
NUMERICAL SOLUTION of MARKOV CHAINS, p. 99–120

Hypergraph-based Parallel Computation of Passage Time
Densities in Large Semi-Markov Models

∗ Jeremy T. Bradley1, Nicholas J. Dingle1, William J. Knottenbelt1, Helen J. Wilson2

1Department of Computing, Imperial College London, South Kensington Campus, London SW7 2AZ,
United Kingdom, {jb,njd200,wjk}@doc.ic.ac.uk

2 Department of Applied Mathematics, University of Leeds, Woodhouse Lane, Leeds LS2 9JT,
United Kingdom, h.j.wilson@leeds.ac.uk

key words: Semi-Markov chains, passage time densities, hypergraph partitioning

ABSTRACT

Passage time densities and quantiles are important performance and quality of service metrics,

but their numerical derivation is, in general, computationally expensive. We present an iterative

algorithm for the calculation of passage time densities in semi-Markov models, along with a theoretical

analysis and empirical measurement of its convergence behaviour. In order to implement the algorithm

efficiently in parallel, we use hypergraph partitioning to minimise communication between processors

and to balance workloads. This enables the analysis of models with very large state spaces which could

not be held within the memory of a single machine. We produce passage time densities and quantiles for

very large semi-Markov models with over 15 million states and validate the results against simulation.

1. Introduction

A rapid response time is an important performance criterion for almost all computer-
communication and transaction processing systems. Examples of systems with stringent
response time requirements include mobile communication systems, stock market trading
systems, web servers, database servers, flexible manufacturing systems, communication
protocols and communication networks. Typically, response time targets are specified in terms
of quantiles – for example “95% of all text messages must be delivered within 3 seconds”.

∗Correspondence to: Jeremy Bradley, Department of Computing, Imperial College London, South Kensington
Campus, London SW7 2AZ, United Kingdom, jb@doc.ic.ac.uk



100 J.T. BRADLEY, N.J. DINGLE, W.J. KNOTTENBELT, H.J. WILSON

Response time quantiles are frequently specified as key quality of service metrics in Service
Level Agreements and industry standard benchmarks such as TPC.

In the context of the high-level models used by performance analysts (e.g. queueing networks
and stochastic Petri nets), response times can be specified as passage times – that is, the time
taken to enter any one of a set of target states starting from a specified set of source states in
the underlying Markov or semi-Markov chain. Traditional steady-state performance analysis
of such models is adequate to predict standard resource-based measures such as utilisation and
throughput, but is inadequate to predict passage time densities and quantiles.

The focus of the present study is on semi-Markov processes [24], a generalisation of Markov
processes which support arbitrary state holding times. Techniques already exist for the
practical extraction of passage time densities and quantiles from large purely Markovian
systems [11, 14, 17]. Until now, however, only relatively small semi-Markov systems have
been analysed for passage time quantities [5, 12, 15].

In this paper, we present a scalable iterative passage time density extraction algorithm for
very large semi-Markov processes (SMPs). This extends our preliminary work on passage time
extraction [6] with significant theoretical and empirical convergence results for the iterative
algorithm. Our approach is based on the calculation and subsequent numerical inversion
of the Laplace transform [1, 2] of the desired passage time density. In [12, 15], the time
complexity of the numerical derivation of passage time and transient quantities for a semi-
Markov system with N states, using the Laplace domain, is O(N4). This approach is dominated
by the complexity of maintaining the Laplace transforms of state holding time distributions
in closed form. We solve this problem by characterising a distribution by the samples from
its Laplace transform that are ultimately required for the inversion process. The result is an
iterative algorithm which calculates arbitrary semi-Markov passage times in O(N2r) time, for
r iterations.

The data partitioning strategy employed is key to the scalability (in terms of both efficiency and
capacity) of all parallel algorithms. We exploit recent advances in the application of hypergraph
data structures and their partitioning [8] to minimise inter-processor communication while
balancing computational load.

The rest of this paper is organised as follows: Section 2 summarises the theory relating to the
computation of passage time densities in semi-Markov processes. Our iterative passage time
algorithm and its theoretical convergence analysis are detailed in Section 3. Section 4 addresses
the problem of general distribution representation, while Section 5 discusses the application
of hypergraph partitioning techniques. Section 6 presents a complete parallel passage time
analysis pipeline. Section 7 presents numerical results showing passage time densities extracted
from two very large semi-Markov models, as well as scalability and convergence results.
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2. Definitions and Background Theory

2.1. Semi-Markov Processes

Consider a Markov renewal process {(Xn, Tn) : n ≥ 0} where Tn is the time of the nth
transition (T0 = 0) and Xn ∈ S is the state at the nth transition. Let the kernel of this process
be:

R(n, i, j, t) = IP(Xn+1 = j, Tn+1 − Tn ≤ t | Xn = i) (1)

for i, j ∈ S. The continuous time semi-Markov process (SMP), {Z(t), t ≥ 0}, defined by the
kernel R, is related to the Markov renewal process by:

Z(t) = XN(t) (2)

where N(t) = max{n : Tn ≤ t}, i.e. the number of state transitions that have taken place by
time t. Thus Z(t) represents the state of the system at time t. We consider time-homogeneous
SMPs, in which R(n, i, j, t) is independent of any previous state except the last. Thus R
becomes independent of n:

R(i, j, t) = IP(Xn+1 = j, Tn+1 − Tn ≤ t | Xn = i) for any n ≥ 0
= pijHij(t) (3)

where pij = IP(Xn+1 = j | Xn = i) is the state transition probability between states i and j
and Hij(t) = IP(Tn+1 − Tn ≤ t | Xn+1 = j, Xn = i), is the sojourn time distribution in state i
when the next state is j.

2.2. First passage times

Consider a finite, irreducible, continuous-time semi-Markov process with N states
{1, 2, . . . , N}. Recalling that Z(t) denotes the state of the SMP at time t (t ≥ 0), the first
passage time from a source state i at time t into a non-empty set of target states ~j is:

Pi~j(t) = inf{u > 0 : Z(t + u) ∈ ~j, N(t + u) > N(t), Z(t) = i} (4)

For a stationary time-homogeneous SMP, Pi~j(t) is independent of t and we have:

Pi~j = inf{u > 0 : Z(u) ∈ ~j, N(u) > 0, Z(0) = i} (5)

This formulation of the random variable Pi~j applies to an SMP with no immediate (that is,
zero-time) transitions. If zero-time transitions are permitted in the model then the passage
time can be stated as:

Pi~j = inf{u > 0 : N(u) ≥ Mi~j} (6)

where Mi~j = min{m ∈ ZZ+ : Xm ∈ ~j | X0 = i} is the transition marking the terminating state
of the passage.

Pi~j has an associated probability density function fi~j(t) such that the passage time quantile
is given as:

IP(t1 < Pi~j < t2) =
∫ t2

t1

fi~j(t) dt (7)
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In general, the Laplace transform of fi~j , Li~j(s), can be computed by solving a set of N linear
equations:

Li~j(s) =
∑

k/∈~j

r∗ik(s)Lk~j(s) +
∑

k∈~j

r∗ik(s) : for 1 ≤ i ≤ N (8)

where r∗ik(s) is the Laplace-Stieltjes transform (LST) of R(i, k, t) from Section 2.1 and is defined
by:

r∗ik(s) =
∫ ∞

0

e−st dR(i, k, t) (9)

Eq. (8) has a matrix-vector form, Ax̃ = b̃, where the elements of A are general complex
functions; care needs to be taken when storing such functions for eventual numerical inversion
(see Section 4). For example, when ~j = {1}, Eq. (8) yields:




1 −r∗12(s) · · · −r∗1N (s)
0 1− r∗22(s) · · · −r∗2N (s)
0 −r∗32(s) · · · −r∗3N (s)
...

...
. . .

...
0 −r∗N2(s) · · · 1− r∗NN (s)







L1~j(s)
L2~j(s)
L3~j(s)

...
LN~j(s)




=




r∗11(s)
r∗21(s)
r∗31(s)

...
r∗N1(s)




(10)

When there are multiple source states, denoted by the vector ~i, the Laplace transform of the
passage time density at steady-state is:

L~i~j(s) =
∑

k∈~i
αkLk~j(s) (11)

where the weight αk is the probability at equilibrium that the system is in state k ∈~i at the
starting instant of the passage. If π̃ denotes the steady-state vector of the embedded discrete-
time Markov chain (DTMC) with one-step transition probability matrix P = [pij , 1 ≤ i, j ≤
N ], then αk is given by:

αk =
{

πk/
∑

j∈~i πj if k ∈~i

0 otherwise
(12)

The vector with components αk is denoted by α̃.

3. Iterative Passage Time Analysis

3.1. Overview

In this section, we describe an algorithm for generating passage time densities that creates
successively better approximations to the SMP passage time quantity of Eq. (8). Our technique
considers the rth transition passage time of the system, P

(r)

i~j
. This is the conditional passage

time of the system having reached any of the specified target states within r state-transitions.
The unconditioned passage time random variable, Pi~j , is then obtained in the limit as r →∞.
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We calculate the Laplace transform of P
(r)

i~j
, L

(r)

i~j
(s), and pick a sufficiently high value of r to

give an approximation to Li~j(s) to within a specified degree of accuracy. Li~j(s) can then be
numerically inverted to obtain the desired passage time density fi~j(t).

This iterative method bears a loose resemblance to the well-known uniformisation technique [4,
22, 23] which can be used to generate transient-state distributions and passage time densities
for Markov chains. However, as we are working with semi-Markov systems, there can be no
uniformising of the general distributions in the SMP. The general distribution information has
to be maintained as precisely as possible throughout the process, which we achieve using the
representation technique described in Section 4.

3.2. Technical Description

Recall the semi-Markov process Z(t) of Section 2.1, where N(t) is the number of state
transitions that have taken place by time t. We formally define the rth transition first passage
time to be:

P
(r)

i~j
= inf{u > 0 : Z(u) ∈ ~j, 0 < N(u) ≤ r, Z(0) = i} (13)

which is the time taken to enter a state in ~j for the first time having started in state i at time
0 and having undergone up to r state transitions†. P

(r)

i~j
is a random variable with associated

Laplace transform L
(r)

i~j
(s). L

(r)

i~j
(s) is, in turn, the ith component of the vector:

L̃
(r)
~j

(s) = (L(r)

1~j
(s), L(r)

2~j
(s), . . . , L(r)

N~j
(s)) (14)

representing the passage time for terminating in ~j for each possible start state. This vector
may be computed as:

L̃
(r)
~j

(s) = U(I + U ′ + U ′2 + · · ·+ U ′(r−1)) ẽ~j (15)

where U is a matrix with elements upq = r∗pq(s) and U ′ is a modified version of U with
elements u′pq = δp6∈~j upq, where states in ~j have been made absorbing. We include the initial

multiplication with U in Eq. (15), so as to generate cycle times for cases such as L
(r)
ii (s)

which would otherwise register as 0 if U ′ were used instead. The column vector ẽ~j has entries
ek~j = δk∈~j .

From Eq. (5) and Eq. (13):

Pi~j = P
(∞)

i~j
and thus Li~j(s) = L

(∞)

i~j
(s) (16)

We can generalise to multiple source states ~i using the vector α̃ of Eq. (12):

L
(r)
~i~j

(s) = α̃L̃
(r)
~j

(s)

=
∑r−1

k=0 α̃UU ′k ẽ~j

(17)

†If we have immediate transitions in our SMP model (as in Eq. (6)) then the rth transition first passage time

is P
(r)

i~j
= inf{u > 0 : Mi~j ≤ N(u) ≤ r}.
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The sum of Eq. (17) can be computed efficiently using sparse matrix-vector multiplications
with a vector accumulator, µ̃r =

∑r
k=0 α̃UU ′k. At each step, the accumulator (initialised as

µ̃0 = α̃U) is updated as µ̃r+1 = α̃U + µ̃rU
′. The worst-case time complexity for this sum

is O(N2r) versus the O(N3) of typical matrix inversion techniques. In practice, for a sparse
matrix with constant number of non-zeros per row, this can be as low as O(Nr).

3.3. Analytic Convergence and Truncation Error Analysis

In the iterative passage time calculation of Eq. (17), we approximate the Laplace transform of
the passage time density L~i~j(s) by a sum of the form

∑k
i=0 x̃Ai. In this section, we demonstrate

that this sum converges onto the analytic solution of Eq. (8); also, by using the Power method
to provide an expression for the dominant eigenvalue, we derive an approximation for the
truncation error after k iterations.

3.3.1. Limit and Convergence Let us consider the finite sum
∑k

i=0 x̃Ai where A has dominant
eigenvalue λ1. If we post-multiply this expression by (I −A), we obtain:

k∑

i=0

x̃Ai(I −A) = x̃− x̃Ak+1 (18)

and so, if the modulus of the dominant eigenvalue of A, |λ1| < 1, then limk→∞ x̃Ak+1 = 0,
and we obtain:

∞∑

i=0

x̃Ai(I −A) = x̃ and thus
∞∑

i=0

x̃Ai = x̃(I −A)−1. (19)

We can relate the above analysis to the iterative passage time algorithm by taking x̃ = α̃U and
A = U ′. We know that |λ1| < 1 for U ′ as the sum of Eq. (15) converges as r →∞ according to
Eq. (16). This demonstrates that our iterative scheme will converge in the limit to the analytic
solution of Eq. (8).

3.3.2. Truncation Error Analysis Let A have eigenvalues λj and associated eigenvectors ṽj ,
with dominant eigenvalue λ1 as above. In general, the ṽj form a basis and so for an arbitrary
vector x̃:

x̃ =
∑

j

aj ṽj

x̃Ai =
∑

j

ajλ
i
j ṽj

= a1λ
i
1ṽ1 +

∑

j>1

ajλ
i
j ṽj

x̃Ak ∼ a1λ
k
1 ṽ1 : as k −→∞ (20)

Thus the quantity x̃Ak is dominated by the largest eigenvalue, with the rate of asymptotic
convergence being governed by the ratio of the moduli of the dominant and sub-dominant
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eigenvalues, |λ1|/|λ2|. Eq. (20) yields x̃Ak ' λ1x̃Ak−1 for large k; so, by right-multiplying
both sides by (x̃Ak)∗, we may approximate λ1 with:

λ1 ' |x̃Ak|2
(x̃Ak−1) . (x̃Ak)∗

(21)

where for ω̃, a vector with complex elements ωi, the complex conjugate ω̃∗ has elements ω∗i .

The error incurred in truncating the sum at the kth term is
∑∞

i=k+1 x̃Ai. Using the
approximation x̃Ai ' a1λ

i
1ṽ1 for i ≥ k yields:

∞∑

i=k+1

x̃Ai =
∞∑

i=1

x̃Ak+i

'
∞∑

i=1

λi
1x̃Ak

=
λ1

1− λ1
x̃Ak (22)

providing |λ1| < 1 as in Section 3.3.1.

Thus an approximate convergence condition is to find the minimum k such that:
∣∣∣∣

λ1

1− λ1
x̃Ak

∣∣∣∣ < ε (23)

where λ1 is approximated as in Eq. (21).

3.4. Practical Convergence

In practice, convergence of the sum L
(r)
~i~j

(s) =
∑r−1

k=0 α̃UU ′k can be said to have occurred if,
for a particular r and s-point:

|Re(L(r+1)
~i~j

(s)− L
(r)
~i~j

(s))| < ε and |Im(L(r+1)
~i~j

(s)− L
(r)
~i~j

(s))| < ε (24)

where ε is chosen to be a suitably small value, say ε = 10−16. We present empirical observations
on the convergence behaviour of this technique (i.e. the order of r) in Section 7.

An optimisation which makes the sum converge more quickly (assuming the approximation
of Eq. (21) for λ1 is a good one), is to use the approximate truncation error to improve the
accuracy of the calculation. For each iteration we can take:

L
(r)
~i~j

(s) =
r−1∑

k=0

α̃UU ′k +
λ1

1− λ1
α̃UU ′(r−1) (25)

We can then compare successive L
(r)
~i~j

(s) in the real and imaginary parts as before. If

|λ1| = |λi| < 1 for one or more values of i 6= 1 then convergence of L
(r)
~i~j

(s) will still occur, but
the error dynamics are more complicated and we are forced to resort to the stricter notion of
convergence above.
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4. Distribution Representation and Laplace Inversion

The key to practical analysis of semi-Markov processes lies in the efficient representation
of their general distributions. Without care the structural complexity of the SMP can be
recreated within the representation of the distribution functions. This is especially true with
the manipulations performed in the iterative passage time calculation of Section 3.

Many techniques have been used for representing arbitrary distributions – two of the most
popular being phase-type distributions and vector-of-moments methods. These methods suffer
from, respectively, exploding representation size under composition, and containing insufficient
information to produce accurate answers after large amounts of composition.

As all our distribution manipulations take place in Laplace-space, we link our distribution
representation to the Laplace inversion technique that we ultimately use. Our tool supports
two Laplace transform inversion algorithms, which are briefly outlined below: the Euler
technique [3] and the Laguerre method [1] with modifications summarised in [14].

Both algorithms work on the same general principle of sampling the transform function L(s) at
n points, s1, s2, . . . , sn and generating values of f(t) at m user-specified t-points t1, t2, . . . , tm.
In the Euler inversion case n = km, where k can vary between 15 and 50, depending on the
accuracy of the inversion required. In the modified Laguerre case, n = 400 and, crucially, is
independent of m (see Section 4.2).

The process of selecting a Laplace transform inversion algorithm is discussed later; however,
whichever is chosen, it is important to note that calculating si, 1 ≤ i ≤ n and storing all
our distribution transform functions, sampled at these points, will be sufficient to provide
a complete inversion. Key to this is the fact that matrix element operations, of the type
performed in Eq. (17), (i.e. convolution and weighted sum) do not require any adjustment to
the array of domain s-points required. In the case of a convolution, for instance, if L1(s) and
L2(s) are stored in the form {(si, Lj(si)) : 1 ≤ i ≤ n}, for j = 1, 2, then the convolution,
L1(s)L2(s), can be stored using the same size array and using the same list of domain s-values,
{(si, L1(si)L2(si)) : 1 ≤ i ≤ n}.
Storing our distribution functions in this way has three main advantages. Firstly, the function
has constant storage space, independent of the distribution-type. Secondly, each distribution
has, therefore, the same constant storage requirement even after composition with other
distributions. Finally, the function has sufficient information about a distribution to determine
the required passage time (and no more).

4.1. Summary of Euler Inversion

The Euler method is based on the Bromwich contour inversion integral, expressing the function
f(t) in terms of its Laplace transform L(s). Making the contour a vertical line s = a such that
L(s) has no singularities on or to the right of it gives:

f(t) =
2eat

π

∫ ∞

0

Re(L(a + iu)) cos(ut) du (26)
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This integral can be numerically evaluated using the trapezoidal rule with step-size h = π/2t
and a = A/2t (where A is a constant that controls the discretisation error), which results in
the nearly alternating series:

f(t) ≈ fh(t) =
eA/2

2t
Re(L(A/2t)) +

eA/2

2t

∞∑

k=1

(−1)kRe
(

L

(
A + 2kπi

2t

))
(27)

Euler summation is employed to accelerate the convergence of the alternating series infinite
sum, so we calculate the sum of the first n terms explicitly and use Euler summation to
calculate the next m. To give an accuracy of 10−8 we set A = 19.1, n = 20 and m = 12
(compared with A = 19.1, n = 15 and m = 11 in [3]).

4.2. Summary of Laguerre Inversion

The Laguerre method [1] makes use of the Laguerre series representation:

f(t) =
∞∑

n=0

qnln(t) : t ≥ 0 (28)

where the Laguerre polynomials ln are given by:

ln(t) =
(

2n− 1− t

n

)
ln−1(t)−

(
n− 1

n

)
ln−2(t) (29)

starting with l0 = et/2 and l1 = (1− t)et/2, and:

qn =
1

2πrn

∫ π

0

Q(reiu)e−iru du (30)

where r = (0.1)4/n and Q(z) = (1− z)−1L((1 + z)/2(1− z)).

The integral in Eq. (30) can be approximated numerically by the trapezoidal rule, giving:

qn ≈ q̄n =
1

2nrn


Q(r) + (−1)nQ(−r) + 2

n−1∑

j=1

(−1)jRe
(
Q(reπji/n)

)

 (31)

As described in [14], the Laguerre method can be modified by noting that the Laguerre
coefficients qn are independent of t. This means that if the number of trapezoids used in
the evaluation of qn is fixed to be the same for every qn (rather than depending on the value of
n), values of Q(z) (and hence L(s)) can be reused after they have been computed. Typically,
we set n = 200. In order to achieve this, however, the scaling method described in [1] must
be used to ensure that the Laguerre coefficients have decayed to (near) 0 by n = 200. If this
can be accomplished, the inversion of a passage time density for any number of t-values can
be achieved at the fixed cost of calculating 400 truncated summations of the type shown in
Eq. (17). This is in contrast to the Euler method, where the number of truncated summations
required is a function of the number of points at which the value of f(t) is required.
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Fig. 1. A 16× 16 non-symmetric sparse matrix (left), with corresponding 4-way hypergraph partition (right)
and corresponding partitions of the vector

4.3. Automatic Inversion Algorithm Selection

We have implemented a distributed Laplace transform inverter which automatically selects
which inversion algorithm is the most suitable for a given model in the following manner.
Firstly, it attempts to scale the Laguerre coefficients (as described in the previous section) and
if this scaling is successful the modified Laguerre method is used to invert the Laplace transform
L~i~j(s) and yield the required passage time density. If, however, it proves impossible to scale
the Laguerre coefficients – typically when the density function contains discontinuities – then
the tool switches to the Euler inversion method. This ensures that the Laguerre method is
used whenever possible as it minimises the amount of computation needed, while the ability to
calculate pathological passage time densities using the Euler method is preserved at the cost
of requiring more computation.

5. Hypergraph Partitioning

As discussed in Section 3.2, the core operation in our algorithm is the repeated sparse matrix-
vector multiplication of Eq. (17). In order to exploit the combined processing power and
memory capacity of several processors to compute passage time densities for very large systems
(with state spaces of the order of 107 states or more), it is necessary to partition the sparse
matrix U ′ across the processors. Such a scheme will necessitate the exchange of data (vector
elements and possibly partial sums) after every iteration in the solution process. The objective
in partitioning the matrix is to minimise the amount of data which needs to be exchanged
while balancing the computational load (as given by the number of non-zero elements of U ′

assigned to each processor).
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Hypergraph partitioning is an extension of graph partitioning. Its primary application to date
has been in VLSI circuit design, where the objective is to cluster pins of devices such that
interconnect is minimised. It can also be applied to the problem of allocating the non-zero
elements of sparse matrices across processors in parallel computation [8].

Formally, a hypergraph H = (V,N ) is defined by a set of vertices V and a set of nets (or
hyperedges) N , where each net is a subset of the vertex set V [8]. In the context of a row-wise
decomposition of a sparse matrix A, matrix row i (1 ≤ i ≤ n) is represented by a vertex
vi ∈ V while column j (1 ≤ j ≤ n) is represented by net Nj ∈ N . The vertices contained
within net Nj correspond to the row numbers of the non-zero elements within column j, i.e.
vi ∈ Nj if and only if aij 6= 0. The weight of vertex i is given by the number of non-zero
elements in row i, while the weight of a net is its contribution to the edge cut, which is defined
as one less than the number of different partitions spanned by that net. The overall objective
of a hypergraph sparse matrix partitioning is to minimise the sum of the weights of the cut
nets while maintaining a balance criterion. A column-wise decomposition is achieved in an
analogous fashion.

The matrix on the right of Fig. 1 shows the result of applying hypergraph-partitioning to
the matrix on the left in a four-way row-wise decomposition. Although the number of off-
diagonal non-zeros is 18 the number of vector elements which must be transmitted between
processors during each matrix-vector multiplication (the communication cost) is 6. This is
because the hypergraph partitioning algorithms not only aim to concentrate the non-zeros on
the diagonals but also strive to line up the off-diagonal non-zeros in columns. The edge cut
of the decomposition is also 6, and so the hypergraph partitioning edge cut metric exactly
quantifies the communication cost. This is a general property and one of the key advantages
of using hypergraphs – in contrast to graph partitioning, where the edge cut metric merely
approximates communication cost. Optimal hypergraph partitioning is NP-complete but there
are a small number of hypergraph partitioning tools which implement fast heuristic algorithms,
for example PaToH [8] and hMeTiS [16].

6. Parallel Pipeline

The process of calculating a passage time density (shown in Fig. 2) begins with a high-
level model specified in an enhanced form of the DNAmaca interface language [18, 19]. This
language supports the specification of queueing networks, stochastic Petri nets and stochastic
process algebras. Next, a probabilistic, hash-based state generator [21] uses the high-level
model description to produce the transition probability matrix P of the model’s embedded
Markov chain, the matrices U and U ′, and a list of the initial and target states. Normalised
weights for the initial states are determined by the solution of π̃ = π̃P , which is readily done
using any of a variety of steady-state solution techniques (e.g. [10, 20]). U ′ is then partitioned
using a hypergraph partitioning tool.

Control is then passed to the distributed passage time density calculator, which is implemented
in C++ using the Message Passing Interface (MPI) [13] standard. This employs a master-slave
architecture with groups of slave processors. The master processor computes in advance the
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Fig. 2. Parallel hypergraph-based passage time density calculation pipeline

values of s at which it will need to know the value of L~i~j(s) in order to perform the inversion.
As described in Section 4, this can be done irrespective of the inversion algorithm employed.
The s-values are then placed in a global work-queue to which the groups of slave processors
make requests.

The highest ranking processor in a group of slaves makes a request to the master for an s-value
and is assigned the next one available. This is then broadcast to the other members of the
slave group to allow them to construct their columns of the matrix U ′ for that specific s. Each
processor reads in the columns of the matrix U ′ that correspond to its allocated partition into
two types of sparse matrix data structure and also reads in the initial source-state weighting
vector α̃. Local non-zero elements (i.e. those elements in diagonal matrix blocks that will be
multiplied with vector elements stored locally) are stored in a conventional compressed sparse
column format. Remote non-zero elements (i.e. those elements in off-diagonal matrix blocks
that must be multiplied with vector elements received from other processors) are stored in
an ultrasparse matrix data structure – one for each remote processor – using a coordinate
format. Each processor then determines which vector elements need to be received from and
sent to every other processor in the group on each iteration, adjusting the row indices in the
ultrasparse matrices so that they index into a vector of received elements. This ensures that
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a minimum amount of communication takes place and makes multiplication of off-diagonal
blocks with received vector elements efficient.

For each step in our iterative algorithm, each processor begins by using non-blocking
communication primitives to send and receive remote vector elements, while calculating
the product of local matrix elements with locally stored vector elements. The use of non-
blocking operations allows computation and communication to proceed concurrently on parallel
machines where dedicated network hardware supports this effectively. The processor then waits
for the completion of non-blocking operations (if they have not already completed) before
multiplying received remote vector elements with the relevant ultrasparse matrices and adding
their contributions to the local vector-matrix product cumulatively.

Once the calculations of a slave group are deemed to have converged, the result is returned to
the master by the highest-ranking processor in the group and cached. When all results have
been computed and returned for all required values of s, the final Laplace inversion calculations
are made by the master, resulting in the required t-points.

7. Numerical Results

Fig. 3. A semi-Markov stochastic Petri net of a voting system with breakdowns and repairs

The results presented in this section were produced on a Beowulf Linux cluster with 64 dual
processor nodes. Each node has two Intel Xeon 2.0GHz processors and 2GB of RAM. The
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Fig. 4. A semi-Markov Petri Net of a parallel web server

nodes are connected by a Myrinet network with a peak throughput of 250 Mb/s.

We demonstrate the SMP passage time analysis techniques of the previous sections with large
semi-Markov models of a distributed voting system (Fig. 3) and a distributed web server
(Fig. 4). The models are specified in a semi-Markov stochastic Petri net formalism (see [7]
for full SM-SPN semantics) using an extension of the DNAmaca Markov chain modelling
language [18]. Generally distributed transitions, if simultaneously enabled, are selected by
probabilistic choice; in this way, we are guaranteed an underlying semi-Markov state space.
This probabilistic selection can be seen as an approximation of the more expressive concurrency
provided by Generalised Semi-Markov Process (GSMP) models. However, semi-Markov
processes are an accurate model in many useful cases; for example when modelling mutual
exclusion or probabilistic task switching on a uniprocessor computer system. Concurrent
Markovian execution is, however, fully supported (and used in Fig. 4). Transition firing time
densities are specified in terms of their Laplace transforms, with macros provided for common
distributions (e.g. uniform, gamma, deterministic), and can be made marking dependent by
use of the m(pi) function (which returns the current number of tokens on place pi). Support
for inhibitor arcs is also provided.
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System CC MM NN States
1 60 25 4 106 540
2 100 30 4 249 760
3 125 40 4 541 280
4 150 40 5 778 850
5 175 45 5 1 140 050
6 300 80 10 10 999 140

Tab. I. Configurations of the voting system as used to present convergence results and passage times

System RR WW SS BB States
1 45 22 4 8 107 289
2 52 26 5 10 248 585
3 60 30 6 12 517 453
4 65 30 7 13 763 680
5 70 35 7 14 1 044 540
6 100 50 18 20 15 445 919

Tab. II. Configurations of the web server system as used to present convergence results and passage times

Fig. 3 represents a voting system with CC voters, MM polling units and NN central voting
servers. In this system, voters cast votes through polling units which in turn register votes
with all available central voting units. Both polling units and central voting units can suffer
breakdowns, from which there is a soft recovery mechanism. If, however, all the polling or
voting units fail, then, with high priority, a failure recovery mode is instituted to restore the
system to an operational state.

Fig. 4 represents a web server with RR clients, WW web content authors, SS parallel web
servers and a write-buffer of BB in size. Clients can make read requests to one of the web
servers for content (represented by the movement of tokens from p8 to p7). Web content authors
submit page updates into the write buffer (represented by the movement of tokens from p1

onto p2 and p4), and whenever there are no outstanding read requests all outstanding write
requests in the buffer (represented by tokens on p4) are applied to all functioning web servers
(represented by tokens on p6). Web servers can fail (represented by the movement of tokens
from p6 to p5) and institute self-recovery unless all servers fail, in which case a high-priority
recovery mode is initiated to restore all servers to a fully functional state. Complete reads and
updates are represented by tokens on p9 and p2 respectively.

For the voting system, Tab. I shows how the size of the underlying SMP varies according to
the configuration of the variables CC, MM , and NN . Similarly, for the web server model,
Tab. II shows state space sizes in relation to the configuration of the variables RR, WW , SS
and BB.

In the following, we consider the rate of convergence of the iterative passage time algorithm
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and the extraction of passage time densities and cumulative distribution functions for the
example semi-Markov systems.

7.1. Convergence of iterative passage time algorithm
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Our iterative algorithm terminates when two successive iterates are less than ε apart (cf.
Eq. (24)), for some suitably small value of ε. Fig. 5 shows the average number of iterations
the algorithm takes to converge per s-point for both models for two different values of ε (10−8

and 10−16).

It is noted that the number of iterations required for convergence as the model size grows is
sub-linear; that is, as the model size doubles the number of iterations less than doubles. This
suggests the algorithm has good scalability properties. Fig. 6 shows the average amount of
time to convergence per s-point, while Fig. 7 shows how the number of iterations per unit
time decreases as model size increases. The curves are almost identical for both values of ε,
suggesting that the time spent per iteration remains constant, irrespective of the number of
iterations performed. The rate of computation (iterations per unit time) is O(1/(N log(N))) for
system size N . This gives a time per iteration of O(N log(N)), suggesting an overall practical
complexity of better than O(N2 log(N)) (given the better than O(N) result for the number of
iterations required).

7.2. Passage time densities and quantiles

In this section, we display passage time densities produced by our iterative passage time
algorithm and validate these results by simulation.

Fig. 8 shows the density of the time taken to process 300 voters (as given by the passage of
300 tokens from place p1 to p2) in system 6 of the voting model. Calculation of the analytical
density required 15 hours and 7 minutes using 64 slave processors (in 8 groups of 8) for the
31 t-points plotted. Our algorithm evaluated L~i~j(s) at 1 023 s-points, each of which involved
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Fig. 8. Analytic and simulated (with 95% confidence intervals) density for the time taken to process 300 voters
in the voting model system 6 (10.9 million states).
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Fig. 9. Cumulative distribution function and quantile of the time taken to process 300 voters in the voting
model system 6 (10.9 million states).

manipulating sparse matrices of rank 10 999 140. The analytical curve is validated against the
combined results from 10 simulations, each of which consisted of 1 billion transition firings.
Despite this large simulation effort, we still observe wide confidence intervals (probably because
of the rarity of source states).
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Fig. 10. Analytic and simulated (with 95% confidence intervals) density for the time taken to process 100 reads
and 50 page updates in the web-server model system 6 (15.4 million states).

Fig. 9 is a cumulative distribution for the same passage as Fig. 8 (easily obtained by inverting
L~i~j(s)/s from cached values of L~i~j(s)). It allows us to extract reliability quantiles, for instance:

IP(system 6 can process 300 voters in less than 730 seconds) = 0.9876

Fig. 10 shows the density of the time taken to perform 100 reads and 50 page updates in the
web server model 6. Calculation of the 35 t-points plotted required 2 days, 17 hours and 30
minutes using 64 slave processors (in 8 groups of 8). Our algorithm evaluated L~i~j(s) at 1 155
s-points, each of which involved manipulating sparse matrices of rank 15 445 919. Again, the
analytical result is validated against the combined results from 10 simulations, each of which
consisted of 1 billion transition firings. We observe excellent agreement.

7.3. Scalability Results

Tab. III and Fig. 11 display the performance of the hypergraph-partitioned sparse matrix-
vector multiplication operations. They show good scalability with a linear speedup trend,
which is unusual in problems of this nature. This is because the hypergraph partitioning
minimises the amount of data which must be exchanged between processors. The efficiency
is not 100% in all cases, however, as even this reduced amount of inter-node communication
imposes an overhead and computational load is not perfectly balanced.

Tab. IV and Fig. 12 show the hypergraph scalability in the case where 32 slave processors were
divided into various size sub-clusters (32 groups of 1, 16 groups of 2, 8 groups of 4, and so on).
This was to measure the benefit to be gained from adding extra groups to draw s-points from
the global work queue versus doing the computation across larger groups of slave processors
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Processors Time (s) Speedup Efficiency
1 3968.07 1.00 1.00
2 2199.98 1.80 0.902
4 1122.97 3.53 0.883
8 594.07 6.68 0.835
16 320.19 12.39 0.775
32 188.14 21.09 0.659

Tab. III. Speedup and efficiency of doing hypergraph-partitioned sparse matrix-vector multiplication across 1
to 32 processors. Calculated for the 249 760 state voting model for 165 s-points.

Processors Time (s) Speedup Efficiency
32× 1 150.13 26.43 0.830
16× 2 159.55 24.87 0.777
8× 4 162.13 24.47 0.765
4× 8 165.24 24.01 0.750
2× 16 173.76 22.84 0.714
1× 32 188.14 21.09 0.659

Tab. IV. Speedup and efficiency using 32 slave processors divided into various different size sub-clusters.
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(which may be necessary when the state space of the model under analysis is very large). The
efficiency decreases as the number of groups decreases. Note, however, that with runtimes of
between 150 and 188 seconds, there is still a dramatic improvement over the runtime on a single
slave processor (3 968 seconds) regardless of the group size employed. These results suggest
that, given a fixed number of slave processors, it is best to allocate them into the smallest size
subgroups (that is, to maximise the number of groups drawing from the global work-queue)
subject to the constraints imposed by the size of the model and the memory available on each
processor.

8. Conclusion

In this paper, we have derived passage time densities and quantiles from semi-Markov models
with over 15 million states. To achieve this, we have developed a parallel iterative algorithm for
computing passage time densities. The key to its scalability is the hypergraph data partitioning
used to minimise communication and balance load. We represent the general distributions
found in SMPs efficiently by using a constant-space representation based on the evaluation
demands of a numerical Laplace transform inverter.

We have analysed the truncation error of our algorithm and derived an optimised convergence
test that may be applied provided that the dominant eigenvalue of the system can be found.
Finally, we have demonstrated the applicability, scalability and capacity of the method on
several semi-Markov systems derived from stochastic Petri nets, and have observed practical
complexity of better than O(N2 log N) processing times for systems with N states.

As future work, we are planning to extend the iterative scheme to generate transient
distributions while maintaining a similar complexity profile.
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