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Abstract. The modern world features a plethora of social, technolog-
ical and biological epidemic phenomena. These epidemics now spread
at unprecedented rates thanks to advances in industrialisation, trans-
port and telecommunications. Effective real-time decision making and
management of modern epidemic outbreaks depends on the two factors:
the ability to determine epidemic parameters as the epidemic unfolds,
and the ability to characterise rigorously the uncertainties inherent in
these parameters. This paper presents a generic maximum-likelihood-
based methodology for online epidemic fitting of SIR models from a
single trace which yields confidence intervals on parameter values. The
method is fully automated and avoids the laborious manual efforts tra-
ditionally deployed in the modelling of biological epidemics. We present
case studies based on both synthetic and real data.
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1 Introduction

I have called the uncertainty that surrounds any response to a
microbial outbreak the Fog of Epidemics, analogous to the Fog of
War of which historians speak.

Richard M. Krause

In this modern era, technological advances enable a deadly disease to spread
across the globe in just a few days. If during the times of the Black Death
people typically travelled less than 10 miles in a day, nowadays 14 000 miles can
be covered in a day, resulting in unprecedented rates of infection spreading [19].
In addition to biological epidemics, phenomena such as social and technological
epidemics have emerged due to the extensive coverage and penetration of the
Internet and social media [3, 14,23, 4]. Online phenomena are characterised by
a rapid, exponential spread through the population and are often triggered by
seemingly inconsequential causes compared to the magnitude of their effects.
The ability to predict and control such events is a topic of increasing interest.

Several formal quantitative approaches are available for making predictions
about infectious disease. Although widely used in contingency planning, pre-
dictive modelling is still “the art of possible”. The key requirement for a good



model is to provide accurate predictions, although it is already well established
that such predictions cannot achieve perfect accuracy. This uncertainty arises
due to two main factors: (i) the transmission of infection is stochastic in nature,
making it very unlikely that one observes identical dynamic disease trajectories,
even when the underlying epidemic processes are parameterically identical; (ii)
models are an approximation, and rare or unforeseen behavioural patterns can-
not be captured, but can have a significant impact on the disease dynamics [16].
Uncertainty can also result from assumptions made about the infectious agent
and the environment, or even the technical details of the model.

The main contribution of this paper is a generic methodology for on-the-
fly epidemic fitting of a classical compartmental epidemiological model, namely
Susceptible-Infected-Recovered (SIR) [17], with inbuilt characterisation of pa-
rameter uncertainty. Given a single data trace of an evolving outbreak, a tech-
nique is developed for the fitting of SIR model parameters using an optimization
method that employs a maximum-likelihood-based objective function. The out-
put is a set of confidence intervals on key parameter values. In contrast with
traditional approaches deployed in biological epidemics, which require laborious
manual work for index case identification, lab testing and contact tracing, this
method is fully automated.

A novel aspect of this research is connected to one of the major challenges:
not knowing or being able to estimate from past data the initial number of
susceptible and infected individuals. These initial conditions cause potentially
large uncertainties in the estimation procedure. Our previous attempts to address
this challenge using a least-squares fitting procedure yielded point estimates for
parameters without any characterisation of related uncertainty [21].

The rest of this paper is organised as follows. Section 2 presents background
information regarding infectious disease modelling. Section 3 describes the main
optimisation methods used for fitting the models, estimating the parameters and
setting confidence intervals to capture their uncertainty. Section 4 presents some
example analyses on synthetic and real disease data. Section 5 concludes.

2 Background

Improved sanitation, antibiotics and vaccination programs created a confidence
in the 1960s that infectious disease spreading would be eliminated. However, in-
fectious disease agents adapt and evolve over time, so that new infectious diseases
have emerged and some existing diseases have re-emerged. Mathematical models
have become important tools in planning, implementing, evaluating and optimiz-
ing various detection, prevention, therapy and control programs. Epidemiology
modelling can contribute to the design and analysis of epidemiological surveys,
suggest crucial data that should be collected, identify trends, make forecasts and
estimate the uncertainty in forecasts [15,13,6,9, 11].

An epidemic is defined as a widespread occurrence of an infectious disease in
a community at a particular time. Real-time forecasts of epidemic spread using
data-driven models have been hindered by technical challenges posed by param-



eter estimation and validation [21]. Furthermore, traditional approaches rely on
laborious and often infeasible approaches to initial estimates for parameters,
such as studying in detail the index cases of the outbreak to infer, for example,
the recovery rate as the reciprocal of the average infectious period [7].

In 1927 Kermack and McKendrick proposed one of the classical compartmen-
tal models most widely used in epidemiology, namely SIR [17]. Using Ordinary
Differential Equations (ODEs), this models the evolution of an epidemic over
time in terms of the number of Susceptible, Infected and Recovered individuals.
Given a closed population of individuals, it defines

— S(t) = individuals not yet infected at time ¢, but susceptible to infection
— I(t) = individuals infected at time ¢ by contact with susceptibles at a rate
— R(t) = individuals recovered at time ¢ at a constant rate -y

We assume that the size of each compartment is a differentiable function of
time. We ignore intricacies related to the pattern of contact between individuals,
considering the instantaneous rate of new infections to be SSI. The recovery
rate 7y is proportional to the number of infected individuals, as each individual
is assumed to recover at a constant rate ~.

These assumptions lead to the set of differential equations:
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The initial values of the SIR model must satisfy the following conditions:
5(0) =Sy >0 (4)
10) =1, > 0 (5)
R(0)=0 (6)

and at any time, ¢, S(t) + I1(t) + R(t) = N, where N is the total population size.

Such compartmental models can forecast the disease spread between individ-
uals, not only in one population but also in various subpopulations and across
localities [20,2]. An outbreak originating in a seed subpopulation could poten-
tially lead to a global-scale epidemic. A computational model called the Global
Epidemic and Mobility model (GLEAM) is capable of integrating high-resolution
data on human demography and mobility on a global scale in a metapopulation
stochastic epidemic framework. GLEAM can simulate the global spread of in-
fluenza in order to provide insights on intervention strategies including vaccina-
tions, antiviral treatment and travel restrictions [22].

A compelling interdisciplinary analysis of methods through which model un-
certainty can be negotiated is presented in [9]. The study shows that many



models provide only cursory reference to the uncertainties of the information and
data, or the parameters used, concluding that a more careful consideration of the
limitations and uncertainties present in modelling epidemic phenomena would
drastically improve its value. It is therefore essential to implement a rigorous
and transparent technique that can provide confidence intervals on parameters
for a clear understanding of evolving scenarios.

3 Methodology

Given a data set, we estimate the parameters using a two-pass methodology
that combines least squares (LS) and maximum likelihood (ML) based optimi-
sation techniques. Uncertainty quantification is then performed using the profiles
obtained from the ML estimates.

3.1 Model Fitting Procedure

Mathematical modelling of infectious disease dynamics relies on a series of as-
sumptions regarding key parameters that cannot be measured directly. We dis-
cuss here the technique used to fit the parameters of our model as an outbreak
unfolds over time. In particular, we consider the challenges of estimating the
initial number of susceptible and infected individuals in the target population,
when these values are unknown. Currently, there is no principled way of doing
this, as traditionally they are either known or can be estimated from the context
[21]. However, in an era of social and technological epidemics, we argue that time
and speed of movement make it infeasible to obtain accurate manual estimates.

3.1.1 Online model fitting We attempt to account for uncertainty as each
outbreak unfolds, over time. To achieve this, we apply our fitting methodology
on truncated data sets. We initially consider the first 10 observations from the
outbreak. We then create new truncated datasets by adding each subsequent
observation as the outbreak unfolds.

Using the SIR model, we propose two methodologies, one for estimating the
parameters (3, 7, Sp, and another for estimating 3, v, So and Iy. By definition, all
these quantities are positive, allowing us to apply a log transformation, yielding
an unconstrained optimisation landscape with no possibility to explore infeasible
values. Similarly a scaled logistic transformation can be applied to the initial
number of susceptibles Sy and infecteds Iy when these are known to be bounded
above by some constant C. The transformation function is:

trans(x) = log(%) (7)

and its corresponding inverse is:

c

trans_l(y) = m



3.1.2 Parameter estimation using Maximum Likelihood The Maxi-
mum Likelihood method is an analytic procedure for finding parameter vectors
which maximise the likelihood of a dataset of iid observations. The likelihood
function is defined as:

n

L(a |IE1, e 7In) = f(xla‘rQa e 7:CTL|0) = Hf(x7|0) (9)
i=1
where f(z1,22,...,2,|0) is the joint density function of the observations and

0 the vector of unknown parameters. The maximum likelihood estimator 6 is
then:

0 = arg max L(0 | x1,...,x,) (10)
0

Equivalently, one can minimise the negative log likelihood:

6 = arg min ( —log £(6 | z1,...,2,)) = arg min ( — Zlog f(zi]0)) (11)
o 0 i=1

In the present work we assume the observations to be Poisson distributed.
Typically, epidemiologists model variability in disease occurrence using either
Binomial, Poisson or Exponential distributions. [12] argues that the three dis-
tributions have common attributes and underlying assumptions that tend to
yield similar results. They also state that the Poisson distribution is widely used
by epidemiologists when the data involves summary counts of cases. Moreover,
since we deal with discrete observations, the variance is expected to scale with
the number of infected individuals [5, 10].

The estimates are computed using the mle2 function in the bbmle R pack-
age, which requires a negative log-likelihood function and starting values for
the initial parameters to be specified. A computational challenge arises through
the calculation of confidence intervals within mle2. This requires calculating the
covariance matrix for the parameters, which is done by inversion of the Hes-
sian matrix at the optimum and can be unsuccessful depending on the initial
parameters. To overcome this, we first applied a Least Square based fitting pro-
cedure and used the estimates provided as starting values in order to be able to
successfully estimate the confidence intervals.

The set of parameters that gives the best Maximum Likelihood based fit to
the data is found using the Nelder-Mead algorithm, a widely used gradient-free
method for unconstrained multidimensional optimization [18]. The first-order
ODE:s are solved using the [soda R package. For optimal results, it is important
to specify a small threshold for the absolute error tolerance.

3.1.3 Confidence intervals We make use of profile confidence intervals to
indicate how reliable the estimate for a parameter is. The level of confidence
is taken to be the probability that the interval contains the true value of the
parameter, given a distribution of samples.



Traditionally, Wald-type confidence intervals are used as an approximation
to profile intervals. The standard procedure for computing such a confidence
interval is:

estimate £ (percentile x SE(estimate)) (12)

where SE is the standard error and the percentile represents the desired con-
fidence level with respect to some reference distribution. Although easier to
compute for complex models, it performs poorly when the likelihood surface is
not quadratic.

A more robust technique for constructing confidence regions can be derived
from the asymptotic x? distribution of the likelihood ratio test statistic. Given a
maximum likelihood estimate 6 of a parameter vector 6y, an approximate (1—q)
confidence interval for @y is the set of values of satisfying:

{6:2[1(6) — U(69)] < cra—a} (13)

where cg.1_o is the (1 — a)th quantile of the y? distribution with k& degrees
of freedom. Confidence intervals for individual parameters can be obtained by
treating the others as “nuisance parameters” and maximising over them [24].

We compute two-sided confidence intervals using the confint function in the
bbmle R package, at various confidence levels: 99%, 95%, 90%, 80% and 50%.
In addition, we provide a 3D visualisation of the confidence intervals for the
case when the unknown parameters vector is 8, v and Sy. This representation
takes the shape of an ellipsoid, with each of the axis corresponding to one of the
parameters to estimate. Note that the semi-axes may be unequal due to their
asymmetric confidence intervals.

4 Results

In order to illustrate key aspects of the proposed approach we use both syn-
thetic and a real-world datasets. The synthetic datasets were generated based
on Gillespie’s Stochastic Simulation Algorithm, using the ssa function in the
GillespieSSA R package. The real dataset represents positive laboratory tests for
influenza summed over all subtypes of the flu virus, as reported to the Centre of
Disease Control (CDC) during the 2012/2013 flu season (starting in September
2012). The data were obtained via the FluView Web Portall.

4.1 Synthetic Data
The synthetic data set used in this section was generated by simulating an SIR
epidemic with known parameters 5 = 0.001, v = 0.1 and initial conditions

So =500, Iy =10, Ry = 0.

! http://gis.cdc.gov/grasp/fluview /fluportaldashboard.html



Synthetic Data with 3, v, Sg unknown We fitted truncated datasets ob-
tained of 25%, 50%, 75% and 100% of the data in order to analyse the uncer-
tainty in the parameters as more data becomes available. As time progresses, we
observe that our fits become more and more stable as illustrated in Figure 1.
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Fig. 1: Fitting of SIR model with 3, v, Sy unknown to synthetic data

Figure 2 shows the profiles obtained from the ML estimate at various con-
fidence levels for log-based transformations of each of the unknown parameters
B, v and Sy. For example we see that the 95% confidence interval for log(f) is (-
7.083,-6.962), yielding a 95% confidence interval for § as (8.39e-04, 9.47e-04). As
expected, the estimated range of possible values is wider as the confidence level
increases. This is illustrated in the isosurface plot extended to three dimensions
to visually represent the uncertainty inherent in the parameters.

Table 1 shows the lower and upper bounds on each parameter when the
data is fitted over time. We observe the uncertainty of the parameters tends to

decrease as more observations are considered.
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Fig. 2: Likelihood profile plots and corresponding isosurface plot for the esti-
mated confidence intervals of transformed parameters when (3, v and Sy are
unknown (synthetic data)

Table 1: 95% Confidence Intervals for synthetic data

Data% B ~ S0
Lower | Upper | Lower | Upper |Lower|Upper
25% |5.66e-048.47e-04(1.08e-01]1.93e-01| 569 | 962
50% |7.17e-04|8.36e-04|1.17e-01|1.35e-01| 590 | 692
75% |7.62e-04|8.68e-04[1.13e-01]1.26e-01| 568 | 646
100% [8.39¢-04]9.47¢-04]1.03e-01|1.14e-01| 519 | 582

sarf o



Synthetic Data with 3, v, Sg, Ip unknown Figure 3 captures the un-
certainty characterised over the parameters 3, v, and the initial conditions Sy,
Iy, where Iy is bounded by Sy using a logistic based transformation. The un-
certainty ranges and estimated values are similar to the ones computed by the
optimisation with known I, demonstrating the robustness of the optimisation.
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Fig. 3: Likelihood profile plots for the estimated confidence intervals of trans-
formed parameters when 3, v, Sp and Iy are unknown (synthetic data)

True value recoverability rate for parameters For a known set of ground
truth parameters, we use Gillespie’s stochastic simulation algorithm to generate
1000 sample trajectories of the number of infected individuals over time. For each
trajectory, we apply our methodology to obtain 95% confidence intervals for each
parameter. We might have expected that 95% of the time, the true values of the
parameters should lie within the 95% confidence interval. However, Table 2 shows
that this is not the case. This emphasises how difficult it is to obtain accurate



estimates of the uncertainty of the parameters from a single data trace. Such
traces may be heavily affected by stochastic variation, especially in cases like our
example where there are a relatively small number of initial susceptibles [1]. We
also note the improvement in recovery rates for 5 and Sy when I is included
as an unknown parameter, showing the benefits of maintaining flexibility with
respect to this critical initial condition.

Table 2: True value recoverability rate for unknown parameters 3, v and Sy (left)
and for 3, v, Sp and I (right)

Parameter|Recoverability rate Parameter |Recoverability rate
B8 41.99%
B8 26.59%
~ 26.28%
~ 26.28%
So 34.44%
So 31.82%
3 S 8.86% Iy 48.04%
» 1> 20 ° B, v, So, Io 9.46%

4.2 CDC Influenza Data

We used data regarding positive lab-based influenza tests reported to the Center
of Disease Control and Prevention (CDC) during the 2012/2013 influenza season.
Figure 4 shows the fitting over time of truncated datasets, illustrating that
the algorithm is robust enough to be applied to real data.
Figure 5, Figure 6 and Table 3 characterise the uncertainty of the parameters
for the real data set. The similar behaviour to the synthetic data reinforces our
results and methodology.

Table 3: 95% Confidence intervals for influenza data (* - non convergence)

Data% B 5 S0
Upper
X
30118
23515
23292

Lower
*

26769
22091
22031

Lower
*

3.46e-01
2.90e-01
2.90e-01

Upper
X
3.81e-01
3.06e-01
3.03e-01

Lower
*

2.95e-05
3.50e-05
3.53e-05

Upper
X
3.22e-05
3.69e-05
3.70e-05

25%
50%
75%
100%
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Fig. 4: Fitting of SIR model with 3, v, Syp unknown to real influenza data
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Fig.5: Likelihood profile plots and corresponding isosurface plot for the esti-

mated confidence intervals of transformed parameters when 3, v and Sy are
unknown (influenza data)
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5 Conclusion

In this paper we provided a generic maximum-likelihood-based approach towards
the on-the-fly epidemic fitting of SIR models from a single trace, which yields
confidence intervals on parameter values. In contrast to traditional biological
epidemiological modelling techniques, our approach is fully automated and the
parameters to be estimated include the number of initial susceptibles and the
initial number of infected in the population. Visualising the fitted parameters
gives rise an isosurface plot of the feasible parameter ranges corresponding to
each confidence level.

We generated multiple synthetic disease outbreak trajectories via stochastic
simulation and fitted parameters to those trajectories. The “true” parameters
were contained in the corresponding confidence bounds only for a relatively
low proportion of the time, emphasising (a) the difficulty of obtaining accurate
parameter estimations from a single epidemic trace and (b) the large potential
impact of small random variations, especially those occurring early on in a trace.

It is expected that real systems are likely to exhibit different characteris-
tics than the ideal ones assumed by the classical SIR model; for example real
systems may feature time-varying parameters and the homogeneous mixing as-
sumption may not apply. Nevertheless, the models may have utility in predicting
the stochastic impact of candidate interventions in real systems with bounds [8];
a simulation-based methodology for this will be the focus of our future work.
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