonal non-zeros. Like
graph partitioning, optimal hypergraph partitioning is NP-complete. However, there are a small number of
hypergraph partitioning tools which implement fast sub-optimal heuristic algorithms, for example PaToH
[7] and hMeTiS [8].

4 The HYDRA Tool

Fig. 1 shows the architecture of the HYDRA tool. The process of calculating a response time density
begins with a high-level model specified in an enhanced form of the DNAmaca interface language [9, 10].
This language supports the specification of queueing networks, stochastic Petri nets and stochastic process
algebras. Next, a probabilistic, hash-based state generator [11] uses the high-level model description to
produce the generator matrixQ of the model’s underlying Markov chain as well as a list of the initial and
target states.P is constructed fromQ according to Eq. 1 and normalized weights for the initial states
are determined from Eq. 3 by the solution ofπ = πP. This is readily done using any of a variety of
steady-state solution techniques (e.g. [12, 13]). FromP, P′T is constructed by transposing the underlying

3

Hypergraph
Partitioner

Uniformizer
And

Matrix

Transposer

Response
Time

Calculator

Distributed
State−Space
Generator

Enhanced

High−Level
Specification

DNAmaca

Figure 1: HYDRA tool architecture.

Markov chain and adding an extra terminal state that becomes the sole successor state of all target states.
P′T is then partitioned using a hypergraph partitioning tool.

The pipeline is completed by our distributed response time density calculator, which is implemented in
C++ using the Message Passing Interface (MPI) [14] standard. Initially each processor tabulates the Erlang
terms for eacht-point required (cf. Eq. 2). Computation of these terms ends when they fall below a
specified threshold value. In fact, this is safe to use as a truncation condition for the entire passage time
density expression because the Erlang term is multiplied by a summation which is a probability. The
terminating condition also determines the maximum number of hopsm used to calculate the right-hand
factor, a sum which is independent oft.

Each processor reads in the rows of the matrixP′T that correspond to its allocated partition into two types
of sparse matrix data structure and also computes the corresponding elements of the vectorπ(0). Localnon-
zero elements (i.e. those elements in diagonal matrix blocks that will be multiplied with vector elements
stored locally) are stored in a conventional compressed sparse row format.Remotenon-zero elements (i.e.
those elements in off-diagonal matrix blocks that must be multiplied with vector elements received from
other processors) are stored in an ultrasparse matrix data structure – one for each remote processor – using
a coordinate format. Each processor then determines which vector elements need to be received from and
sent to every other processor on each iteration, adjusting the column indices in the ultrasparse matrices so
that they index into a vector of received elements. This ensures that a minimum amount of communication
takes place and makes multiplication of off-diagonal blocks with received vector elements efficient.

The vectorπ(n) is then calculated forn = 1, 2, 3, . . . , m by repeated sparse matrix-vector multiplications
of form π(n+1)T = P′T π(n)T . Actually, fewer thanm multiplications may take place since a test for
steady state convergence is made after every iteration (cf. Eq. 4).

For each matrix-vector multiplication, each processor begins by using non-blocking communication prim-
itives to send and receive remote vector elements, while calculating the product of local matrix elements
with locally stored vector elements. The use of non-blocking operations allows computation and com-
munication to proceed concurrently on parallel machines where dedicated network hardware supports this
effectively. The processor then waits for the completion of non-blocking operations (if they have not al-
ready completed) before multiplying received remote vector elements with the relevant ultrasparse matrices
and adding their contributions to the local matrix-vector product cumulatively.

From the resulting local matrix-vector products each processor calculates and stores its contribution to
the sum

∑
k∈~j π

(n)
k . After m iterations have completed, these sums are accumulated onto an arbitrary

master processor where they are multiplied with the tabulated Erlang terms for eacht-point required for
the passage time density. The resulting points are written to a disk file and are displayed using the GNUplot
graph plotting utility.

5 Numerical Results

In this section we demonstrate the applicability of the HYDRA tool by computing a first passage time den-
sity in a Petri net model of a manufacturing system. We validate the density produced against a simulation
and consider the scalability of our algorithm on two different parallel architectures.

4

k

M1

k

k

M3

tM2

tP3

#(P3s)

#(P12s)

#(P12s)

#(P12s)

#(P1s) #(P1s)

tP1s

P1 P1wM1
tP1 tM1

P1M1
tP1M1

P1d
tP1e

P1s

tP12s
P12s

tP12M3
P12M3

tM3
P12wM3

tP12
P12

tx

P1wP2

P2wP1

P2s

tP2eP2d

P2wM2
tP2

P2M2
tP2M2

P2

tP2s

M2

P3 P3M2

tP3M2

P3s
tP3s

tP2j

tP1j

#(P2s)#(P2s)

#(P3s)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 5 10 15 20 25 30

numerical
simulation

Figure 2: The Flexible Manufacturing System (FMS) GSPN [15] (left) and corresponding numerical and
simulated passage time densities for the time taken to produce a finished part of typeP12 starting from
states in which there arek = 7 unprocessed parts of typesP1 andP2 (right).

Fig. 2 shows a 22-place Generalized Stochastic Petri net (GSPN) model of a flexible manufacturing system.
A full description of this model, which we will refer to as the FMS model, can be found in [15]. For our
purposes it suffices to note that the model describes an assembly line with three types of machines (M1,
M2 andM3) which assemble four types of parts (P1, P2, P3 andP12). Initially there arek unprocessed
parts of each typeP1, P2 andP3 in the system. There are no parts of typeP12 at start-up since these are
assembled from processed parts of typeP1 andP2 by the machines of typeM3. When parts of any type
are finished, they are stored for shipping on placesP1s, P2s, P3s andP12s.

Fork = 7, the GSPN’s underlying Markov chain has1 639 440 states and13 552 968 non-zero off-diagonal
entries in its generator matrixQ. For this model, we calculate the density of the time taken to produce a
finished part of typeP12 starting from any state in which there are7 unprocessed parts of typeP1 and
7 unprocessed parts of typeP2. That is, the source markings (of which there are 36) are those where
M(P1) = M(P2) = 7 and the target markings (of which there are 429 624) are those whereM(P12s) =
1. After modification of the state graph to allow for transitions from target states to a new terminal state,
the uniformized matrixP′ has11 001 408 non-zero entries. The hypergraph tool PaToH is then used to
partition the rows of the transposed matrixP′T . The resulting numerically calculated passage time density
and a histogram of simulated passage time density are shown on the right in Fig. 2. There is very good
agreement between the numerical and simulated passage time densities.

Table 1 shows the performance of our algorithm on two architectures: a Fujitsu AP3000 distributed memory
parallel computer running Solaris and a Linux-based PC workstation cluster. The AP3000 is based on a
grid of 60 processing nodes, each of which has a UltraSPARC 300MHz processor and 256MB RAM. These
nodes are interconnected by a 2D wraparound mesh network that uses wormhole routing and that has a
peak throughput of 520Mbps (megabits per second). The PC cluster is a vanilla network of workstations,
consisting of 32 Althon 1.4GHz PCs each with 512MB RAM linked together by a 100Mbps switched
Ethernet network. Distributed run-time is measured as the maximum processor run-time from the start of
the first uniformization iteration. The speedup forp processors, denoted bySp, is given by the run-time
of the sequential solution (p = 1) divided by the run-time withp processors. Efficiency forp processors,
denoted byEp, is defined asEp = Sp/p.

Corresponding graphs of the speedup and efficiency achieved on each architecture are presented in Fig. 3.

5

AP3000 PC Cluster Comm. per iteration
p time (s) Sp Ep time (s) Sp Ep Messages Vol (MB)

1 1243.3 1.00 1.000 325.0 1.00 1.000 0 0
2 630.5 1.97 0.986 258.7 1.26 0.628 2 1.5
4 328.2 3.78 0.947 197.1 1.65 0.412 12 3.2
8 182.3 6.82 0.853 143.0 2.27 0.284 51 5.3
16 99.7 12.47 0.779 114.6 2.84 0.178 207 7.3
32 58.6 21.22 0.663 71.7 4.53 0.142 663 9.6

Table 1: Run-time, speedup (Sp), efficiency (Ep) and per-iteration communication overhead forp-
processor passage time density calculation in the FMS model withk = 7. Results are presented for an
AP3000 distributed memory parallel computer and a PC cluster.

5

10

15

20

25

30

5 10 15 20 25 30

sp
ee

du
p

�

processors

AP3000
PC cluster

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30

ef
fic

ie
nc

y

processors

AP3000
PC cluster

Figure 3: Speedup (left) and efficiency (right) for the FMS model withk = 7 on the AP3000 and a PC
cluster.

The speedups and efficiencies achieved on the AP3000 are excellent. Solution time on a single AP3000
node is 20 minutes 43 seconds whereas on 32 processors it takes just 58.6 seconds (i.e. 21.22 times faster,
an efficiency of 66.3%). With processors that are about 4 times faster and a communication network
that is about 6 times slower than the AP3000, and without exclusive access to either processors or the
interconnection network, we cannot expect such good results on the PC cluster. However, unusually for
problems of this type, reasonable speedups are still achieved, requiring 5 minutes 25 seconds on a single
PC and 1 minute 12 seconds on 32 PCs (i.e. 4.53 times faster, an efficiency of 14.2%). The speedup trend
for the PC cluster is shallow but linear, suggesting that speedup will continue to improve for an even larger
number of processors. Adding extra workstations also boosts solution capacity through additional RAM.

Not only does our distributed algorithm exhibit good scalability but it is also efficient in absolute terms –
using a technique based on Laplace transform inversion to calculate the same passage time density requires
1566 seconds (26 minutes 6 seconds) on 32 PCs [2].

6 Conclusion

We have developed a scalable, parallel, uniformization-based algorithm that computes passage time den-
sities in large Markov chains. Key to our scalability is the hypergraph partitioning scheme employed.
The method has been validated against simulation and found to be extremely accurate. The capability has
been built into the HYDRA tool, thus facilitating the detailed analysis of quality of service in non-trivial
high-level models previously considered intractable.

6

7 Acknowledgements

The authors would like to thank the Imperial College Parallel Computing Centre for the use of the Fujitsu
AP3000 supercomputer.

References

[1] P. G. Harrison, “Laplace transform inversion and passage-time distributions in Markov processes,”
Journal of Applied Probability, vol. 27, pp. 74–87, 1990.

[2] P. G. Harrison and W. J. Knottenbelt, “Passage-time distributions in large Markov chains,” inPro-
ceedings of ACM SIGMETRICS 2002, pp. 77–85, Marina Del Rey, USA, June 2002.

[3] W. Grassman, “Means and variances of time averages in Markovian environments,”European Journal
of Operational Research, vol. 31, no. 1, pp. 132–139, 1987.

[4] A. Reibman and K. Trivedi, “Numerical transient analysis of Markov models,”Computers and Oper-
ations Research, vol. 15, no. 1, pp. 19–36, 1988.

[5] B. Melamed and M. Yadin, “Randomization procedures in the computation of cumulative-time dis-
tributions over discrete state Markov processes,”Operations Research, vol. 32, pp. 926–944, July–
August 1984.

[6] J. Muppala and K. Trivedi, “Numerical transient analysis of finite Markovian queueing systems,”
Queueing and Related Models, U.N. Bhat, I.V. Basawa (eds.), pp. 262–284, 1992.

[7] U. Catalÿurek and C. Aykanat, “Hypergraph-partitioning-based decomposition for parallel sparse-
matrix vector multiplication,” IEEE Transactions on Parallel and Distributed Systems, vol. 10,
pp. 673–693, July 1999.

[8] G. Karypis and V. Kumar, “Multilevelk-way hypergraph parititioning,” Tech. Rep. #98-036, Univer-
sity of Minnesota, 1998.

[9] W. J. Knottenbelt, “Generalised Markovian analysis of timed transitions systems,” MSc thesis, Uni-
versity of Cape Town, South Africa, July 1996.

[10] W. Knottenbelt,Parallel Performance Analysis of Large Markov Models. PhD thesis, Imperial Col-
lege, London, United Kingdom, February 2000.

[11] W. Knottenbelt, P. Harrison, M. Mestern, and P. Kritzinger, “A probabilistic dynamic technique for
the distributed generation of very large state spaces,”Performance Evaluation, vol. 39, pp. 127–148,
February 2000.

[12] D. Deavours and W. Sanders, “An efficient disk-based tool for solving very large Markov models,”
in Lecture Notes in Computer Science 1245: Proceedings of the 9th International Conference on
Modelling, Techniques and Tools (TOOLS ’97), (St. Malo, France), pp. 58–71, Springer Verlag, 3–6
June 1997.

[13] W. Knottenbelt and P. Harrison, “Distributed disk-based solution techniques for large Markov mod-
els,” in Proceedings of the 3rd International Meeting on the Numerical Solution of Markov Chains
(NSMC ’99), (Zaragoza, Spain), pp. 58–75, September 1999.

[14] W. Gropp, E. Lusk, and A. Skjellum,Using MPI: Portable Parallel Programming with the Message
Passing Interface. Cambridge, Massachussetts: MIT Press, 1994.

[15] G. Ciardo and K. Trivedi, “A decomposition approach for stochastic reward net models,”Performance
Evaluation, vol. 18, no. 1, pp. 37–59, 1993.

7

