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Abstract—Virtual machine consolidation is attractive in cloud
computing platforms for several reasons including reduced infras-
tructure costs, lower energy consumption and ease of manage-
ment. However, the interference between co-resident workloads
caused by virtualization can violate the service level objectives
(SLOs) that the cloud platform guarantees. Existing solutions to
minimize interference between virtual machines (VMs) are mostly
based on comprehensive micro-benchmarks or online training
which makes them computationally intensive.

In this paper, we present CloudScope, a system for diagnosing
interference for multi-tenant cloud systems in a lightweight way.
CloudScope employs a discrete-time Markov Chain model for
the online prediction of performance interference of co-resident
VMs. It uses the results to optimally (re)assign VMs to physical
machines and to optimize the hypervisor configuration, e.g.
the CPU share it can use, for different workloads. We have
implemented CloudScope on top of the Xen hypervisor and
conducted experiments using a set of CPU, disk, and network
intensive workloads and a real system (MapReduce). Our results
show that CloudScope interference prediction achieves an average
error of 9%. The interference-aware scheduler improves VM
performance by up to 10% compared to the default scheduler.
In addition, the hypervisor reconfiguration can improve network
throughput by up to 30%.

I. INTRODUCTION

The demand for cloud computing has been constantly
increasing during recent years. Millions of servers are hosted
and utilized in data centers every day and many organizations
deploy their own, private cloud services to be able to better
manage their own computing infrastructure [1]. By 2013, more
than 75% of enterprise workloads were running on virtualized
environments [2]. Virtualization enables cloud providers to
efficiently allocate resources to tenants on demand and con-
solidate tenants’ workloads to reduce operational cost.

Successful management of a cloud platform requires the
optimal assignment of incoming virtual machines (VMs) or
guests to available physical machines (PMs) or hosts. This
scheduling problem is constrained by both the tenants’ Service
Level Objectives (SLOs) and the available resources. Co-
resident VMs are desirable for the cloud provider as this
means utilizing available resources more efficiently. However,
the more VMs are consolidated on a single machine, the more
instances compete for resources and the hypervisor capacity.
As a result of this interference, guest systems may experience
high performance variations which lead to unpredictable sys-
tem behavior and SLO violations [3], [4] such as a drop in
application throughput or an increase in the response time of
a web service.

Recognizing this problem, researchers have developed
many methods to identify and predict performance interfer-
ence. This work can be categorized into two groups: (1)
machine learning-based approaches [1], [4], [5], [6], [7], [8],
[9], [10] and (2) queuing model-based approaches [11], [12],
[13]. The first group uses sophisticated micro-benchmarks
and online training to predict the performance interference
of different applications. As prediction is based on historical
data, adaptation to unknown workloads becomes difficult.
Also, continuously updating the models is computationally
expensive. The second group relies on unified queuing models
and system attributes such as service and arrival rates which
are usually difficult to obtain due to system complexity and
varying workloads. In addition, these methods support only
specific hardware configurations and existing applications.
They do not provide a method which is general and efficient
enough for complex cloud environments where applications
change frequently.

In this paper, we consider this co-residency problem and
present CloudScope, a system that diagnoses the bottlenecks
of co-resident VMs and mitigates their interference based
on a lightweight prediction model. The model is a discrete-
time Markov Chain that predicts performance slowdown when
compared to an environment without hypervisor overhead and
resource contention, represented by a virtualization-slowdown
(V-slowdown) factor. The key feature of CloudScope is its
ability to efficiently characterize the performance degradation
by probing the system behavior which includes both the be-
havior of the hypervisor layer and the hardware characteristics
of different workloads. Current systems [1], [4], [6], [7], [9]
do not explicitly consider these factors in an analytical model.

CloudScope’s model parameters can be easily obtained via
hypervisor profiling utilities such as xentop. As these values
are by default reported from the hypervisor, no overhead is
introduced. CloudScope employs its model to control guest
instance placement and reduce SLO violations by minimizing
interference effects. It also manipulates the hypervisor to
achieve an optimal configuration by, for example, increasing
the CPU share available to the hypervisor. Because of the prac-
ticality of this analytical model, adaptive hypervisor control
and migration or consolidation of VMs becomes a lightweight
and fast operation that does not require complex training or
micro-benchmarking.

We implement CloudScope and evaluate its accuracy and
effectiveness using a wide spectrum of workload scenarios
including a set of CPU, disk, and network intensive bench-
marks and a real workload using Hadoop MapReduce [14].



CloudScope’s interference prediction model can achieve a
minimum prediction error of 4.8% and is less than 20%
for all our test workloads. We illustrate the feasibility of
CloudScope’s interference-aware VM scheduler by comparing
it to the default scheduler of a CloudStack [15] deployment
and achieve an overall performance improvement of up to
10%. In addition we show how CloudScope can be applied to
self-adaptive hypervisor control to answer questions such as:
which configurations can best serve the guests performance
requirements? We make the following contributions:

• We introduce a lightweight analytical model solely
based on available system parameters to predict the
impact of co-residing VMs on performance.

• We combine both the behavior of the hypervisor and
the specific hardware requirements of different work-
loads in our model for fast and accurate predictions.

• We implement an interference-aware scheduler for a
CloudStack deployment and illustrate the effect of a
self-adaptive Xen control domain.

The rest of the paper is organized as follows. Section II
demonstrates the performance degradation caused by hyper-
visor overhead and resource contention using benchmarking
experiments. We present CloudScope’s system design and
its performance model in Section III and discuss details
on interference handling in Section IV. The validation and
experimental results are presented in Section V. Section VI
compares our work with existing approaches and Section VII
concludes the paper.

II. PERFORMANCE INTERFERENCE IN
PARAVIRTUALIZATION

Performance interference in multi-tenant data centers is
well studied both in the context of prediction and measurement.
Many benchmarking studies are devoted to understanding the
performance of EC2 VM instances [1], [16], their network [3],
[6], [17] and applications deployed in them [18], [19]. These
studies found that virtualization and multi-tenancy are the
major causes for resource contention as multiple VMs are
placed on a single host. This leads to performance variation
in EC2 instances. In this section, we show that these perfor-
mance bottlenecks depend on different workload parameters
and quantify the impact on the underlying system.

A. Virtualization Background

The Xen hypervisor is widely used as the basis of many
commercial and open source applications. It is also used in the
largest clouds in production such as Amazon and Rackspace.
We picked Xen as the basis for our model in this work as it
is the only open source bare-metal hypervisor. Xen provides
a spectrum of virtualization modes, where paravirtualization
(PV) and full virtualization are the poles. The main difference
between PV and full virtualization is that the PV guest kernel
(the user domain or DomU) will issue hypercalls, which are
direct calls to the hypervisor’s control domain (Dom0), instead
of privileged system instructions. This relationship is detailed
in Figure 1. For example, instead of issuing a system call to
allocate memory address space for a process, the PV guest will
make a hypercall to Xen, requesting the address space. PV
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Figure 1. Xen hypervisor architecture with guest VMs

Table I. BENCHMARKING CONFIGURATION

PM Two Intel 8-core 2.9 GHz (32 hyper-threading), 256 GB Memory
VM-CPU 4 vCPUs (1 GHz per vCPU), 2 GB Memory, 5 GB local storage
VM-disk 4 vCPUs (1 GHz per vCPU), 8 GB Memory, 32 GB local storage
VM-net 4 vCPUs (1 GHz per vCPU), 8 GB Memory, 1 vNic

is very efficient and lightweight and hence it is more widely
adopted as a virtualization solution [3], [5] which is why in
this work we focus on modeling Xen’s PV mode.

Although PV has significant performance benefits as
demonstrated in the original Xen paper [20], the existence
of an additional layer between the VM applications and the
hardware introduces overhead. The overhead depends on the
type of workload that is executed by the guest [21]. In general,
CPU-intensive guest code runs close to 100% native speed,
while I/O might take considerably longer due to the virtual-
ization layer [21]. However, CPU oversubscription is common
in cloud environments which also limits the performance of
CPU-intensive jobs [22] .

CPU performance is affected by the time slices allocated
to the VMs which are based on a weight (the CPU share for
each VM and the hypervisor), a cap (the maximum usage), and
the amount of pending tasks for the physical processors [23],
[24], [25]. Disk and network I/O suffer from overhead caused
by moving data between the VM, shared memory, and the
physical devices [17], [25]. As shown in Figure 1, Xen uses
two daemon processes, blkfront and blkback, to pass
I/O requests between DomU and Dom0 via a shared memory
page. Similarly, netfront and netback share two pages,
one for passing packets coming from the network and the other
for packets coming from DomU. Xen also places upper limits
on the number of requests that can be placed in this shared
memory which may result in delays due to blocking. This
means that not only the latency increases but also that the
bandwidth is reduced.

B. Measuring the Effect of Performance Interference

To illustrate the problems resulting from the above de-
scribed virtualization techniques, we measure the performance
of CPU, disk, and network intensive applications sharing re-
sources on one physical server. Table I gives the configurations
for the PM and the VMs for each experiment.
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Figure 2. Co-resident VM performance measurements for (a) CPU, (b) disk and (c) network intensive workloads for revealing different system bottlenecks.
Figure (a) shows the average execution time of executing prime 2000, 3000, and 5000. Figure (b) shows the total sequential read disk I/O throughput of Dom0
and 1, 2, 5, and 10 guest VMs with different block sizes. Figure (c) shows the normalized network throughput of one VM co-resident with another 1 to 9 VMs
and the corresponding utilization of Dom0.

To generate a CPU intensive workload we use the
sysbench [26] benchmark with 4 threads to generate CPU
load for a single VM. We measure the mean utilization of
the VM for different prime number calculations. For prime
numbers up to 2000, 3000, and 5000 we see utilization of
20%, 50%, and 90% respectively. Figure 2(a) shows the mean
completion time for the jobs while increasing the number of
co-resident VMs from 1 to 45. We observe that the time for
calculating prime numbers up to 2000 is stable until 35 VMs
and then slightly increases. For prime numbers up to 3000 and
5000, we already observe an increase in completion time for
5 co-resident VMs with a steeper increase from 25 VMs on.

This behavior reflects the effects of (1) the high VM CPU
load, (2) the Xen scheduling overhead and (3) CPU resource
contention. Resource contention depends on the individual
loads within each VM and the number of VMs running such
loads. For example, when each VM runs prime 3000 it will
produce an average utilization of 50% individually on each
vCPU; thus we expect the physical machine to be saturated
with 46 simultaneously running VMs:

VMs50 =
32× 2.9 GHz

4× 1 GHz× 50%
≈ 46

Hence, the results for prime 3000 in Figure 2(a) show the
Xen scheduling overhead without CPU contention which can
go as high as 1.7x for 45 VMs. We also observe that for
prime 5000, the mean execution time is affected earlier as each
VM produces 90% utilization. After 25 VMs, the increase in
execution time then comes from both Xen scheduling overhead
and resource contention.

For the disk intensive workload, we run the fio [27]
benchmark on Dom0 and individual VMs. We perform se-
quential reads and vary the block size from 1 KB to 4 MB.
Figure 2(b) details the total disk throughput of Dom0 and
1 to 10 DomUs processing requests to read a 5 GB file
simultaneously. We can split the results into three phases:

(1) For small block sizes (1 KB to 16 KB), we observe
a high load (80 to 90%) on Dom0 as it has to process a
large number of requests in parallel. In this phase, the total

disk throughput is bounded by Dom0’s capacity. (2) After that
(32 KB to 128 KB) the system is bound by the disk throughput.
(3) Once the block size goes beyond 128 KB, the throughput
drops for 2, 5, and 10 DomUs while the average utilization of
Dom0 stays at 30 to 40%.

The grant memory contention explains the drop in through-
put for the VMs from a block size of 256 KB. The size of a
Xen grant table entry is 4 KB [23] and the maximum number
of entries is limited to 1281 [25], [24]. As a result, we have:
256 KB/4 KB = 64 table entries and 64×2 = 128. When the
block sizes of more than two VMs are larger than 256 KB, the
grant table will be locked when there are too many concurrent
disk requests which causes delays and decreases the total disk
throughput significantly.

To produce a network intensive workload, we start 10 VMs
with iperf [28] servers on the same physical machine.
We then launch another 10 VMs as clients on other hosts
in our local private cloud. All the VMs are connected via
10 Gbps links. Figure 2(c) shows the average normalized
network throughput and the corresponding average utilization
of Dom0. Throughput is normalized against the performance
of when there is only one VM processing network requests.

The throughput of the VMs decreases and the mean CPU
utilization of Dom0 increases with a larger number of co-
resident VMs. The reason for the drop is a combination of the
memory page locking for network requests (see Section II-A)
and the scheduling and processing overhead of Dom0.

III. CLOUDSCOPE SYSTEM DESIGN

Our benchmarking results demonstrate that VM interfer-
ence can have a significant impact on performance. We now
describe CloudScope, a system that predicts the effects of
interference and reacts accordingly to prevent performance
degradation. CloudScope runs within each host in the cloud
system and is complementary to current resource manage-
ment components (e.g. VMware Distributed Resource Sched-

1This is set in the Xen kernel via: MAX_MAPTRACK_TO_GRANTS_RATIO
and gnttab_max_nr_frames
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uler [29] or CloudStack resource manager [15]) that han-
dle SLO violations, dynamic VM scaling and elastic server
consolidation [30], [31]. CloudScope incorporates the VM
application SLO monitor and evaluator developed in our pre-
vious work [19], [32]. Figure 3 illustrates the overall system
architecture which consists of three main parts:

Monitoring Component. The Monitoring Component col-
lects application and VM metrics at runtime. A daemon script
reads the resource usage for Dom0 and every VM within Dom0
via xentop. The resource metrics include CPU utilization,
memory consumption, disk I/O request statistics, network I/O,
number of virtual CPUs (vCPUs), and number of virtual NICs
(vNICs). External monitoring tools [19] are used to keep track
of application SLOs in terms of application metrics such as
response time, disk/network throughput, or job completion
time. The resource and SLO profiling metrics are fed to the
Interference Handling Manager.

Interference Handling Manager. The Interference Han-
dling Manager is composed of three main modules. The
application analysis module analyses the monitoring data from
each VM and obtains the application metrics. The result is
an initial application loading vector for each application VM.
The interference prediction module incorporates an analytical
model based on the V-slowdown factor (see Section III-B)
that infers the expected application performance degradation
from the profile of currently running guest domains and
Dom0. The interference conflict handling module provides
migration-based interference-aware scheduling and adaptive
Dom0 reconfiguration.

Dom0 Controller. The Dom0 controller calls the corre-
sponding APIs to trigger VM migration or Dom0 reconfigura-
tion based on the prediction results and the SLO targets.

In the rest of this section, we will provide details about our
interference prediction model.

A. Predicting Performance Interference

Section II showed that the performance of co-resident CPU,
disk, and network intensive applications may decrease due
to the paravirtualization protocol, the load of Dom0, and the
number of VMs competing for resources. We can view an ap-
plication as a sequence of micro job slices accessing different
system resources. Each application can be characterized with
a certain resource statistic using a loading vector [9], [33]
that represents the proportion of the time that an application
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Figure 4. State transition diagrams for (a) CPU, (b) disk, and (c) network
intensive workloads

spends on each resource. We define the V-slowdown δj of a
VM j, as the percentage of degradation in performance due to
co-residency compared to no co-residency. We obtain the V-
slowdown of an application VM by combining the slowdowns
of each resource.

Consider multiple applications running in VMs 1, . . . , n
with CPU utilizations util1, . . ., utiln on a single PM. A
job is considered a sequence of job slices scheduled by the
hypervisor to access the physical CPU, memory, disk and
network resources. We represent the processing steps of a VM
request within a PM as a discrete-time Markov Chain in which
the states represent the hypervisor layer and physical resources:
Dom0, pCPU, Disk, and Net as illustrated in Figure 4. In this
model, we do not deal with memory as a resource as it is by
default isolated and efficiently managed in Xen. Phenomenons
such as memory ballooning or cache effects [35] are out of
scope for this work.

Each Markov Chain in Figure 4 represents the processing
steps of a specific workload. Note that one job slice can only
be processed in one of the four states at any one time. A job
moves from state to state based on a probability that depends
on the current workloads within the system. In the following
we calculate these probabilities.

1) CPU workloads: When a CPU job arrives (see Fig-
ure 4(a)), the CPU scheduler has to schedule the vCPU to a
runnable queue of a pCPU (physical CPU). pDom0 denotes the
probability that in the next interval the job will be forwarded to
a pCPU. Assume that the vCPUs of Dom0 are modeled by n
M/G/1-PS queues, in which n represents the number of vCPUs
and the PS (processor sharing) policy reflects the scheduling
policy. In an M/G/1-PS queue, the average time spent in the



system by customers that have service time x is denoted by

T (x) =
x

C(1− ρ)

where C is the capacity of the server [34] and ρ is the
utilization of the server. As each job sees the same effective
service capacity C(1−ρ), the probability of leaving the Dom0
state, i.e., going to the pCPU state is:

pDom0 = 1− ρDom0 (1)

where pcpu represents the probability that a job completes
service at a pCPU and leaves the state. The derivation of
pcpu is based on the delay caused by oversubscribed resources
presented in Section II.

pcpu =

{
1 if CPU is not oversubscribed∑

j pCPUj∑
i utili×vCPUi

if CPU is oversubscribed
(2)

where pCPUj denotes the capacity of the jth physical CPU,
vCPUi denotes the capacity of the ith virtual CPU and utili
denotes the CPU utilization due to VMi. If pcpu < 1, then the
CPU resources of the physical machine are oversubscribed;
otherwise pcpu = 1.

2) I/O workloads: Recall that the guest VM has a shared
memory area with Dom0 for processing I/O requests. The Xen
hypervisor also has an event channel for handling the interrupts
from guest VMs. This channel goes through the hypervisor and
has some latency associated with it. Note that we account for
this delay in our Dom0 state. When one VM needs to perform
I/O, it follows these steps (see also Figures 4(b) and 4(c)):

1) The VM creates an I/O request and places it in the
shared memory area (grant table). This process is
represented by state pCPU .

2) The VM sends an interruption to Dom0 (state Dom0)
via a pre-established channel. Dom0 reads the shared
memory and asks the hypervisor for access to the
memory areas pointed to by this request.

3) Dom0 submits the request either to storage or the
network (see state Disk and Net). When the request
completes, Dom0 places the response back in the
shared memory, revokes its access to the memory ar-
eas pointed to by the request and sends a notification
to the guest VM. The guest VM reads the response
from the shared memory, clears the interruption chan-
nel and accepts the response as success or failure for
that request.

Equation 3 abstracts the effect of the memory map locking
delay, where

∑
i bsi represents the total I/O sizes of all

requests issued at the same time. When this number is larger
than the maximum 128 entries × 4 KB, the memory page locks
and updates itself; thus some of the requests have to be placed
in the next interval. p′cpu and p′′cpu represent the probability of a
request successfully accessing the memory table and passing
the request to Dom0 for disk and network requests respectively.
They depend on pcpu because performing I/O operations also
consumes CPU cycles.

p′cpu = p′′cpu =

 1 if b
∑

i bsi
128×4 c < 1

1

b
∑

i bsi
128×4 c+1

× pcpu if b
∑

i bsi
128×4 c ≥ 1

(3)
Note that calculation of p′cpu and p′′cpu differ slightly as

∑
i bsi

depends on whether it relates to disk or network I/O. In the
case of disk I/O, the total I/O size counts both read and
write requests. However, we have to count the total I/O size
of sending and receiving packets for network I/O separately
because they use separate memory tables.

Disk requests are served in FIFO order and thus, the arrival
queue length at any disk is equal to ρ

1−ρ , where ρ is the
utilization of the server. If the queue length is smaller than
1, meaning there are no queued requests, then the probability
of a job accessing the physical disk is pdisk = 1 . Based on
this, the probability of completing disk service is:

pdisk =
1− ρdisk

ρdisk
(4)

where ρdisk represents the utilization of the disk channel. For
block devices such as iSCSI, which are common in cloud
environments, ρdisk would be the utilization of the connection
between the host and the iSCSI server. In our setup, we have
10 Gbps links between the server and the storage server which
comprises multiple disk volumes. We found that in this case
pdisk is usually close to 1.

The probability of network requests being served and
leaving the system can be calculated as,

pnet =

{
1 if pNIC is not oversubscribed∑

j pNIC j∑
i utili×vNIC i

if pNIC is oversubscribed
(5)

where pNICj denotes the capacity of the jth physical network
interface, while vNIC i denotes the capacities of the ith virtual
network interface. utili denotes the network utilization due to
VMi. Note that we can easily obtain all these parameters, such
as physical or virtual CPU utilization or network capacity, from
hypervisor profiling utilities such as xentop.

B. Virtualization Slowdown Factor

The states of the Markov Chains of Figure 4 represent
a system of inter-related geometric distributions in sequence.
Thus the mean time to absorption, i.e. the mean delay for each
chain is:

E(Kcpu) =
1

pDom0
+

1

pcpu

E(Kdisk) =
1

pDom0
+

1

p′cpu
+

1

pdisk

E(Knet) =
1

pDom0
+

1

p′′cpu
+

1

pnet

E(Kcpu), E(Kdisk) and E(Knet) represent the mean time
that a VM request will take to complete execution on the CPU,
disk or network given a certain workload on the virtualized
system. We define E′(Kcpu), E′(Kdisk) and E′(Knet) as the
expected execution time for a VM running alone or running



with other VMs in an environment with unsaturated resources,
i.e., when pDom0, pcpu, p′cpu, p′′cpu, pdisk, and pnet are equal to 1.

Thus, the virtualization slowdown for each resource given
a current workload on the system is:

γcpu =
E(Kcpu)

E′(Kcpu)

γdisk =
E(Kdisk)

E′(Kdisk)

γnet =
E(Knet)

E′(Knet)

An application needs a certain proportion of CPU, disk, and
network resources to run a job. For example, a file compression
job might spend 58% of the total execution time on CPU
and 42% on disk I/O. Without any other system bottleneck
or competing job, the vector βi,j represents an application’s
resource usage profile, referred to as the loading vector [9],
[33], [35].

βi,j =
the time of job j spent on resource i

the total completion time
(6)

Therefore, the virtualization slowdown δ of an application/VM
when co-located with other VMs on a system with a known
current workload is:

δj =
∑
i

γi × βi,j (7)

where j denotes a particular application VM and i represents
different types of resources. δj allows us to evaluate how much
performance slowdown one application VM might experience
if co-resident with n− 1 VMs.

IV. INTERFERENCE CONFLICT HANDLING

CloudScope can answer several key questions that arise
when trying to improve VM scheduling and consolidation
in cloud environments. For example: (1) among multiple
VM placements which physical machine can best satisfy the
required SLO; (2) what should be the right degree of VM
consolidation in terms of the utilization-performance trade-off;
(3) can the hypervisor be self-adaptive without having to reboot
to improve the performance of applications? In this section,
we illustrate how CloudScope is able to provide insight for
answering these questions.

A. Dynamic Interference-aware Scheduling

Workload consolidation increases server utilization and
reduces overall energy consumption but might result in unde-
sirable performance degradation. By default, all newly created
VMs are assigned to a PM by a load balancing scheduler that
is generally based on a heuristic such as bin packing.

CloudScope currently decides whether to trigger migration
by comparing the V-slowdown factor among all potential PMs,
and migrates VMs to the PM with the smallest V-slowdown
factor as shown in Algorithm 1. The algorithm greedily finds
the most suitable PM for each VM by picking the PM with
the smallest slowdown when assigned the new VM. It requires
the loading vectors from each VM as input. Previous work has
shown how to obtain these [9], [33], [35]. In our experiments

(see Section V-D) we acquire the loading vectors online from
running monitoring tools (such as top) inside each VM.
This allows us to continuously update and refine migration
and consolidation decisions without prior knowledge of the
applications.

The time complexity of Algorithm 1 is the product of the
number of targeted VMs and PMs, O(mn). However, the V-
slowdown model runs simultaneously across the Dom0 of each
PM, so in practice the time complexity is linear in the number
of targeted VMs.

Algorithm 1 Interference-aware Scheduling Algorithm
Data: Targeted VM j , where j ∈ 1, . . . , n;

Resource pool consist of PM k, where k ∈ 1, . . . , m;
Obtain the workload factor βi,j for each task within VM j ;
Model is the V-slowdown interference prediction model.

Result: VM j to PMk assignments
1: for j = 1 to n do
2: for k = 1 to m do
3: δj = Predict(βi,j , PM k, Model);
4: end for
5: end for
6: PMcandidate = minj(δj);
7: Assign(VM j ,PM candidate);

B. Local Interference Handling

In some cases, CloudScope will not migrate the application
VM but instead resolve the problem locally using Dom0 re-
configuration. This prevents the application from experiencing
a period of high SLO violations and the destination PM from
experiencing increased utilization in Dom0 due to migration.

CloudScope allows adaptive Dom0 configuration to trans-
fer unused resources for better performance without affecting
application SLOs. For example, in Figure 2(c), 8 vCPUs are
given to Dom0. These are needed in order for Dom0 to sustain
the workload and fully utilize the hardware resource for the
current guests. The same effect can be achieved by changing
the CPU weight and cap of Dom0. For example, a domain
with a weight of 512 will get twice as much CPU as a domain
with a weight of 256 on a contended host. The cap fixes
the maximum amount of CPUs a domain can consume. With
different weights and caps in the system, we can modify the
models by setting:

pDom0 = (1− ρ) ∗ wDom0∑
i
wi

n

(8)

where wDom0 and wi represent the weight of Dom0 and each
guest VM respectively, and n is the number of guest VMs.
We assume that the SLOs are provided to CloudScope by the
users or cloud providers. Therefore, when a violation of an
SLO is detected and the current host does not have a full
CPU utilization, which in our model means pcpu = 1 and∑
j pCPUj >

∑
i utili × vCPUi, CloudScope will derive

the Dom0 CPU weight needed by Equation 8. This will
change the attributes of file /boot/extlinux.conf in
Dom0 triggering a hot reconfiguration without rebooting. In
Section V-E, we illustrate the effect of modifying the attributes
of Dom0 on-the-fly.
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Figure 5. Interference prediction model validation for (a) CPU, (b) disk, and (c) network intensive workloads. Figure (a) shows the validation results for average
execution time, executing prime 3000 and 5000. Figure (b) shows the validation results for the total disk I/O throughput of 2, 5, and 10 DomUs with different
block sizes. Model results are shown in the same color but as dashed lines. Figure (c) shows the validation results of the normalized throughput of one VM
co-resident with another 1 to 9 VMs.

V. EVALUATION

In this section, we evaluate a variety of workloads to
validate the proposed model. We use (1) the single workloads
for CPU, disk, and network as presented in Section II, (2) a
synthetic workload in which we combine the three, and (3) a
realistic workload which consists of Hadoop MapReduce jobs.
The results in this section show that CloudScope is able to
accurately capture the performance degradation and the inter-
ference of VMs caused by Xen virtualization. The validation
experiments are run with the same hardware configurations as
introduced in Table I of Section II with the results averaged
over 30 runs for each experiment.

A. Experimental Setup

To ensure that our benchmarking experiments are repro-
ducible, we provide the configuration for the Xen hypervisor
used in our experiments. All the experiments are running on
XenServer 6.2.0 (Clearwater)2 with the following configura-
tions: (1) we fine-tune Dom0’s vCPU to pCPU affinity before
the domains boot. The reason for this is that the vCPU will run
on specific NUMA nodes and try to allocate memory closer to
it, so it helps Dom0 to deliver better performance; (2) we turn
off power saving mode to avoid Xen adjusting the CPU clock
rate dynamically3 (3) we enable hyper-threading on the test
machine as the Xen and VMware hypervisors perform better
with hyper-threading [7] and to emulate Amazon EC2 in which
VM instances run on hyper-threaded CPUs. The system used
to collect the performance data from our benchmarks is similar
to the testbed setup in [32].

For disk I/O, before running the actual experiments, we
create a large file on each VM to completely fill the file system
and then delete this file. This ensures that the virtual hard disk
is fully populated and performance metrics will be correct.
We also run iostat to make sure that all the virtual block
devices are active.

2http://support.citrix.com/article/CTX137826
3http://blogs.citrix.com/2012/06/23/xenserver-scalability-performance-

tuning/

B. CPU, Disk, and Network Intensive Workloads

First we present the prediction results for the scenarios in
which the VMs are running CPU, disk, or network intensive
workloads generated by sysbench, fio, and iperf, re-
spectively (equal to Section II). We validate our model against
system measurements presented in Figure 5. Figure 5(a) shows
the validation results of the average execution time of prime
3000 and prime 5000 workloads with an increasing number
of VMs. The mean model prediction error is 3.8% for prime
5000 and 10.5% for prime 3000. From 1 to 25 VMs, the model
deviates from the measurement data but the results are still
within standard deviation of the measurements. In particular,
the model underestimates execution time for the prime 3000
workload, as the performance is affected by hyper-threading
overhead which is not considered in the model.

The disk intensive workload validation results are shown in
Figure 5(b). The dashed lines represent the model predictions.
The total throughput of 2, 5, and 10 VMs running sequential
read workloads with varying block sizes from 32 to 512 KB
is predicted with a mean error of 7.4%. The drops at 256 KB
block size in all three scenarios are precisely captured. We
only present block sizes from 32 to 512 KB for the disk I/O
validation. Firstly because, as shown in Figure 2(b), block
sizes from 1 to 32 KB are dominated by the hypervisor
overhead caused by the performance differences between non-
virtualized and virtualized domains but our model focuses on
the performance interference caused by virtualization within
a multi-tenant environment. Secondly, for block sizes larger
than 512 KB, our model does not account for the processing
of memory page locking and updating. Hence, the model
cannot accurately capture the performance outside of those
boundaries.

Figure 5(c) represents the normalized network throughput
validation with 1 to 9 VMs running iperf. The mean
prediction error is 4.8%. The model follows the measurements
closely and can reflect the effect of intensive Dom0 overhead
and sharing network resources with other VMs.
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Figure 6. Interference prediction model validation of mixed workload.
Figure (a) and (b) show the disk and network throughput of a targeted VM
collocated with 5, 10, 15, and 20 VMs

C. Mixed Workload

Next, we apply our model to a workload consisting of a
mix of disk I/O and network intensive jobs in combination
with a moderate CPU workload running together within each
VM. The VMs were configured with 4 vCPUs with 1 GHz
per vCPU, 8 GB memory, 32 GB storage, and 1 vNIC. We
refer to the network intensive workload as std-net. It comprises
a set of HTTP requests over the network to the VM which
runs an HTTP server. httperf was deployed to generate the
HTTP client workload with clients distributed across the hosts
in our private departmental cloud. The disk intensive workload
is referred to as std-disk which is a sequential read of 1 GB
data with block size 64 KB and without buffer access. The
CPU workload is referred to as std-cpu which is a sysbench
prime 2000 workload.

We predict the virtualization slowdown of a VM running
a mixed workload when co-resident with 5, 10, 15, and 20
VMs running the same mixed workloads. Figure 6 shows the
prediction of the model for the disk and network throughput
for a target VM as the number of co-resident VMs increases.
The std-cpu workload (not shown) did not incur obvious
degradation resulting from co-residency (also predicted by the
model). The average relative prediction error is less than 8.3%
and 18.4% for disk and network throughput respectively. The
prediction error of network throughput is higher than disk
throughput likely due to other cloud network traffic between
our client and server VMs.

D. MapReduce Workload

In this section we investigate the accuracy of our interfer-
ence prediction model based on a real workload. We deploy
Apache Hadoop Yarn [14] on 4 VMs (4 2.9 GHz vCPUs, 8 GB
memory, and 40 GB local disk) co-located within the same
physical machine with one master node and three workers.
We use Apache Pig [36] to run a subset of the queries from
the TPC-H benchmark [37] on a 10 GB dataset with varying
complexities. Some of the queries need several consecutive
MapReduce jobs to be processed. We run the first four TPC-
H queries for 30 times both alone and with another 20 VMs
running prime 3000 and 5000. For space reasons, we do not
list all the MapReduce jobs involved during a query but rather
pick individual jobs from each query in a way that we cover a

Table II. SPECIFICATIONS FOR EXPERIMENTAL ENVIRONMENT

PMs 13 Dell PowerEdge C6220 & 8 Dell PowerEdge C6220-II
VMs 250 to 270 other VMs running during the experiments
Shared Storage NetApp + Cumulus 04 (ZFS) shared storage (iSCSI)
Network 10Gbps Ethernet. 10Gbps switch
IaaS Apache Cloudstack v4.1.1
Hypervisor XenServer 6.2.0

broad spectrum of different numbers of map and reduce tasks.
Each job has M mappers and R reducers, written as M :R.

Figure 7 presents the average performance of 1:1, 8:1,
10:2, and 58:8 jobs running alone and co-located with the
other 20 VMs running either prime 3000 or 5000. The model
predictions are compared to measurements. Map and reduce
tasks were validated separately because they have different
proportions of resource usage. The mean relative error for map
and reduce tasks is 10.4% and 11.9%, respectively. The mean
relative errors for each 1:1, 8:1, 10:2 and 58:8 job are 14.3%,
6.7%, 8.3% and 14.8%.

The evaluation shows that in this case study, our model
is able to achieve a prediction error less than 20% across all
workloads. In the following, we use our model to enhance VM
performance by implementing an interference-aware schedul-
ing approach and an adaptive Dom0.

E. Interference-aware Scheduling

To evaluate CloudScope’s interference-aware scheduling
mechanism, we compare it to the default CloudStack VM
scheduler [15]. Using the experimental setup described in
Table II, we utilize our private cloud consisting of 21 physical
machines running Apache CloudStack. At the time of our
experiments, the cloud was open to other users and was
running between 250 to 270 other VMs with unknown work-
loads. We prepare the 34 VMs with the following workloads:
10 VMs running std-cpu, 10 VMs running std-disk, and 10
VMs running std-net and another 4 VMs running Hadoop as
configured in the previous section.

We launched these 34 VMs using both the default Cloud-
Stack VM scheduler and our CloudScope scheduler and mea-
sured the average execution time, throughput, and Map/Reduce
job completion times for all VMs and repeated this experiment
3 times. Figure 8 details the average performance improvement
of each type of VM when scheduled with CloudScope in
comparison to the default CloudStack scheduler. The error
bars show the standard deviation across all VMs for a single
workload and all runs.

The std-disk and std-net VMs show a performance im-
provement of 10% when scheduled with CloudScope. The
std-cpu and Hadoop VMs show an improvement of 5.6% and
2.1%, respectively. Because of the grant memory management
(see Section II-B), the I/O intensive VMs are more sensitive
to resource contention and hence, the CloudScope scheduler
achieves larger improvements in these cases.

F. Adaptive Dom0

We also use CloudScope to implement an adaptive Dom0
which is able to its configuration parameters at runtime. We
run the std-net workload using VM-net VMs (see Table I)
using the same PM. 10 VMs running iperf server were
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Figure 7. Interference prediction model validation for different Hadoop workloads with different numbers of mappers and reducers. For example 1:1 represents
1 mapper and 1 reducer. Figure (a) shows each Hadoop job running dedicated within one PM. Figure (b) and (c) show the validation results of each Hadoop
job with 20 co-resident VMs executing prime 3000 and 5000, respectively.
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Table III. RELATED VIRTUALIZATION INTERFERENCE WORK

Approaches Application Techniques Avg. Err.
TRACON [4] Data-intensive Model training & Nonlinear 19%
CloudScale [38] CPU contention Linear 14%
Paragon [1] CPU or IO-bound Microbenchmark & ML 5.3%
Cuanta [35] Cache, memory Cache pressure clone 4%
Q-Clouds [5] CPU contention Nonlinear 13%
CloudScope Any application No microbenchmark & linear 9%

launched on the PM. Dom0 was configured with 4 vCPUs with
weight 256 and a cap of 400. CloudScope could recognize that
Dom0 suffered heavy network I/O workload while handling
the network traffic. CloudScope obtained the weight needed
by Equation 7 and 8, calculating a new weight of > 425.
Changing the weight of Dom0 to 512 provides an average
performance gain of 28.8% (see Figure 9).

The two presented simple use cases demonstrate that our
model can be successfully applied to improve VM perfor-
mance. We believe that more sophisticated scheduling and
reconfiguration approaches can also benefit from CloudScope.

VI. RELATED WORK

CloudScope is lightweight and provides good accuracy in
comparison to previous work. Table III provides a comparison
of CloudScope to similar work in the literature. We discuss
related work in three major parts.

Hypervisor overhead benchmarking. Cherkasova et al. [23]
analyzed the impact of different Xen schedulers on appli-

cation performance and discussed challenges in estimating
application resource requirements in virtualized environments.
Shea et al. [17] studied the performance degradation and
variation for TCP and UDP traffic, then provided a hypervi-
sor reconfiguration solution to enhance the performance. Pu
et al. [25] presented experimental research on performance
interference on CPU and network intensive workloads on the
Xen hypervisor and reached the conclusion that identifying
the impact of exchanged memory pages is important to the
in-depth understanding of interference costs in Dom0. Our
work makes similar findings but then uses those to guide our
analytical model.

Performance interference modeling. Most work on perfor-
mance interference modeling is based on machine learning or
heuristic methods, which are either computationally intensive
(in the former case) or less accurate (in the latter case)
compared to analytical solutions. Nathuji et al. [5] used online
feedback to build a multiple-input multiple-output model that
captures performance interference interaction. Caglar et al. [7]
proposed a machine learning-based technique to classify the
VMs based on their historic mean CPU and memory usage and
extracted the patterns that provided the lowest performance
interference while still allowing resource overbooking. Kraft
et al. [13], [12] proposed a simple model to predict the
performance degradation of disk requests due to storage device
contention in consolidated virtualized environments. Lim et
al. [33] proposed a dilation-factor, similar to the virtualization
slowdown proposed in this paper, to model application slow-
down in multi-resource shared systems. Govindan et al. [35]
proposed a technique for predicting performance interference
due to a shared processor cache.

VM scheduling and consolidation. Roytman et al. [6]
proposed a polynomial time algorithm which yields a solution
close to the optimal to determine the best suited VM com-
bination. Chiang et al. [4] presented the TRACON system,
a task and resource allocation control framework that miti-
gates the interference effects from concurrent data-intensive
applications and improves their performance. Kim et al. [8]
presented a VM consolidation method based on the idea that
a highly interference-intensive VM should be co-located with
less interference-sensitive ones.

By contrast to the above, CloudScope estimates the per-



formance slowdown of VMs using an analytical model that
includes hypervisor overhead and resource contention. The
method is simple, does not require pre-training and is appli-
cable to any application. In addition, the models can adapt to
future changes within the Xen architecture, for example, when
decentralizing the Dom0 to multiple, specialized domains.

VII. CONCLUSION

In this paper, we have presented CloudScope, a compre-
hensive system to predict resource interference in virtualized
environments, and used the prediction to optimize the op-
eration of a cloud environment. CloudScope incorporates a
lightweight analytical model for the prediction of performance
degradation. To this end, we have characterized and analyzed
different workload behaviors by benchmarking CPU, disk,
and network intensive workloads. CloudScope predicts the
completion time of jobs by a using virtualization-slowdown
factor that incorporates the effect of hypervisor overhead and
resource contention. Evaluation shows that CloudScope can
achieve an average relative error of 6.1% for single resource
intensive workloads, 13.4% for mixed resource workloads, and
11.2% for MapReduce workloads. CloudScope provides an
efficient interference-aware VM scheduling mechanism which
can improve job completion time on average by 7.5%. For
future work, we plan to apply CloudScope to other hypervisors
and more sophisticated scheduling and consolidation scenarios.
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